spin-up period (Figure 3.5). The first step, for the period 1985-1992, was based on 1985 glacier areas. The
second step, for the period 1993-1999, was based on glacier extents from 2000. This approach explicitly
incorporates the hydrologic effects of glacier retreat during the calibration period, helping to avoid
parameter bias that could arise from using only one glacier coverage. For example, using only the 1985
glacier cover would result in glacier cover being overestimated through most of the calibration period,
possibly distorting the values of parameters that govern the intensity of glacier melt; that is, the model
would have to simulate an artificially reduced melt intensity to compensate for the overestimate of glacier
arca. Glacier net mass balance (b, for the entire basin was derived from net mass balances for each
clevation band. Net mass balances for clevation bands were calculated as sums of winter and summer
balance. October 1* was taken as the beginning of the accumulation season but the ablation period was

allowed to be extended beyond that date in case of some ice melt in the next accumulation season.

1985 glacier 1993 2000 glacier
cover cover

1985 1999

Figure 3.5. Time periods and glacier coverages used for model calibration.

The calibration procedure, outlined in Figure 3.6, starts with finding a benchmark parameter set by
maximizing the Nash-Sutcliffe efficiency (£) or, in terms of GLUE, the generalized likelihood measure.
This was done with genoud (Mebane & Sekhon 2009), an optimization algorithm in R (R Development
Core Team 2009) that combines evolutionary algorithm methods with a steepest gradient descent
algorithm. A large negative number was returned for parameter sets that did not fulfill the multiple
criteria listed in Figure 3.6, to ensure that the optimization algorithms not only maximize £ but also
search for solutions that meet the additional criteria. In a second step, a Latin Hypercube Search (LHS)

with 10,000 model runs was performed. Latin hypercube designs are most often used in highly
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dimensional problems, where it is important to sample efficiently from distributions of input variables.
Parameter sets from the 10,000 model runs were constrained by criteria given in Figure 3.6. If no
parameter scts with Nash-Sutcliffe efficiencies greater than the benchmark efficiencies minus a threshold
were found, all parameter sets were rejected and the second step was repeated with adjusted (narrowed)
parameter ranges until enough parameter sets (~30) were found that fulfilled all criteria (i.c., behavioural

parameter scts).

Find benchmark parameter set
e evolutionary optimization
e stepwise optimize final criteria

1l

Latin hypercube search
e 10000 runs
e apply final criteria

L

Are enough parameter sets close to

benchmark?

(OARY
oSS
1L gt

Relax criteria
Final parameter set Adjust parameter ranges

N\

J/

~

Final Criteria for behavioural parameter sets
1. 1985-1999 glacier volume change between 7 and 9 km*®
2. Error mean august streamflow < 5%
3. Error mean annual streamflow < 5%

4.E>0.92
" /

Figure 3.6. Flow chart illlustrating model calibration procedure.
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There are many examples in the hydrologic literature where acceptable parameter sets are obtained by
random sampling of the usually high-dimensional parameter space and by subsequently picking the best
performing parameter sets according to one or multiple criteria (Konz and Seibert 2010; Stahl ez al.
2008). In comparison to this common procedure, the procedure described here differs in the sense that it
ensures that the final ensemble parameter set contains solutions that are within a given range of the
potentially "best" solution in a given parameter space. In a highly dimensional parameter space, random
sampling with even thousands of model runs does not guarantee that the best parameter combinations are
found. Without prior knowledge of how well the "best" possible solution performs, the modeller will
usually relax criteria in order to obtain enough acceptable parameter sets, with the possible result that
criteria for acceptable parameter sets are more relaxed than necessary. Theoretically, there are two ways
to proceed when no parameter set found by the LHS provides solutions close to the benchmark parameter
set: either increase the sample size or adjust the prior parameter distributions (decrease the range).
Increasing the sample size is the favorable solution because it likely leads to a more diverse set of
parameters. However, the number of model runs is limited by computational power (even with multiple
CPUs it would take months for the Mica basin). Given the time constraints in this study, adjusting the

prior parameter distributions was the preferred option.

The parameter ranges for model calibration and uncertainty analysis were based on default values
provided in the HBV-EC manual (Canadian Hydraulics Centre 2006), values reported in previous studies
(Stahl e al. 2008; Hamilton et al. 2000), our own experience with applying HBV-EC on other
catchments, and by visually testing the influence of parameters on the simulated hydrograph: with the
modest glacier cover in Mica, a visual inspection of simulated hydrographs provides more information on
the sensitivity of modelled streamflow to the various glacier parameters than a single goodness of fit

measure such as E.

HBV-EC routes water with only two reservoirs (slow and fast). For Mica basin, the slow reservoir
cffectively models the low flow period during winter. As a consequence, runoff routing during the melt
period is modelled primarily with the single fast reservoir, which makes it difficult for the model to
simulate the occasional intense summer (convective) rainfalls, for which the spatial pattern and
nonlinearity of runoff generation differs from that associated with snowmelt. To minimize the effect of
intense rainfalls on the parameterization of meltwater generation and runoff, we excluded the five highest

rainfall events from model calibration and uncertainty analysis.

16

22700031(01).pdf



3.4.2 Results

Prior parameter distributions for LHS were assumed uniform at all stages. As a generalized likelihood
measure we used the Nash-Sutcliffe efficiency (£). Because the slow reservoir is used to model low flows

only, KS (Table 3.2) can be constrained to parameter ranges that match just the winter flows.

The benchmark parameter set obtained by the combined evolutionary-steepest gradient optimization
matched observed streamflow with a Nash-Sutcliffe efficiency of 0.93 for the calibration period and 0.95
for the test period. A first 10,000 run LHS within the initial parameter ranges (parameter range step 1 in
Tablc 3.2) found no acceptable paramcter scts that met all critcria. Although 28 paramcter scts had £ >
0.91, all of these parameter sets had to be rejected because none fulfilled all of the additional criteria.
Without prior knowledge of the benchmark E, the common procedure would now have been to find
acceptable solutions with relaxed criteria. However, from the benchmark parameter set we knew that
better solutions are possible and that 10,000 runs are just too few to sample the parameter space for
acceptable solutions. Therefore, a second LHS with adjusted parameter ranges was performed. This
scarch found 17 acceptable parameter sets, but histograms indicated that two parameters in the acceptable
parameter sets were predominantly sampled near a range boundary. We therefore performed a third LHS

with slightly refined parameter ranges. A detailed description of the calibration process is provided below.

Figure 3.7 shows the wide range of modelled glacier volume changes that can still lead to £ close to the
benchmark. Results from the first LHS suggest that equifinal parameter solutions are possible with glacier
volume loss ranging from 5-40 km®. Unlike the findings reported by Stahl ez al. (2008), E does not peak
at the observed glacier volume loss, which is likely due to the lower glacier coverage in Mica and lower
sensitivity of streamflow simulations to glacier parameters. This result underlines the importance of using
observed glacier volume changes to constrain model parameters, particularly in basins with modest
glacier coverage like Mica. Note that the blue dots in Figure 3.7, the second LHS, represent higher
maximum F because of the greater sampling density within the restricted parameter space and not
necessarily because the glacier volume loss is close to the observed. More intense sampling within the
paramcter spacc that Icads to higher glacicr volume losscs would possibly Icad to higher E at higher
glacier volume losses as well. Figure 3.7 also shows that, although there is a wide range in glacier volume
loss that can lead to high £, no acceptably high £ can be found with parameter combinations that result in

volume gain by glaciers.

17

22700031(01).pdf



Table 3.2. Description of calibrated model parameters, benchmark parameter values, parameter ranges for LHS, and correlation between each
parameter and glacier net mass balance (b,) and Nash-Sutcliffe efficiency (I).

Model
routine

Parameter

Description

Benchmark
Optimization

Parameter
range Step 1

Correlation
Step 1

Parameter
range Step 2

Correlation
Step 2

Parameter
range Step 3

Correlation
Step 3

from to

b E

from to

b E

from to

b E

Climate

TLAPSE

Temperature
lapse rate (°C
m"

0.00760

0.006 0.009

0.51 0.25

0.0075 | 0.009

0.48 -0.37

0.007 | 0.009
5

0.58 -0.42

PLAPSE

Fractional
precipitation
increase with
elevation (m™)

0.00003

0.000
02

0.0005

0.22 -0.31

0.0000 | 0.000
2 2

0.23 -0.10

5E- 0.000
06 1

0.28 -0.03

Snow

AM

Influence of
aspect/slope on
melt factor

0.12481

0.00 0.08

0.1 0.6

-0.01 -0.31

0 0.6

-0.11 -0.32

CMIN

Melt factor for
winter solstice
in open areas
(mm °C” day™)

2.96739

-0.60 | -0.07

22 34

-0.69 0.55

26 3.4

-0.50 0.33

DC

Increase of melt
factor between
winter and
summer solstice
(mm °C" day™)

0.18447

-044 | -0.28

0.5 2

-0.42 -0.05

-0.45 0.10

MRF-low

Ratio between
melt factor in
forest to melt
factor in open
areas below
1200 m

0.71696

0.4 0.9

0.00 0.00

0.6 0.8

0.00 -0.01

0.6 0.8

0.01 0.00

MRF-high

Ratio between
melt factor in
forest to melt
factor in open
areas above
1200 m

0.72330

04 0.9

-0.02 0.00

0.6 0.8

-0.01 0.01

0.6 0.8

0.00 0.01

Glacier

MRG

Ratio of melt of
glacier ice to
melt of
seasonal snow

1.04472

-033 | 023

-0.24 -0.04

-0.33 0.00

DKG

Difference
between
minimum and
maximum
outflow
coefficients for
glacier water
storage (day™")

0.02942

0.005 0.1

-0.07

0.01 0.05

0.01

0.01 0.05

0.01
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Model
routine

Parameter

Description

Benchmark
Optimization

Parameter
range Step 1

Correlation
Step 1

Parameter
range Step 2

Correlation
Step 2

Parameter
range Step 3

Correlation
Step 3

Glacier
(cont.)

KGMIN

Minimum
outflow
coefficient for
glacier water
(day™)

0.01652

0.005 0.1

-0.01

0.01 0.05

0.09

0.005 | 0.03

0.09

Runoff

KF

Proportion of
fast reserviour
release (day™)

0.14108

0.01 04

0.23

0.1 0.35

-0.19

0.05 0.3

0.18

ALPHA

Exponent to
adjust release
rate of fast
reservoir

0.13276

0.01 03

0.04

0.05 0.2

-0.11

0.05 0.2

0.05

KS

Proportion of

slow reservoir
-1

release (day )

0.01442

0.000 0.05

-0.04

0.001 0.03

0.15

0.000 | 0.015

0.07

FRAC

Fraction of
runoff directed
to fast reservoir

0.89401

0.5 0.9

0.11

0.7 0.9

0.35

0.7 0.9

0.49
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Figure 3.7. Nash-Sutcliffe efficiency (£) plotted against simulated glacier volume change for 10,000
model runs in the initial Latin Hypercube Search (black) and for 10,000 model runs in a Latin Hypercube
Scarch with adjusted prior paramcter distributions (bluc). Red dots indicate acecptable paramcter
combinations.

The temperature lapse rate (7LAPSE), the melt factor at winter solstice (CMIN), and the precipitation
lapse rate (PLAPSE) are the calibrated parameters that have the highest correlations with both the glacier
net mass balance (b,) and £ (Table 3.2). Because they had winter mass balance measurements, Stahl ez al.
(2008) werc ablc to fix the climatc paramcters 7LAPSE and PLAPSE at an initial step during modcl
calibration, separately from the calibration using streamflow data. This approach was not possible in this
study as we have no winter balance measurements, so a greater amount of uncertainty in these parameters
(wider parameter ranges) is propagated all the way through to streamflow predictions. Other important
parameters are the ratio of melt of glacier ice to melt of seasonal snow (MRG) and the increase of melt
factor between winter and summer solstice (DC). MRG and DC are both correlated with b, at all steps
during the uncertainty analysis, but are correlated with £ only in the first LHS with wide parameter

ranges. The routing parameters with the highest correlation with £ are the fast reservoir release coefficient
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(KF) and the fraction of runoff directed to the slow reservoir (FRAC). ALPHA, the exponent to adjust the

release rate of the fast reservoir, has little influence on E.

As mentioned above, the slow reservoir coefficient (KS) was constrained to model winter flow and hence
had a small parameter range, which is why K shows low correlation to £ (it would likely have a higher
correlation if a wider parameter range were considered). Glacier reservoir coefficients and the melt

reduction factor under forest (MRF) show weak correlation to both glacier volume change and £.

Besides 7LAPSE, the most important model parameters are CMIN and DC, both of which comprise the
base melt factor Cy (Eq. 3.1). We will use Cy as an example to illustrate how the use of both glacier
volume loss and model efficiency for streamflow (£) help to constrain the calibration. For non-zero
values of DC, Cy varies sinusoidally between a minimum value (CMIN) at the winter solstice (o a
maximum value (CMIN + DC) at the summer solstice. A DC of zero would mean that C is constant in
time, whereas a CMIN of zero would result in Cy with the highest possible seasonal variation. In the first

LHS, we chose the parameter ranges to be wide enough to generate solutions between those maxima.

Figure 3.8, which is based on results from the first LHS, shows that melt factors greater than 5.4 (blue)
lead to solutions with efficiencies lower than 0.85 and over-predicted glacier volume losses. Melt factors
lower than 2.7 lead to glacier volume losses that are smaller than observed. Plotting simulated and
observed hydrographs with different combinations of CMIN + DC (not shown here) revealed that
combinations with low CMIN and high DC, which generate a high seasonal variation of C,, produce a
much-too-delayed onset of runoff compared to observations. Hence, in the second LHS, the prior
parameter ranges of CMIN and DC can be adjusted to combinations of CMIN and DC that are between
5.4 and 2.7 with a minimum DC of zero. Other parameter ranges were adjusted according to parameter

distributions that meet relaxed criteria applied to the first LHS (Figure 3.9).

Figure 3.10 shows that within the adjusted parameter ranges, with random variation of all other
parameters (also MRG), any melt factor from 2.6 to 4.6 can lead to model efficiencies that are close to the
benchmark value of . Measured glacier volume loss is the only option to further constrain the melt
parameters and hence to narrow the error bars over future streamflow predictions related to glacier

changes.
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Figure 3.8. Variation of the parameter (y interpolated over the resulting values of model efficiency (F)
and glacier volume change for the first Latin Hypercube Search. Each plotted point represents a model
run. All parameters besides Cy were varied randomly.
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Figure 3.9. Histograms of parameters that meet relaxed criteria applied to the first Latin Hypercube
Scarch. The crror for mcan August strcamflow was rclaxcd to 10 % (from 5 %) and the constraint for £

was relaxed to > 0.87 (from £ > 0.91). Red lines indicate adjusted parameter ranges.
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Figure 3.10. Variation of the parameter Cy interpolated over the resulting values of model efficiency (£)
and glacier volume change for the second Latin Hypercube Search. Each plotted point represents a model
run. All parameters besides Cy were varied randomly.

From the 10,000 model runs in the third LHS, 705 parameter sets met the final criterion of £ > 0.915, but
only 23 of these also met the additional criteria given in Figure 3.8. This again underlines the importance
of the use of glacier mass balance or volume change data to constrain model parameters. All of the

acccptablc 23 paramcter scts arc considerced cqually representative for Mica basin. All paramctcr scts
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reproduce the seasonal peak flows as well as low flows, but have difficulty with modelling intense rainfall
events, especially during autumn (Figure 3.11). This is not surprising, since, as mentioned before, one of
the two reservoirs (the slow reservoir) is used to model the low flows during winter, and the single fast
reservoir cannot simultaneously represent runoff generation due to melt and rainfall given the differences
in their spatial patterns and nonlinearity. Since this model weakness only affects daily peak flows,
particularly during autumn, it should not undermine the model's ability to make projections of the effects

of climate change and glacier response on monthly or seasonal patterns of melt-generated runoff.
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Figure 3.11. Observed and simulated discharge for the calibration period (1985-1999). (a) observed and
simulated discharge predicted with the best model; (b) observed and the ensemble of simulated discharge.

3.4.3 Discussion
There is disagreement in the hydrologic literature as to whether the treatment of uncertainty in hydrologic

model predictions should be founded in formal Bayesian statistics or on informal Bayesian approaches
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such as the GLUE method (there is also debate as to whether the GLUE approach should be seen as an
informal Bayesian method, as a special case of a formal Bayesian method, or as a non-Bayesian method).
The main advantage of a formal Bayesian method is that individual error sources, ¢.g., model structural
errors and parameter uncertainty, can be separated. Since our main interest was the assessment of the
overall uncertainty in predicting the hydrological impacts of glacier change, we chose a GLUE type
approach that we modified to fit the specific needs of this study. In the traditional GLUE approach,
parameter ranges should be widened so that the envelope of ensemble parameter sets cover all or part of
the observed discharge (symmetrically). However, in a model that does not incorporate strong
nonlinearity, such as HBV-EC, this can lead to parameter combinations that do not represent accurately
the dominant runoff generation processes. For example, for Mica basin, HBV-EC simply does not appear
to be able to model a heavy rain event on top of a seasonal melt peak with high accuracy. Criteria can be
relaxed and parameter ranges widened so that some parameter sets could cover such events, but this
would heavily distort conclusions regarding the relative roles of snow and glacier melt drawn from such
an ensemble. One also has to bear in mind that despite the fact that parameter sets in our ensemble
converge at the final criterion, E, they still cover the whole range of all other criteria including
uncertainties associated with the observed glacier volume loss. Predictions made outside the observed

range of climate forcings are more likely to diverge.

3.5 Model testing

Model testing on streamflow for the period 2000-2007 using the observed glacier extents from 2005
yielded an efficiency of 0.95 for the best model, a slightly better performance than during the calibration
period. One possible reason for the improved model performance is that observed rather than estimated
data were available for the Floe Lake climate station during the test period. As for the calibration period,
HBV-EC performed well on the seasonal melt peak as well as on low flows during winter, but has some

weakness capturing intense rainfall events.
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Figure 3.12. . Observed and simulated discharge for the test period (2000-2007). (a) observed and
simulated discharge predicted with the best model; (b) observed and the ensemble of simulated discharge.

Snow watcr cquivalent data for three snow pillows were available from 1995 onwards. Since thesc data
were not used for model calibration, we used them to test the ability of the calibrated HBV-EC to
simulate snow processes for the period from 1995-2007. Since HBV-EC is a semi-distributed model
based on the concept of GRUs, the model does not predict state variables for a specific location but only
for each GRU. This needs to be considered when comparing simulated and observed snow water
equivalent (SWE). Despite the difference in spatial scales associated with the modelled and observed
values, SWE predicted by HBV-EC shows encouraging agreement with observations, with regression fits
between predicted and observed SWE having R’ of 0.82, 0.77, and 0.86 for the Molson Creek, Floe Lake,
and Mount Revelstoke snowpillows, respectively (Figure 3.13). The model accurately predicted the
timing of the onsct of snowmelt as well as the rate of decrease of SWE during the ablation period at all
three snow pillow sites. The model tends to underpredict the peak SWE. For some years this
underprediction is within the error bars of SWE measurements (£5% according to Gray and Male, 1981).
This underestimation may be caused, in part, by the fact that snow pillows tend to overestimate SWE due
to creep (downslope deformation of a snowpack), which puts additional load on the pillows (Gray and

Male 1981). However, there are some station-years in which the underestimation is too large to be simply
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attributed to measurement errors (e.g., 1996-1997 at Floe Lake). Interestingly, the timing of these types of
errors is not consistent among stations. For example, in the water year 1996-1997, peak SWE was
reproduced reasonably accurately at Molson Creck and Mount Revelstoke. This pattern of errors likely
reflects, in part, the inherent variability in precipitation patterns from year to year, which are not properly

represented through the use of fixed lapse rates in each climate zone.
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Figure 3.13. Simulatcd (using the best model) and obscrved snow water equivalents for three snow
pillow sites. Simulations are for the GRU that corresponded to the snow pillow sites.
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3.6 Historic contributions of glacier melt inferred from HBV-EC

3.6.1 Historic trends in climate data

Four of the five climate stations in Mica (MCA, RGR, MOL and RAD) have records that are long enough
to explore historic temperature and precipitation trends. RGR, RAD and MOL have records starting in
1967, 1969 and 1984, respectively, and both temperature and precipitation trends are calculated based on

obscrvations only. All stations have been backfilled to 1960 to model historic trends in streamflow.

Mean annual air temperature shows increasing trends for all four climate stations (Figure 3.14). Mean
annual air tlemperature [rom the early 1960s up until the 1976-77 shift in Pacific climate (e.g., Mantua et
al., 1997) is more or less steady. Following 1976, mean annual temperature increases at all climate
stations. The highest elevation climate station, MOL (1935 m asl.), shows the highest increase in mean
annual temperature amongst all climate stations, with a slope of 0.051 °C/year. During the post-1976
period, mean annual air temperature steadily increased at all climate stations (0.037 °C/ycar at MCA,

0.033 °C/year at RAD, 0.029 °C/year at RGR).

Less clear trends are found in the precipitation data (not shown), with a few extreme years dominating the
overall trend at cach station. While precipitation at the higher elevation climate stations MOL and RAD is

slightly increasing, a weak decreasing trend can be observed at the lower elevation climate station MCA.

3.6.2 Historic variations in streamflow and inferred contributions from glacier melt

Mean annual discharge shows high inter-annual variation but no trend; the slope of a fitted linear model
was not significantly different from zero based on a two-tailed t test (Figure 3.15). Mean July discharge
also does not show a significant trend with time. However, both August and September mean discharges
significantly decrease with time (p < 0.05). The trend, estimated by linear regression, is -7.1 m’s'year™

for mean August discharge and -4.3 m’s'year ' for mean September discharge.
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Figure 3.14. Mean annual temperatures for MCA, RGR, RAD, and MOL and their linear trend (red line)

for the period 1965-2007. The bold blue line is a 10-year moving average.
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Figure 3.15. Time series of mean annual discharge (top) and mean discharge for July, August and
September (bottom) for the period 1972-2007.

Historic contributions of glacier melt can be modelled based on cither observed or simulated glacier areas.
Simulations of basin wide glacicr arca from the UBC Regional Glaciation Model (UBC-RGM) show
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good agreement with observations (Figure 3.16). After a period with increasing glacier area prior to the
Pacific climate shift in 1976-77, which was associated with a shift to more negative net mass balance in
western Canada (e.g., Moore and Demuth, 2001), glacier arcas steadily decreased up to the end of the data
records in 2007 (Figure 3.16). This decrease in glacier area is confirmed by observations. Hydrographs

from simulations based on simulated and observed glacier masks are visually indistinguishable.
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Figure 3.16. Historic simulated and observed glacier arca. The vertical red line indicates the 1976-77
Pacific climate shift.
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The difference between streamflow simulations with and without glaciers provides an estimate of the
contribution of glacier ice melt to discharge, taking into account the fact that snowmelt and rainfall runoff
from the arcas currently covered by glacicrs would occur even if the glaciers completely disappeared. In
the no-glacier runs, all glacier cover is converted to open land cover. The differences are calculated from
the ensemble means for glacier and no-glacier scenarios (23 runs, each based on a different "behavioural”
parameter set). Figure 3.17 shows that the annual contribution of ice melt to total streamflow varies

between 3% and 9%, and is on average 6%.

Discharge [mas 1]
100 200 300 400 500 600 700
1

—— noglaciers —— glaciers

0
|

I I \ I \ [ I
1975 1980 1985 1990 1995 2000 2005

Years

Figure 3.17. Historical mean annual streamflow simulated with and without glaciers (simulations based
on observed glacier areas).

Mean monthly discharges in July are more or less identical between glacier and no-glacier scenarios. In
July, some years have a higher discharge in the no-glacier scenario. This occurs because the routing in the
presence of glaciers differs from routing with no glaciers: the glacier reservoir can lag flows [rom a [ew
days up to several weeks, depending on the parameter values. This behaviour has been documented
empirically (e.g., Stenborg, 1970). Mean August streamflow would be up to 25% lower if there were no

glaciers, though the variation of contributions is high (coefficient of variation = 7%). The relative
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contribution of glaciers is highest in September, when ice melt can provide up to 35% of the discharge.

September contributions of ice melt are also less variable over time, with a coefficient of variation of 5%.
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Figure 3.17. From top to bottom: mean July, August and September streamflow simulated with and
without glaciers.

Figure 3.18 compares the mean and range of ensemble predictions for two hydroclimatically contrasting
years for simulations with glaciers to simulations where glaciers have been removed and replaced by open
land cover. Glaciers and glacier ice melt are particularly important in years with early snowmelt such as
1998, the year with the highest modelled ice melt (Figure 3.18), where glaciers can contribute to more
than 20% of the flow for periods of more than two months. In years with late snow melt, for example the

year 2000, glaciers have a minor effect on discharge.
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Figure 3.18. The effect of glaciers on discharge shown by comparing simulations with and without
glaciers for the year with the highest modelled ice melt (1998) and the year with the lowest ice melt
(2000).

3.7 Summary

The calibrated HBV-EC model accurately predicts the overall seasonal hydrograph, including the
seasonal peak and the low flows. Nash-Sutcliffe efficiencies exceeding 0.93 were achieved for the
independent test period. The calibrated model was able to reproduce the onset of snowmelt as recorded at

snow pillows, as well as the rate of snowmelt. Constraining the model calibration using observed changes
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in glacier volume increases confidence in the model's predictions of the relative roles of snow and glacier
melt. Running the model with and without glaciers suggests that glacier ice melt contributes from 3 to 9%
of annual runoff, depending on the year. The contribution in August is up to 25% of discharge in that
month, while the contribution in September is up to 35% of discharge. In all cases, the contribution of

glacier melt is highest in years with low snow accumulation and early snow disappearance.
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4 Modelling glacier dynamics

4.1 Overview

There is a substantial literature devoted to numerical ice dynamics modelling applied to large ice sheets
such as the present-day Antarctica and Greenland ice sheets or the now-vanished Laurentide and
Fennoscandian ice sheets. At a much smaller scale, the flow of individual “research” glaciers has been
successfully modelled. In both cases, the problem geometry, in particular the topography of the subglacial
bed B(x,y), and the glacier mass balance forcing are usually well known, well constrained or spatially
smooth. In contrast, the problem of simultaneously modelling the flow of many glaciers within a region
of complex topography, which we call “regional glaciation modelling,”is comparatively new and can
introduce special challenges. There are two particularly difficult challenges. First, the subglacial
topography is unknown, although it is subject to physical and plausibility constraints. Second, the climate
forcing is certain to have a high degree of spatial variability owing to elevation and orographic influences
on temperature and precipitation, while climate fields obtained from observation networks, climate
reanalysis products and GCM output are all coarsely resolved. Thus downscaling from these fields to the
scale of individual glaciers presents a significant challenge. Much of the art and science of regional
glaciation modelling focuses on developing the best possible glacier mass balance model from these

downscaled climate fields. Figure 4.1 summarizes the main components of a regional glaciation model.

Low-res
climate fields

v v

Precipitation Temperature
downscaling downscaling Bed topography
Direct potential Glacier mass Ice dynamics

solar radiation [P balance model |——— model

*

Ice topography | <¢

Figure 4.1. Flow chart showing major components of the UBC regional glaciation model.
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4.2 Landscape representation

All aspects of the modelling presented in this section require a digital elevation model (DEM). The
derivation of the subglacial topography additionally requires maps of glacier coverage that temporally
correspond to the time of acquisition of the DEM. The baseline DEM that was used for the generation of
the downscaling and surface mass balance is the Shuttle Radar Tomography Mission version 4 with 90 m
spatial resolution described by Farr er al. 2007 (hereafter SRTM; accessed via http:/srtm.csi.cgiar.org/) .
For the ice dynamics modelling, this DEM was supplemented by data from the British Columbia Terrain
Resource Information Management (TRIM) program acquired from BC Hydro (Scott Weston, BC Hydro,
personal communication, 2010). These two DEMs are nested for the purpose of ice dynamics modelling,
with the TRIM data used within the Mica basin and SRTM used without. Both DEMs were resampled
[rom their native resolution to 200 m. There is a slight o[fset apparent between the SRTM and the TRIM
DEMs at the watershed boundary where the data meet. Glacier coverages, or “ice masks” f; were derived
from Landsat ETM data by Bolsch e al. (2010) and are based on scenes captured in year 2000. We take
I;=1 for ice-covered cells and /;=0 for ice-free cells. From these two pieces of information, the area of
every glacier in the study region is computed and ice thickness H;; is estimated for the time #, at which
ice surface topography S and I were observed. The algorithm (Clarke, unpublished) used to estimate Hi;
assumes that individual glaciers have a basal shear stress T that depends on glacier areca A. Applying the
scaling analysis of Bahr (1997) we use the relation t=c4"”’ where the constant of proportionality ¢ is
assigned to yield ice thicknesses that either match observations or, lacking these, align with experience
elsewhere. This approach is judged to be superior to an artificial neural network method previously
described by Clarke er al. (2009), but optimal estimation of ice thickness from surface data remains a
challenging and important research question that merits additional attention. All data have been projected
into the so-called NARR projection, which is a Lambert Conformal Conic projection whose parameters
are given as supplementary information. All modelling takes place within this projection and final results
arc reprojected to the BC Albers projection used by BC Hydro. This approach preserves the accuracy of

the forcing data by avoiding reprojection of these data and of the associated interpolation of these fields.

4.3 Climate representation

4.3.1 North American Regional Reanalysis

A major part of our strategy for glacier modelling was to develop a “most accurate” set of both driving
meteorological variables and glacier mass balance for the Mica catchment. For this purpose, we have

chosen the North American Regional Reanalysis (NARR), a high-resolution atmospheric reanalysis data
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set which is fully described in Mesinger ef al. (2006). This reanalysis comprises a full suite of
atmospheric data (>200 variables) on a ~32 km grid at 29 pressure levels and at 3-hourly intervals for the
period 1979 through the present. These data are derived from short term Global Climate Model
simulations with observational data assimilated 8 times per model day. As such, the NARR represents a
self-consistent set of atmospheric data. We use several of the NARR variables to apply our process-based

downscaling, which is described in Section 4.4.
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Figure 4.2. Time scries showing the number of stations contributing to the central CRUTS2.1 grid cell
that was used to simulate glacier growth during the 20" century. (a) Precipitation. (b) Temperature. For
both rccords, there are substantially morc stations contributing to the grid ccll in the middle and late part
of the 20™ century than carlier and later.

4.3.2 CRUTS2.1

Although simulation of the past fluctuations of glaciers was not an explicit objective of our project, this
step 1s essential to the glacier dynamics modelling that will be described below. To meet this need for
20™ century glacier forcings, two approaches were taken. The first was to utilize the 20™ century
simulations available for the GCMs that we used in this study. This approach was followed with the hope
that the time series of forcings from the individual GCMs would yield a consistent picture of the

glaciological past and future, rather than the patchwork that can result from using multiple data sources.
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The second approach was to use a gridded data set containing interpolated temperature and precipitation
observations throughout the 20™ century. The TS2.1 data from the Climate Research Unit of the
University of East Anglia (hereafter CRUTS2.1; New et al. 2000, Mitchell and Jones, 2005) was chosen
for the 20" century simulations. The 20" century data from the GCM:s differed from one another and
from CRUTS2.1 and it was considered unlikely that output from any of the GCMs could be successfully
used to drive a glacier mass balance model for the 20" century. Thus we decided against using GCM-

based mass balance models to initialize our simulations of glacier changes in the 21* century.

The CRUTS2.1 data are derived from station measurements of several variables including 2 m air
temperature, precipitation, cloud cover, and humidity. These observational data are aggregated to monthly
anomalies and then interpolated to a 0.5° resolution geographic grid using an inverse distance weighting
(IDW) scheme. Several qualily concerns arise in the production of these data. The IDW interpolation
allows distant stations to contribute information on climate fields (as far away as 1200 km for temperature
and 450 km for precipitation). For periods later in the century when there are numerous climate stations,
this presents little problem due to the high station density relative to the grid spacing. For carly in the 20"
century, however, temperature records from the Canadian prairies could have contributed to the
temperature reconstruction over the BC interior and the Canadian Rocky Mountains. Mitchell and Jones
(2005) do not quantify the error associated with these changes, so it is impossible to assess the uncertainty
that this contributes to the modelling. However, it can be assumed that there is a general decrease in
model uncertainty from the onset of simulations to present. For the purposes of this study, with its focus
on future glacier changes, errors incurred in spin-up early in the 20" century should have minimal effect
on 21* century simulations. Furthermore, in this study we only use the temperature and precipitation

variables, which have the greatest number of contributing stations.

4.3.3 GCMs

To represent the 21 century climate for Mica region we use six GCMs from the ensemble of 22 models
originally produced for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment
Report (AR4). These six GCMs, listed in Table 4.1, are chosen according to their ability to simulate
various aspects of recent climate (1979-1999) over this region. Details of the evaluation methods and

criteria for model selection are presented in Chapter 5.
We use the projected temperature (air temperature at 850 hPa) and precipitation fields from the six

selected GCMs for emission scenarios A2, A1B and B1 (see Chapter 5, Box 5.2 for a short description of

these scenarios). Our general approach is to produce a high resolution reference downscaling at daily
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temporal resolution, and then use statistics calculated from these data to generate the monthly input fields
for our mass balance model. For the GCM scenarios for future climate and the CRUTS2.1-forced mass
balance simulations, we apply the monthly anomalies in temperature and precipitation to a monthly
climatology derived from our high resolution downscale — the so-called delta approach. The delta
approach uses the anomaly fields (anomalies in the forcing variables) from the parent GCM (or in CRU)
to adjust the high spatial resolution mean-of-month temperature and precipitation ficlds. This
downscaling is fully described in section 4.4. The formulation for the delta approach is given by the
equations in Box 4.1. For temperature, the anomaly is additive to the NARR field while for precipitation
the anomaly is multiplicative. For larger modelling domains, the delta approach retains the spatial
structure of anomalies in the parent GCM, but for the scale of the Mica catchment, the anomalies are
largely driven by, at most, several GCM grid nodes. Thus the bulk of the spatial structure in the delta-
derived temperature and precipitation fields is due to the spatial structure of the mean state of the high
resolution, NARR-derived downscale. This is not seen to be a major problem because glaciers typically
respond in unison (although with varying magnitudes) over the O(100 km) spatial scales within the Mica
catchment (Huybers and Roe, 2009). Thus, it is most important to accurately characterize the local
vertical gradients in temperature and precipitation rather than the meso-scale lateral anomalies. The
projected climate fields from GCMs and the historical data obtained from the Climate Research Unit
(CRU) of the University of East Anglia are downscaled by applying the GCM anomaly for a given month
to the high resolution climatology developed from the NARR downscaling. The equations used in this
transfer step of our downscaling method are listed in Box 4.1. We consider the NARR-based downscaling
as the reference mean climate for the period 1979-1999. All GCM data are initially interpolated to
10xNARR grid, which is approximately 320%320 km in conical conformal Lambert map projection.

Figure 4.3 shows the time series of temperature and precipitation change (2001-2100), projected from the
six GCMs and three emission scenarios, for the grid cell covering the Mica region. As illustrated, the
projected temperature increase for this region from various emission scenarios is in the range of 2 to 5 K
depending on the choice of GCM and emission scenario. For the annual sums of precipitation, the
projections range from precipitation with no significant increasing trend (e.g. GFDL-CM2.0) to

precipitation increasing by up to 20% (e.g. CGCM3.1 models) by the end of the 21 century.
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Table 4.1. List of GCMs used in glacier modelling. Resolutions are given in degrees longitude by degrees
latitude.

Model Governing body Country Resolution

CGCM3.1(T47) Canadian Centre for Climate Modeling and Analysis Canada 28x238

CGCM3.1(T63) 1.85x1.85

CSIRO-MK3.0 CSIRO Atmospheric Research Australia 1.85x1.85

GFDL-CM2.0 U.S. Department of Commence/NOAA/ USA 25x2.0
Gophysical Fluid Dynamics Laboratory

MIRO3.2(hires) Center for Climate System Research (The University Japan 1.12x1.12

of Tokyo), National Institute for Environmental
Studies, and Frontier Research Canter for
Global Change (JAMSTEC)
ECHAM/MPI-OM  Max Planck Institute for Meteorology Germany 1.85x 1.85

Box 4.1. Method used to obtain downscaled climate fields from low-resolution CRU and GCM fields.

T*(2,y,t) = Tr(z, y, %) + [Tu (2, y,t) — Tn(z,y, k)] (4.1a)
_ Pul(z,y,t
P*(x,,t) = Pr(z,y, ) % {M} (4.1b)
Pu(z,y,tk)

T*(x,y,t) = projected downscaled temperature ficld at (z, y)
Twr(z,y,tx) = high-resolution downscaled monthly mean temperature at (x, y)
from NARR (1979 1999)
T (z,y, ;) = monthly mean temperaturc at (z,y) from GCM or CRU (1979 1999)
P*(x,y,t) = projected downscaled precipitation ficld at (z, y)
Pr(z,y,Tr) = high-resolution downscaled monthly mean precipitation at (z,y)
from NARR (1979 1999)
Py(z,y,t;) = monthly mcan precipitation at (z,y) from GCM or CRU (1979 1999)
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Figure 4.3. Time series of annual temperature and precipitation change for Mica region (Columbia Basin,
BC) from NARR and six GCMs for the scenarios A1B (left), A2 (middle) and B1(right). Temperature
change AT corresponds to annually averaged ATy in Box 4.1, while precipitation change (kp) corresponds
to annually averaged ratio Py(x.y,1)/Pu(x,t,t) in Box 4.1.

4.4 Temperature and precipitation downscaling of NARR

Our modelling efforts require high spatial resolution input fields of temperature and precipitation. The ice
dynamics model is set to operate at a nominal resolution of 200 m in order to resolve the small scale
topography in which glaciers both initially form and finally depart. Smaller grid spacing would add little
in terms of extra information and larger spacing would begin to exclude important topographic features.
Generating the high resolution climatology from NARR over a large region requires downscaling that is
physics-based and without the requirement of extensive calibration. These characteristics lend confidence
in the transferability of the method to future and past climatic conditions. This section provides a brief
description of the downscaling of NARR data only (as opposed to downscaling of CRUTS2.1 and GCM
data), and the full description is available in Jarosch er al. (2010).

4.4.1 Precipitation downscaling

As mentioned above, our downscaling aim was to apply a physics-based model without using a full

dynamical downscaling which, at present, is beyond the scope of this project. To meet this need, a
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downscaling that applies the physics of orographic precipitation generation was used. This is the so-
called linear orographic precipitation model (LOP model) developed by Smith and Barstad (2004) and
Barstad and Smith (2005). A schematic illustration of the model is shown in Figure 4.4. This figure
shows how advection of moist air facilitates orographic precipitation on the windward side of orographic
barriers. On the lee side, if sufficient atmospheric stability exists, a train of gravity waves will be
simulated with suppressed precipitation where subsidence occurs and enhanced precipitation where ascent
occurs. The mathematical essence of the LOP is summarized in Box 4.2. Because the model involves
only a directional derivative and simplified gravity wave dynamics, it can readily be solved in the Fourier
domain. Thus, this approach meets our needs for an accurate representation of the governing physics with
modest computational demands. The model simulates orographic uplift as well as lee-side mountain

wave dynamics which are responsible for precipitation generation and suppression.

Figure 4.4. Schematic showing the basic ideas of the linear theory of orographic precipitation. When a
column of moist air passes over mountainous terrain, the column cools when it is uplifted and relative
humidity increases. When the column becomes water saturated precipitation occurs. Under special
circumstances waves can form on the lee-side of mountains.
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Box 4.2. The linear theory of orographic precipitation.

Cyich(k, 1)
(1 —imHy) (1 + io7e) (1 + ioT)

Pk, 1) = (4.20)

m(k,1) = {(%) (k> + 12)] i (4.2b)

P (k,1) = two-dimensional Fourier transform of precipitation field p(z, y)
k = wavenumber in the x (West-East) direction
[ = wavenumber in the y (South-North) direction

C'w = uplift sensitivity factor
c=Uk+VI
U = wind velocity in z direction
V = wind velocity in y direction
m = vertical wavenumber
7. = condensation timescale
¢ = fallout timescale

Ny, = effective moist static stability

f = Coriolis parameter

Comparison between the NARR-based downscaling and the precipitation data from ClimateBC (Hamman
and Wang, 2005; Wang et al., 2006) show very similar performance for the two gridded data sets relative
to station data (results not shown). Because we require statistics on the daily variability of temperature
and precipitation, our in-house downscaling is preferred. Overall, the NARR-based downscale is dry over
the Rocky Mountains as is the ClimateBC product. The NARR-based downscale performs substantially
better than a simple spatial interpolation of the NARR precipitation data, which is consistently too-dry
over all regions. The dryness in the downscaling arises because the precipitation downscaling is additive
to the NARR, so it carries some of the deficits in precipitation that are present in the NARR data set. For
instance, the NARR precipitation field is overly dry in the interior of British Columbia especially [or
mountain stations. Although the orographic model is able to correct for some of this deficiency, the
downscaling remains somewhat dry over interior mountains. On average, over the Rocky Mountains the
NARR-based downscaling is about 25% deficient in precipitation. This argues for the necessity of a

correction factor of roughly 1.33.

Accordingly, we have developed a spatial bias correction by comparing station precipitation amounts to

downscaled precipitation amounts. Because we are most interested in wintertime precipitation, we have
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developed a bias correction based only on the months November through April. This correction is
presented in Figure 4.5 and shows that the largest correction was needed on the western edge of the Mica
basin amounting to an enhancement of ~1.7 times the downscaled amount. For much of the Rocky
Mountains an enhancement of ~1.2 to ~1.5 is applied. On average, this bias correction is comparable to
that needed to correct the 25% deficit noted above. The mass balance results, which will be discussed
below, show that the correction was capable of bringing the mean wintertime mass balance into
agreement with measurements with some deficiencies with respect to mass balance gradients still present.
Closer analysis revealed that there was no consistent bias in vertical mass balance gradient, so no effort

was made to correct the precipitation gradients.

1.92

1.68

1.43

Figure 4.5. Map of precipitation bias correction applied to the downscaled precipitation and to the delta
approach for the purpose of simulating glacier mass balance. Overall, the correction acts as an
cnhancement everywhere with the greatest amounts in the western sector of the Mica catchment. The red
line denotes the Mica basin.

4.4.2 Temperature downscaling

The temperature downscaling that we apply makes use of the temperature structure of the reanalysis
troposphere. The greatest temperature accuracy in the NARR dataset occurs at mid-troposphere (~400
mbar) with an RMSE there of ~0.7 °C, whereas for surface temperature the RMSE is more than twice that

(Mesinger et al., 2006). To downscale temperature we use the NARR temperature and geopotential
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height at pressure levels below 500 mbar. A two-component, piecewise-linear model is fit to the
temperature structure at daily intervals using least squares regression. The two-component model allows
for the possibility of a temperature inversion and other departures from a uniform lapse rate in the vertical
column. A schematic representation of this is shown in Figure 4.6. The equation for the piecewise linear
fit includes five parameters and is given in Box 4.3. These parameters are derived at all NARR grid
locations in the domain and then interpolated to the high resolution of the target downscale topography.

The interpolated parameters are then used to calculate temperature at arbitrary altitudes in the study area.

For glacier models these altitudes correspond to the DEM surface.

Figure 4.6. Basis of tempcrature downscaling. The atmosphere is assumed to be vertically stratified and
the time-varying thermal lapse rate is determined from the NARR. (a) Simply stratified atmosphere. (b)
Atmosphere having a thermal inversion and hence differing lapse rates above and below the inversion
level.

Comparisons between the temperature downscale described here and the ClimateBC data show that the
NARR-based downscaling has less error during winter and has similar or slightly greater error during
summer. A simple downscaling using surface temperature from NARR combined with a fixed
temperature lapse rate was also applied and showed worse performance than the other two methods. Both
the fixed lapse rate method and the ClimateBC data show seasonal changes in the error indicating a need
for at least a seasonally varying lapse rate. For locations with high topographic relief in the Rocky
Mountains, the NARR downscaling performs better than the ClimateBC with lower absolute error and
lower standard deviation of error between stations. There was no consistent spatial bias in the downscaled
temperature relative to station data, so no correction was developed or applied for the purposes of mass

balance modelling.
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Box 4.3. Method of temperature downscaling.

T(z,y) = h(@, y)Tow + Tiow(2 = 0)  h(w,y) < Zinv (4.3a)
T,y h(z, y) high + Thign(z = 0)  A(2,Y) > 2iny .

W — — T =
sy = D2 = 0) ~ Thign (2 = 0) (4.3b)
Thigh — Dow

T = downscaled surface temperature
Tiow = fitted sea-level temperature for lower segment of curve
Thigh = fitted sea-level temperature for upper segment of curve
h

[ow = thermal lapse rate within inversion layer (if present)

surface elevation

Ihigh = thermal lapse rate above inversion layer (if present)
z = elevation above sea level

Zinv = elevation of inversion

4.5 Mass balance model

This subsection describes how a glacier mass balance model is constructed from downscaled climate
fields.

4.5.1 Temperature index ablation model

Mass balance models for alpine glaciers which are described in the published literature range from fairly
sophisticated trcatments of the surface encrgy balance (Arnold ef al., 1996; Klok and Ocrlemans 2002;
Hoffman ef al., 2008) to simplified temperature index models (Braithwaite, 1981). The needs of the
present study are to capture mass balance variability in space and time with minimal input data and also
minimal model tuning. Because we are simultaneously modelling all of the glaciers in the Mica
catchment, model tuning cannot be performed for individual glaciers. Rather, the mass balance model
must be general enough to apply to all of the glaciers in the catchment. Furthermore, there are only five
glaciers in western Canada with measurements suitable for model tuning. Surface energy balance models,
which are attractive because they are physics-based, do not meet our requirements because they have a
number of free parameters to tune. Once tuned, however, they are potentially the most accurate. These
models also require comprehensive sets of input data which are not available [or the past and [uture
climate scenarios that this study must address. Because the data available from the GCMs is fairly limited

in terms of the selection of variables and their temporal resolution, we have chosen the simple
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temperature index model that includes solar radiation developed by Hock ez al. (1999). The formulation
for this model is presented in Box 4.4. This melt model contains three tunable parameters and only
requires temperature and precipitation as input. Potential, clear-sky solar radiation is also needed, but this

can be calculated directly from the surface topography and assumptions about atmospheric transmissivity.

Box 4.4. Basic cquations of the radiation-indexed degree-day melt model of Hock ef al. (1999).

1
M— (EMF + a’snnw/i(‘,e]> T>0 (440/)
0 T<0
R 2
I=1I (?) Fa/PocosZ g () (4.4b)

M = surfacc melt ratc (mmh™1)
ng = number of time steps per day
MF = meclt factor (mmd—!C™1)
snow/ice = Tadiation coefficient (different for snow and for ice)
I = potential clear-sky direct solar radiation at snow /ice surface (W m—2)
T = daily mcan air temperature (C)
Iy = solar constant (1386 W m?)
m = vertical wavenumber
R = instantancous Sun Earth distance

R = mean Sun Earth distance

=
®
Il

mean atmospheric clear-sky transmissivity

20
I

atmospheric pressure

P, = mcan atmosphcric pressurc at sca level

Z = local zcnith angle

f = anglc of incidence between normal to grid ecll surface slope and solar beam

Model operation is straightforward. Temperature is used to calculate positive degree days. If the daily
temperature is zero or below, no melt is computed. For temperatures above zero, melt is the product of
positive degree days and the melt factor. The melt factor is a function of potential solar radiation and
whether the surface is snow or glacier ice. Three parameters govern the calculated melt factor: the snow
and ice radiation coefficients, dsow and d;c., and the bulk melt factor MF. The mass balance model was
devcloped using daily time steps, so modifications to the input data were required to usc a monthly time
step. For this, we use average monthly temperatures and monthly total precipitation. When using month-

long time steps, a degree-day model must incorporate the inter-daily variability that can gencrate
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substantial melt intensity (or snowfall) even when the mean monthly temperature is low (high). Our
approach to incorporating this is given in Section 4.5.3. We have tuned the model using daily and
monthly input data and found that the parameters that yield the best model are similar between the two.
Accumulation is treated very simply in the model. We apply a temperature threshold for snow of 2°C and
assume that all precipitation that falls at temperatures at or below this threshold will contribute to
accumulation. Redistribution processes are modelled subsequent to the deposition of snowfall in a model

time step. Methods for treatment of these redistribution processes are described in the following section.

The mass balance model requires calculation of potential solar radiation. For this we used the algorithm
that is a part of the GRASS GIS package (Hofierka and Suri, 2002). The effects of shading, slope, and
aspect are all incorporated. Solar radiation is integrated at a half hourly time step to generate daily totals.
For the monthly time step model, these are summed to monthly totals. This compulation incorporates a
parameter describing the atmospheric turbidity, which influences the intensity of clear-sky solar radiation.

We choose a Linke Turbidity coefficient of 3, in keeping with similar values used for mid latitude sites.

4.5.2 Avalanching and wind redistribution

The processes of avalanching and wind redistribution of dry snow are responsible for very strong spatial
variability in accumulation on scales ranging from tens of metres to kilometres (Machguth ef a/. 2009).
These processes are observationally apparent in the presence of wind-scoured valley walls and low
elevation snow accumulation due to wet and dry snow avalanches. A very simple scheme has been

developed to begin to address these two processes in the study areas.

Avalanching is incorporated by making a few assumptions about the occurrence and prevalence of large
avalanches capable of moving a sufficiently substantial mass of snow to affect glacier mass balance.
Redistribution is required to prevent snow accumulation on very steep slopes, such as those present on the
castern edge of the Columbia Icefield, where substantial snow accumulation is unlikely. First, we only
attempt to simulate avalanches in terrain above a threshold slope angle of 50°. We assume that all
accumulated mass at angles below these remains in place. Second, avalanching is only allowed to take
place at the end of the accumulation season on 1 May with the assumption that large scale, wet snow
avalanches are most important for mass balance on glaciers. Thus the simulated avalanching is
accomplished in one time step per year near the end of the accumulation season. Snow is avalanched and
then moved according to several rules: (i) Any snow in excess of 0.5 m water equivalent on slopes above
50° is mobilized; (i1) The material follows a trajectory in the direction of its initial slope azimuth; (iii)

Material moves downslope until the slope angle decreases to below 20°; (iv) Deposition obeys an
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exponential decay that was modelled to fit avalanche aprons on South Cascade Glacier as derived from a

DEM of that glacier.

For the fairly coarse DEM used in this study, avalanching is restricted to higher elevation cirques and
ridges. Figure 4.7 shows a sample of water equivalent mass transfer through the avalanching algorithm
near the Columbia Icefields. This algorithm is computationally lightweight yet similar to an algorithm

developed by Gruber and Bartlet (2007).

Wind redistribution is implemented to simulate the large-scale observed patterns of wind redistribution in
the alpine. For example, specific ridges will have a windward face which is consistently scoured and a
leeward side that receives enhanced deposition. Thus, the redistribution is performed in a mean, statistical
sense rather than by appraising the influence of individual storms and simulating the depositional
characteristics of them. The model uses the directional components of the 850 mbar wind velocity vector,
and slope, azimuth, and curvature parameters derived from the surface topography. The wind distribution
model was driven by the 1979-2008 wintertime (November through April) 850 mbar mean wind vector.
As for the delta approach described below, 850 mbar is taken as the pressure level that is closest to the
clevation of glaciers in the Mica basin. This method follows that developed by Liston and Elder (2006)
and the equations are given in Box 4.5. The redistribution is allowed to be a function of topographic
curvature (snow is preferentially deposited in hollows and scoured in convex arcas) and the angle of the
slope aspect relative to the wind direction (slopes facing into the wind are scoured while those facing
away from the wind receive windblown snow). A departure from Liston and Elder's (2006) approach is
that we take the inverse of the wind weighting factor directly as the snow loading factor and allow for
model tuning to determine the weight of the governing parameters. Thus, when the wind vector is
oriented toward topographic slopes and when terrain is convex, L,, becomes large, and snow is effectively
scoured. For flat topography where 2. and (2, are zero, L,, is 1 and snow is neither preferentially
deposited nor removed. This wind redistribution model introduces three tunable parameters (s, Y., and
1). In our tuning we allow v, and 7., to span the range 0 to +2, which is a greater range than allowed by

Liston and Elder (2006).

The tuning for the wind distribution model resulted in weighting the slope orientation parameters most
heavily, with the terrain curvature parameter nearly unweighted. This will be discussed further in Section
4.5.4. However, the result is that scouring and deposition occur slope-wide rather than in smaller sub-
catchments. This is likely an effect of the tuning data, which are measurements made on the open terrain

of glacicr centrelines.
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Box 4.5. Basic equations of the snow redistribution model

Q(Z]) _ 1 z— %(Zprl’j +zi—1,5 + Zi541 +Zi,j71)
4 27
i z— %(zi+1,j+1 + Zit1,5-1+ Zi—1,541 + Zi71,j71) (1.50)
2v/2n
Qs = Beos(d — &) (4.5b)
LW =1+ chQc + ,-YSQS (45(')

Q. = topographic curvaturc factor
s = wind alignment factor

7 = topographic curvaturc length scale
Y. = topographic curvaturc wcighting
~s = wind alignment weighting

[ = topographic gradicnt

& = terrain aspect

# — wind dircction

Figure 4.7. Example of snow redistribution by simulated avalanching for a sample region near Columbia
Icefields with shaded relief map to provide geographical context. Inset shows the entire Mica watershed.
The Columbia Iceficld is located near the centre of the map and the red line in both panels is the
watershed boundary. The reference grid is at 10 km intervals.
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Figure 4.8. Wind redistribution field for the Mica catchment and surroundings. This is derived from
climatological mean 850 mbar winds taken from the NARR. South- and west-facing slopes are typically
scoured with reductions in snowfall of up to 60%, while some lee-side slopes receive substantially more
snow due to wind loading. Inset shows the entire Mica watershed with the zoomed area outlined in black.
Red line in both panels is the watershed boundary. The reference grid is at 10 km intervals.

4.5.3 Future and past mass balance via monthly means and the delta approach

The mass balance model is nominally set up to run with a daily time step, which allows the model to
respond to daily variability in temperature and precipitation. It is well known that a single snowy day in
summer is capable of reducing ablation for several days afterward due to the increased albedo of the
snowcover. Although the energy budget is not directly modelled in our approach, a similar effect is
simulated with changes in the degree day factor for snow covered ice. Another drawback of forcing a
model with longer term mean data is the potential failure to capture periods of ablation when the mean
temperature is slightly below the melt threshold. A month long period with a mean temperature of -2 °C
will still likely contain substantial glacier melt. Any model that works on longer-term means would be
unable to capture such processes despite their importance for surface mass balance. The meteorological
forcing from CRUTRS2.1 is available as monthly mean temperature and monthly total precipitation and
from the GCMs, upper air data is not available at a daily time step. Using the methods described in this
section, the mass balance model integrated on a monthly time scale performs as well as a daily integrated

model, runs substantially faster and allows continuity between the monthly available CRU and the GCMs.

To bridge the gap between daily forcing requirements, and monthly forcing availability, we take a
stochastic approach to temperature variability. This approach allows accumulation of snow when
monthly temperatures are above the threshold for snow, and which allows for ablation when monthly
mean temperatures are otherwise below the melting threshold. We use the approach of Marshall et al.
(2000) for which the equations are given in Box 4.6 and we assume that the monthly temperature

distribution is Gaussian. To calculate total positive degree days the Gaussian probability distribution is
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integrated from 7'= 0 °C to infinity following Equation 4.6b. The calculation of precipitation fraction
which falls as snow is similar, but the integration is from the snowfall threshold (set at 2 °C) to negative

infinity as given in Equation 4.6a.

Box 4.6. Basis of partitioning precipitation into rain- and snowfall components given the monthly mean
temperature and monthly standard deviation of temperature.

1 Tanow (T - TA)2
snow — — — — dT 4.6
o === [ e | - (1.60)
pop— ™ _ [T (- 13)° ar (4.6b)
= cxp | ——— .
omV2T Jy P 2‘71%1
b(z,y,t) = P JsnowP (2, Y, 1) (4.6¢)
Pi

fsnow = fraction of precipitation to fall as snow
T = temperature
T2 = mean temperature for month m (assumed to be normally distributed)
om = standard deviation of monthly temperature about mean value for month m
Tinow = threshold temperate at which precipitation falls as snow
PDD = positive degree days
Tm = length of the month m in days
b = ice-equivalent mass balance rate
pw = density of water

pi = density of ice

To correctly implement this approach, parameters defining the probability distribution are required.
These were calculated at each pixel in the 200 m resolution domain using the high resolution, daily
NARR downscale. Mcan temperatures for the 12 months were calculated by finding the monthly mean
and then averaging those means. The standard deviations were calculated by finding the standard
deviation in temperature for each day in the calendar year among all like days that occurred in the NARR
period (i.e. the standard deviation amongst all 1* of January for the 29 years of the downscaled NARR).
These standard deviations were then averaged by month yielding a representative standard deviation for
the given month. The integrated probability distribution yields positive degree days directly. For
accumulation, the monthly total precipitation is multiplied by the snow fraction calculated as described

above to yield total accumulation (see Equation 4.6¢).
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The anomalies were calculated in a fairly straightforward manner. First, the output for each GCM was
interpolated to a spatial grid of resolution 320 km (ten times the grid spacing of NARR) for the purpose of
creating a unified product from GCMs of various spatial resolutions. For CRUTS2.1, the 0.5° data were
interpolated to a resolution of two times the NARR grid spacing (~64 km) which roughly corresponds to
an arc length of 0.5° at the latitude of the Mica catchment. Next, a climatology was established for the
period 1979 through 1999 which has temporal overlap with the NARR. From this climatology, the
anomaly was calculated by evaluating the difference (ratio for precipitation) between a given month in the
future GCM scenario and the GCM climatological state, as well as the difference between a given month
in the historical CRUTS2.1 data and its climatological state. Two anomaly maps (one (or precipitation
and one for temperature) were created for the CRUTS2.1 data and each of the GCM/SRES combinations.
These anomaly maps were applied to the NARR downscale climatology by interpolating the anomaly to
the 200 m resolution of the downscale and adding the anomaly onto the climatology for temperature and
multiplying for precipitation. This derived field was then used to force the mass balance model as
described above. Because glaciers have been shown to be most responsive to conditions in the lower, free
troposphere (Rasmussen and Conway, 2001; Rasmussen and Conway, 2003), we used temperature

anomalics at 850 mbar rathcr than the surface tempcraturc anomalics in the GCM scenarios.

4.5.4 Model tuning

The mass balance model described above has six parameters that require tuning. Three of these are
associated with the ablation part of the mass balance model and the other three are part of the snow
redistribution model. Model tuning requires a tuning target for which there are minimal measurements
relevant to glacier modelling and none within the Mica basin study area. The glaciers that have
appropriate measurements of winter accumulation and summer ablation are the Place, Helm, Tiedemann,
and Bridge glaciers in the Coast Mountains of British Columbia and Peyto Glacier, which is situated in
Alberta several kilometres cast of the Mica catchment. Mass balance measurements were gathered by the
Geological Survey of Canada and were quality controlled and made available by Joe Shea (University of
Northern British Columbia, personal communication, 2010). These data cover the time span from
roughly 1964 through 1995. Of this span, we utilize only the portion that overlaps with the NARR,
namely 1979 through 1995. The mass balance data are provided as summer, winter, and net balance by
clevation band. To generate comparable data from the mass balance model, grid cells at appropriate

elevation ranges on the glaciers of interest were averaged.

55

22700031(01).pdf



The model was tuned in a three-step process. The first step was to tune the model to the parameters
relevant for ablation (namely Ry, a., a;) with the accumulation parameters held fixed. The model was
next tuned to the parameters important for accumulation (namely n, Y, ¥s) this time with the summer
parameters held fixed. In the third step, the summer tuning was repeated to confirm those initial
parameters. The parameters were tuned by season to limit possible combinations of parameters and speed
model tuning. Because the accumulation and summer ablation processes are fairly independent, it is
unlikely that relevant parameter combinations were overlooked. Model performance was gauged using
the root mean square error (RMSE) fit to the mass balance measurements. In generating the RMSE score,
the glaciers of the Coast Mountains were given a 2/3 total weighting while Peyto Glacier results were
given a 1/3 weighting. This was done to give leverage to Peyto Glacicr, where the climate regime is
markedly different than that of most of the Coast Mountain glaciers, and is likely more representative of
conditions in Mica basin. Tuning was accomplished via a simplex minimization search across the three-
parameter space for cach scasonal tuning. Scatter plots showing the relationship between the measured
and modelled seasonal mass balance components in the best fitting model are given in Figure 4.9.
Overall, the RMSE is lower for winter than summer owing to the lesser mass flux at individual stakes (i.e.
summer ablation can reach 10 m w. ¢. while accumulation rarely exceeds a few metres). For comparison
with the group tuning outlined here, the model was tuned to individual glaciers and the statistics
compared with the results from group tuning (Table 4.2). All values have units of metres water

equivalent. The parameters derived from the tuning are presented in Table 4.3.
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Figure 4.9. Scatterplots comparing modelled summer and winter mass balance to measurements. The
RMSE for cach seasonal balance is shown. The seemingly larger scatter in winter mass balance is due to
the scaling of the axcs. For the various glacicrs, it can be scen that the tuning was successful in bringing
the mean mass balance close to measurement, but often the slopes are different than one. This is
especially apparent in the results from Peyto Glacier. (a) Summer mass balance comparison. (b) Winter
mass balance comparison.
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Table 4.2. RMSE results from mass balance model tuning with units of m w. e. Individual tuning targets
are in the left hand column and results for each glacier are given across the table. Clearly the lowest
weighted mean RMSE is obtained by tuning to all glaciers simultancously rather than any individual

glacier.

Summer Tuning Target | Bridge | Helm | Place Tiedemann | Peyto Weighted Mean
All 0.50 0.50 | 0.62 0.75 0.77 0.65
Bridge 0.50 0.48 | 0.63 0.79 0.78 0.66
Helm 0.57 0.43 | 0.70 0.62 0.87 0.68
Place 0.54 0.58 | 0.59 0.67 0.85 0.68
Tiedemann 0.81 0.50 | 0.67 0.56 0.92 0.73
Peyto 0.89 0.45 | 0.75 1.62 0.63 0.83
Winter Tuning Target | - - - - - -
All 0.47 043 | 045 0.36 0.26 0.37
Bridge 0.40 1.44 | 0.87 3.07 0.33 1.07
Helm 0.47 041 | 0.57 0.65 0.23 0.43
Place 0.51 0.49 | 0.36 0.44 0.33 0.41
Tiedemann 0.47 056 | 0.49 0.28 0.40 0.44
Peyto 0.47 0.41 | 0.59 1.97 0.22 0.65

From the table, it can be seen that tuning to all glaciers exacts a performance cost when the RMSE for the

tuning toward a given glacier is compared with the bulk-tuned RMSE. For the summer tuning, the error

incurred in tuning to a single glacier is smaller than the case for winter mass balance. An exception is the

case of Tiedemann Glacier when parameters tuned to Peyto Glacier are applied. These two glaciers are

situated in disparate climates, so the parameters appropriate for Peyto are unlikely to be appropriate here.

Specifically, the tuning for Tiedemann Glacier yielded relatively low values for the snow and ice

radiation factors, yet yielded a very high value for the bulk radiation factor (table 4.3). This suggests that

albedo is of relatively less importance for Tiedemann and a high bulk radiation factor makes the model of

Hock (1999) behave more like a standard degree day model. On Peyto Glacier, the continental setting
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likely makes solar radiation a very important contributor to the radiation budget, so these parameters are

strongly controlled in the tuning.

For winter tuning, some of the RMSE values are strikingly high, such as the RMSE for Tiedemann
Glacier when parameters tuned for the Bridge Glacier are used. Interestingly, the opposite case does not
prove true: the RMSE value for the Bridge Glacier is low when the model is driven by parameters tuned
for the Tiedemann Glacier. The results for all glaciers are best when driven by parameters tuned for Place

Glacier.

These results are not surprising because the tuning parameters are likely somewhat region specific, so this
should be viewed as a rough estimate of the uncertainty range associated with using bulk parameters in
the model. An attempt was made to determine relationships between model parameters and other
variables (such as geographic location, elevation of ELA, total precipitation, mean annual temperature at
the ELA). However, the small size of the tuning data set prevented establishing relationships with any

kind of statistical confidence, or which had any physical meaning.

Table 4.3. Tuned parameter values for the individual glaciers and for the multi-glacier tuning described in
the text.

Tuning Target R; a; a, n Y. Vs
(mdeg'dy") (@’ W'deg’dy') (@ W'deg'dy') (M)
Bridge 0.64 0.017 0.011 300 3.00 1.54
Helm 0.58 0.015 0.010 1038 0.00 2.90
Place 0.70 0.014 0.012 1298 0.11 0.00
Tiedemann 2.84 0.005 0.002 2098 1.14 0.00
Peyto 0.53 0.025 0.009 2328 0.00 3.00
Multi Glacier Tuning 1.08 0.015 0.009 255 0.00 1.89
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4.5.5 Adjusting mass balance to dynamic topography

Computing mass balance on a domain the size of Mica basin is a computationally intensive process,
which would be magnified if the calculations were made at annual time steps as the glacier surface
cvolves. So, rather than coupling the mass balance fully with the ice dynamics model and then
downscaling and calculating solar flux on the new topography at an annual model time step, we calculate
a mass balance on the static year 2000 DEM for all mass balance years in both past and future. To arrive
at a change in mass balance for a change in topography, the mass balance sensitivity to temperature is
used combined with a fixed temperature lapse rate. This assumes that the effects of a change in
temperature associated with a changing ice surface elevation will outweigh the associated changes in
precipitation and solar radiation. Because precipitation is downscaled on a 1 km DEM with its associated
smooth topography, our assumptions regarding precipitation are probably accurate for the purposes of
these simulations. For the solar component, little change is expected. The change in solar radiation
transmilted by the slightly thinner or thicker slice of atmosphere [or thicker and thinner ice is probably
very small. The only major issue that could arise would be changes in the aspect or shading
characteristics of a given glacier pixel. This should have the largest effect on the last remnants of glaciers
in high cirques and within the coarse topography of the present-day glacier bed. We do not quantify this

cffcet and assumec it 1s small.

The topographic adjustment requires calculation of the temperature sensitivity of glaciers in the Mica
basin. This was accomplished by simulating the glacicr mass balance with temperature uniformly
increased and decreased by 0.1° C. The sensitivity is calculated on all areas of the domain to account for
the possibility of glacier advance or changes in glacier location. The results are presented in Figure 4.10
and arc in line with mass balance sensitivity published in the literature for both surface energy balance
and temperature index mass balance models. For the most part, sensitivity is highest at the lowest
elevations largely because this is most often classified as “ice” in the mass balance model. At high
elevations, the sensitivity is low due to both the less frequent occurrence of melting temperatures and the
prevalence of snow cover, which has a lower melt factor than glacier ice. With warming in the future, the
mass balance sensitivity for a given point is likely to increase, so this method is likely to underestimate

melting,.

During both the transient and the static mass balance simulations, the evolving mass balance is calculated
domain-wide using the mass balance sensitivity db/d7 and the change in elevation Az between the

reference DEM and the evolving surface. The calculation follows:
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db

dr
Ab, (x,y) = dTn (x,y)EAz(x,y)

b, (x,y) = by (x, y)+ Ab, (x,y)

where Ab, is net mass balance, b, is the mass balance from reference topography, 7'is temperature, and
Az is change in surface topography from the year 2000 reference. The quantity d7/dz is the atmospheric
temperature lapse rate for which a value of 6.5° C km ™' is used. A fixed lapse rate is acceptable here
because the change in elevation is relatively small, so variable lapse rates will have a fairly small effect.
The mass balance forcing calculated on the static topography is adjusted on an annual basis with the
topographic change for the present time step. Incorporating this effect is important for the large changes
in glacier thickness that have occurred since the dawn of the 20" century and which will occur in the next
100 years. As a sample calculation shows, with a mass balance sensitivity of 0.6 m w. e. °C”" (based on
our chosen temperaturc lapsc ratc) and 4z of 50 m, the surface mass balance changes by almost 20 cm w.
e. Some glaciers have experienced substantially greater surface height change with annual rates of 9 m
yr ' over decades (Schiefer ef al., 2007) so substantial changes in the surface mass balance associated

with this elevation change can be expected.
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Figure 4.10. Map of mass balance sensitivity to change in temperature of 1°C. Red line denotes the
boundary of the Mica catchment. Sensitivity is greatest in valley bottoms and lowest near the summits of
the Columbia Icefields. These data are used to correct the mass balance to account for changes in
topography associated with evolution of the ice surface in the ice dynamics model.

4.6 Glacier dynamics modelling

4.6.1 Model formulation

The equations governing glacier dynamics are summarized in Box 4.7. Equations 4.7a and 4.7b represent
components of the vertically integrated ice creep velocity and Equation 4.7¢ governs the evolution of ice
thickness H in response to ice flow and surface mass balance b. The sliding velocity components are
given by V, and V), and are governed by a Weertman sliding law. Equations are solved using finite
differences on the 200 m spatial resolution grid for the region. The flow law coefficient 4 is taken as
A=1.0x10"" Pa” yr' and the flow law exponent has been fixed at # = 3, the conventional value. For all
calculations in the present study the sliding coefficient C was set to zero so that the sliding process was

completely suppressed. If sliding were activated then the projected rates of deglaciation would increase.
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Box 4.7. Basic equations of the glacier dynamics model.

2A(pg)" a1
Qs = —% [(0:9)% + (8,5)°] = H""?0,8+ V,H (4.7a)
Qy = —% [(8905)2 + (8y5)2] "T”Hn+28y5 +VyH (4.7b)
oH  0Q. 0Q,
OH  0Q. 0Q, 4,
ot or oy 0 (4.7¢)
Vi = Clpg)™H™ [(8,8)% + (8,5)2] = 0,9 (4.7d)

m—1

T 9,8. (4.7¢)

Vy = Clpg)™ H™ [(025)% + (9,5)]

H =icc thickness =S — B

S = ice surface clevation

B = bed surface clevation

b = icc-cquivalent glacicr mass balance rate
Q. = volumc flux of ice in the x dircction
@y = volume flux of icc in the y dircction

A = coefficient for Glen’s flow law for ice

p = icc density

g = gravity acccleration

n = cxponent for Glen’s flow law for ice

partial derivative in z direction

= partial derivation in y dircetion

SN

— sliding vclocity in the z dircction
V,, = sliding vclocity in the y dircction
C = coefficient for glacier sliding law

m = cxponcent for glacicr sliding law

4.6.2 Model spin-up

Although the response time of glaciers is fairly slow and the behavior of glaciers is non-chaotic,
initializing the dynamics model is not straightforward. Uncertainties regarding bed topography, mass
balance, and ice rheology prevent a “snap shot” start from the year of the most recently available glacier
mask and derived bed topography. Doing so generates transient kinematic waves that require nearly a
century of simulation to propagate to the termini of the slowest responding glaciers. This transient effect
interfercs with simulation of the tcrminus position, ice volume, and ice covered arca which arc all of
critical interest for the hydrological modelling at the heart of this project. To address this problem we
take the approach of growing ice from an ice-free topography to a steady state from a glacier mass

balance derived from early 20" century climate data. Using this initial state, we launch transient
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simulations through the 20" century with the aim of reaching a reasonably accurate ice volume and ice
covered area by the onset of the climate projections at 2000 AD. This approach will not provide an exact
match between modelled and actual glaciers at any time, but should yield a reasonable glaciation state

from which to simulate ice volume loss through the 21 century.

The steady state simulations are initialized with zero ice cover and permitted to run until there is no
change in ice volume. The amount of time for steady state to be achieved depends on surface mass
balance. A more positive regional mass balance causes the growth of larger glaciers, but also forces a
greater mass flux resulting in more rapid advance of glacier termini. The initial state was achieved using
the first 30 years of mass balance derived from the CRUTS2.1 (mass balance years 1902—1931) with the
mass balance adjusted to the changing ice topography. Initially, the elevation/mass balance feedback acts
as a negative mass balance forcing because the deglaciated surface topography is everywhere lower than
at the reference state. As the steady state simulation evolves, the clevation feedback leads to positive
mass balance forcing. Any initial state will lead to the same steady state ice cover because there is no
hysteresis in the ice volume/mass balance relationship for the topographically controlled glaciers of the
Mica catchment. In the case of growing ice from zero ice volume, using the CRUTS2.1-derived mass
balance, the slowest responding glaciers in the Mica basin take roughly 500 years to reach a steady state.
An open question in this approach is whether allowing the glaciers to reach steady state is even
appropriate. It is likely that the moraines recording the Little Ice Age advance were deposited by glaciers
responding to a much shorter-lived climate forcing than our 500 years of constant climate. Visual
inspection of terminus position in the CRUTS2.1-derived steady state compared with Little Ice Age (L1A)
trimlines suggests that the initial state is reasonably consistent with the maximum LIA ice extent,
although this is difficult to quantify precisely. There are regional differences, however, which are likely
due to errors 1n the surface mass balance as well as inaccuracies in the inferred bed topography. It is
assumed that some of the inaccuracies in the initial state remedy themselves during the 100 years of
transient simulation that precede implementation of the mass balance derived from GCM climate change
scenarios. This assumption is confirmed by the close correspondence between measured glacier area and
glacier volume change in the years 1985, 2000 and 2005. Once steady state glaciers have been
cstablished, the model is run in transient mode beginning with the first year of CRU-derived mass balance

(1902). Although part of the model spin-up process, this step will be described in the next section.
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4.6.3 Transient simulations

The transient simulations are operated in a similar fashion to the steady-state runs except the mass balance
changes annually. The mass balance time series were constructed from the CRUTS2.1 forcing for
1902-1978, from NARR monthly forcing for 19792006, followed by GCM climate change scenarios
through year 2100. No efforts were made to prevent major jumps in mean mass balance across the
transitions from one mass balance source to the next (such as CRUTS2.1 to NARR). For several of the
GCM scenarios, there is a substantial change in mean temperature beginning at the onset of the climate
change scenario. Namely, this shift is present within the CSIRO GCM at the interface between the 20®

century emissions simulation and the emissions scenario forcing for Bl and A2 forcings.
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5 Generation of future climate scenarios

5.1 Selection of GCM and emissions scenarios

Our objective is to select an ensemble of Global Climate Models (GCMs) whose climate projections will
be used as drivers for glacier and hydrologic models in BC’s Columbia Basin. Our initial set of GCMs
consists of 22 models which have been run for the Intergovernmental Panel on Climate Change (IPCC)
fourth assessment report (AR4). Data from these 22 GCMs have been collected in the Coupled Model
Inter-comparison Project phase 3 (CMIP3), which is archived at the Program for Climate Model
Diagnosis and Intercomparison at Lawrence Livermore National Laboratory (LLNL). The CMIP3 data
are increasingly being downscaled and used to address regional and local issues in impact studies of
climate change (e.g. Coquard et al., 2004; Brekke ez al., 2008). Some common questions such studies
face are: How should one select the global models to use in the regional studies? If different GCMs give
different results, what strategy should be used for selecting the global models? Addressing these questions
requires evaluation of GCM performance using a range of different performance measures/metrics (¢.g.
Gleckler ef al., 2008; Pincus ef al., 2008; Pierce et al., 2009). These evaluations usually compare
modelled versus observed climatologics in the form of root-mean square differences, ranking the models
according to their demonstrated ability to reproduce observed features of recent climate. Two recent
studies on performance and selection of GCMs (Gleckler et al., 2008; Pierce et al., 2009) provide a set of
guidelines for the model selection, and these guidelines can be summarized as follows: (1) enough model
realizations must be chosen to account for the effects of the models' natural internal variability; (2) stable
hindcasts (and forecasts) can be obtained by including a manageably small group of models — e.g., Pierce
et al. (2009) found that model skill tends to converge after including approximately 5 different models;
and (3) the selection of GCMs depends on the intended application — i.e., there is no universal set of

performance metrics that arc optimally suited for all applications.

For the purpose of this project we evaluate performance of 22 GCMs from CMIP3, listed in Table 5.1,
using a varicty of performance metrics. Since our application is in hydrologic and glacier modelling, the
evaluation of models is focused on climate variables important for the processes on the climate-watershed
interface. Variables that are needed for our downscaling methods and glacier and hydrologic models are
air temperature, precipitation and sea-level pressure. Beside these variables we evaluate GCMs based on a
few additional variables that are shown to be linked to glacier mass balance (e.g. Matulla e al., 2008):
specific humidity at 850 hPa and geopotential heights at 500 and 850 hPa. Some GCMs have multiple

runs for cach emission scenario, while some only have one run. Therefore, to make our evaluation
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analysis consistent, we use only the first run for the GCMs that have multiple runs. In the following

sections we describe our evaluation analysis in greater detail.

Table 5.1. Model identification, originating group, and atmospheric resolution

[PCC 1.D. Center and Location Atmosphere Resolution
BCCR-BCM2.0 Bjerknes Centre for Climate Research (Norway) Té63 L31
ng;:::::{z;; Canadian Centre for Climate Modelling and Analysis (Canada) {zz t}
CSIRO-Mk3.0 CSIRO Atmospheric Research (Australia) T63 L1
CNRM-CM3 Météo-France, Centre National de T42 L45

Recherches Météorologiques (France)
ECHO-G Meteorological Institute of the University of Bonn, T30 L19

Meteorological Research Institute of KMA, and Model and

Data group (Germany and Korea)
GFDL-CM2.0 US Dept. of Commerce, NOAA N45 [24
GFDL-CM2.1 Geophysical Fluid Dynamics Laboratory (USA) N45 [24
GISS-AOM 90 x 60 L12
GISS-EH NASA/Goddard Institute for Space Studies (USA) 72 x 46 L17
GISS-ER 72 x 46 L17

FGOALS-g1.0
INM-CM3.0

LASG/Institute of Atmospheric Physics (China)
Institute for Numerical Mathematics (Russia)

128 x 60 L26
72 x 45 L21

IPSL-CM4 Institut Pierre Simon Laplace (France) 96 x 72 L19
MIROC3 2(medres) Center for Climate System Research (The University of Tokyo), T42 L.20
MIROC3 2(hires) National Institute for Environmental Studies, and T106 L56
Frontier Research Center for Global Change (JAMSTEC) (Japan)

MRI-CGCM2.3.2 Meteorological Research Institute (Japan) T42 L30
ECHAMS5/MPI-OM Max Planck Institute for Meteorology (Germany) T63 L32
bt e
;(&;1“" National Center for Atmospheric Research (USA) :ig I]j:
UKMO-HadCM3 Hadley Centre for Climate Prediction and Research, 96 x 72 L19
UKMO-HadGEM Met Office (UK) N96 L38

5.2 Evaluation of GCM performance using statistical measures

First, models were screened according to their performance at the global scale based on results from
Gleckler et al. (2008). As GCMs are designed to replicate the global climate system, poor performance of
the model at global scale is taken as an indicator of poorly specified parameters that represent sub-grid-
scale processes (often referred to as parameter uncertainty) or parameterization that is missing key
process or feedbacks or forcings, such as poorly initialized oceans or land surface processes, etc.,
(otherwise known as structural uncertainty). Thus, we assume that poor model performance at the global
scale that is related to these types of errors might lead to erroncous results at the regional scale. Here we
review statistical measures outlined in Gleckler ez al. (2008). One statistical measure of model fidelity is
the root mean square (RMS) difference between a simulated field F and a corresponding reference data
sel (observations) R. For monthly mean climatological data, the most comprehensive RMS error statistic

(E) accounts for errors in both the spatial pattern and the annual cycle, and it is calculated as follows:

1
Py BT T (k)
i
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The indices i, j and ¢ correspond to the longitude, latitude and time dimensions, and W is the sum of the
weights (wy;), which for the spatial dimensions are proportional to grid-cell area and for time are
proportional to the length of each month. In most cases considered here the sums are accumulated over all
12 months and over one of the spatial domains of interest. The RMS error can be calculated for each
climate variable/field of interest. Furthermore, for each climate field Gleckler ef al. (2008) defined a
typical model error as the median of all RMS error calculations. Thus, in an ensemble of 22 GCMs there
are 22 RMS error calculations for one climate field using one reference data set. Relative model
performance is then defined, for a given model and a given climate ficld, as a difference between the
RMS error and the 'typical' error, normalized by the ‘typical” error. Normalizing the RMS calculations in
this way yields a measure of how well a given model (with respect to a particular data set) compares with
the typical model error. For example, if the relative error has a value of —0.2, then the model’s RMS error
is 20% smaller than the typical model. Gleckler e al. (2008) calculated relative errors for all 22 GCMs
from CMIP3 and 26 climate fields, using various observational datasets, and presented their results for
global and subglobal domains (North and South hemisphere extra tropics and tropics). GCMs were
compared to two gridded observational datascts: a ‘primary’ and ‘alternative” set in each case. Datasets
differed by variable, but were primarily sourced from re-analysis (ERA40, European Centre for Medium-
Range Weather Forecasts and NCEP/NCAR, National Center for Atmospheric Research) or Earth
Radiation Budget Experiment (ERBE)/Clouds and the Earth’s Radiant Energy System (CERES) datasets
(Gleckler et al., 2008). These products represent the best observationally constrained estimates of the [ree
atmosphere available for the variables evaluated in this work. For a full list of ‘primary’ and ‘alternative’

datasets and an explanation of all variables investigated see Table 2 in Gleckler et al. (2008).

In an attempt to define an optimal overall index of model performance for simulating mean annual cycle
climatology, Gleckler et al. (2008) introduced a Model Climate Performance Index (MCPI). This index

averages each model's relative errors across all of the fields in the study.

Other measures of model performance consider model simulation of inter-annual variability. In Gleckler
et al. (2008) this is done by examining variances of monthly mean anomalies, computed relative to the
monthly climatology for the period 1980—-1999. For each GCM and each climate field of interest, the ratio

of simulated to observed variances for global and all subglobal domains is calculated. An exploratory

Model Variability Index (MVI) is defined as:
2
d 1
MW:Z B —— (5.2)
Al B r
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where B/ is the ratio of simulated to observed variance and F is the total number of variables. Defined
this way, the MVI is positive definite, with smaller values indicating better agreement with the reference

data.

We proceed to evaluate all 22 GCMs at the regional and sub-regional scale to investigate the strength of
the CMIP3 models over our area of interest. In our evaluation of GCMs, we use the North American
Regional Reanalysis (NARR) as the reference data. Climate fields from all 22 GCMs are interpolated to
10xNARR resolution, which is approximately 320x320 km in conical conformal Lambert map projection.
We use monthly data from the modelled 20™ century simulations and from NARR, and focus on the
overlapping period between the two data sets: 1980—1999. Model performance is analyzed on two spatial
domains: ‘large,’equivalent to the original NARR domain, and ‘small,” which roughly covers the NW
corner of the large domain (Figure 5.1). For these two domains and our climate fields of interest
(temperature and specific humidity at 850 hPa, geopotential height at 500 hPa and 850 hPa, sea level
pressure and precipitation) we calculate relative model errors, variance ratios, and model performance

indexes (MCPI and MVI).

Figure 5.1. Analysis domains. The ‘large” domain corresponds to the entire North American Regional
Reanalysis (NARR) domain and the ‘small” domain to the rectangle within the large one.

The results for relative model errors and MCPI are presented in Figure 5.2, negative numbers indicating
that the model's RMS error is smaller than the ‘typical’ model. Our results echo those of Gleckler ef al.
(2008) that both the models’ mean and median (out of all 22 models) are in better agreement with the
reference data (NARR) than the typical model. Some models (e.g. ECHAM/MPI-OM, UKMO-
HadGEM1, UKMO-HadCM3, MIROC3 2(medres), CGCM3.1(T47)) clearly score better than others,
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although no model scores consistently above or below average in all respects. For example,
ECHAM/MPI-OM scores high over both domains and all the variables except for precipitation over the
‘large’ domain. The IPSL-CM4 model, on the other hand, scores low over both domains and all the
variables except for specific humidity at 850 hPa, where it scores better than the ‘typical’ model.
According to the relative model errors calculated for the mean annual cycle over 1980—1999, the skill of

many of the models differs considerably by variable.

BCCR-BCM2.0 E [ B A0S
CGCM3.1(T47) ] . ]
CGCM3.1(T63) = 188 0.4
CNRM-CM3 | ]
CSIRO-Mk3.0 13
GFDL-CM2.0 | ]
GFDL-CM2.1 f ]
GISS-AOM 17102
GISS-EH i= ]
GISS-ER 1F40.1
FGOALS-g1.0
INM-CM3.0 I
IPSL-CM4
MIROC3.2(hires)
MIROC3.2(medres)
ECHO-G
ECHAMS5/MPI-OM
MRI-CGCM2.3.2
CCSM3 ]
PCM 103
UKMO-HadCM3
UKMO-HadGEM1 0.4
Model-mean
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Figure 5.2. Portrait diagram display of rclative crror metrics for 20" century CMIP3 annual cycle
climatology (1980-1990). Each combination of climate variable (x-axes) and GCM (y-axes) is
represented by two grid squares, which correspond to relative errors calculated over the large domain (left
square) and the small domain (right square). Variables are: precipitation (pr), sea level pressure (psl),
geopotential height at 500 hPa and 850 hPa (zg500, zg850), specific humidity at 850hPa (hus850), and
temperature at 850hP (ta850). MCPI is ‘Model Climate Performance Index,” calculated as an average of
relative errors across the displayed variables.
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The results of model evaluation according to their simulation of inter-annual variability (variance ratios
and M VI following Gleckler ez al. (2008) above) are presented in Figure 5.3. Variance ratios (GCM vs.
NARR) close to unity indicate that the variance of simulated monthly anomalies (for a given climate
variable) compare well with NARR, whereas lower ratios suggest there is too little simulated variability
and higher ratios imply too much. The models whose variance compares well with NARR for most
climate variables arce BCCR-BCM2.0, CNRM-CM3, UKMO-HadCM3, UKMO-HadGEMLI1. On the other
hand, the models whose variance differs the most from NARR for most of the variables are IPSL-CM4,
CCSM3 and PCM. Similarly to the previous metric, the skill of many models changes considerably from
ong variable to the next. It is worthy of note that the variance of precipitation monthly anomalies over the

‘large’ domain is underestimated from each of the 22 GCMs.

BCCR-BCM2.0 .

CGCM3.1(T47)
CGCM3.1(T63)
CNRM-CM3
CSIRO-Mk3.0
GFDL-CM2.0
GFDL-CM2.1
GISS-AOM
GISS-EH
GISS-ER
FGOALS-g1.0
INM-CM3.0
IPSL-CM4
MIROC3.2(hires)
MIROCS3.2(medres)
ECHO-G
ECHAMS/MPI-OM
MRI-CGCM2.3.2 v
CCsM3

PCM
UKMO-HadCM3
UKMO-HadGEM1
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Figure 5.3. Portrait diagram display of variance ratios (GCM/NARR) for 1980-1999 monthly anomalies
in the large domain (left square of each column) and small domain (right square). Last column is Model
Variability Index (MVI). Climate variables are the same as in Figure 5.2.

According to all applied statistical measures (relative error, MCPI, variance ratios and MVI), the skill of
many models appears to depend more on the variable than on the domain. For both MCPI and M VI, the
smaller the values, the better the skill. Furthermore, similar to the results in Gleckler ef al. (2008), most of

the models that score high in simulating mean climate (MCPI) also score high in simulating inter-annual
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variability (MVI). The models for which this is not the case in our analysis (i.e., the skill of the models is
high for MCPI but not for MVI) are GFDL-CM2.1, INM-CM3.0, and ECHAM/MPI-OM.

To summarize the results of models’ performance we rank the GCMs according to their scores derived
[rom relative error metrics for annual cycle climatology (1980—-1999), MCPI and M VL. For these metrics,
models are ranked as being in the top 1 to 5, 6 to 10, 11 to 15, 16 to 20, and 21 to 22, the last being the
bottom place (Figure 5.4). As illustrated, the ranking is highly sensitive to the choice of climate variable
and the spatial domain. Considering the large spread of variable-specific model performance, Gleckler er
al. (2008) noted that the overall model performance indices (MCPI and MVI), calculated as average error
or average variance ratio across all variables, can hide substantial model errors. Thus, the complexity of
the models and the characteristics of their simulated fields cannot be adequately captured by a single
measure of performance. Also, it might be fruitful to explore a wide range of metrics, rather than striving
for a single index of overall skill. Therefore, in the next section, we apply another performance metric
which differs from the metrics based on RMS errors, and which evaluates models on finer temporal scales

than the monthly climatologies.
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Figure 5.4. Portrait diagram display of model ranking according to the relative errors for six climate
variables (pr, psl, zg500, zg850, hus850, and ta850), and performance indexes MCPI and MVI, over
‘large’ domain (left square in each column) and ‘small” domain (right square). Full names of variables are
listed in the caption of Figure 5.2.

5.3 Evaluation of GCM performance using self-organizing maps

Because precipitation is the key input variable for modeling snow accumulation, it is important to validate
how a GCM reproduces the processes by which precipitation is delivered to glaciers in the study region.
Additionally, multiple streamflow regimes are prevalent across BC, each of which is characterized
primarily by its climatic drivers, such as rainfall or snowmelt (Eaton and Moore, 2010). Dominant
climatic regimes in the province have been linked to synoptic patterns (Stahl ez al., 2006). Some synoptic
types that characterize patterns of Arctic outflows or Pineapple Express events have been tied to large-
scale hydrologic events (Fleming ef al., 2007; Eaton and Moore, 2010). Here we evaluate how well the
GCMs simulate the frequency of the daily synoptic patterns of sea level pressure in the region. We
accomplish this by using a clustering algorithm known as Self-Organizing Maps (SOMs) to identify and
classify the characteristic synoptic patterns. SOMs are shown to be a powerful tool for model evaluation,
allowing a detailed examination of the differences between simulated and observed atmospheric

circulation (e.g. Finnis ef a/., 2008; Schuenemann and Cassano, 2009). We follow the methodology from
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Finnis ez al. (2008) and Schuenemann and Cassano (2009) and compare sea level pressure (SLP) patterns
in 22 GCMs to those in NARR. We aim to find the models that best reproduce the occurrences of NARR

synoptic-scale systems (patterns) over our large and small domains.

We use daily SLP from NARR and 21 GCMs (UKMO-HadGEM1 was not included because daily output
arc not available) [or the period 1980—-1999, interpolated to I0xNARR grid (approximately 320x320 km
in conical conformal Lambert map projection). Prior to the SOM analysis described below, daily SLP
anomalies are calculated by subtracting the daily averaged SLP over 1980—1999 from daily SLP at each
grid point.

SOM is a common type of unsupervised Artificial Neural Network particularly adept at pattern
recognition and classification, and in many respects is analogous to more traditional forms of cluster
analysis. Kohonen (2000) offers an explanation of the development and details of the SOM algorithm
while Hewitson and Crane (2002) describe the use of SOMs in classifying synoptic patterns in climate
data. Our SOM analysis uses the SOM-PAK software, which is available for downloading at

http://www.cis.hut.fi/research/som-research (Kohonen ez al., 1996).

A brief description of SOM algorithm follows: The starting state is an input data set consisting of input
vectors, while the final state is a 2-D map (SOM) which consists of nodes that represent characteristic
vectors (patterns) of the input data. Initially, a SOM consists of random nodes, where cach node has an
assigned weight vector (same dimension as input vectors) and an assigned position in the 2-D map space.
The procedure for placing a vector onto the map is to find the node with the closest weight vector to the
input vector and to assign the map coordinates of this node to the vector. Thus, the steps for creating an
SOM are as follows:

1. Randomize the map node weight vectors, .

2. Select an input vector.

3. Traverse each node in the map and track the node that produces the smallest Euclidean distance
between the input vector and the map node weight vector. This node is then called the ‘best matching
unit’.

4. Update the nodes in the neighbourhood of the best matching unit by shifting them closer to the input
vector, for example:

W+ 1) =W + O@a)(D() — W(t), (5.3)
where ¢ is current iteration, D is target input, @ is restraint due to distance from the best matching unit

(usually called the neighbourhood function) and « is learning restraint due to time.
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5. Increment 7 and repeat steps 2 to 5 until ¢ exceeds the chosen limit for time iteration. This is known as

the training process.

After the training process, which is repeated several thousand times, individual SOM nodes (or patterns)
represent archetypal patterns in the original data, while the full SOM array represents a map of the
training data space. The amount of original information retained depends primarily on the size of the
SOM, i.e. the number of nodes, with smaller size producing broad generalizations of the input data set,
and larger size capturing increasingly fine details. The important feature of an SOM is that the
neighbouring nodes (patterns) on the SOM represent similar states, while those that are placed further

apart on the map are the most dissimilar.

In our analysis, the input data consist of daily SLP anomalies from the NARR and each GCM separately.
Thus, each day's SLP anomaly data represents one input vector and is placed in one row of the input
matrix. The first rows have NARR data after which follow the model data in all subsequent rows. A
schematic diagram of the SOM training is shown in Figure 5.5. We apply this training on a seasonal basis,
producing SLP anomaly patterns that are characteristic for each season (DJF, MAM, JJA, SON). The
training is performed independently for the large and small spatial domains. We experimented with
different SOM sizes and finally chose three (4x3, 4x4 and 5x4) that provide a reasonable compromise
between detail and interpretability. Figure 5.6 illustrates the resulting 4x4 SOM trained with daily SLP

anomalics from NARR and one GCM (CCSM3) for winter scason over the large and small domains.

Having created SOMs of characteristic SLP anomaly patterns for NARR and each GCM, the next step is
to evaluate the model performance. An ideal model would recreate the same synoptic patterns that take
place in the real atmosphere, here represented by NARR, and the same frequency of occurrences of each
of the SOM nodes. We calculate the node frequency (in %) as the total number of days with a certain
scasonal pattern (node) divided by the total number of days for that particular season over the period
1980—-1999. Figure 5.7 shows the plots with frequency of occurrences for each of the nodes from the 4x4
SOMs. These plots should be read as follows: each number in Figures 5.7a and 5.7b represents the
frequency of the node in the same position as in the SOM in Figure 5.6a. Similarly, each number in
Figures 5.7¢ and 5.7d represents the frequency of the node in the same position as in the SOM in Figure
5.6b. Figures 5.7a and 5.7¢ show the node frequencies from NARR, for the large and small domains,
respectively. Similarly, Figures 5.7b and 5.7d show the node frequencies from the model (CCSM), for the

large and small domains, respectively.
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Figure 5.5. Schematic diagram illustrating the SOM training where the input data are winter daily sea
level pressure anomalies (from NARR and one GCM) for 1979-1999. 4x4 SOM represents characteristic
patterns of sea level pressure anomalies for winter.
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Figure 5.6. 4x4 SOM of winter SLP anomalies (hPa) for the period 1980—-1999 trained with NARR and
onc GCM (CCSM3). (a) Results for the large domain. (b) Results for the small domain. Each numbered
nodc rcpresents onc characteristic pattern of daily SLP anomalics.
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Figure 5.7. Frequency of occurrences (%) of each node in 4x4 SOM for winter season over the period
1980—-1999. Darker blue shades indicate smaller values while lighter yellow and red shades indicate
larger valucs. (a) Node frequency of NARR over the large domain. (b) Node frequency of modcl
(CCSM3) over the large domain. (¢) Node frequency of NARR over the small domain. (d) Node
frequency of model (CCSM3) over the small domain. The corresponding 4x4 SOMs over the large and
small domains are shown in Figure 5.6.

The performance of each model can be tested by Pearson correlation coefficient between the reference

(NARR) node frequency and each model’s node frequency over the same time period (Cassano ef al.,

2007). We perform this corrclation analysis for cach scason, cach SOM size and both spatial domains.

The results (7-values) calculated for 4x4 SOM, for all seasons and over both domains are shown in Table

5.2. Values of r that are significantly different from zero (at the 95% confidence level, assessed by a t-
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test) are in bold print. These illustrated correlations for 4x4 SOM agree with the results from other SOM
sizes (4x3 and 5x4) where the correlation varies widely from one model and season to another, ranging
from near perfect correlation to weak inverse relationships. Correlation analysis of frequencies for 4x4
SOM solutions over the large domain shows that the models with correlations significantly different from
zero (at the 95% confidence level) in all seasons are CGCM3.1(T63), GFDL-CM2.1, MRI-CGCM2.3.2,
and ECHAMS5/MPI-OM. The same analysis performed on the small domain reveals that only

MIROC3.2(medres) has correlations significantly different from zero in all seasons.

If we measure the success of a model by its ability to achieve correlations that differ significantly from
zero, we note that the success of models in reproducing the synoptic patterns depends on the choice of
spatial domain. This result is confirmed when the correlation analysis is performed on both domains for
the other two SOM sizes (4x3 and 5x4). The correlation analysis also reveals that the success of most
models vary with the size of SOM. For example, correlations from BCCR-BCM2.0 calculated over the
small domain are significantly different from zero for all seasons in 4x3 SOM, three seasons in 4x4 SOM
and two seasons in 5x4 SOM. As expected, the models are most successful for 4x3 SOM because the
smallest size of SOM produccs the broadcst gencralizations (patterns) of the input data sct. Finally, winter
(DJF) is the season with the largest number of significant correlations, i.e. most of the models reproduce
well the occurrences of daily synoptic patterns in winter. The season with the least number of model
successes is autumn (SON). In Figure 5.8 we illustrate GCM successes by linking color to cach model,
where each color corresponds to the number of seasons having a correlation significantly different from

ZCr10.
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Table 5.2. Correlation coefficients, 7, between node frequencies of 4x4 SOM in NARR and each GCM,
on a seasonal basis. Bold type marks correlations significantly different from zero (at the 95% confidence

level).

large domain

small domain

# Model DJF MAM JJA SON DJF MAM JJA SON
1 BCCR-BCM2.0 061 049 0.68 0.44 0.54 0.31 0.65 0.54
2 CGCM3.1(T47) 060 035 0.77 0.68 0.55 058 056 0.49
3 CGCM3.1(T63) 0.63 054 0.78 0.50 0.63 064 0.73 043
4 CNRM-CM3 042 044 073 0.51 0.64 0.11 0.16 0.60
5 CSIRO-Mk3.0 058 025 0.61 -0.00 0.75 0.46 0.26 -0.19
6 GFDL-CM2.0 078 048 052 0.25 0.74 0.38 0.80 0.0]
7 GFDL-CM2.1 081 054 081 053 0.65 0.08 032 034
8 GISS-AOM -0.12 048 077 0.12 0.21 0.44 0.08 0.42
9 GISS-EH 069 043 054 038 0.76 0.39  0.00 0.52
10 GISS-ER 058 0.67 047 054 0.37 0.64 -0.05 048
11 FGOALS-g1.0 050 076 025 035 0.51 0.40 -030 0.15
12 INM-CM3.0 0.68 039 0.67 0.20 0.80 0.61 0.10 0.20
13 IPSL-CM4 046 015 0.65 -031 0.66 -0.31 0.66 -0.23
14 MIROC3.2(hires) 0.86 0.27 0.80 0.54 0.91 0.81 0.47 0.40
15 MIROC3.2(medres) 0.40 0,79 0.72 0.51 0.63 0.78 0.72 0.62
16 ECHO-G 0.75 041 0.67 0.74 0.72 0.03  0.61 0.59
17 ECHAM5/MPI-OM 0.72 0.61 0.65 0.63 0.68 042  0.58 0.60
18 MRI-CGCM2.32 085 057 0.54 0.64 0.59 0.74 0.67 0.38
19 CCSM3 092 033 043 022 058 -0.18 0.18 -0.02
20 PCM 029 072 024 0.63 0.52 057 023 0.17
21 UKMO-HadCM3 0.63 048 0.62 0.62 0.40 0.35 0.63 044
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