Forecasting for Utility-Scale Wind Farms:
The Power Model Challenge
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GARRAD HASSAN GROUP

» Independent renewable energy consultancy
established 1984 with 270 staff in 18
countries

» Technical Advisor for 15 GW
operational plant

» Wind Farm Energy Assessments: a O gittres
> 60 GW in 60 countries
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l » Forecasting began in a research framework in 2000, provided |

commercially as service in 2001 with assistance from the U.K.
Meteorological Office.

» Currently, GH provides forecasting for wind farms in 10 countries on
4 continents, totaling more than 6.5 GW installed capacity globally:

Australia
Canada
Greece (all)
Hungary
India
Ireland
Japan
Spain

. UK.

10. U.S.A.
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Overview of GH Forecasting Method

GH WindFarmer

Inputs
 Numerical Weather Prediction

 Site Topography
« SCADA System

Output @

e Power Forecast
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Forecasting Eﬂ'
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Forecast

- Optimized combination of NWP suppliers
- Reqular live feedback from the wind farm
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Forecasting

MethOd NWP /gICSILOI;::// SIC_IXSA/Aeozirtaeph/

Forecast

Suite of Models

Adaptive statistics Time Series Climatology
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Intelligent Model Combination

- Optimized combination of NWP suppliers
- Reqular live feedback from the wind farm
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Intelligent Model Combination
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Forecasting
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Intelligent Model Combination |

Model
adaptation

.\ Wind speed / Live // Site /
.. . . . f t SCADA eograph
- Optimized combination of NWP suppliers b o

- Regular live feedback from the wind farm =

. . Power
- “Learning” Algorithms for model [
Model
- Meteorology v adaptation
- Power Models Power |
forecast
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Forecasting
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Power (% of capacity)
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Manufacturer's Power Curve:

-Substation Power vs Mast Wind Speed

-Manufacturer's Power Curve
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5-:_'_Aé high as 100% deviation
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This is the power model _
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1.) The Basic Model

Reference Point
Meteorology

Forecast

Convert to power
values using
scaled turbine
power curve

Reference Point
Meteorology

Forecast

Convertto a

forecast of wind ;

conditions across

the site
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- Accounts for Site / Topographical Wake Effects

L3 o T |

Map object
Ansmometsts
Boundsies

Grid Maskers
IDs

Overoad
Photo Markers
Rads Statiors

Shadow Receptors
Teut
Tutbines
Visupomt

Map data
Backgiound
DTM
Noise

Foughness
Shadow Flicker

Display [MCP- |

Control Bar

Modes Add Caluate Map View Window Help

~
40

[~ Shadow Flicker
[ IlT errain
‘wind Energy

[ wind Speed
[ wRGs
rozv

For Help, press F1

008 BA0O3 13

%
.
4

swill
MNumber of turbines a0

Cursor
363107 3687097
Botfom Left
3573739 362583
Iterations 0
Al Projects
Net Yield 0 Gwhiyr
Currently Selected Project

Net Yield 0 Gwhiyr
Capacity factor 0%

L0 =] teon scale

Somston, togera [ % 2| KAl (28] o] 15t &

7, ]
2]

Lk dmint |

LR RE Rk a)

s inintninintile |




1500

1400 4
1300 4
1200 4
s 1100 4

1000 4

Wind Speed (m/s)

- Leverages measured on-site data

+ Constrained

= Not Available

.
« Normal Operation

- Accounts for Density Differences

IVSCOTTE.C.tE-d - HVSF orecast (

Forecast Density

LI T

Power

008 BAOO3 14

Re ference Density
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Results

Basic Model

Advanced Model
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Impact on Forecast Accuracy

18
. mean difference for day-ahead forecasts are

16 approximately 1% of capacity
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Probability Power Curves
Interrogate the power model with a forecast wind speed distribution
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Forecast Certainty particularly useful fr

Hourly data 24 hours in advance rapid ramp events
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. Certainty information I

Forecast Certa|nty particularly useful for
: high wind speed shut
Hourly data 24 hours in advance down.
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FOrecaSt Ce rtal nty Better forecasts at

shorter forecast

Hourly data 12 hours in advance // horizons
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Conclusions

« The power model challenge is to appropriately estimate power output
under non-ideal conditions.

 Use of purely the manufacturer's power curve can limit overall accuracy.
« Site-specific flow and wake modeling + historic measured power
production data + onsite meteorological data for advanced power

modeling improves accuracy.

« Assuming perfect wind speed forecast, advanced model yields
mean reduction of MAE on the order of 7% installed capacity.

Given that wind speed forecasts are not perfect, our data shows that
the advanced approach yields a 1% reduction in MAE of day-ahead
(24-hour) forecasts.
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Conclusions

« Advanced Power Model Interrogation = confidence bands on
forecast power, useful for anticipation of ramp events.

e Considerable work to be done to improve extreme fluctuation

prediction - GH planning investigatory studies of new
techniques in event forecasting.
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