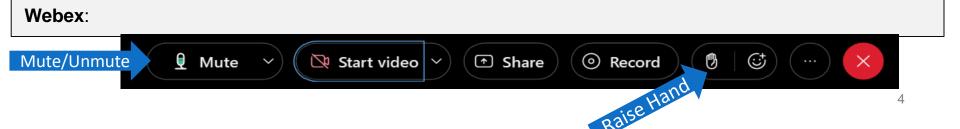


2024 Resource Program

Public Workshop April 30th 2024

Prior Workshops

- June 2023
 - Overview of planned scope and key expected innovations for RP24;
 - Relationship between RP24, PoC, RP26, and resource acquisition
- November 2023
 - Data, methods, and results of forecasting for BPA obligations and regional TRL;
 - Needs Assessment overview

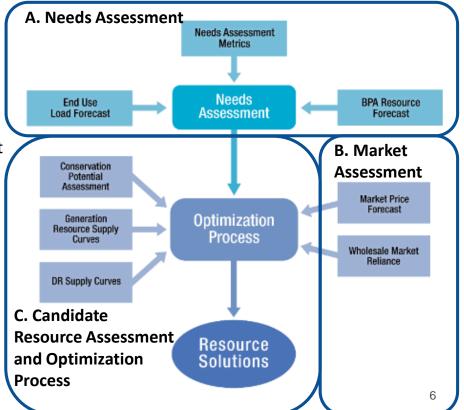

Agenda

Start	End	Time	Торіс	Presenter/Facilitator
9:00 AM	9:25 AM	25	Workshop Agenda; RP24 Timeline and Planning Framework	Brian Dombeck
9:25 AM	10:10 AM	45	Load Forecasts and Planned Needs Assessment Sensitivities	Esther Neuls
10:10 AM	10:30 AM	20	Stakeholder Suggested Sensitivities and BPA Response	Ryan Egerdahl
10:30 AM	10:55 AM	25	Hydro Modeling	Milli Chennell
10:55 AM	11:10 AM	15	BREAK	
11:10 AM	11:45 AM	35	Discussion and Q&A	Ryan Egerdahl
11:45 AM	12:00 PM	15	Wrap up and Conclude	Brian Dombeck
12:00 PM			Conclusion	
Total		180		

Format

- Presenters will communicate their preference for taking questions, which will be addressed in the order received
- Webex participants can adjust magnification of shared screen using (-/+) buttons
- If a question/opportunity for feedback arises during a presentation, please:
 - In-person: Raise your hand
 - Webex: Write it in the Webex Q&A or use the Webex "raise hand" feature; when called on, mute/unmute yourself.
 - Both: State your name and organization

Note: The "Chat" feature in Webex has been disabled for this meeting. Please raise your hand or type questions in the "Q&A" box and it will be reviewed by facilitators.


Reminder: Power Planning at BPA

- Each year, BPA publishes the Pacific Northwest Loads and Resources Study – often referred to as the **White Book** - which analyzes BPA's projections of retail loads, contract obligations, contract purchases, and resource capabilities over a 10-year study horizon and <u>describes expected energy and capacity</u> <u>surplus/deficits</u> under varying water conditions.
- On a biennial basis, BPA conducts an IRP-like assessment collectively referred to as the **Resource Program** which examines uncertainty in loads, water supply, natural gas prices, and electricity market prices to <u>develop least-cost portfolios of</u> <u>resources</u> that meet BPA's obligations.
- These processes are voluntarily undertaken to inform acquisition strategies and provide valuable insight into how Bonneville can meet its obligations cost-effectively. They are neither decision documents nor a process required by any external entity.

Resource Program Process

- A. The **Needs Assessment** measures the federal system's expected generating resource capabilities to meet projected load obligations
- B. The Market Assessment simulates the evolution of power markets in the Western Interconnect to generate a long-term forecast of Mid-Columbia prices and market availability under a variety of generation, load, and economic conditions
- C. The **Candidate Resource Assessment and Optimization Process** explores how the varying costs, performance, and availability of candidate demand-and-supply-side resources (including conservation, demand response, market purchases, and generating resources) as well as wholesale market reliance can be used to provide a least-cost resource strategy for meeting identified needs

Resource Program and Provider of Choice

	FY 2023		FY 2024	FY 2025		FY 2026		FY 2027	FY 2028	
	Feb	Sep	Apr	Nov	Jun	Jan	Aug	Mar	Oct	May
2024 Resource Program			St	Developm takeholde 2024 RP	r Engagem	nent conti	nues (Sprin <mark>2024</mark>)	ng/Summ	er 2024)	
Provider of Choice	 ★ Final Policy & ROD (Mar 2024) Policy Implementation and Contract Development (Mar 2024 - Sep 2025) ★ Contracts Signed (Dec. 2025) Power Deliveries Under New Contracts Begin (Oct. 1, 2028) ★ 								-	
2026 Resource Program						2026	5 RP Devel	•	rocesses Published (Sep. 2026

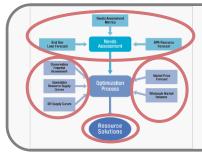
Key Takeaways

- 1. 2024 Resource Program concludes *before* PoC Contracts are executed
- 2. PoC contract election to occur at mid-point of 2026 Resource Program development

Planning Framework

Scenarios

Scenarios are comprised of a set of inputs that are consistently developed for a future outlook



Base – Business as usual scenario; load forecast beyond the current Regional Dialogue contracts (post 2028) assume no material contract election or rate structure differences from Regional Dialogue.

Sensitivities

Changes to individual input assumptions (or smaller subsets of input assumptions) within a given scenario

- Provide BPA decision-makers with additional options to address key strategic interests (PoC / Carbon Vision, etc)
- Evaluate solution sensitivity to specific assumptions
- Assess solution robustness

Fast Transition - high economic growth, accelerated decarbonization relative to Base scenario

Planned Sensitivities

Loads and BPA Resources

- Flat block/NR Load Service
- Above-RHWM Load Service
- B2H Delay
- T1 System Size

Market and Candidate Resources

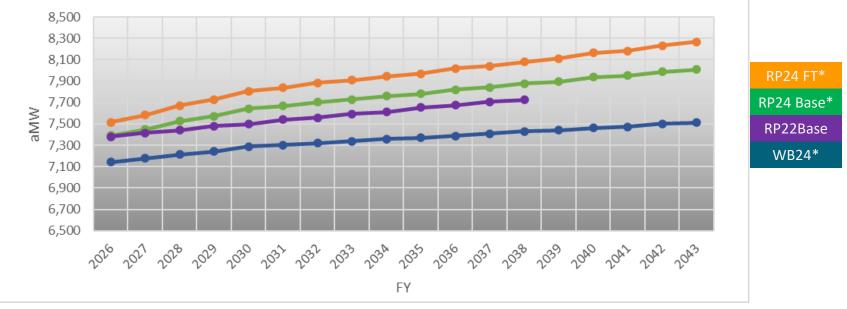
- Wholesale market price
- Wholesale market availability
- Supply side resource costs
- UCT vs TRC Costs for EE/DR Measures

Resource Solutions

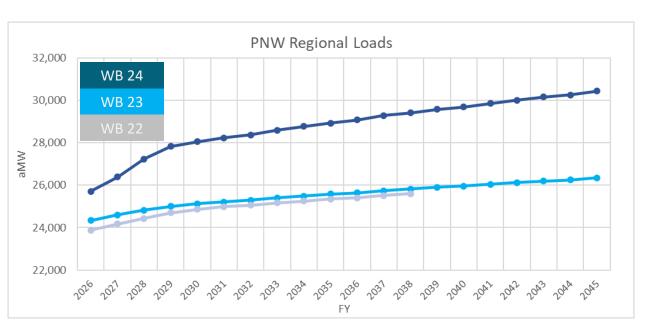
- Study Horizon
- Incremental needs vs economics
- Carbon price adder

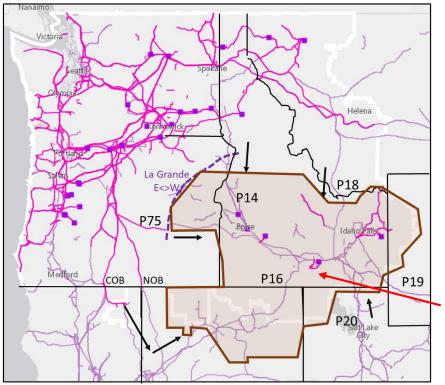
BONNEVILLE POWER ADMINISTRATION

Load Forecasts and Planned Needs Assessment Sensitivities


Esther Neuls

Needs Assessment Study Lead

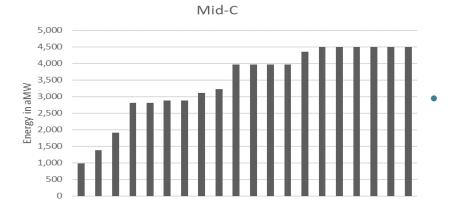

BONNEVILLE POWER ADMINISTRATION BPA Preference Customer Obligations (preliminary) - Annual

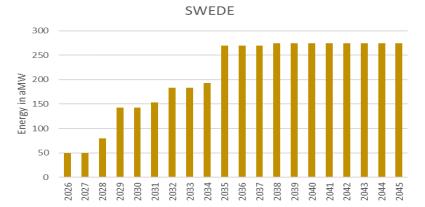

 WB24, RP24 Base & FT use slice right to power proxy. All exclude Contract Deliveries.

BONNEVILLE POWER ADMINISTRATION Pacific Northwest Regional Forecast -Expected

- Expected loads aka White Book (WB) load Forecasts
- Investor-Owned Utilities
 (IOU) loads included
- Not Include:
 - Inflation Reduction Act (IRA)
 - Climate Change adjustments
 - Exports

WRAP & RP24 Zones: Mid-C & SWEDE

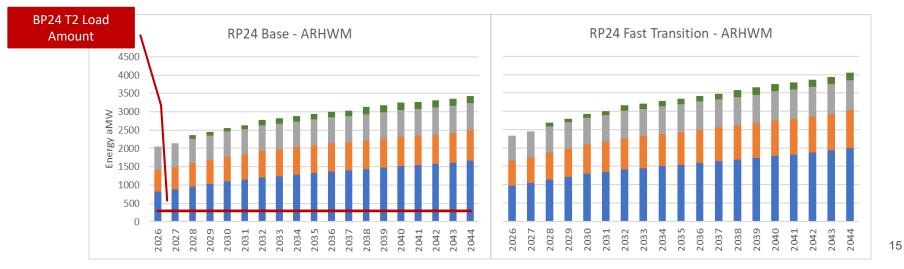

Western Resource Adequacy Program (WRAP) likely requires BPA load in each zone to be served with a combination of physical resources (with qualifying capacity) and firm transmission (from resource to the load).

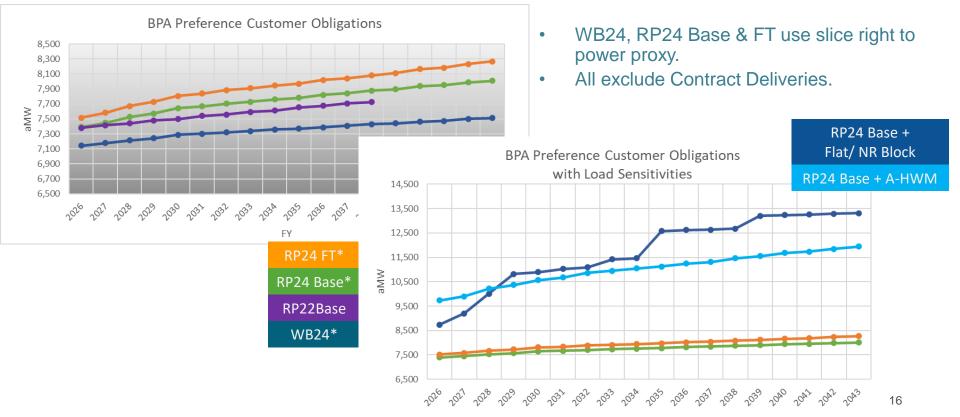

Currently, without B2H, the SWEDE region has heavily constrained transmission paths.

Mid-C (outside of the shaded enclosure)

BPA SWEDE (South-West East Diversity Exchange)

Flat Block/NR Load Service Sensitivity



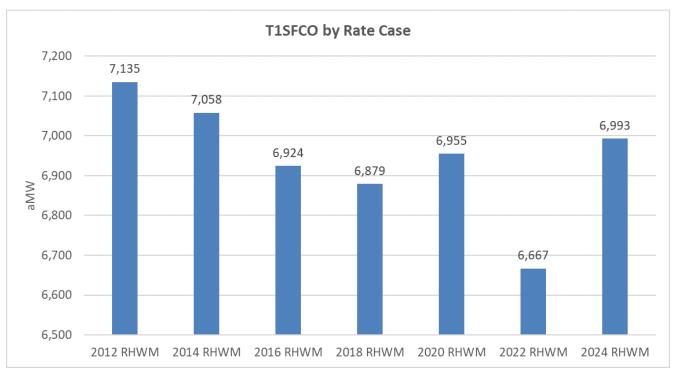

- Flat Block/ New Resource (NR) loads include potential load from:
 - NLSL
 - Data Center Loads in the region
 - Non-data center large industrial loads from public utilities
 - Future potential IOU loads

Above-RHWM Load Service Sensitivity

Load Type	As of BP24	Total Potential A-RHWM load			
New PUDs	RHWM Augmentation	New loads Served by BPA			
Block	None Served	All Served by BPA			
Slice	None Served	All Served by BPA			
Load Following	Combination of T2 & Self-Served	All Served by BPA			

BONNEVILLE POWER ADMINISTRATION BPA Preference Customer Obligations (preliminary) – Annual (Recall)

T1 System Size Sensitivity


- Determine resource capability needs associated with growing T1 system to 7250 aMW starting with PoC contract deliveries (FY2029)
- Incremental needs to be shaped based on expected T1 load shape
- Resource options may differ from those considered in other scenarios/sensitivities to align with rates constructs

T1 System Size for BP24

	Federal Tier 1 System Firm Critical Output Projection - 2-Year Average RHWM Process for BP-24 Rate Period S232-RC-20220530-195059										
		A	В	С							
1.	T1SFCO Projections Energy in aMW	2024	2025	Average							
2.	Total Federal System Hydro Generation (TRM Table 3.1)	6,633	6,686	6,660							
3.	Total Designated Non-Federally Owned Resources (TRM Table 3.2)	1,140	1,018	1,079							
4.	Total Designated BPA Contract Purchases (TRM Table 3.3)	135	135	135							
5.	Total Designated System Obligations (TRM Table 3.4)	-881	-880	-881							
6.	Federal Tier 1 System Firm Critical Output (sum of Lines 2-5)	7,027	6,958	6,993							

T1 System Size by Rate Case

• T1SFCO = <u>Tier 1</u> System <u>Firm Critical Output</u>

Stakeholder Suggested Sensitivities and Response

Ryan Egerdahl Manager, Long Term Power Planning

Stakeholder Suggested Sensitivities

BPA Loads

- More extreme weather events/peakier loads
- All PF contracts are Load Following

BPA Resources

- FCRPS capability loss
- FCRPS balancing reserves
- FCRPS shaping and flattening services

Carbon Policy

• 100% carbon free BPA power sales

BPA Response to Stakeholder Suggested Sensitivities

- We see the extreme weather, load following, and 100% carbon free BPA studies as being covered by existing scope
- Long-term balancing reserves study to be reintroduced for RP26, not RP24
- FCRPS capability loss will not be studied in RP24, but we can use the load growth sensitivity results as a proxy for capability loss

Needs Assessment Metrics

Annual Energy

- Evaluates the annual energy surplus/deficit under P10 by month-critical water conditions

• P10 Heavy Load Hour (HLH)

 Evaluates the 10th percentile (P10) surplus/deficit over heavy load hours by month, given variability in hydro generation

P10 Superpeak

 Evaluates the P10 surplus/deficit over the six peak load hours per weekday by month, given variability in hydro generation

• 18-Hour Capacity

 Evaluates the ability to meet the six peak load hours per day over three-day extreme weather events assuming median water conditions. BONNEVILLE POWER ADMINISTRATION

Long Term Hydro Modeling

Milli Chennell Long Term Hydro Study Lead

Hydro Resource Modeling Overview

- Hydro Modeling Consistent with Rate Case
 - HYDSIM for 14-period modeling
 - 12 months and 2 split months (April and August)
 - Provides month average generation for the Federal 14 projects
 - Other Federal hydro projects are considered "independent"
 - RiverWare for hourly modeling
 - Creates hourly shapes for 10 Federal projects
 - Month average generation consistent with HYDSIM
 - Models hydrologic operations rather than simply shaping energy

Typical and Special Updates

- Typical Updates
 - Pacific Northwest Coordination Agreement (PNCA) Data
 - Fish Operations
 - Canadian Operations
 - Project Outages
 - Reserves
 - Loads
- Special Updates
 - Stream Flows
 - Unit Upgrades

RP2024 Time Horizon and Sample Years

			-				-						-					
2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042		2043
													_					
															_			
Hydro):	202	20 Modi	fied Flc	ows (su	oset 198	39-2018)	RMJC	C-II Flo	ws (202	0-2049	& 2030	-2059)				
Fish C	Operat	ions:	RCBA (I	Deceml	oer 14 th	Agreer	nent)		Colur	nbia Riv	er Syste	em Opei	ations	(CRSO)				
20xx Indicates simulated years.																		
	 2026-2028 all separately modeled 																	
	 2031 & 2032 represent 6 years, 2029 to 2034 																	
 2037 & 2038 represent 6 years, 2035 to 2040 operations) 								2040		(pair	rs of ye	ars to i	incorpo	orate o	dd/eve	en		
	 2043 & 2044 represent 5 years, 2041 to 2045 																	
		HYDSII	M Run		2020	-2029		2030	-2039		2040)-2049		205	0-2059	•		
						Subs	et of r	esults	used f	or 203!	5-2040)						

Subset of results used for 2041-2045

Streamflows

- Modified flows (WY 1989-2018)
 - June 2022 <u>Letter to Region</u> represented a change in how BPA forecasted long-term hydrogeneration
 - 2022 Resource Program was a bridge into this methodology
- RMJOC-II
 - The RMJOC-II report was published in June 2018 and built on earlier climate change work from 2009-2011
 - Includes 80 statistically downscaled RCP8.5 climate projections, focusing on a 19-member subset
 - RP-24 used 3 of the 19-member subset from RMJOC-II

RMJOC-II Traces

CRSO	RP24 Needs Assessment
CanESM2_RCP85_MACA_PRMS_P1	IPSL-CM5A-MR_RCP85_MACA_VIC_P2
MIROC5_RCP85_BCSD_VIC_P3	CNRM-CM5_RCP85_MACA_VIC_P1
HadGEM2-CC_RCP85_MACA_VIC_P1	CCSM4_RCP85_BCSD_VIC_P1
GFDL_ESM2M_RCP85_BCSD_VIC_P2	

- Evaluate GCMs
 - Different need/timeframe than CRSO led to different choices
- Balance Downscaling between MACA and BCSD
- Balance between hydrologic models (VIC_P1/VIC_P2/VIC_P3)
 - CNRM was switched to VIC_P1 after results showed late runoff in P3

Fish Operations

- RCBA (12/14 agreement) vs CRSO
 - RP-22 used BP-22 Final Proposal Hydro Studies consistent with CRSO Preferred Alternative
 - Overall generation impacts from RCBA
 - Less Spring generation, including March
 - More August generation
 - Slightly less Sept-Nov generation
 - Changes to flexibility

BONNEVILLE POWER ADMINISTRATION

Questions?

Next Steps

- Public Workshop Schedule (tentative)
 - June 2024: Needs Assessment and Market Assessment results
 - August 2024: Resource Solutions for all scenarios and sensitivities
- Final publication of 2024 Resource Program expected in September 2024

Get in Touch

Resource Program Contacts:

Ryan Egerdahl, Program Manager, <u>rjegerdahl@bpa.gov</u> Brian Dombeck, Program Coordinator, <u>bjdombeck@bpa.gov</u>

Find Us:

Email: <u>ResourceProgram@bpa.gov</u> Web: <u>Resource Planning (bpa.gov)</u> HYDRO POWER FLOWS HERE