
B O N N E V I L L E P O W E R A D M I N I S T R A T I O N 
 
 

 

 

 

 

 

Regression for 
M&V: 

 Reference Guide 
May 2012  



 

  

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N

Regression for M&V: Reference Guide 
 

Version 1.1 

May 2012 
 
 
 

Prepared for 

Bonneville Power Administration 
 

Prepared by 

Research Into Action, Inc. 

Quantum Energy Services & Technologies, Inc. (QuEST) 

Stetz Consulting, LLC 

Kolderup Consulting 

Warren Energy Engineering, LLC 

Left Fork Energy, Inc. 

Schiller Consulting, Inc. 
 

Contract Number 00044680 

 

 



 

Regression for M&V: Reference Guide 
i 

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N

Table of Contents   

1. Introduction ........................................................................................................1 

1.1. Purpose .................................................................................................................... 1 

1.2. Background .............................................................................................................. 1 

2. Background .......................................................................................................3 

2.1. Description ............................................................................................................... 3 

2.2. Regression Applicability ........................................................................................... 4 

2.3. Advantages of Regression ....................................................................................... 5 

2.4. Disadvantages of Regression .................................................................................. 5 

3. The Regression Process ...................................................................................7 

3.1. Step 1 - Identify All Independent Variables .............................................................. 7 

3.2. Step 2 - Collect Data ................................................................................................ 8 

3.3. Step 3 - Synchronize the Data ................................................................................. 8 

3.4. Step 4 - Graph the Data ........................................................................................... 8 

3.5. Step 5 - Select and Develop Model .......................................................................... 8 

3.6. Step 6 - Validate Regression Model ......................................................................... 9 

3.7. Requirements for Regression ................................................................................... 9 

4. Models ............................................................................................................ 13 

4.1. One Parameter Model (Mean Model) ..................................................................... 13 

4.2. Two Parameter Model (Simple Regression) .......................................................... 13 

4.3. Simple Regression Change Point Models .............................................................. 14 
4.3.1. Three-Parameter Change Point Model .............................................................................. 15 
4.3.2. Four-Parameter Change Point Model................................................................................ 16 
4.3.3. Five-Parameter Change Point Model ................................................................................ 17 

4.4. Multiple Regression ................................................................................................ 17 
4.4.1. Categorical Variables ........................................................................................................ 18 
4.4.2. Multiple Regression Change Point Models ........................................................................ 19 

4.5. Uncertainty and Confidence Intervals .................................................................... 20 
4.5.1. Uncertainty ........................................................................................................................ 20 
4.5.2. Confidence Level and Confidence Interval ........................................................................ 21 
4.5.3. Prediction Interval ............................................................................................................. 22 
4.5.4. Confidence Levels and Savings Estimates ....................................................................... 23 

 



 

Regression for M&V: Reference Guide 
ii 

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N

5. Validating Models ........................................................................................... 25 

5.1. Statistical Tests and Measures for the Model ........................................................ 25 
5.1.1. R-Squared (Coefficient of Determination) ......................................................................... 25 
5.1.2. Adjusted R-Squared .......................................................................................................... 25 
5.1.3. Degrees of Freedom ......................................................................................................... 26 
5.1.4. Root Mean Squared Error (Standard Error of the Estimate) .............................................. 26 
5.1.5. Coefficient of Variation of the Root Mean Squared Error .................................................. 26 
5.1.6. Bias ................................................................................................................................... 26 
5.1.7. F-Statistic .......................................................................................................................... 28 

5.2. Statistical Tests and Measures for the Model’s Coefficients .................................. 28 
5.2.1. Standard Error of the Coefficient (Intercept or Slope) ....................................................... 28 
5.2.2. t-Statistic ........................................................................................................................... 28 
5.2.3. p-value .............................................................................................................................. 28 

5.3. Tables of Statistical Measures ............................................................................... 29 

5.4. Other Tests of Model Validity ................................................................................. 31 
5.4.1. Check for Autocollinearity .................................................................................................. 31 
5.4.2. Check for Multicollinearity ................................................................................................. 32 

5.5. Analysis of Residuals ............................................................................................. 33 

6. Example ......................................................................................................... 35 

6.1. Use of Monthly Billing Data in a 2-Parameter Model to Evaluate Whether It 
Will Make a Satisfactory Baseline .......................................................................... 35 

6.2. Background on Heating and Cooling Degree-Days (HDD and CDD)..................... 41 

7. Minimum Reporting Requirements ................................................................. 43 

8. References and Resources ............................................................................ 45 

Appendix:  Glossary of Statistical Terms ............................................................ 47 

Sources: .......................................................................................................................... 52 

 
 



 

Regression for M&V: Reference Guide 
1 

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N

1. Introduction 

1.1. Purpose 
This document presents a Regression for M&V: Reference Guide1 as a complement to the 
Measurement and Verification (M&V) protocols used by the Bonneville Power Administration 
(BPA). The Regression Reference Guide assists the engineer in conducting regression analysis to 
control for the effects of changing conditions (i.e., weather) on energy consumption. 

This document is one of many produced by BPA to direct M&V activities. The Measurement 
and Verification (M&V) Protocol Selection Guide and Example M&V Plan provides the region 
with an overview of all of BPA’s M&V protocols, application guides, and reference guides, and 
gives direction as to the appropriate document for a given energy efficiency project. The 
document Glossary for M&V: Reference Guide defines terms used in the collection of BPA 
M&V protocols and guides. In addition, an appendix to this Regression Reference Guide 
provides a glossary specific to this guide. 

Chapter 8 of this guide provides full citations (and web locations, where applicable) of 
documents referenced. 

1.2. Background 
In 2009, BPA contracted with a team led by Research Into Action, Inc. to assist the organization 
in revising the M&V protocols it uses to assure energy savings for the custom projects it accepts 
from its customer utilities. The team has conducted two phases of research and protocol 
development under the contract, Number 00044680. 

In the first phase, Research Into Action directed a team comprised of: 

■ Quantum Energy Services & Technologies, Inc. (QuEST), led by David Jump, Ph.D., PE 
and assisted by William E. Koran, PE; 

■ Left Fork Energy, Inc., the firm of Dakers Gowans, PE; 

■ Warren Energy Engineering, LLC, the firm of Kevin Warren, PE;  

■ Schiller Consulting, Inc., the firm of Steven Schiller, PE; and 

■ Stetz Consulting, LLC, the firm of Mark Stetz, PE. 

In the second phase, Research Into Action directed a team comprised of: 

■ David Jump, Ph.D., PE, William E. Koran, PE, and David Zankowsky of QuEST; 

                                                 
1  Hereinafter, Regression Reference Guide. 
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■ Mark Stetz, PE, CMVP, of Stetz Consulting; 

■ Erik Kolderup, PE, LEED AP, of Kolderup Consulting; and 

■ Kevin Warren, PE, of Warren Energy Engineering. 

The Research Into Action team was led by Jane S. Peters, Ph.D., and Marjorie McRae, Ph.D. 
Assisting Drs. Peters and McRae were Robert Scholl, Joe Van Clock, Mersiha Spahic, Anna 
Kim, Alexandra Dunn, Ph.D., and Kathleen Gygi, Ph.D. 

For BPA, Todd Amundson, PE, directed the M&V protocol research and development activities. 
Mr. Amundson was working under the direction of Ryan Fedie, PE, and was assisted by BPA 
engineers. Mr. Amundson coordinated this work with protocol development work undertaken by 
the Regional Technical Forum. In addition, Mr. Amundson obtained feedback from regional 
stakeholders. 

William Koran is the primary author of this Regression for M&V: Reference Guide; team 
members reviewed and provided guidance. We thank Andie Baker, Ph.D., Senior Conservation 
Evaluator for Tacoma Power, for her thoughtful comments on the draft document. 
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2. Background 

2.1. Description 
Regression is a statistical technique that estimates the dependence of a variable of interest (such 
as energy consumption) on one or more independent variables, such as ambient temperature. It 
can be used to estimate the effects on the dependent variable of a given independent variable 
while controlling for the influence of other variables at the same time. It is a powerful and 
flexible technique that can be used in a variety of ways when measuring and verifying the impact 
of energy efficiency projects.   

These guidelines are intended to provide energy engineers and M&V practitioners with a basic 
understanding of the relevant statistical measures and assumptions necessary to use regression 
analysis properly. The guidelines should be followed whenever the technique is required. While 
this is not a comprehensive guide to regression, following the approaches described here should 
make most M&V regressions valid for their intended purpose. Please refer to a textbook for more 
comprehensive information. 

Additional information on regression analysis is available from many sources. Resources that 
may be valuable references for energy efficiency M&V practitioners include the following: 

■ IPMVP: International Performance Measurement and Verification Protocol: Concepts 
and Options for Determining Energy and Water Savings, Volume 1 

■ ASHRAE Guideline 14-2002 – Measurement of Energy and Demand Savings  

■ California Commissioning Collaborative’s Guidelines for Verifying Existing Building 
Commissioning Project Savings, Using Interval Data Energy Models: IPMVP Options B 
and C  

IPMVP Appendix B, Uncertainty, and ASHRAE Guideline 14 Annex B, Determination of Savings 
Uncertainty, and Annex D, Regression Techniques, have information very relevant to regression 
analysis. Guideline 14 is scheduled to be updated in 2011. 

The Guidelines for Verifying Existing Building Commissioning Project Savings is a relatively 
easy-to-read document that focuses on regression methods. Although written with a focus on 
commissioning of existing buildings, the methods described are applicable to a variety of 
projects.  

In addition to these documents, a general reference for exploratory data analysis and statistical 
inference, the NIST/SEMATECH Engineering Statistics Handbook, is available online from the 
National Institute of Standards and Technology. The Engineering Statistics Handbook site 
includes a detailed table of contents for the web-based handbook, and also includes 
downloadable PDF files for off-line reading. 
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2.2. Regression Applicability 
Regression estimation is applicable when the energy use affected by the efficiency measure is 
proportional to one or more independent variables. Note that the technique of energy indexing is 
a simple application of the regression guide that can be used when energy use is linearly 
proportional to one normalizing variable. There are other constraints upon using energy indexing 
in lieu of a more generalized approach. Please refer to BPA’s Verification by Energy Use  
Indexing Protocol for further information on this technique. 

In M&V, energy usage is typically (and optimally) the dependent variable, whether energy usage 
is measured monthly through bills or measured more frequently through meter monitoring. The 
regression model attempts to predict the value of the dependent variable based on the values of 
independent, or explanatory, variables such as weather data.  

 Dependent Variable – the outcome or endogenous variable; the variable described by 
the model; for M&V, the dependent variable is typically energy use 

 Independent Variable – an explanatory or exogenous variable; a variable whose 
variation explains variation in the outcome variable; for M&V, weather characteristics 
are often among the independent variables 

 Simple Regression – a regression with a single independent variable 

 Multiple Regression – a regression with two or more independent variables 

One of the most common applications of regression in M&V is when the primary source of data 
is monthly utility consumption. The initial step is to establish the baseline dependence of 
building usage on weather conditions by modeling the period prior to the retrofit that is 
illustrative of pre-retrofit usage – the baseline period. Then, post-retrofit weather is applied to the 
baseline model in order to estimate the energy use of the building had the energy efficiency 
improvements not been made (the counterfactual situation). In M&V, this projection of the 
baseline energy use into the post period is typically called the adjusted baseline. Finally, the 
adjusted baseline (predicted counterfactual energy use) is compared to the actual post-retrofit 
energy use and the difference provides an estimate of energy savings.2  

Regression techniques can be applied to data with a much smaller time interval than a monthly 
billing period, such as hourly or daily data. This is useful when a simple spot measurement is not 
adequate to establish the baseline. These smaller interval data are frequently applicable to 
IPMVP Options A (Key Parameter Measurement), B (All Parameter Measurement), and C 
(Whole Facility), and can also be used to assist in model calibration for IPMVP Option D 
(Calibrated Simulation). 

                                                 
2  Note that this is the general approach followed by most M&V practitioners to estimate energy savings. 

Economists, who typically conduct impact evaluations, typically estimate a single model from both baseline 
and post-retrofit data, and use a dummy (categorical) variable applied to post-retrofit observations to 
estimate energy use savings. The resulting savings estimates are comparable, although not necessarily 
identical. 
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2.3. Advantages of Regression 
Regression is a very flexible technique that can be used in conjunction with other M&V methods 
to help provide a deeper understanding of how and when energy is used. Regression can also be 
used to extrapolate short-term measurements to annual energy. The ideal case for regression is 
when the measurement period captures the full annual variation in the dependent and 
independent variables – that is, the full range of operation conditions. If the relationship between 
the independent and dependent variables is not expected to change over the range of operating 
conditions, then short-term measurements can be extrapolated to annual energy use, even if the 
measurement period does not capture the full annual variation. 

A particular advantage of regression is that it not only facilitates an estimate of energy savings, 
but it also can provide an estimate of the uncertainty in savings calculations. Further, a baseline 
regression model can be used to estimate how much data is required in the post-retrofit period to 
keep savings uncertainty below a desired threshold.  

Regression is conceptually simple, most M&V practitioners have at least a basic familiarity with 
it, and usage and weather data – the variables typically needed for a basic model – are usually 
readily available. 

2.4. Disadvantages of Regression 
Although simple in concept, proper use of regression requires a clear understanding of statistical 
methods and application guidance, which this document seeks to provide to the M&V 
practitioner. The information in this guide should cover the great majority of M&V projects, but 
situations can occur that require a more detailed understanding of statistical methods. While the 
basic technique is fairly straightforward, complications to the site or the data can easily require 
more advanced techniques and a more thorough understanding of regression methods. 

Regression models require multiple observations on the dependent and independent 
(explanatory) variables. There are times, however, when explanatory variables are not readily 
available or we only have access to proxies. Explanatory variables that are not included in the 
regression model often introduce added error. If energy use is not a strong function of the 
independent variable(s) in the equation, or if there is large variability in energy use (“scatter” in 
the x-y chart) relative to strength of the predictive relationship, regression analysis generates 
estimates that have high uncertainty.   

It is important to note that regression is often performed without an estimate of the degree of 
uncertainty involved, so the validity of the resulting savings estimates is unknown. Currently, 
there is no robust means of estimating the uncertainty introduced when extrapolating short-term 
data to an annual savings estimate. The ASHRAE Research Project RP-1404, Measuring, 
Modeling, Analysis and Reporting Protocols for Short-Term M&V of Whole Building Energy 
Performance, due for completion in early 2012, will attempt to address this shortcoming for 
whole building methods. 
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3. The Regression Process 

The regression process can be summarized in six steps: 

1. Identify all independent variables to be included in the regression model 

2. Collect data 

3. Synchronize data into appropriate time intervals (if necessary) 

4. Graph the data 

5. Select and develop the regression model 

6. Validate the model 

3.1. Step 1 - Identify All Independent Variables 
To properly identify all independent variables, you should consider the facility and how different 
factors play into its energy use. Then, you will compile a list of the variables that are likely to 
have an impact on the energy use of the facility or system being modeled. When variable values 
are not numeric or are not continuous, the data can be separated into several regression models, 
rather than including all variables within a single model.  

Developing separate models is just one approach to working with categorical variables, an 
approach favored by many M&V practitioners. One can also use binary variables to indicate the 
presence or absence of a given condition (that is, to create a category) and apply these binary 
variables to develop estimates of either the slope or the intercept, or both, when the given 
condition is satisfied. (See Section 4.4.1 for a discussion of the use of categorical variables.) 

We advise caution when including many variables. A model should only use the variables that 
explain the relationship and not include additional, extraneous information. ASHRAE 
Guideline 14, Appendix D, provides additional information on regression estimation with two or 
more independent variables (multiple regression). 

Some independent variables commonly used in energy regressions are: 

 Ambient dry bulb temperature (actual or averaged over a time-period such as a day) 

 Heating degree-days (HDD: See Section 6.2)  

 Cooling degree-days (CDD: See Section 6.2) 

 Plant output (number of widgets produced in some period) 

 Number of occupants in a facility each hour 



 

Regression for M&V: Reference Guide 
8 

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N

3.2. Step 2 - Collect Data 
Prior to installation of the measure, identify and collect data for a monitoring period that is 
representative of the facility, operation, or equipment. This is the baseline period, sometimes 
referred to as the tuning or pre period. The baseline monitoring period should be long enough to 
represent the full range of operating conditions. For example, when using monthly data for a 
weather-sensitive measure, the baseline period typically includes 12 or 24 months of billing data, 
or several weeks of meter data. Using a partial year may overemphasize portions of the year and 
add variability to your model.  

It is vital that the collected baseline data accurately represent the operation of the system before 
improvements were made. Anomalies in these data can have a large effect on the outcome of the 
study. Examine data outliers – data points that do not conform to the typical distribution – and 
seek an explanation for their occurrence. Atypical events that result in outliers include equipment 
failure, any situations resulting in abnormal closures of the facility, and a malfunctioning of the 
metering equipment. Truly anomalous data should be removed from the data set, as they do not 
describe the operations prior to the installation of the measure.3 

3.3. Step 3 - Synchronize the Data 
To accurately represent each independent variable, the intervals of observation must be 
consistent across all variables. For example, a regression model using monthly utility bills as the 
outcome variable requires that all other variables originally collected as hourly, daily, or weekly 
data be converted into monthly data points. In such a case, it is common practice to average 
points of daily data over the course of a month, yielding synchronized monthly data. There are 
problems with this approach because varying data lengths can cause net bias in the model. Net 
bias means that the total predicted energy use over the period being analyzed will differ from the 
actual energy use over that period.  

3.4. Step 4 - Graph the Data 
Create one or more scatter plots to begin to visualize the relationships between the dependent 
and independent variables. Most commonly, one graphs the independent variables on the X axis 
and the dependent variable on the Y axis. Figure 4-1 illustrates a scatter plot for the linear 
relationship between electrical demand and ambient temperature. 

3.5. Step 5 - Select and Develop Model 
To create a baseline equation, perform a regression analysis on the measured variables. The 
analysis is typically called an ordinary least squares regression, because the mathematics 

                                                 
3  Again, the approach typically used by engineers and by economists diverges. Economists typically collect 

and clean both the baseline and the post-installation data as part of Step 2 and conduct the subsequent 
steps on the entire pre- and post-period. 
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generates a model that minimizes the sum of squared deviations between the actual and predicted 
values.  

The equation calculated from the regression analysis represents the baseline relationship between 
the variables of interest. Figure 4-1 shows the data and the model estimated for the value of the 
outcome variable as a function of one independent variable – a simple regression.  

Frequently, however, more than one independent variable influences the outcome variable. For 
example, the electricity used by a chiller system might be affected by variations in outside 
temperature, relative humidity, hours of facility use, and number of occupants. To accurately 
model cooling energy consumption, we need to include additional independent variables, 
creating a multiple regression model. Subsequent sections provide more detailed explanations, 
with examples of multiple regression analysis given in Section 4.4. 

3.6. Step 6 - Validate Regression Model 
Once you have created a baseline model, you can generate the following statistical measures or 
tests to help validate that your estimated model relationships provide a good description of the 
data. At a minimum, use the following three measures to determine if your baseline equation is 
appropriate: R2 (or R-squared), Net Determination Bias, and t-statistic. Subsequent sections 
provide additional detail as follows: 

 R2
 – Section 5.1.1 

 Root Mean Squared Error (RMSE) or Standard Error of the Estimate – Section 5.1.4 

 CV(RMSE) Coefficient of Variation of the Root Mean Squared Error – Section 5.1.5 

 Net Determination Bias – Section 5.1.6 

 F-statistic – Section 5.1.7 

 t-Statistic – Section 5.2.2 

 p-value – Section 5.2.3 

3.7. Requirements for Regression 
There are four requirements for the appropriate application of linear regression. They are easy to 
remember with the acronym LINE:  

1. Linearity: There must exist a linear relationship between variables. (The linearity can be 
between transformations of the variables, but a discussion of methods with transformed 
variables is beyond the scope of this document.)   

2. Independence: Two or more regressor variables are independent if their conditional 
probability distributions are unrelated. 

3. Normality: A continuous probability density function roughly characterizing a random 
variable that is the sum of a large number of independent random events; usually 
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represented by a smooth bell-shaped curve symmetric about the mean. In a normal 
distribution, the mean (average) of the residuals is zero.   

4. Equal Variance (or Homoscedasticity): Under assumptions of homoscedasticity, 
different response variables will have the same variance in their errors, regardless of the 
values of the predictor variables. (Variance is a measure of the average distance between 
each of a set of data points and their mean value, and it is equal to the sum of the squares 
of the deviation from the mean value, or the square of the standard deviation.) 

To provide accurate predictions, the sample of data used for a regression model should be 
representative of the overall population. For energy M&V, the baseline modeling period should 
cover most of the full range of operating conditions. Ideally, the sample observations should be 
random, but often they will not be. A typical situation is that an engineer will have data for only 
a subset of the ambient conditions encountered over a year. Depending on the season(s) during 
which you acquire data, it is likely that the various ambient conditions are not represented in 
equal proportion to conditions occurring over a full year. Hence, when ambient temperature is an 
independent variable, individual data points will be improperly treated as having equal weight in 
a regression, unless you make an effort to adjust, or weight, the data appropriately using 
weighted least squares regression.  

A related difficulty that occurs with monthly data is that energy use differs month-to-month, not 
only because of the weather, but also because the number of days in the months may also differ. 
You may think that using (heating or cooling) degree-days addresses this issue, because the 
value of the independent variable would go up as the number of days in a month increases.  
However, the degree-day observations only affect the slope portion of the equation, yet the 
intercept of the equation might also be affected. 

A common way to address this issue of varying days in a month is to standardize data into daily 
units, such that the independent variable is expressed as degree-days per day, and the dependent 
variable is expressed as energy-use-per-day. This is an improvement over the use of monthly 
data not expressed in daily units. Yet as part of the standardization effort, points that represent 
more days (such as an observations for 31-day months) should be made more important, or 
weighted more heavily in the regression, than points that represent fewer days (such as months 
with 30 days, which in turn should have more weight than observations for February). You can 
use a weighted least squares regression to appropriately represent the data gathered. This method 
gives a data point representing a longer period of time proportionally more weight than a point 
representing less time. The need of using a weighted least squares regression model can be 
evaluated by checking the model’s bias error, described in Chapter 5, Validating Models. 
Weighted least squares regression is outside the scope of this document, but we can generalize 
the issue by stating that if the baseline modeling period is not very similar to the performance 
period, then the model may be incorrect. ASHRAE Guideline 14, Annex D addresses weighted 
least squares regression. 

It is important to note that linear regression assumes that the x values are known exactly, with no 
measurement errors. However, in practice, we often ignore this requirement when the variability 
of the independent variable is small relative to the variability in the dependent variable. Also, the 
uncertainty calculated in the regression often accounts for the variability in the independent 
variable measured in the baseline period. The model does not, however, account for the 
variability measured in the post period and can introduce uncertainty in savings estimates that is 
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not accounted for by the methods described here. But, with sufficient data, this increased 
uncertainty should become minor. 

One other note regarding the common approach to regression employing the ordinary least 
squares method to determine regression lines: The squaring used to get the mean squared error 
weights outliers more than methods based on simple differences, assigning relatively greater 
importance to large errors than to small ones. Therefore, if the data has outliers, they should be 
understood and removed if not representing operating conditions, or an alternative regression 
approach that reduces the impact of outliers (such as one based on the mean absolute error) 
should be considered. 
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4. Models 

This chapter describes the various types of linear regression models that are commonly used for 
M&V. In certain circumstances, other model functional forms, such as second-order or higher 
polynomial functions, can be valuable. The M&V practitioner should always graph the data in a 
scatter chart (Step 4 in the process) to verify the type of curve that best fits the data. 

The ASHRAE Inverse Model Toolkit, a product that came out of research project RP-1050, 
provides Fortran code for automating the creation of the various model types described below.  
Spreadsheets and statistical software can create simple linear regressions, polynomial, logistic, 
and other types of models.   

4.1. One Parameter Model (Mean Model)  
Single parameter (1P), or mean models, estimate the mean of the dependent variable and are the 
simplest models described in this guide. They are not really regression models, but are included 
here for completeness. A mean model would describe energy use that is not related to other 
independent variables, such as that of a light that runs continuously. 

4.2. Two Parameter Model (Simple Regression) 
Two parameter (2P) models are the simple linear regression models with which most M&V 
practitioners are familiar through the use of popular spreadsheet software. They are appropriate 
for modeling building energy use that varies linearly with a single independent variable, such as 
ambient temperature. In most commercial buildings, metered whole-building energy use varies 
linearly with ambient temperature above 75º F due to changes in cooling energy use.   

A linear least squares regression with only two parameters is often called a simple regression. 
The equation below is the standard form of a simple regression, illustrated in Figure 4-1 with 
actual building data. 

■ Simple Regression: Y = β1 + β2 X1 

where:  Y = the value of the dependent variable  

 β1 = the parameter that defines the y-intercept (the value of y when x equals 
zero)  

 β2  = the parameter that describes the linear dependence on the independent 
variable (slope)  

 X1  = the value of the independent variable  

(Note that statisticians typically describe this model as 0 1 1Y Xβ β= + . In this text, we use 
the former notation, as it is consistent with the common engineering terminology two 
parameter model.) 
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The following graph is an example of a simple regression. 

Figure 4-1: Electrical Demand vs. Ambient Temperature 

 

4.3. Simple Regression Change Point Models 
Some systems are dependent on a variable, but only above or below a certain value. For 
example, cooling energy use may be proportional to ambient temperature, yet only above a 
certain threshold. When ambient temperature decreases to below the threshold, the cooling 
energy use does not continue to decrease, because the fan energy remains constant. In 
commercial buildings with economizer cooling, this threshold is often 55º F. Similar behavior is 
often seen in building gas usage, because the heating energy is proportional to ambient 
temperature during the space heating season and the energy associated with hot water use is 
constant across all seasons. 

In cases like these, simple regression can be improved by using a change-point linear regression. 
Change point models often have a better fit than a simple regression, especially when modeling 
energy usage for a facility. Because of the physical characteristics of buildings, the data points 
have a natural 2-line angled pattern to them. Sometimes it is even appropriate to use multiple 
change points.  

The following diagrams (Figure 4-2) illustrate the major models used for temperature-dependent 
loads. The top row illustrates 2-parameter heating and cooling models; the second row illustrates 
3-parameter models; the third row illustrates 4-parameter models; and the bottom row illustrates 
a 5-parameter combined heating and cooling model.  
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Figure 4-2: Figure from ASHRAE Research Project 1050-RP,  
Development of a Toolkit for Calculating Linear, Change-point Linear and  

Multiple-Linear Inverse Building Energy Analysis Models 

4.3.1. Three-Parameter Change Point Model  
Three-parameter (3P) models are appropriate for energy use that increases or decreases with 
changes in an independent variable over either the upper or lower part of the range of the 
independent variable, and remains constant over the remaining part of the independent variable’s 

    
    
  
    
  

Cooling   
Energy  
Use  

Outside   
Temperature 

β1   
β 2   

Heating 
Energy 
Use 

Outside 
Temperature  

β1 
β2 

Cooling   
Energy   
Use   

Outside   
Temperature 

β 1   β2   

Heating 
Energy 
Use 

Outside 
Temperature   

β1 

β2 

β 3   β3 

Cooling   
Energy   
Use   

Outside 
Temperature 

β 1   
β3   

Heating 
Energy 
Use 

Outside   
Temperature  

β1 

β2 

β4  β4 

β 2   
β3   

   
   
   

Outside 
Temperature 

β1   
β3 

β4 

β2 

β5 

Heating & 
Cooling 
Energy 
Use 
 



 

Regression for M&V: Reference Guide 
16 

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N

range, such as previously described for heating and cooling energy use that varies with 
temperature only below or above a threshold. (The second row of Figure 4-2 illustrates the three-
parameter model.)  

■ Three-Parameter (3P) Cooling Change-Point Model:  Yc  =  β1  +  β2 ( X1 - β3 )+ 

■ Three-Parameter (3P) Heating Change-Point Model:  Yh  =  β1  +  β2 ( X1 - β3 )- 

where: β1  = the intercept 

 β2   = the parameter defining temperature dependency (slope)  

 β3  = the change-point  

 (…)+  = indicates that the values of the parenthetic term are set to zero when they 
are negative 

  (…)–  = indicates that the values of the parenthetic term are set to zero when they 
are positive 

Another way to think about the mathematics described by the (…)+ and (…)– notations is to 
consider that the model is run with dummy variables to indicate the (…)+ and (…)- conditions. 
The dummy variables enter as multipliers on the terms ( X1 - β3 ), which has the result of setting 
the terms to 0 when they do not meet the criteria; thus the slope, β2, is only pertinent for the non-
zero condition. 

4.3.2. Four-Parameter Change Point Model 
Similar to three-parameter models, four-parameter models incorporate a change point, but do so 
by incorporating an additional non-zero slope that best fits the relationship over that range of 
data. Thus, you can use a four-parameter model to better model heating and cooling electricity 
use with outdoor air temperature as your independent variable for such applications as variable-
air-volume systems, certain types of controls, or buildings with both electric heating and cooling. 
For example, above a certain minimum temperature, there may be two slopes associated with 
cooling – the portion of the temperature range that includes economizer cooling, and the portion 
with minimum outside air and compressor cooling only. 

Note that the slopes of the two sides of the model can be either of the same or opposite sign, 
depending upon what is being modeled; in many applications, the slopes have the same sign. 

The equation is: 

■ Four-Parameter (4P) Change-Point Model:  Y  =  β1  +  β2 (X1 - β4 )-  +  β3 (X1 - β4 )+ 

where: β1  = the constant term  

 β2   = the left slope (heating)  

 β3  = the right slope (cooling) 
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 β4  =  the change point 

 (…)+  = indicates that the values of the parenthetic term are set to zero when they 
are negative 

   (…)–  = indicates that the values of the parenthetic term are set to zero when they 
are positive 

4.3.3. Five-Parameter Change Point Model 
Five-parameter models using outdoor air temperature are appropriate in many of the same 
situations as the four-parameter models. Five-parameter models incorporate slopes of opposite 
signs on the left and right side, with a constant value in the middle. While these models are used 
in other regions of the country, they are rarely used to model West Coast climates and systems. 
The models typically are more appropriate for daily data than for hourly data. 

The equation is: 

■ Five-Parameter (5P) Change-Point Model: Y  =  β1 +  β2 (X1 - β4 )-  +  β3 ( X1 - β5 )+ 

where: β1  = the constant term  

 β2   = the left slope (heating)  

 β3  = the right slope (cooling) 

 β4  =  the left change point 

 β5  =  the right change point 

 (…)+  = indicates that the values of the parenthetic term are set to zero when they 
are negative 

   (…)–  = indicates that the values of the parenthetic term are set to zero when they 
are positive 

4.4. Multiple Regression 
The models discussed thus far have all used a single independent variable. Of course, for many 
building systems, energy use is dependent on more than one variable. In such cases, single 
variable models will typically result in low R2

 values. When using only one independent variable, 
the equation has only limited ability to predict the dependent variable, because it does not 
account for other important factors that should be present in the model.  

In such cases, including other variables that are known to influence energy usage will provide a 
more accurate model. Commonly used variables whose variation is related with variation in 
energy use include: hours of occupancy in buildings, number of employees on given day, meals 
served at a restaurant, amount of conditioned floor space, equipment or appliances in use, and 
water usage. Including two or more independent variables produces a multiple regression model.  
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Simple regression can be visualized as fitting a line. Multiple regression models with two 
independent variables fit a plane, and a three variable model fits a 3-dimensional space. The 
general format of the model is. 

■  Y  =  β1 +  β2 X1 +  β3 X2 +  β4 X3 + … + βi X i-1 
where:  i = the number of predictors 

Note that in common statistics terminology, multiple regression typically refers to regression 
models with two or more independent variables and a single dependent variable. In multivariate 
regression, by contrast, there are multiple dependent variables and any number of predictors. The 
ASHRAE Inverse Model Toolkit refers to multiple regression models and change-point models 
with multiple independent variables as multiple-variable or multi-variable models. 

With multiple regression, additional independent variables will always increase the model’s fit.  
However, this does not necessarily mean that the model is improved, since a model can be over-
specified so that the additional independent variables are not statistically significant, or the 
additional variables are correlated with other independent variables already included in the 
model. (Refer to Chapter 5, Validating Models.)  

4.4.1. Categorical Variables 
Energy use modeling can account for change of states (broadly, the influence of categorical 
variables, defined and discussed in this section) by estimating separate models for each state, 
estimating a single model with categorical variables, and estimating change-point models (a 
specific type form of a model with categorical variables, described in the next section). Most 
energy models for M&V will have only one continuous independent variable, but may also 
incorporate categorical variables.  

Variables can be divided into two general types: continuous and categorical. Continuous 
variables are numeric and can have any value within the range encountered in the data. 
Continuous variables are either interval or ratio numbers (where a value of 10 is twice the 
magnitude as a value of 5). Continuous variables are measured things, such as energy use or 
ambient temperature. Categorical variables include things like daytype (weekday or weekend, or 
day of week), occupancy (occupied or unoccupied), and equipment status (on or off). As 
examples, occupancy status is a categorical variable, while number of occupants is a continuous 
variable.  

For use in a regression analysis, any categorical variable must be expressed in a binary form, 
such as taking the value of 1 for Monday and taking the value of 0 for all other days. This is 
because all the variables in a regression model must be linearly related to the dependent variable. 
A conceptual category such as day-of-week therefore cannot be included in a regression if it 
takes values such 1 for Monday, 2 for Tuesday, on up through 7 for Sunday; Tuesday does not 
have twice the impact on the dependent variable than Monday, nor does Wednesday have three 
times the impact. 

As mentioned at the end of the prior section, one needs to take care in adding additional variables 
– such as multiple binary variables to describe a composite concept (i.e., day-of-week) – because 
the model can become overspecified, and the parameter estimates inaccurate and imprecise. 
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Thus, when needing to create a set of binary variables to capture a composite categorical 
concept, the M&V practitioner should consider the most concise way to express the underlying 
relationships between these categories and the dependent variable. Continuing with the day of 
week example, it may be that activity ramps up during the week; appropriate categories might be 
Monday/Tuesday, Wednesday/Thursday/Friday, and Saturday/Sunday, where Mon_Tues has the 
value of 1 if the day is a Monday or Tuesday and 0 otherwise, and similarly for the other 
variables. 

Finally, when working with binary variables describing composite categories, the modeler 
includes one less binary variable in the equation than the total number of categories in the set. 
Continuing with the example, when the variables Mon_Tues and Wed_Thus_Fri both have the 
value of 0, the day must be a Saturday or Sunday; it would be redundant (that is collinear) to add 
the variable Sat_Sun. 

A common issue in multiple regression for M&V is that categorical variables are included as part 
of a multiple regression in an improper fashion. Specifically, the categorical variable is often, yet 
incorrectly, included simply as an additional variable in the regression, which yields a model 
with different interceptsj, depending on the categorical state. When the binary condition is not 
met (for binary variable X1 , X1= 0), the model intercept is β1. When the binary condition is met 
(X1 = 1), the model intercept is β1 + β2 . Instead, the true relationship may be that the slope of X2 
changes depending on the categorical state. In that case, the appropriate model includes both X2 
and an interactive term (X1  * X2). When the binary condition is not met, the value of (X1  * X2) is 
0 and the slope of X2 is β2 ; when the binary condition is met, the value of (X1  * X2) is X2 and the 
slope of X2 is β2 + β3 .  

According to ASHRAE RP-1050 (see Section Error! Reference source not found.), a common 
weakness of regression models using categorical variables is that the practitioner creates models 
with the same slope for all categories. The M&V practitioner needs to carefully consider whether 
the categorical variable is expected to effect the model’s intercept term, a slope term, or both. 

An appropriate statistical approach to apply with categorical variables is the General Linear An appropriate statistical approach to apply with categorical variables is the General Linear 
Model (GLM).  Multiple regression is typically used where the independent variables are 
continuous, but a general linear model can accommodate both categorical and continuous 
predictor variables. In avoiding the common pitfall of all categories having the same slope, it is 
important to use the proper GLM method. (Please refer to a statistics text for further discussion 
of general linear models.) 

Instead of using a multiple regression of the format in ASHRAE RP-1050, you can create 
separate models for each category or combination of categories, and then combine these 
individual models into a complete model. The basic process is similar to using IF statements to 
determine, for each data point, the category of the categorical independent variable, and then 
using the intercept and slope that are appropriate for that category.  

4.4.2. Multiple Regression Change Point Models 
Combining a multiple regression model with a change point model can dramatically improve fits. 
The methodology to combine these models is similar to applying a change point to a simple 
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regression. But be cautious not to use more parameters (the βs) than there are variables (the Xs), 
as this will result in an infinite number of possible solutions.  

The following three equations show the formulation of the generic model for three, four, and 
five-parameter change point models with multiple independent variables. In these models, the 
n-parameter adjective describes the form of the model, but there are actually more parameters 
because of the added independent variables. Similar models with fewer variables and fewer 
parameters could also be constructed. The model forms shown below use six parameters, the 
maximum allowed by the ASHRAE Inverse Model Toolkit. 

Three-parameter multi-variable regression models (3P-MVR) with four independent variables 
are written: 

■ Yc  =  β1  +  β2 ( X1 - β3)+  +  β4 X2  +  β5 X3  +  β6 X4 

■ Yh  =  β1  +  β2 ( X1 - β3 )-  +  β4 X2  +  β5 X3  +  β6 X4 

Four-parameter multi-variable regression models (4P-MVR) with three independent variables are 
written: 

■ Y  =  β1  +  β2 (X1 - β4)-  +  β3 ( X1 - β4 )+  +  β5 X2  +  β6 X3 

Five-parameter multi-variable regression models (5P-MVR) with two independent variables are 
written: 

■ Y  =  β1 +  β2 ( X1 - β4 )-  +  β3 ( X1 - β5 )+  +  β6 X2 

Note that the additional parameters used in the multiple regression (e.g., β5  and β6  for the four-
parameter model), are multiplied by their corresponding independent variable, unadjusted for 
any change point. This method may be appropriate for some continuous independent variables, 
but it is typically inadequate for categorical variables (see Section Error! Reference source not 
found.). 

4.5. Uncertainty and Confidence Intervals 4.5. Uncertainty and Confidence Intervals 
4.5.1. Uncertainty 
Uncertainty in regression analysis can come from multiple sources, including measurement 
uncertainty and regression uncertainty. Of these, regression uncertainty is typically of greater 
importance in the estimation of energy use.  

Measurement uncertainty has two principal components: measurement bias and measurement 
precision. Bias relates to issues of calibration and accuracy; precision relates to the magnitude of 
random variation that occurs when multiple measurements are made. For example, when the 
dependent variable in a regression is energy use, and energy use data are recorded from a utility-
grade meter, the uncertainty derived from the accuracy of the measurement (measurement bias) 
is stipulated to be zero.  

Regression uncertainty can occur even with perfect measurement (such as when some 
explanatory variables are omitted from the model) and because of unpredictable behaviors of 
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people affecting energy use. Uncertainty in regression typically refers to the uncertainty in the 
output from a regression, that is, uncertainty in the predicted y-value. Uncertainty in the 
regression coefficients is typically referred to in a more explicit manner as the uncertainty of the 
slope. 

4.5.2. Confidence Level and Confidence Interval 
Uncertainty is associated with a given confidence level or probability – for example, “We are 
90% confident that the range 433 and 511 kWh bands the true value,” or, as it is more commonly 
but less accurately expressed, “We are 90% confident that the true value lies between 433 and 
511 kWh.” Confidence level is an input number; for a given sample and regression, the higher 
the confidence level specified, the larger the estimated range that is likely to contain the true 
value that proportion of the time.  

A 95% confidence level implies that there is a 95% chance that the confidence interval resulting 
from a sample contains the true parameter. Confidence intervals define the range – an 
uncertainty band – that is expected to band the true regression, with a certain probability. The 
width of the confidence interval provides some idea of uncertainty about the estimated 
parameters. For example, the results of a regression analysis of savings may be reported as “500 
kWh ±5% at the 95% confidence level.” This means that there is a 95% chance that the 
confidence interval of 475 to 525 kWh contains the true value of savings. A statement of “500 
kWh ±5% at the 68% confidence level” means that there is only a 68% chance that the true 
savings value is between these calculated limits, and a 32% chance that it is outside them.  

The practitioner should note that the true value does not fluctuate; rather, because of regression 
uncertainty (and, perhaps, measurement uncertainty), there cannot be complete certainty that the 
true savings value lies within these limits. Confidence limits are the bounds of the confidence 
interval. 

Figure 4-3 provides a graphical representation of confidence intervals. The bounded confidence 
intervals in this figure demonstrate that higher chances an interval contains the true regression 
line require wider intervals than lower chances (that is, the wider the confidence interval, the 
more likely it is to contain the true value). The lines in this figure represent upper and lower 
confidence limits. 
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Figure 4-3: Confidence Intervals for a Regression 

 

4.5.3. Prediction Interval 
A prediction interval is an estimate based on earlier observations of the interval in which future 
data points will fall, with a certain probability. More simply, we can predict the distribution of 
future points by using the fitted slope and intercept values derived from our regression model.  
Prediction intervals are similar to confidence intervals, but rather than estimating the distribution 
of a true parameter, prediction intervals are used to predict the distribution of future samples by 
indicating the uncertainty in the value of future points. Prediction intervals are wider than 
confidence intervals since, under the identical conditions, it is more difficult to predict the value 
of a future point than it is to predict the distribution of the population parameter.  

Figure 4-4 illustrates prediction intervals, adding them to Figure 4-3, above.  
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Figure 4-4: Prediction Intervals for a Regression 

 

4.5.4.  Confidence Levels and Savings Estimates 
Savings estimated from regression analyses should describe the range of values corresponding to 
a given confidence level. If a single savings estimate, rather than a range, is required, the savings 
estimate should be the lower value estimated for the required confidence.  

The less scatter, or variability, in the data, the narrower the confidence intervals; greater scatter 
results in winder confidence intervals. However, regardless of the degree of scatter, the 
confidence interval will be wider when requiring a higher probability that it contains the true 
regression line or the true value of savings than when requiring a lower probability. For example, 
the interval estimated for a 99% confidence interval will be wider than it will be for a 95% 
confidence interval. 

For a single value of savings, requiring a greater probability that an interval contains the true 
value results in a wider uncertainty band and thus a lower estimated minimum savings. If a lower 
probability is acceptable, the uncertainty band will be narrower and the estimated minimum 
savings will be higher. To summarize, the minimum savings estimated is higher with a lower 
confidence level and is lower with a higher confidence level. 
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5. Validating Models 

5.1. Statistical Tests and Measures for the Model 
After developing the regression model, you must assess its goodness of fit. There are many ways 
of testing regression models. The following is an engineering layperson’s description of some of 
the statistical measures and methods used for validating models. Interim measures needed for the 
statistical tests, such as root mean squared error, are also described in this section.   

5.1.1. R-Squared (Coefficient of Determination) 
The coefficient of determination (R2) is the measure of how well future outcomes are likely to be 
predicted by the model. It illustrates how well the independent variables explain variation in the 
dependent variable. R2 values range from 0 (indicating none of the variation in the dependent 
variable is associated with variation in any of the independent variables) to 1 (indicating all of 
the variation in the dependent variable is associated with variation in the independent variables, a 
“perfect fit” of the regression line to the data). The rule-of-thumb for an acceptable model using 
monthly billing data is an R2  > 0.75.  

If the R2  is low, you may wish to return to Step 5 in the regressions process (see Chapter 3) and 
select additional independent variables that make sense to add to your model; then use the 
adjusted R2

 (see Section 5.1.2) as a goodness-of-fit test for a multiple regression. 

The R2 value can be thought of as a goodness-of-fit test; but a high R2
 value is not enough to say 

the selected model fits the data well, nor that a low R2 indicates a poor model. Fit criteria in 
addition to R2

 should be assessed. For CR-RMSE (see Section 5.1.5), a low value (often 
interpreted as 10% or 15%) is desirable. For example, a model with a low R2

 is acceptable when 
there is a clear relationship between the dependent and independent variables, as evidenced by 
the following: The scatter of the observed y-values around the regression line is low, yet large in 
relationship to the total scatter of y-values from the mean of y, and total y scatter is much smaller 
than the total scatter of x-values from its mean (this results in a low slope estimate). In a situation 
where the total scatter of y and x compared to their means is more comparable, a low R2

 can be 
acceptable when the estimated coefficient of x is significant, in spite of the unexplained 
variation; however, there will be relatively high uncertainty in the resulting savings estimates. 

The calculations for estimating uncertainty are described in Section 4.5.   

5.1.2. Adjusted R-Squared 
In multiple regression models, the addition of an independent variable will always result in an 
increase in the model’s R2, which means the basic R2 value is not an appropriate indicator of 
model fit. Instead, one should judge model fit using adjusted R2, a value produced by adjusting 
R2, dividing R2 by the associated degrees of freedom (discussed next). The value of the adjusted 
R2 only increases from one model specification to another if the additional independent 
variable(s) improve the model more than by random chance. 
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5.1.3. Degrees of Freedom 
Degrees of freedom is a common input for statistical calculations. Degrees of freedom is the 
number of values in a calculation that are free to vary and is calculated by subtracting the 
number of parameters in the model from the total number of data points. 

5.1.4. Root Mean Squared Error (Standard Error of the Estimate)  
Root mean squared error (RMSE) is an indicator of the scatter, or random variability, in the 
data, and hence is an average of how much an actual y-value differs from the predicted y-value. 
It is the standard deviation of errors of prediction about the regression line. Standard error of the 
estimate (SE) is always adjusted by the number of parameters in the model. Keep in mind, 
however, that some sources include the adjustment for the number of parameters in their 
definition of RMSE; others do not. In this document, SE and RMSE are synonymous, and 
include the adjustment for the number of parameters in the model. Standard error of the estimate 
is sometimes called standard error of prediction. 

5.1.5. Coefficient of Variation of the Root Mean Squared Error   
Coefficient of variation of the root mean squared error – CV(RMSE) – is the RMSE normalized 
by the average y-value. Normalizing the RMSE makes this a nondimensional that describes how 
well the model fits the data. It is not affected by the degree of dependence between the 
independent and dependent variables, making it more informative than R-squared for situations 
where the dependence is relatively low. 

5.1.6. Bias  
Energy models should always be checked for bias: Does the model re-create the baseline energy 
use? Demand models, on the other hand, generally do not require a bias check, since demand is 
not summed over time. Also, demand models will generally not require different points to have 
different weights and so that potential for bias error (from not using a weighted regression when 
one is warranted) is not a concern. Therefore, since regression itself minimizes the error for each 
point, there will typically be no need to check bias for a demand model. M&V practitioners 
should take care to understand any unique situations that may require checking for bias in a 
demand model. 

Two indices are defined in ASHRAE Guideline 14 for checking energy model bias. These two 
indices are net determination bias error (or mean bias error) and normalized mean bias error. 
Be forewarned that the Guideline is somewhat confusing, since these two indices are nearly the 
same and one of the indices is called two different things at different places in the document.   

Net determination bias is simply the percentage error in the energy use predicted by the model 
compared to the actual energy use. The sum of the differences between actual and predicted 
energy use should be zero. If the net determination bias = 0, then there is no bias. ASHRAE 
Guideline 14-2002 accepts an energy model if the net determination bias error is less than 
0.005%. 
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Often, bias may be minor, but it still will affect savings estimates. If the savings are large relative 
to the bias, bias may not be important, but in many cases, bias could be influential. 

■ Net Determination Bias Error (NBE): NBE
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Note that the two indices are identical if, in NMBE, p=0. Therefore, the only difference between 
the two bias error calculations is an adjustment for the number of parameters in the model. 

Since there is no averaging occurring, it seems that mean bias error is a misnomer. The net 
determination bias error is simply the percentage error in total energy use predicted by the 
model over the relevant (baseline) time period. In the equation for normalized mean bias error, 
there is an average term in the denominator, but the result is still simply a percent error, just one 
that is adjusted for the number of parameters in the model. 

Regression models by themselves will not typically have any bias if created properly. However, 
as stated above, there can be bias when using regression models, either because multiple 
categories need to be considered, or because an unweighted regression was used when data 
points should not have equal weights.   

Checking for model bias is an important part of model validation, but there does not seem to be 
any value in using both of these very similar bias calculations. Keep it simple and just use net 
determination bias error, which provides a net percentage error in the model. 

To clarify some of the confusion between guidelines, we have listed the terms and uses for 
various guidelines below. 

 Normalized Mean Bias Error – is called net mean bias error in the Guidelines for 
Verifying Existing Building Commissioning Project Savings. 

 Net Determination Bias Error – is called by this same term in the Guidelines for 
Verifying Existing Building Commissioning Project Savings. 

 Mean Bias Error – is referenced by ASHRAE Guideline 14 in 6.3.3.4.2.2 Statistical 
Comparison Techniques, but the verbal definition of this term is the same as the equation 
for net determination bias error. 

  Net Determination Bias – is a term not found in the statistical literature. References on 
the Internet point exclusively to ASHRAE Guideline 14. Consider net determination bias 
as simply a percentage error. 
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5.1.7. F-Statistic 
The F-statistic is similar to the t-statistic (described subsequently), but is for the entire model 
rather than for individual variables. When testing a model, the larger the value of F, the better.   

In the Excel Regression tool output, Significance F is the whole-model equivalent of p-value for 
an individual variable. For a simple regression (no change points) with a single independent 
variable, the Significance F value is the same as the p-value for the independent variable. It is the 
probability that the model does not explain most of the variation in the dependent variable.  
Therefore, low values for Excel’s Significance F are desirable. 

5.2. Statistical Tests and Measures for the Model’s 
Coefficients 

5.2.1. Standard Error of the Coefficient (Intercept or Slope) 
The standard error of the coefficient is similar to the standard error of the estimate, but is 
calculated for a single coefficient rather than the complete model. The standard error is an 
estimate of the standard deviation of the coefficient. For simple linear regression, it is calculated 
separately for the slope and intercept: there is a standard error of the intercept and standard 
error of the slope. These are necessary to get the t-statistic for each. 

5.2.2. t-Statistic 
The t-statistic is the coefficient (βi) divided by its standard error. Within regression, the t-statistic 
is a measure of the significance for each coefficient (and, therefore, of each independent 
variable) in the model. The larger the t-statistic, the more significant the coefficient is to 
estimating the dependent variable. The coefficient’s t-statistic is compared with the critical 
t-statistic associated with the required confidence level and degrees of freedom. For a 95% 
confidence level and a large number for degrees of freedom (associated with a lot of data), the 
comparison t-statistic is 1.96. Measure the t-statistic for every independent variable used, and if 
the t-statistic is lower than the critical value (such as 1.96) for any variable, reconsider your 
model. Go back to Step 5 (see Chapter Error! Reference source not found.) and consider if a 
different model specification is more appropriate. Note that the more variables used in a 
regression, the lower will be the significance of each variable. 

5.2.3. p-value 5.2.3. p-value 
The p-value is the probability that a coefficient or dependent variable is not related to the 
independent variable. Small p-values, then, indicate that the independent variable or coefficient 
is a significant (important) predictor of the dependent variable in your model. The p-value is an 
alternate way of evaluating the t-statistic for the significance of a regression coefficient. Rather 
than requiring an input confidence level as you would to compare the t-statistic, the p-value 
provides probability as an output. 
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5.3. Tables of Statistical Measures  
Table 5-1 through Table 5-4, below, present the definitions of the relevant statistical measures, 
their equation formulas, and their calculation in Microsoft Excel. 

Table 5-1: Definitions of Regression Model Statistics 

Regression Model Statistic Equation or Definition 

n Number of points 

p Number of parameters 

df Degrees of freedom, =n-p 

Yavg = ∑(Y)/n 

Xavg = ∑(X)/n 

SSQtotal = ∑((Y-Yavg)^2) 

SSQreg = ∑((YCalc-Yavg)^2) 

SSQres (or SSE)  = ∑((Y-Ycalc)^2) 

SSQx = ∑((X-Xavg)^2) 

F = SSQReg/(SSQres/(n-p)) 

RMSE = √(SSQres/(n-p)) 

Standard Error of Estimate = √(1/(n-p)*(SSQtotal)-(∑((X-Xavg)*(Y-Yavg))^2)/(∑((X-Xavg)^2)))) 

CV-RMSE = RMSE/Yavg 

R-Squared = SSQreg/SSQtotal 

R-Squared = 1 - SSQres/SSQtotal 

Adjusted R-Squared = 1-((1-R^2)*((n-1)/(n-p-1))) 

Net Determination Bias = ∑(Y-YCalc)/∑(Y) 

Confidence Half-Interval = t-statistic*SE*√(1/n+(X-Xavg)^2/SSQx) 

Prediction Half-Interval = t-statistic*SE*√(1+1/n+(X-Xavg)^2/SSQx) 

Table 5-2:  Microsoft Excel Functions for Regression Model Statistics 

Regression Model Statistic Microsoft Excel Function Excel LINEST (Where Applicable) 

n  = COUNT(XVals)  

p 2  

df = n-p  = I NDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 4,2) 

Yavg = AVERAGE(Yvals)  

Xavg = AVERAGE(XVals)  

SSQtotal = DEVSQ(Yvals)  

SSQreg = DEVSQ(YvalsCalc)  = INDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 5,1) 

Continued 
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Regression Model Statistic Microsoft Excel Function Excel LINEST (Where Applicable) 

SSQres (or SSE)  = SUM((Yvals-YvalsCalc)^2)  = INDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 5,2) 

SSQx = DEVSQ(XVals)  

F = DEVSQ(YvalsCalc)/(SUM((Yvals-
YvalsCalc)^2)/(n-p)) 

 = INDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 4,1) 

RMSE = SQRT(SUM((Yvals-
YvalsCalc)^2)/(n-p)) 

 

Standard Error of Estimate = STEYX(Yvals,XVals)  = INDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 3,2) 

CV-RMSE = SQRT(SUM((Yvals-YvalsCalc) 
^2)/(n-p))/AVERAGE(Yvals) 

 

R-Squared = RSQ(Yvals,XVals)  = INDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 3,1) 

R-Squared = RSQ(Yvals,XVals)  

Adjusted R-Squared = 1-((1-RSQ(Yvals,XVals))*((n-1)/ 
(n-p-1))) 

Net Determination Bias = SUM(Yvals-YvalsCalc)/SUM(Yvals) 

Confidence Half-Interval Evaluated at each x 

Prediction Half-Interval Evaluated at each x 

Table 5-3: Definitions of Coefficient Statistics 

Coefficient Statistic Equation or Definition 

Confidence Level Input required probability that the coefficient is not zero 

t-Statistic, Critical From table 

Intercept = Yavg-Slope*Xavg 

Slope = ∑((X-Xavg)*(Y-Yavg))/(∑(X-Xavg)^2) 

Standard Error of Intercept = √(SSQres/(n-p)*(1/n+Xavg^2/∑((XVals-∑(XVals)/n)^2))) 

Standard Error of Slope = √(SSQres/(n-p)/(SSQx)) 

t-Statistic for Intercept = intercept/(Standard Error of intercept) 

t-Statistic for Slope = slope/(Standard Error of slope) 

p-Value for Intercept — 

p-Value for Slope — 
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Table 5-4: Microsoft Excel Functions for Coefficient Statistics 

Coefficient Statistic Microsoft Excel Function Excel LINEST (Where Applicable) 

Confidence Level 0.95  

t-Statistic, Critical  = TINV(1-ConfLvl,n-p)  

Intercept  = INTERCEPT(Yvals,XVals)  

Slope  = SLOPE(Yvals,XVals)  = INDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 1,2) 

Standard Error of Intercept  = STEYX(Yvals,XVals)*SQRT 
(1/n+Xavg^2/DEVSQ(XVals)) 

 = INDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 1,1) 

Standard Error of Slope  = STEYX(Yvals,XVals)*SQRT 
(1/DEVSQ(XVals)) 

 = INDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 2,2) 

t-Statistic for Intercept  = (INTERCEPT(Yvals,XVals))/ 
(STEYX(Yvals,XVals)*SQRT 
(1/n+Xavg^2/DEVSQ(XVals))) 

 = INDEX(LINEST(Yvals,XVals, 
TRUE,TRUE), 2,1) 

t-Statistic for Slope  = (SLOPE(Yvals,XVals))/ 
(STEYX(Yvals,XVals)*SQRT 
(1/DEVSQ(XVals))) 

 

p-Value for Intercept  = TDIST(ABS(INTERCEPT 
(Yvals,XVals))/(STEYX(Yvals, 
XVals)*SQRT(1/n+Xavg^2/ 
DEVSQ(XVals))),n-p,2) 

 

p-Value for Slope  = TDIST(ABS(SLOPE(Yvals,XVals))/ 
(STEYX(Yvals,XVals)*SQRT 
(1/DEVSQ(XVals))),n-p,2) 

 

5.4. Other Tests of Model Validity 
5.4.1. Check for Autocollinearity 
Autocorrelation, sometimes called serial correlation, is the correlation of values in a time series 
with prior and future values. When autocorrelation exists, the model violates the requirement that 
the y-values be independent of each other. Autocorrelation can be common in energy models, 
especially with data taken at short time intervals. For example, hourly meter data will generally 
exhibit autocorrelation. 

The impact of autocorrelation is that the effective number of data points is fewer than the actual 
number, since the information in each observation is not completely new. A consequence of this 
is that the variability looks lower than it actually is, making some predictors look significant 
when they are not. In the equations for the statistical tests, the effective number of data points 
needs to be substituted for n, the actual number of data points.   
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To calculate autocollinearity, R-squared is first calculated for the correlation between the 
residuals and the residuals for the prior time period. The autocorrelation coefficient ρ is then the 
square root of this value.4 The effective number of data points is then given by: 

■ n = n*(1–ρ )/(1+ρ ) 

Annex D of ASHRAE Guideline 14 suggests that autocorrelation can be ignored for values of ρ 
less than 0.5. 

5.4.2. Check for Multicollinearity 
With multiple regression, models should be checked to avoid multicollinearity. Multicollinearity 
is a strong relationship between two or more of the independent variables. Broad discussion of 
multicollinearity is beyond the scope of this document. The key point is that allowing 
multicollinearity in a model can create a number of problems and lead to incorrect inferences 
from the model. Multicollinearity between two independent variables means that standard errors 
for coefficients are over-emphasized, and therefore larger. The coefficient estimates may change 
erratically in response to small changes in the model or the data. Even the signs of coefficients 
can be incorrect!   

Multicollinearity may not reduce the predictive power or reliability of the model as a whole; it 
only affects calculations regarding individual predictors. Significant relationships between 
independent variables make it difficult to determine which of the correlated independent 
variables are most significant – that is, which ones most explain variations in the dependent 
variable. 

To avoid multicollinearity, use as few independent variables as possible to obtain a reasonable 
model, and have a good understanding of the variables you are using. Creating a good 
multivariate model begins with a strong understanding of what drives energy use. You can avoid 
multicollinearity by creating a model that you think best describes your dependent variable and 
then checking the coefficient of correlation among all the independent variables. Scatter plots of 
the independent variables together can assist in visually seeing whether one independent variable 
is correlated with another. When you are assured the correlation is low among the independent 
variables, check via scatter plots to see that the relationships between each independent variable 
and the dependent variable are viable and linear. This can give you a sense of the impact that 
each independent variable has on the dependent variable.   

Understanding the theoretical impact that an independent variable has on the dependent variable 
can help you to avoid using two independent variables that are correlated. Finally, after running 
the whole multivariate model and checking scatter plots, if you are still concerned about 
multicollinearity, you can add independent variables one at a time. This is commonly known as 
step-wise regression. Evaluate the t-statistic or p-value for each variable as it is added, to make 
sure it is significant.   

                                                 
4  Note, the English spelling of the Greek letter ρ is rho, not to be confused with “p.” 
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5.5. Analysis of Residuals 
Analysis of residuals can provide a relatively easy way to confirm the assumptions required for a 
valid linear regression are met (see Section 3.7) and to help validate the model’s predictions.  

Plotting the predicted y-values against the actual y-values provides a quick way to validate the 
model’s predictions; the slope should be close to 1. 

A test for equality of variance (homoscedasticity) is to plot residuals against the independent 
variable(s). There should be no discernable pattern. The scatter in the residuals should be the 
same regardless of the value of the independent variable (visually blob-like). Note that building 
energy models may often fail this test, because the scatter in energy use typically varies with 
ambient temperature.   

The assumption of normal distribution of residuals can be checked with a histogram of the 
residuals. The assumption for independence of residuals can be checked with a lag plot. A lag 
plot charts the value of a residual against the residual from one or more time periods earlier. To 
verify that the relationship is not changing over time, the residuals can be plotted against time. 

The two charts shown in Figure 5-1 demonstrate how a residual chart can be used for a test of 
equal variance. The first chart uses a linear 2P model and it is apparent that there is a pattern to 
the residuals. The second chart uses a 4P model and there is little pattern to the residuals. A 
practical rule-of-thumb for interpreting these plots is that if by covering up one or two points on 
a plot, it changes whether you see a pattern or not, those points are probably creating the 
impression of a pattern where there is not one. 

Figure 5-1: Residuals vs. Independent Variable 

      

Next, the chart in Figure 5-2, for a 4P model, shows how a histogram can be used to qualitatively 
assess whether the distribution of residuals approaches a normal distribution.   
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Figure 5-2: Histogram of Residuals 

 

The last chart for analysis of residuals (Figure 5-3) is a lag plot for a model using hourly data. It 
charts the residuals against the residuals from the prior hour. The strong relationship shown 
indicates that this model suffers from autocorrelation. For this model, the autocorrelation should 
be accounted for, or the uncertainty in the model will be underestimated.  

Figure 5-3: Residual Lag Plot 
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6. Example 

6.1. Use of Monthly Billing Data in a 2-Parameter Model to 
Evaluate Whether It Will Make a Satisfactory Baseline 

Regression is commonly used to analyze monthly utility data. It is best applied to a package of 
measures whose total savings is a relatively high percentage of the building’s baseline energy 
use. It is important to remember that the energy use of buildings is typically dependent on 
weather. More specifically, it can be dependent on the demand for cooling and heating. This is 
because energy usage is usually higher when it is either very cold (heaters) or very hot (AC 
units), since the temperature is far from the balance point. 

In cases where only cooling or only heating is present or relevant, a simple 2-parameter (straight-
line) regression is often satisfactory. 

Consider the case of schools in the Northwest, especially on the west side of the Cascade 
Mountains. Many schools do not have cooling, and although cooling is not generally needed 
during the school year, heating is. Therefore, a model of energy use versus average ambient 
temperature or heating degree-days (HDD) may be appropriate. 

Usually, degree-days are better than average-ambient-temperatures. An average temperature may 
indicate little need for heating or cooling if it is near the balance point for the building.  
However, a moderate average temperature can be made up of a series of cool temperatures and a 
series of warm temperatures. During the times of cool temperatures, heating is needed.  
Therefore, depending on climate, a better fit will typically be found by using degree-days. On the 
west side of the Cascades in the Northwest, winter temperatures may be relatively constant over 
a day, and almost always below a school building’s balance point, so the greatest difference 
between degree-days and average temperature will be found in the spring and fall months. 

The following analysis estimates the baseline for the electricity use of a group of modular 
classrooms heated by heat pumps. The planned measure is a web-enabled programmable 
thermostat. Prior similar projects have shown savings exceeding 45%. 

The available data are the monthly electricity energy use, kWh, and ambient temperature during 
the billing period. There are 24 months of data to be used for the baseline. The data to be used 
for the regression will be normalized to average kWh per day in each billing period and average 
heating degree-days per day in each billing period. The base temperature for heating degree-days 
in this example is 65º F. (See Section 6.2 for a discussion of heating degree-days.) 

The relevant equation is for a common 2-parameter ordinary least squares regression: 

■ Y = β1 + β2 X1 

where: Y  = electricity use per day in the billing period 

 β1  = y-intercept – electricity use (kWh-per-day) for a day with zero heating 
degree-days 
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 β2 = slope – how much the energy use increases for a day as the temperature 
decreases below 65º F (kWh-per-day per heating degree-day) 

 X1 = average heating degree-days per day in the billing period 

Table 6-1 provides the data for the project. 

Table 6-1: Example Data for Classroom Heat Pump Project 

End of Billing  
Period 

Billing Period 
Duration in Days 

Billed Usage 
kWh 

HDD in  
Billing Period 

09/24/2007 30 6,080 113 

10/24/2007 30 7,330 311 

11/21/2007 28 7,470 463 

12/19/2007 28 10,000 669 

01/23/2008 35 11,480 877 

02/25/2008 33 11,420 782 

03/26/2008 30 9,970 560 

04/24/2008 29 7,840 561 

05/20/2008 26 6,800 265 

06/21/2008 32 5,980 268 

07/23/2008 32 4,310 73 

08/22/2008 30 3,330 57 

The consumption and heating degree-days are standardized by the number of days in the billing 
period (Table 6-2). 

Table 6-2: Data Standardized by Days in the Billing Period 

End of Billing  
Period 

Billing Period 
Duration in 

Days 

Billed  
Usage  
kWh 

HDD  
in  

Billing Period 

Average kWh  
per Day in 

Billing Period 

Average HDD 
per Day in 

Billing Period 

09/24/2007 30 6,080 113 202.7 3.7 

10/24/2007 30 7,330 311 244.3 10.4 

11/21/2007 28 7,470 463 266.8 16.5 

12/19/2007 28 10,000 669 357.1 23.9 

01/23/2008 35 11,480 877 328.0 25.1 

02/25/2008 33 11,420 782 346.1 23.7 

03/26/2008 30 9,970 560 332.3 18.7 

04/24/2008 29 7,840 561 270.3 19.4 

05/20/2008 26 6,800 265 261.5 10.2 

06/21/2008 32 5,980 268 186.9 8.4 

07/23/2008 32 4,310 73 134.7 2.3 

08/22/2008 30 3,330 57 111.0 1.9 
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Table 6-3 provides the Microsoft Excel formulas for the regression. Note that p in the term (n-p) 
refers to the number of parameters, which is two for this simple linear regression.  

Table 6-3: Microsoft Excel Formulas for the Regression 

Output  Formula 

R-squared =  RSQ(Yvals,XVals) 

Number of Baseline Points, n =  COUNT(YVals) 

CV-RMSE =  SQRT(SUM((Yvals-YvalsCalc)^2)/(n-p))/AVERAGE(Yvals)

Intercept at HDD=0 =  INTERCEPT(Yvals,XVals) 

Slope =  SLOPE(Yvals,XVals) 

Table 6-4 provides the Excel output: 

Table 6-4: Microsoft Excel Output for Example Model 

Output  Data 

R-squared =  0.879 

Number of Baseline Points, n =  12 

CV-RMSE =  11.7% 

Intercept at HDD=0 =  132.24 

Slope =  8.8678 

Figure 6-1 shows the data graphed, with the regression equation and line included.  

Figure 6-1:  Baseline Electricity Use vs. Heating Degree-Days 
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Next, the uncertainty needs to be calculated. The input confidence level used to calculate the 
t-statistic will be 90%. The t-statistic will be used to get the confidence intervals, evaluated at 
each value of X. To calculate the t-statistic, some intermediate calculations need to be made, as 
shown in Table 6-5. In this table, p is the probability that the dependent variable is not 
significantly related to the independent variable. 

Table 6-5: Microsoft Excel Formulas for the Fit Statistics 

Output  Formula 

Standard Error = STEYX(Yvals,XVals) 

Standard Error – Percent of Average = STEYX(Yvals,XVals) / AvgY 

Critical t-Statistic = TINV(1-ConfLvl,n-p) 

Sum of Squares of Differences: X-avg(X) = DEVSQ(XVals) 

Standard Deviation of the Residuals = STDEV(Residuals) 

t-Statistic = CONFIDENCE(1-ConfLvl,STDEV(Residuals),n) 

p-Value = TDIST(ABS(t_statistic),n-p,2) 

Table 6-6 provides the Excel outputs for the goodness-of-fit statistics. 

Table 6-6: Microsoft Excel Output for Example Fit Statistics 

Output  Data 

Standard Error = 29.69 

Standard Error – Percent of Average = 11.7%  

Number of Baseline Points, n = 12 

Critical t-Statistic = 12 

Sum of Squares of Differences: X-avg(X) = 1.81 

Standard Deviation of the Residuals = 818 

t-Statistic = 28.3 

p-Value = 13.44 

Below is the equation for calculating the confidence intervals for the regression: 

■ ΔYconfidence = ±( t-statistic)*STEYX(Yvals,XVals)*SQRT(1/n+(X-xAvg)^2/DEVSQ(XVals)) 

Table 6-7 provides the spreadsheet output, including the estimates for the confidence intervals of 
the regression. Min Modeled is the modeled value minus the confidence half-interval. Max 
Modeled is the modeled value plus the confidence half-interval. 
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Table 6-7: Example Model Estimates 

Average HDD 
per Day 

in Billing 
Period 

Average kWh  
per Day  

in Billing 
Period 

Modeled 
kWh  

per Day 

Residual 90% 
Confidence 
Half-Interval 

Minimum 
Modeled 

kWh   
per Day 

Maximum 
Modeled 

kWh  
per Day 

3.7 202.7 165.5 37.2 24.3 141.2 189.8 

10.4 244.3 224.2 20.1 16.7 207.5 241.0 

16.5 266.8 278.8 -12.0 16.4 262.4 295.3 

23.9 357.1 344.1 13.1 24.7 319.4 368.8 

25.1 328.0 354.4 -26.4 26.5 327.9 380.8 

23.7 346.1 342.5 3.6 24.5 318.0 366.9 

18.7 332.3 297.7 34.6 18.2 279.6 315.9 

19.4 270.3 303.9 -33.6 18.9 285.1 322.8 

10.2 261.5 222.4 39.1 16.9 205.6 239.3 

8.4 186.9 206.6 -19.7 18.4 188.2 225.1 

2.3 134.7 152.6 -17.9 26.5 126.1 179.0 

1.9 111.0 149.0 -38.0 27.1 121.9 176.1 

Total  3,041.8 3,041.8 0.0 258.9 2,782.8 3,300.7 

Figure 6-2 provides the scatter chart again, including the lines of 90% confidence intervals. 

Figure 6-2:  Baseline Electricity Use vs. Heating Degree-Days with Confidence Intervals 
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represent the same number of days; consequently, the best approach would have been to use a 
weighted regression. Because a weighted regression was not used, the model’s bias should be 
checked. 

To complete the model and check the bias, the modeled values for kWh-per-day are multiplied 
by the number of days in the billing period. The actual kWh values are reproduced in Table 6-8 
for comparison with the modeled values. 

Table 6-8: Example Model Estimates with Actual Observations 

Average 
HDD per 

Day 
in Billing 
Period 

Average kWh 
per Day  

in Billing 
Period 

Modeled 
kWh  

per Day 

Residual 90% 
Confidence 

Half-
Interval 

Minimum 
Modeled 

kWh   
per Day 

Maximum 
Modeled 

kWh  
per Day 

Actual 
kWh  

Modeled 
kWh  

3.7 202.7 165.5 37.2 24.3 141.2 189.8 6,080 4,964 

10.4 244.3 224.2 20.1 16.7 207.5 241.0 7,330 6,727 

16.5 266.8 278.8 -12.0 16.4 262.4 295.3 7,470 7,807 

23.9 357.1 344.1 13.1 24.7 319.4 368.8 10,000 9,634 

25.1 328.0 354.4 -26.4 26.5 327.9 380.8 11,480 12,403 

23.7 346.1 342.5 3.6 24.5 318.0 366.9 11,420 11,301 

18.7 332.3 297.7 34.6 18.2 279.6 315.9 9,970 8,932 

19.4 270.3 303.9 -33.6 18.9 285.1 322.8 7,840 8,814 

10.2 261.5 222.4 39.1 16.9 205.6 239.3 6,800 5,783 

8.4 186.9 206.6 -19.7 18.4 188.2 225.1 5,980 6,612 

2.3 134.7 152.6 -17.9 26.5 126.1 179.0 4,310 4,883 

1.9 111.0 149.0 -38.0 27.1 121.9 176.1 3,330 4,469 

Total  3,041.8 3,041.8 0.0 258.9 2,782.8 3,300.7 92,010 92,331 

So what is the bias in the model? 

■ Net Determination Bias Error (NBE): NBE 
∑

∑ −
∗=

i
i

i
ii

E

EE )ˆ(
100  

NBE = (92,331 – 92,010) / 92,331 

NBE = 0.3% 

The model predicts 0.3% higher energy use than the actual data. 

ASHRAE Guideline 14 does not accept a model with bias >0.005%, so this model would be 
rejected. However, the uncertainty in the model is much, much greater than the bias, and the 
savings are expected to be much, much greater than the uncertainty. Thus, this model is actually 
acceptable: 

■ Modeled Uncertainty = ± (92,331 – 84,436) / 92,331 = ± 8.6%. 



 

Regression for M&V: Reference Guide 
41 

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N

The expected energy savings for this measure is at least 45%. Since the uncertainty is low 
relative to the expected savings, this baseline model would be acceptable for projecting energy 
use under post-implementation conditions and could be used in the calculation of energy savings. 

6.2. Background on Heating and Cooling Degree-Days 
(HDD and CDD)  

Heating degree-days are a measure of how much cold weather there is in a specific period. The 
average daily temperature is determined for each day. The average temperature is then compared 
to a base temperature (often 65º F). If the average temperature (when only daily data are 
available, typically the average of the daily high and the daily low) is 55º F for a day, and the 
base is 65º F, then that day contributes 10 HDD to the period. The HDD for each day in the 
period (typically a calendar month or a utility billing period) are summed to create a single data 
point for the month. If the temperature difference for a day is negative, it is recorded as 0.  

■ HDDn = ( )
+

∑ −
n

i
ibase TT  

Note that while HDD and CDD are often reported with a base or balance point of 65º F, results 
can often be improved by experimenting with different base temperatures. The base temperature 
should generally be the average temperature at which the building does not require any heating 
or cooling – the balance point temperature. For most commercial buildings, this temperature will 
typically be between 55° and 60º F, depending on building size, operating schedule, and other 
parameters. If regression models are created separately for occupied and unoccupied periods, the 
balance point temperature will be different for each: for the occupied period, it may be near 55º 
F, and for the unoccupied period it may be near 65º F. 
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Regression for M&V: Reference Guide 
43 

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N

7. Minimum Reporting Requirements 

This document is a reference guide, a companion to the M&V protocols. Below are the minimum 
reporting requirements for the use of regressions within protocols. The overall M&V approach 
should be described according to the minimum reporting requirements of the protocol used. 
Please see the protocols for minimum reporting requirements. 

These are the essential reporting requirements for regressions within an M&V plan and 
verification report: 

 Data: variables, interval of observation – such as monthly, number of observations, or 
length of measurement period 

 Model: the proposed or final model and alternative models proposed or tested (the 
verification report should include estimated model parameters) 

 Model Statistics: statistics for assessing goodness of fit (proposed and, in the verification 
report, calculated statistics for final model) 

 Discussion: why the final model was selected or weaknesses of the alternative models 
tested 
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Appendix:  Glossary of Statistical Terms 
This Glossary provides definitions for the statistical terms used in this Regression Reference 
Guide. Additional M&V terms are defined in the companion document Glossary for M&V: 
Reference Guide.  

Accuracy: An indication of how close the measured value is to the true value of the quantity in 
question.  Accuracy is not the same as precision. 

Adjusted R-square (
2

R ): A modification of R2 that adjusts for the number of independent 
variables (explanatory terms) in a model. The adjusted R2 only increases if the additional 
independent variables improve the model more than by random chance. It is calculated by taking 
R2 and dividing it by the associated degrees of freedom. Or as described below: 

2
1 MSE

MSTR = −
 

 
Autocollinearity: The serial correlation over time of predictor values in a time series model. To 
calculate autocollinearity, R-squared is first calculated for the correlation between the residuals 
and the residuals for the prior time period. The autocorrelation coefficient ρ is then the square 
root of this value.5 Autocollinearity is calculated as: 

2 2

( )( )

( ) ( )
i ii

i ii i

x x y y

x x y y
ρ

− −
=

− −
∑

∑ ∑

Categorical Variables: Variables that have discrete values and are not continuous. Categorical 
variables include things like daytype (weekday or weekend, or day of week), occupancy 
(occupied or unoccupied), and equipment status (on or off). For example, occupancy (occupied 
or unoccupied) is a categorical variable, while number of occupants is a continuous variable. 

Coefficient of Variation (CV): An indication of how much variability or randomness there is 
with any given data set. It quantifies variation within the population relative to the average and is 
dimensionless. The larger it is, the more variation there is in the population relative to the 
average. It is calculated as the ratio of the standard deviation to the average:   

CV = σ
x

                                                 
5  Note, the English spelling of the Greek letter ρ is rho, not to be confused with “p.” 
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Coefficient of Variation  of the Root-Mean Squared Error [CV(RMSE)]: A measure that 
describes how much variation or randomness there is between the data and the model, calculated 
by dividing the root-mean squared error (RMSE) by the average y-value. It is calculated as: 

CV (RMSE) = 1
y

yi − ŷ( )2∑
n − p( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

Confidence Interval:  A range of uncertainty expected to contain the true value within a 
specified probability. The probability is referred to as the confidence level.  

Confidence Level: A population parameter used to indicate the reliability of a statistical 
estimate. The confidence interval expresses the assurance (probability) that given correct model 
selection, the true value of interest resides within the proportion expressed by the confidence 
interval. 

Continuous Variables: Variables that are numeric and can have any value within the range of 
encountered data (i.e., measurable things such as energy usage or ambient temperature). 

Dependent Variable: The variable that changes in relationship to alterations of the independent 
variable. In energy efficiency, energy usage is typically treated as the dependent variable, 
responsive to the manipulation of conditions (independent variables). 

Homoscedasticity: (Also known as Homogeneity of Variance.) Within linear regression, this 
means that the variance of the dependent values around the regression line is constant for all 
values of the independent variable. 

Independent Variable: Also termed an explanatory or exogenous variable; a factor that is 
expected to have a measurable impact on the dependent, or outcome variable (e.g., energy use of 
a system or facility). 

Mean: The most widely used measure of the central tendency of a series of observations.  The 
Mean (ܻ) is determined by summing the individual observations ( ௜ܻ) and dividing by the total 
number of observations (݊), as follows: 

Y = 1
n

Y∑ i

Mean Bias Error (MBE): (Also known as the Normalized Mean Bias Error or the Net 
Determination Bias Test.) The Mean Bias Error is an indication of overall bias in a regression 
model. Positive MBE indicates that regression estimates tend to overstate the actual values. It is 
calculated as: 

NMBE = 1
y

yi − ŷi( )∑ / (n − p)

Mean Model: (Also known as a Single Parameter Model.) A model that estimates the mean of 
the dependent variable. 
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Multicollinearity: A statistical occurrence where two or more predictor variables in a multiple 
regression model are highly correlated (there are exact linear relationships between two or more 
explanatory variables). Allowing multicollinearity in a model can lead to incorrect inferences 
from the model. 

Net Bias: Where there exists net bias, modeled or predicted energy usage will differ from actual 
energy usage for the period examined. 

Net Determination Bias Error: The percentage error in the energy use predicted by the model 
compared to the actual energy use. See Normalized Mean Bias Error. 

NBE
∑

∑ −
∗=

i
i

i
ii

E

EE )ˆ(
100

 

Net Determination Bias Test: The savings resulting from applying the baseline period’s 
independent variable data to the algorithms for savings determination. The data so applied must 
reflect all exclusions or adjustments to actual measured data as documented for the baseline 
model. See Mean Bias Error. 

Normal Distribution: A continuous and symmetric population distribution in which the 
frequency of occurrence decreases exponentially as values deviate from the mean (or central) 
value. In a regression equation, the distribution of errors (residuals) at a given value of x is a 
normal distribution and the mean of residuals is zero. It is also referred to as a Gaussian or bell 
curve. 

Normalized Mean Bias Error (MBE): (Also known as the Mean Bias Error.) Similar to Net 
Determination Bias, but adjusted for the number of parameters in the model. The Normalized 
Mean Bias Error is an indication of overall bias in a regression model. Positive MBE indicates 
that regression estimates tend to overstate the actual values. It is calculated as: 

Epn

EE
NMBE i

ii

∗−

−
∗=
∑

)(

)ˆ(
100  

Outliers: Data points that do not conform to the typical distribution. Graphically, an outlier 
appears to deviate markedly from other members of the same sample. 

Overspecified Model: A model with added independent variables that are not statistically 
significant or are possibly correlated with other independent variables. 

p-value: The probability that a coefficient or dependent variable is not related to the independent 
variable. Small p-values, then, indicate that the independent variable or coefficient is a 
significant (important) predictor of the dependent variable in a regression model. The p-value is 
an alternate way of evaluating the t-statistic for the significance of a regression coefficient, and is 
expressed as a probability. 
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Precision: The indication of the closeness of agreement among repeated measurements; a 
measure of the repeatability of a process. Any precision statement about a measured value must 
include a confidence level. A precision of 10% at 90% confidence means that we are 90% certain 
the measured values are drawn from samples that represent the population and that the “true” 
value is within ±10% of the measured value. Because precision does not account for bias or 
instrumentation error, it is an indicator of predicted accuracy only given the proper design of a 
study or experiment. 

R-Squared (R2): (Also known as the Coefficient of Determination.) R2 is the measure of how 
well future outcomes are likely to be predicted by the model. It illustrates how well the 
independent variables explain variation in the dependent variable. R2 values range from 0 
(indicating none of the variation in the dependent variable is associated with variation in any of 
the independent variables) to 1 (indicating all of the variation in the dependent variable is 
associated with variation in the independent variables, a “perfect fit” of the regression line to the 
data). It is calculated as: 

2 1 error

total

SSR
SS

= −

Regression Analysis: A mathematical technique that extracts parameters from a set of data to 
describe the correlation relationship of measured independent variables and dependent variables.

Regression Model: A mathematical model based on statistical analysis where the dependent 
variable is regressed on the independent variables which are said to determine its value. In so 
doing, the relationship between the variables is estimated from the data used. A simple linear 
regression is calculated as: 

0 1i i iy xβ β ε= + +  where 1,...,i n=  

Reliability: When used in energy evaluation, refers to the likelihood that the observations can be 
replicated. 

Residual: The difference between the predicted and actual value of the dependent variable. In 
other words, whether a point is above or below the regression line is a matter of chance and is 
not influenced by whether another point is above or below the line. Estimated by subtracting the 
data from the sample mean: 

ˆ iX Xε = −
Root Mean Squared Error (RMSE): (Also known as the Standard Error of the Estimate.) An 
indicator of the scatter, or random variability, in the data, and hence is an average of how much 
an actual y-value differs from the predicted y-value. It is the standard deviation of errors of 
prediction about the regression line. The RMSE is calculated as: 

2ˆ ˆ ˆ( ) ( ) (( ) )RMSE MSE Eθ θ θ θ= = −
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Standard Deviation (s): The square root of the variance, which brings the variability measure 
back to the units of the data.  (With variance units in kWh2, the standard deviation units are 
kWh.) The sample standard deviation (s) is calculated as: 

s =
xi − x( )2

∑
(n −1)

Standard Error (SE): An estimate of the standard deviation of the coefficient. For simple linear 
regression, it is calculated separately for the slope and intercept: there is a standard error of the 
intercept and standard error of the slope. SE is calculated as:  

x
sSE
n

=

Standard Error of the Coefficient: Similar to the standard error of the estimate, but calculated 
for a single coefficient rather than the complete model. 

Standard Error of the Estimate: (Also known as the Root Mean Squared Error.) When a 
model is used to predict a value for given independent variable(s), the reliability of the prediction 
is measured by the standard error of the estimate. The Root Mean Squared Error (RMSE) is 
calculated as: 

2ˆ ˆ ˆ( ) ( ) (( ) )RMSE MSE Eθ θ θ θ= = −

t-statistic: A measure of the probability that the value (or difference between two values) is 
statistically valid. The calculated t-statistic can be compared to critical t-values from a t-table. 
The t-statistic is inversely related to the p-value; a high t-statistic (t>2) indicates a low 
probability that random chance has introduced an erroneous result. Within regression, the 
t-statistic is a measure of the significance for each coefficient (and, therefore, of each 
independent variable) in the model. The larger the t-statistic, the more significant the coefficient 
is to estimating the dependent variable. The t-statistic is calculated as: 

0
ˆ

ˆ
ˆ. .( )

t
s eβ

β β
β

−=

Uncertainty: The range or interval of doubt surrounding a measured or calculated value within 
which the true value is expected to fall within some stated degree of confidence. Uncertainty in 
regression analysis can come from multiple sources, including measurement uncertainty and 
regression uncertainty. 

Variance (S2): A measure of the average distance between each of a set of data points and their 
mean value, and it is equal to the sum of the squares of the deviation from the mean value, or the 
square of the standard deviation. Variance is computed as follows: ܵଶ = ∑ሺ ௜ܻ − തܻሻଶ݊ − 1  
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Weighted Regression: A form of regression used when individual data points are weighted so as 
to represent more data than other points. An example is billing-period analysis, where billing 
periods may have different numbers of days and billing periods with more days are adjusted 
upward in weight relative to periods with fewer days. (Also, a form of regression used when data 
do not have equal weight in a model because error is not expected to be constant across all 
observations.) 
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