

**US Army Corps
of Engineers®**
Portland District

WILLAMETTE VALLEY SYSTEM OPERATIONS AND MAINTENANCE

APPENDIX F1: QUALITATIVE ASSESSMENT OF CLIMATE CHANGE IMPACTS

**APPENDIX F1 HAS BEEN MODIFIED FROM THE DEIS
INSERTION OF LARGE TEXT IS IDENTIFIED; MINOR EDITS ARE NOT DENOTED**

Summary of changes from the DEIS:

- Additional USACE Time Series Tool (TST) runs and graphics were added. The three types of monotonic (“up or down”) trend tests and nonstationary tests to the temperature timeseries of interest and to the precipitation timeseries of interest were presented via new TST run output. Additional timeseries analyses were performed and added to the text.
- Updated information has been provided to include USACE climate hydrology tool displays of the Climate Hydrology Assessment Tool (CHAT) output related to temperature and precipitation. CHAT plots of projected changes in monthly and seasonal changes of precipitation and ambient temperature were included. The link between increasing summer temperatures and its impact on habitat, hydropower demand, and the need to meet minimum flow requirements were highlighted and discussed throughout the assessment.
- Additional information was added to clarify the determination to truncate versus not to truncate the 80+ year period of record (i.e., the record length adopted for trends analysis, based on statistical significance test; Mann-Kendall, Spearman Rank Order Test; t-test, nonstationarity detection (NSD) analysis (as executed via the TST)).
- Additional information on wildfires has been added to describe more fully the links between wildfire and hydrologic response both in terms of water quantity and quality impacts.
- DEIS Table 7 1, Residual Risk Table for the WVS EIS, was updated. The title has been modified to Residual Risk Table for the WVS EIS Alternatives Analyses.

TABLE OF CONTENTS

1. Introduction and Background.....	1
2. Historic Climate within the Willamette river Basin.....	7
3. Observed Trends in Current Climate Literature Review.....	16
3.1 Climate Change Literature Syntheses	16
3.2 Fourth National Climate Assessment.....	18
3.3 Climate Hydrology Assessment.....	21
3.4 Nonstationarity Detection	34
3.5 Nonstationarity and Trend Analyses for Additional Hydrologic Variables.....	51
3.6 Summary of Observed Trends in Climate	58
4. Projected Trends in Future Climate and Climate Change.....	58
4.1 Literature Review	58
4.1.1 Recent U.S. Climate Change and Hydrology Literature Syntheses	58
4.1.2 Fourth National Climate Assessment.....	59
4.2 Oregon Climate Change Research Institute.....	63
4.3 Portland State University	65
4.4 Willamette Basin Review	65
4.5 Changes in Winter Atmospheric Rivers	66
4.6 Ubiquitous Increases in Flood Magnitude	67
4.7 NOAA State Climate Summary for Oregon, 2022	67
4.8 Summary of Projected Trends in Climate	69
5. Climate Hydrology Assessment (CHAT).....	70
6. Vulnerability Assessment (VA)	72
6.1 VA Tool Analyses for the EIS	73
6.2 VA Tool Results and Conclusions	74
6.3 VA Implications for Resource Areas.....	84
7. Summary and Conclusions	85
8. References.....	91

LIST OF FIGURES

Figure 1-1. Map of the Willamette River Basin.....	4
Figure 2-1. Trends in Observed Temperature at Salem, Oregon.....	9
Figure 2-2. Trends in Annual and Maximum Monthly Precipitation.	10
Figure 2-3. Salem, Oregon Assessment Point.	11
Figure 2-4. Salem, Oregon Observed and Projected Mean Monthly Flow, Precipitation, and Temperature Trends.	13
Figure 2-5. Salem, Oregon Mean Monthly Flow, Precipitation, and Temperature Trend Box Plots.....	15
Figure 3-1. Summary of Literature Review Findings.....	17
Figure 3-2. Observed Changes in Temperature.	19
Figure 3-3. Observed Changes in Precipitation.....	20
Figure 3-4. Observed Precipitation Change during the Heaviest 1% of Events.	21

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

Figure 3-5. Willamette at Salem Complete Period of Record, 1892 through 2014.....	25
Figure 3-6. Willamette at Salem, Pre-regulation, 1892 through 1941.....	25
Figure 3-7. Willamette at Salem, Post-regulation, 1970 through 2014.....	26
Figure 3-8. Willamette at Salem, Naturalized Flows, 1928 through 2008.....	26
Figure 3-9. Luckiamute River near Suver, Complete Period of Record (minus data gaps), 1941 through 2014. Pristine.....	27
Figure 3-10. N. Santiam River below Boulder, Complete Period of Record, 1929 through 2014. Pristine.	27
Figure 3-11. N. Santiam River at Niagara, Complete Period of Record (Minus Data Gaps), 1939 through 2014.	28
Figure 3-12. N. Santiam River at Niagara, Post-regulation, 1955 through 2014.....	28
Figure 3-13. N. Santiam River at Niagara, Naturalized Flows, 1928 through 2008.	29
Figure 3-14. Coast Fork Willamette River below Cottage Grove Dam, Complete Period of Record, 1939 through 2014.	29
Figure 3-15. Coast Fork Willamette River below Cottage Grove Dam, Post-regulation, 1943 through 2014.	30
Figure 3-16. Coast Fork Willamette River below Cottage Grove Dam, Naturalized Flows, 1928 through 2008.	30
Figure 3-17. Row River above Pitcher Creek, Complete Period of Record, 1936 through 2014. Pristine.	31
Figure 3-18. Middle Fork Willamette River near Dexter, Complete Period of Record, 1947 through 2014.	31
Figure 3-19. Middle Fork Willamette River near Dexter, Post-regulation, 1967 through 2014.	32
Figure 3-20. Middle Fork Willamette River near Dexter, Naturalized Flows, 1928 through 2008.	32
Figure 3-21. S. Santiam River near Foster, Complete Period of Record, Post-regulation, 1974 through 2014.	33
Figure 3-22. S. Santiam River near Foster, Naturalized Flows, 1928 through 2008.	33
Figure 3-23. NSD for Willamette River at Salem, 1892 through 2014.	37
Figure 3-24. NSD Willamette River at Salem, Naturalized Flows, 1928 through 2008.	38
Figure 3-25. NSD Luckiamute River near Suver, 1940 through 2014.	39
Figure 3-26. NSD North Santiam River below Boulder, 1927 through 2014.	40
Figure 3-27. NSD North Santiam River at Niagara, 1938 through 2014.	41
Figure 3-28. NSD North Santiam River at Niagara, Naturalized Flows, 1928 through 2008.	42
Figure 3-29. NSD Coast Fork Willamette River below Cottage Grove, 1939 through 2014.	43
Figure 3-30. NSD Coast Fork Willamette River below Cottage Grove, Naturalized Flows, 1928 through 2008.	44
Figure 3-31. NSD for the Row River at Pitcher Creek, near Dorena, 1936 through 2014.	45
Figure 3-32. NSD Middle Fork Willamette River near Dexter, 1946 through 2014.	46
Figure 3-33. NSD Middle Fork Willamette River near Dexter, Naturalized Flows, 1928 through 2008.	47
Figure 3-34. Locations of Additional NSD Analyses Sites.	48
Figure 3-35. Coast Fork Willamette River NSD Analyses.	48
Figure 3-36. Row River NSD (Pristine) Analyses.	49
Figure 3-37. Middle Fork Willamette River NSD Analyses.	49
Figure 3-38. South Santiam NSD Analyses.	50
Figure 3-39. North Santiam NSD Analyses.	50
Figure 3-40. Fern Ridge NSD Analyses.	51

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

Figure 3-41. Salem, Oregon, Unregulated Daily Average Flows, 1928 through 2019.	52
Figure 3-42. Salem, Oregon, 30-day Minimum Flow.	53
Figure 3-43. Salem, Oregon, April through September.	53
Figure 3-44. Salem, Oregon, June through September.	54
Figure 3-45. Salem, Oregon, March through May.	55
Figure 3-46. Salem, Oregon Unregulated 1-day Minimum Flow Trend.	57
Figure 3-47. Salem, Oregon Unregulated 1-day Minimum Flow Nonstationarity Detections.	57
Figure 4-1. Future Projections of Temperature.	60
Figure 4-2. Observed Percent Change in Precipitation during the 1 Percent Event.	61
Figure 4-3. Projected Change in Future Precipitation (RCP 4.5/8.5).	62
Figure 4-4. Observed and Projected Temperature Change for Oregon.	68
Figure 5-1. Range of GCM/RCP Projections for the Willamette River Basin, HUC-1709.	71
Figure 5-2. Mean of GCM/RCP Projections for the Willamette River Basin, HUC-1709.	72
Figure 6-1. VA Tool Flood Risk Reduction Business Line.	76
Figure 6-2. VA Tool for Navigation Business Line.	77
Figure 6-3. VA Tool Ecosystem Restoration Business Line.	78
Figure 6-4. VA Tool Hydropower Business Line.	79
Figure 6-5. VA Tool Recreation Business Line.	80
Figure 6-6. VA Tool Regulatory Business Line.	81
Figure 6-7. VA Tool Water Supply Business Line.	82
Figure 6-8. VA Tool Emergency Management Business Line.	83

LIST OF TABLES

Table 1-1. USACE Reservoir Projects within the Willamette River Basin.	5
Table 1-2. Relevant Gages Used in Qualitative Analysis.	6
Table 3-1. Summary of Observed Streamflow Trends in Annual Peak Streamflow.	24
Table 3-2. Unregulated Salem, Oregon Time-series, Trend, and Nonstationarity Analyses.	56
Table 6-1. VA Tool WOWA Score Indicators for WIL HUC-1709.	75
Table 6-2. VA Flood Risk Indicators.	76
Table 6-3. WOWA Score for Flood Risk Reduction Business Line.	76
Table 6-4. VA Navigation Indicators.	77
Table 6-5. VA WOWA Score for Navigation.	77
Table 6-6. VA Ecosystem Restoration Indicators.	78
Table 6-7. VA WOWA Score for Ecosystem Restoration.	78
Table 6-8. VA Hydropower Indicators.	79
Table 6-9. VA WOWA Score for Hydropower.	79
Table 6-10. VA Recreation Indicators.	80
Table 6-11. VA WOWA Score for Recreation.	80
Table 6-12. Regulatory Indicators.	81
Table 6-13. VA WOWA Score for Regulatory.	81
Table 6-14. Water Supply Indicators.	82
Table 6-15. VA WOWA Score for Water Supply.	82
Table 6-16. Emergency Management Indicators.	83

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

Table 6-17. VA WOWA Score for Emergency Management.....	83
Table 7-1. Residual Risk Table for the WVS EIS Alternatives Analyses.....	89

1. INTRODUCTION AND BACKGROUND

This appendix supports the Willamette Valley System (operations) Final Environmental Impact Statement (WVS FEIS). This climate change assessment is derivative of the “Qualitative Assessment of Climate Change Impacts, Willamette River Basin, Oregon” (USACE 2019). That climate change assessment was prepared for the Portland District Dam Safety, CENWP-ENC-HC.

This qualitative assessment of climate change impacts is required by U.S. Army Corps of Engineers (USACE) Engineering and Construction Bulletin (ECB) 2018-14 (revision 1, expires 10-Sep 2022), “Guidance for Incorporating Climate Change Impacts to Inland Hydrology in Civil Works Studies, Designs, and Projects” (USACE 2018a) This document supports the Willamette Valley System Operations Environmental Impact Statement (WVS EIS) effort. There are no sea level rise impacts within the analysis area.

This assessment documents the qualitative effects of climate change on hydrology in the region and informs the climate change assessment being performed by USACE for the Willamette Valley System Environmental Impact Statement (EIS). The original assessment was performed for USACE Risk Management Center (RMC) to assess the potential impacts and risk drivers that can potentially be attributed to climate change.

USACE projects, programs, missions, and operations have generally proven to be robust enough to accommodate the range of natural climate variability over their operating life spans. However, recent scientific evidence shows that in some places and for some impacts relevant to USACE operations, climate change is shifting the climatological baseline about which natural climate variability occurs and may also be changing the range of that variability.

This is relevant to USACE because the assumptions of stationary climatic baselines and a fixed range of natural variability as captured in the historical hydrologic record may no longer be appropriate for long-term projections of the climatologic parameters, which are important in hydrologic assessments for water management operations in watersheds such as the Willamette River Basin. As part of the EIS, the Project Delivery Team (PDT) identified relevant climate change factors early on. They were:

- Ambient temperature (warming)
- Reservoir evaporation/ reach evapotranspiration effects
- Precipitation change (shift to abnormal seasonal patterns)
- Seasonal timing change of flow peak and volumes
- Wildfire intensity/frequency increase
- Wildfire impacts to water quality (increased sediment transport)

- Low summer flow (shortage/volume/frequency)
- April 1st, May 1st Snow Water Equivalent (SWE) and seasonal/monthly/regional/elevation snowpack
- Water temperature change (warming)

THE DEIS HAS BEEN REVISED TO INCLUDE THE FOLLOWING INFORMATION IN THE FEIS

Potential climate change shifts will complicate decision making for water managers. Critical linkages exist between rising temperatures and changing rainfall and snowmelt on the projected shifts of seasonal and annual, average, and extreme flow quantity and timing.

The Willamette Valley System (WVS) project design and current water management is predicated on past years of record. WVS flood and conservation space were provided based on estimates of observed record winter and spring volumes as well as the time of year the inflows would occur.

Changing average ambient temperatures and reduced baseflows are changes that will directly stress thermal regulation necessary for ESA-listed fish and other critical and endangered species survival in the Willamette River Basin. These climate change impacts are emphasized under each resource analysis in Chapter 3.0, Affected Environment and Environmental Consequences, and in Chapter 4.0, Cumulative Effects.

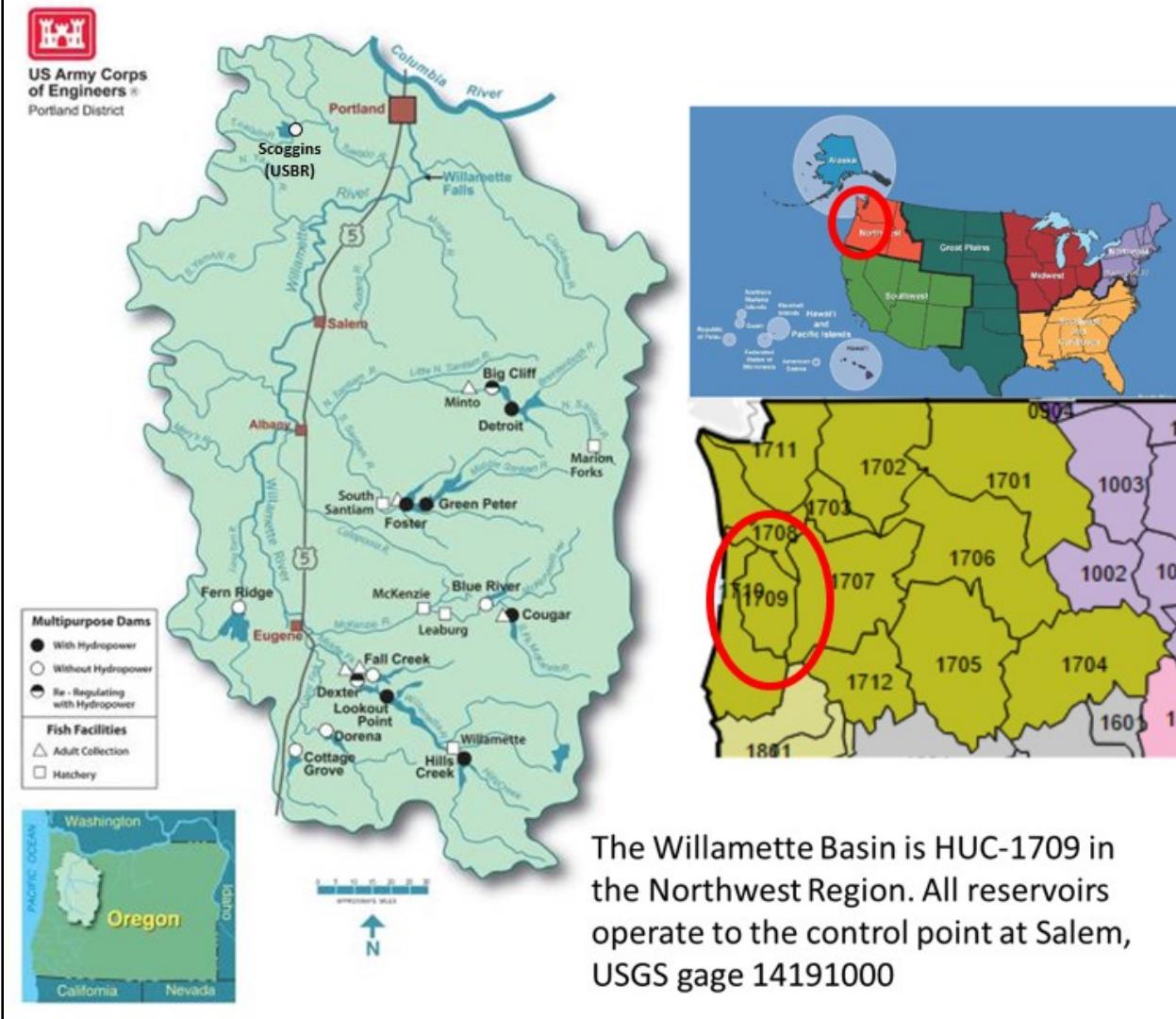
END NEW TEXT

The above factors were seen as driving the impacts to future flood risk management and fish operations as well as likely effects to recreation, operations, and maintenance in the future. Refer to EIS Appendix F2 for additional discussion and analysis of these climate factors.

Relevant climate change factors were consequential for the future climate vulnerability analyses and identification of residual risk. The Corps Climate Preparedness and Resilience (CPR) Community of Practice (CoP) (USACE 2023) defines residual risk as the risk that remains after measures have been put into place. The Corps' response to climate change is adaptation focused and formulates measures and alternatives to be as resilient as possible. A more resilient feature is one that is conceptually more resistant to likely future conditions and/or possesses inherent flexibility to adapt successfully to projected changes.

The Willamette Valley System EIS analysis area encompasses the Willamette River Basin to Willamette Falls at Oregon City. The overall Willamette River Basin is Oregon's largest river basin, containing nearly 70 percent of Oregon's population, its most productive agricultural land, and significant habitat for anadromous fish populations. The Willamette River Basin drainage area is approximately 11,230 square miles at its downstream confluence with the Columbia River near the City of Portland, OR. The Willamette River Basin falls within the U.S. Geologic Survey (USGS) region 17 and makes up the entirety of the 4-digit Hydrologic Unit Code

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*


(HUC) 1709. The Basin is bounded by the Oregon Coast Mountain Range to the west and the Cascade Mountain Range to the east and is approximately 160 miles long and 100 miles wide. Elevations within the Basin range from approximately 20 feet above sea level at upper Willamette Falls to well beyond 10,000 feet in the Cascade Mountain Range. Tidal influence is up to the face of Willamette Falls.

USACE operates 13 dams and reservoir projects within the Willamette Basin as part of the Willamette Valley System (WVS).

The WVS provides flood risk management as well as other Congressionally authorized purposes such as hydropower generation, irrigation, water supply, and ecologic/water-quality supplementation.

Construction of the first of the individual dams that constitute the WVS was completed in 1941 and the last was completed in 1968, with filling complete in 1970. Collectively, the WVS provides nearly 1.7 million acre-feet of flood control storage. In addition to the 13 USACE flood risk management projects within the Willamette River Basin, there are numerous other dams in the Basin. Except for Scoggins Dam on the Tualatin River, all the other dams are run-of-the-river, meaning they contribute very little flood storage (i.e., flood space). Figure 1-1 displays the location of these projects within the WVS.

The Willamette River Basin

Figure 1-1. Map of the Willamette River Basin.

Table 1-1 displays the names, flood storage capacity, top of dam elevation, and date of construction for the 13 USACE reservoir projects within the Willamette River Basin as well as USBR's Scoggins Dam. Scoggins Dam is not part of the WVS EIS but will be kept in this document as legacy information.

The Oregon Climate Change Research Institute (OCCRI 2015), whose report is summarized in the Projected Trends in Future Climate section below, categorizes the reservoirs into five hydrologic groups based on the similarity of their sensitivity and response to various hydrologic and climatic drivers. These reservoir groups are correlated to elevation and shown in Table 1-1. Note that while Blue River Dam is in a group of its own, it appears to respond similarly to climate impacts as the dams in group C. Additional discussion and descriptions of these reservoir groups is found in the Projected Trends in Future Climate and Climate Change section.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

Table 1-1. USACE Reservoir Projects within the Willamette River Basin.

Reservoir Group	Name of Dam	Flood Control Storage (acre-ft)	Top of Dam Elevation (ft. NGVD29)	Date of Construction
A	Big Cliff Dam	1,740	1,212	1953
A	Cougar Dam	147,800	1,705	1964
A	Detroit Dam	300,253	1,579	1953
A	Hills Creek Dam	199,600	1,548	1961
B	Cottage Grove Dam	29,791	791	1942
B	Dorena Dam	70,420	865	1949
B	Fern Ridge Dam	94,480	382	1942
C	Dexter Dam	12,134	702	1954
C	Fall Creek Dam	113,657	839	1966
C	Lookout Point Dam	337,430	941	1953
D (C)	Blue River Dam	85,500	1,362	1968
E	Foster Dam	29,700	646	1968
E	Green Peter Dam	268,170	1,020	1967
USBR	Scoggins Dam	53,600	313	1975

Eighty-five active stream gages are distributed throughout the Willamette River Basin and there are approximately 94 additional inactive gages. Many of these gages are affected by WVS regulation and even more are impacted by upstream impoundment of another sort. To separate the hydrologic influence of observed climate change from other significant anthropogenic impacts, such as upstream regulation, an effort was made to identify relatively “pristine” gages that are largely free of the effects of basin modification. These gages represent natural run-of-the-river morphologic conditions, allowing for greater insight into the impacts potentially caused by climate change. While the pristine gages chosen for analysis were selected primarily because of the lack of regulation within their upstream basins, preference was also given to sites with lengthy annual peak streamflow periods of record and to sites with relatively large drainage areas. Land use change over time, such as urbanization and changing forestry practices, were not considered when selecting pristine gages, which may have some impact on non-stationarity (the assumption that the statistical characteristics of a time-series dataset are constant over the period of record) analysis.

In addition to analyzing the relatively pristine gages, various other gages of interest were selected as hydrologically representative of the Willamette River Basin. These gages are dispersed spatially throughout the Basin as well as through a range of elevations because both variables influence the hydrology of the gage. Both observed streamflow data and naturalized/unregulated streamflow data were analyzed in the various toolsets discussed below. The naturalized streamflow datasets represent simulated streamflows with the influence of regulation and irrigation removed. These gages and relevant parameters, such as drainage area, peak streamflow period of record, and nearby WVS locations, are shown in Table 1-2. For gages marked as “regulated” in the far-right column of the table, both observed peak

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

streamflow measured at the gage as well as simulated naturalized peak streamflow were analyzed. It should be noted that reservoir operation was assumed to be consistent and uniform across the period of regulation. While there have been numerous deviations from the authorized water control plan, these changes were assumed to be relatively minor from a statistical and operational perspective.

The stream gage located at Salem, Oregon is of particular interest to this analysis as Salem is the most downstream, real-time, reservoir regulation control point on the mainstem Willamette River that receives outflow from all 13 WVS USACE dams. Salem is a major control point used during flood risk management in the flood season, roughly November through June, and the location where minimum flow targets are specified for fish and wildlife by the Biological Opinion for April through October. The drainage area for this gage is 7,280 square miles (65 percent of the 11,200 square miles that comprise the entire Willamette River Basin). At the Salem gage, daily discharge measurements became available in 1909. Annual peak streamflow records are available from 1893 to 2018, with three earlier data points of historical significance available for 1862, 1881, and 1890. The WVS total drainage areas (areas above all reservoirs) represent 42 percent of the total Salem drainage area, and about half (51 percent) of the annual water volume passing through Salem has passed through at least one WVS dam.

Table 1-2. Relevant Gages Used in Qualitative Analysis.

USGS Gage Num.	USGS Site Name	Reservoir Group	Peak Streamflow Period of Record	Peak Streamflow Observations	Drainage Area	WVS Proximity	Regulated or Pristine?
14191000	WILLAMETTE RIVER AT SALEM, OR	.	1861-2017	128	7280	Salem	Regulated
14190500	LUCKIAMUTE RIVER NEAR SUVER, OR	.	1906-2016	83	240	-	Pristine
14178000	NO SANTIAM R BLW BOULDER CRK, NR DETROIT, OR	A	1907-2017	92	216	-	Pristine
14181500	NORTH SANTIAM RIVER AT NIAGARA, OR	A	1909 -2017	91	453	Big Cliff, Detroit	Regulated
14153500	COAST FORK WILLAMETTE R BLW COTTAGE GROVE DAM, OR	B	1939-2017	79	104	Cottage Grove	Regulated
14154500	ROW RIVER ABOVE PITCHER CREEK, NEAR DORENA, OR	B	1936-2016	82	211	-	Pristine
14150000	MIDDLE FORK WILLAMETTE RIVER NEAR DEXTER, OR	C/D	1946-2016	71	1001	Lookout Point	Regulated
14187200	SOUTH SANTIAM RIVER NEAR FOSTER, OR	E	1974-2017	44	557	Foster, Green Peter	Regulated

Flow data available at the USGS Salem gage has been influenced by reservoir operations since 1970. Scoggins Dam was constructed in 1975 but is located downstream of the Salem gage and is not located on any of the other gaged tributaries whose streamflow records are being analyzed as part of this study. Thus, Scoggins Dam does not impact the homogeneity of any of the streamflow records being assessed.

Other hydrologic effects on the Salem gage include changing amounts of irrigation within the basin and changes in land use. The areas upstream of Salem have experienced substantial urbanization with an approximate doubling in population over the past 50 years. The rate of population increase has been relatively steady over that time. The Willamette River at Salem is an important downstream location used as a control point for reservoir hydro-regulation and planning purposes. USACE projects in the Willamette River Basin work together to provide flood damage reduction at Salem along with other local control points, and all the projects provide supplemental storage during the summer months to help maintain the Biological Opinion required minimum flow targets, including at Salem.

2. HISTORICAL CLIMATE WITHIN THE WILLAMETTE RIVER BASIN

Climate in the Willamette River Basin is driven primarily by proximity to the Pacific Ocean. The Basin's summers are warm and dry, and winters are cool and wet, with extreme winter conditions in the Cascade Mountain reaches on the eastern boundary of the Basin. Most precipitation occurs between November and March, with spring snowmelt prolonging runoff into June or July (USACE 2017a).

Temperature. Annual and diurnal temperature ranges are relatively small because the Basin is largely dominated by maritime air from the Pacific Ocean. Mean air temperatures in the Willamette River Basin (low elevations) range from about 40°F in January to 68°F in July. Mean mountain temperatures range from about 28°F in January to about 55°F in July (Plates 3-7, USACE 2017a).

Precipitation. Relatively high precipitation occurs in the Cascade Range, the eastern boundary of the Willamette River Basin, reaching 140 inches or more per year. Precipitation in the Basin is considerably less, varying from 35 to 50 inches per year with most of the precipitation falling as rain in the low elevations. Roughly one-third of the precipitation falls as snow at the 4,000-foot elevation, and more than three-fourths falls at the 7,000-foot elevation. For the entire Basin, the average annual precipitation total is about 63 inches. Of this, 60 percent occurs during November through March.

An assessment of observed trends in historical temperature and precipitation was conducted using local climate data available from the National Weather Service at Salem, OR. Data analyzed includes monthly mean and maximum average annual temperature as well as annual precipitation and monthly maximum annual precipitation. This data, associated trends, and statistical significance values are displayed in Figure 2-1 and Figure 2-2.

Statistically significant, increasing trends were identified within the temperature datasets analyzed at a 95 percent confidence level (p -value < 0.05). Neither of the precipitation datasets analyzed presented a statistically significant trend. Because Salem is only one specific location in the Willamette River Basin, regional temperature and precipitation trends are discussed in more detail within the literature review below.

THE DEIS HAS BEEN REVISED TO INCLUDE THE FOLLOWING INFORMATION IN THE FEIS

Linear regression for observed temperature and precipitation is limited. However, the older time-series datasets were not available as input for other analysis tools, such as USACE Time Series Tool (TST) (Figure 2-1 and Figure 2-2). Therefore, analysis options were limited and the analyses were not extended. However, longer period-of-record streamflow information was available for Salem, OR via the TST.

Temperature and precipitation change trends are important to the alternatives analyses because they are conceptual drivers for runoff and streamflow metrics flow can be a proxy for overall synergistic impact from temperature and precipitation changes. Annual and seasonal flow non-stationarity detection (NSD) and statistically relevant trend tests of observed flows at Salem, OR are summarized in Section 3.5.

Overall, the apparent effect from precipitation and temperature (linear) trends shown in Figure 2-1 and Figure 2-2 was minimal. Conclusive evidence of increasing observed temperatures and a relatively slight increase in annual maximum 1-day maximum precipitation was assumed for the alternatives analyses.

END NEW TEXT

Willamette Valley System Operations and Maintenance
Environmental Impact Statement

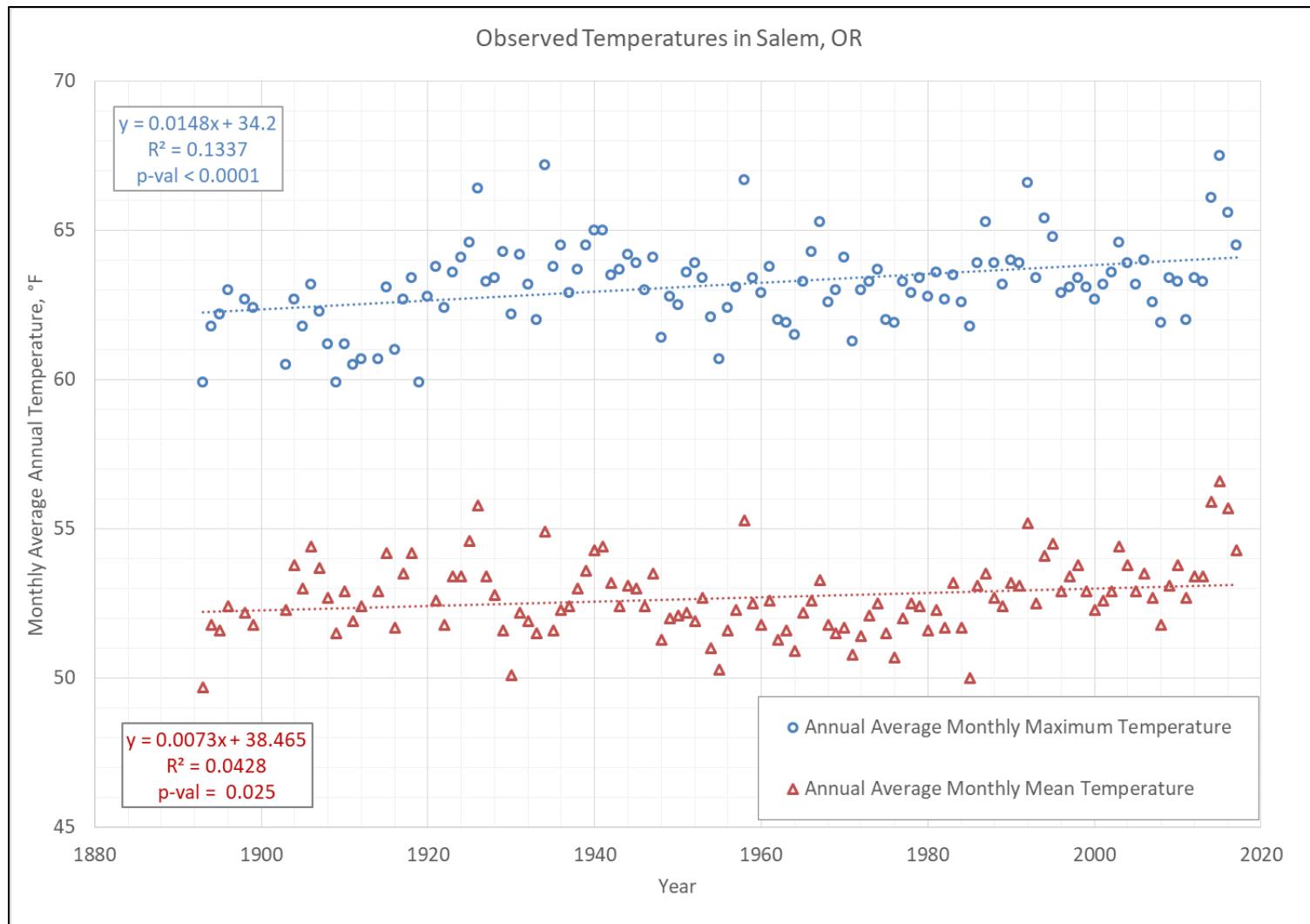


Figure 2-1. Trends in Observed Temperature at Salem, Oregon.

Willamette Valley System Operations and Maintenance
Environmental Impact Statement

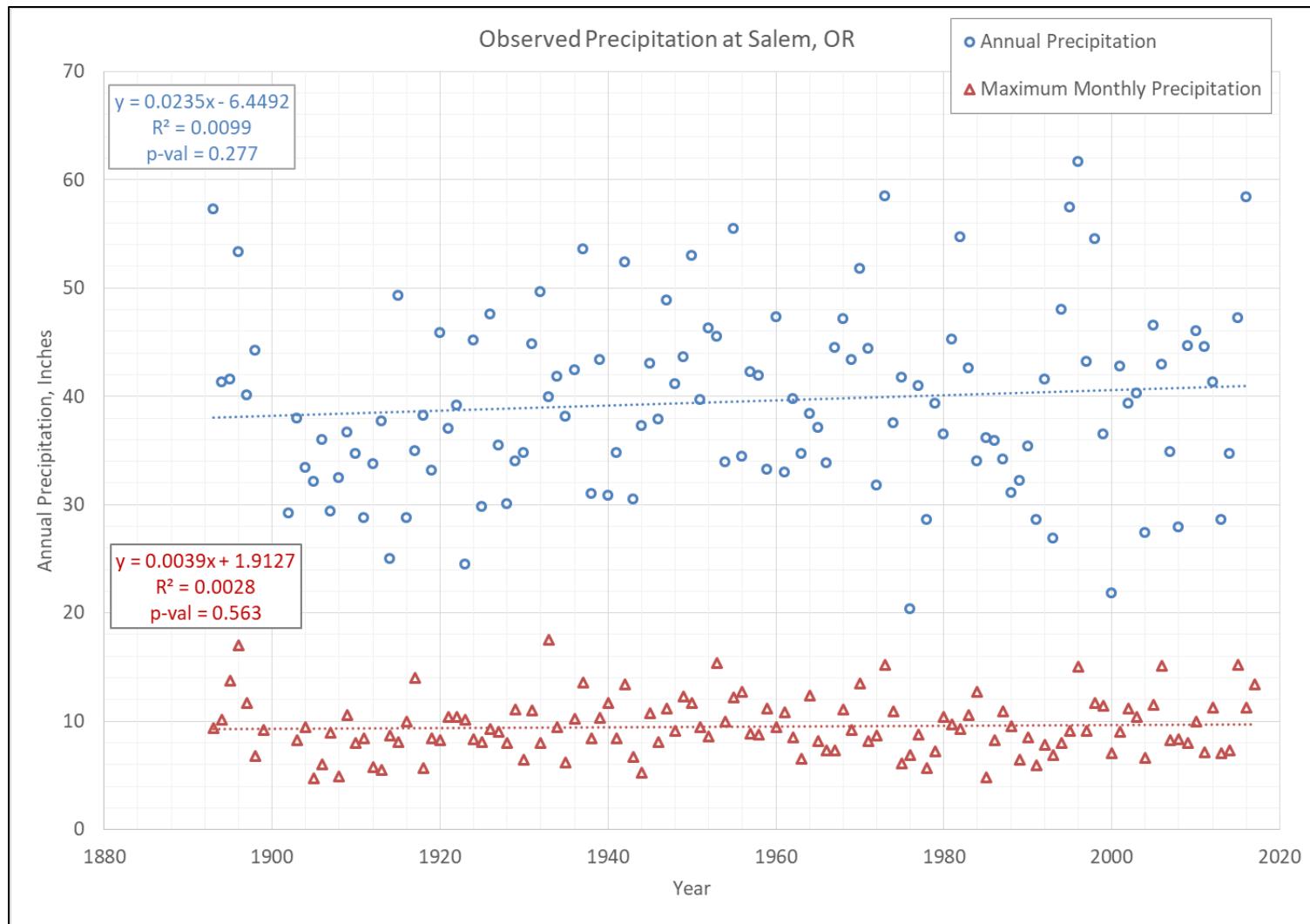
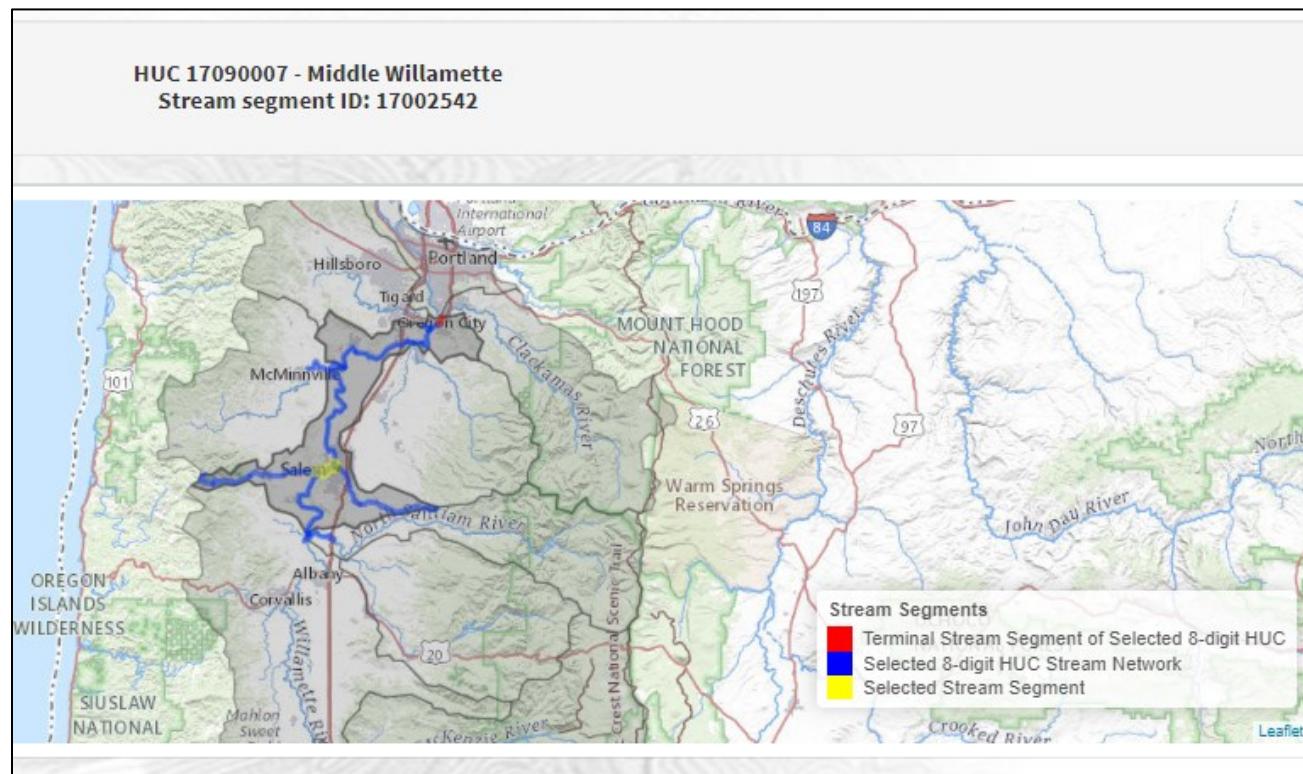



Figure 2-2. Trends in Annual and Maximum Monthly Precipitation.

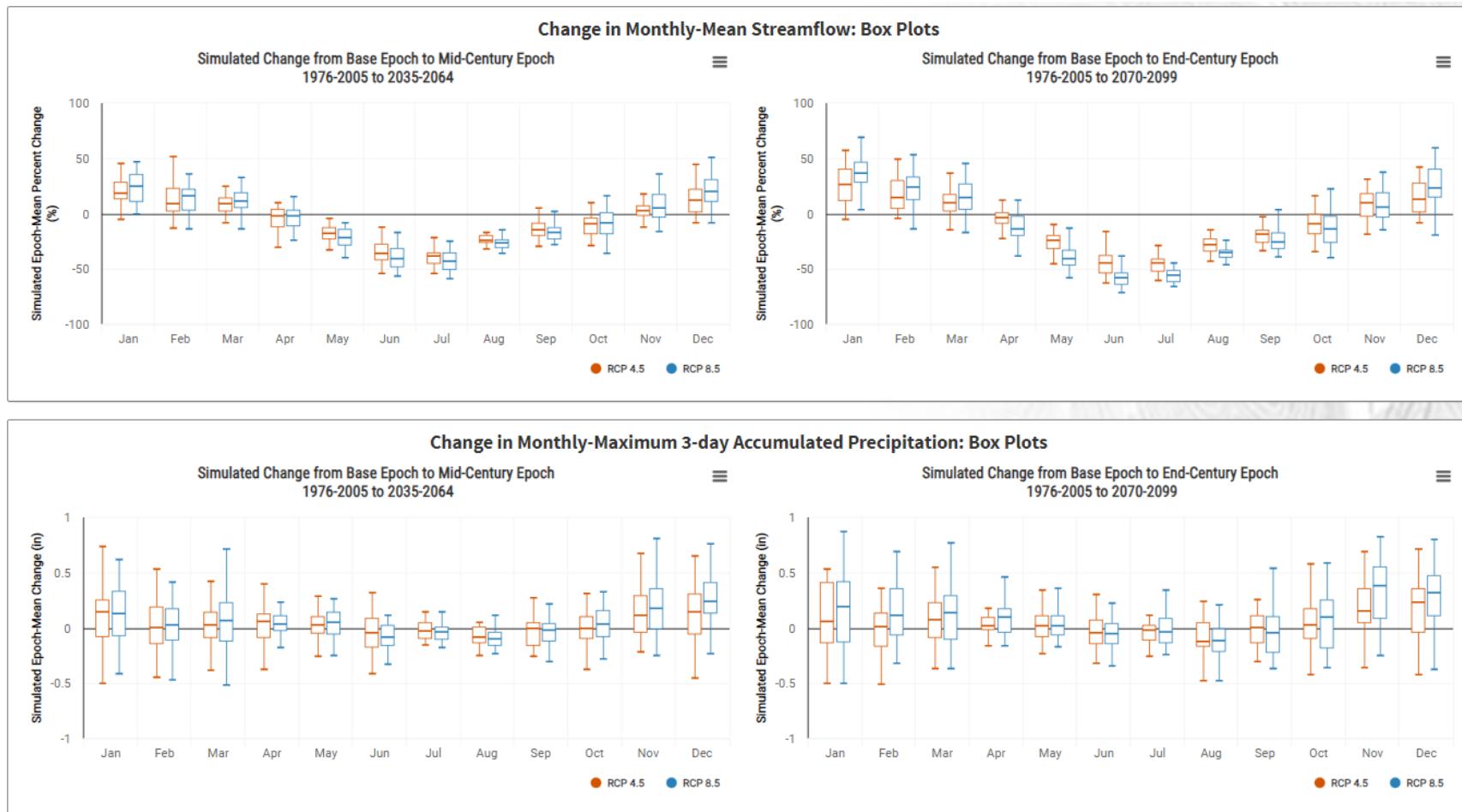
Willamette Valley System Operations and Maintenance
Environmental Impact Statement

THE DEIS HAS BEEN REVISED TO INCLUDE THE FOLLOWING INFORMATION IN THE FEIS

Temperature and precipitation trends could not be reproduced by the TST because the original time series datasets were not relocated. However, the Climate Hydrology Assessment Tool (CHAT; developed by USACE) analyses can be utilized as a potential supplemental and/or a surrogate update assessment for the above temperature and precipitation information. The CHAT analyses provide added value by comparing the historical modeled to the projected future trend patterns. Figure 2-3 shows the CHAT analyses hydrologic subbasin and reach around Salem. Note, that CHAT is not used to address OBSERVED value time series trends, but does present synthetic, modeling result during the historical period (1950-2006).

Figure 2-3. Salem, Oregon Assessment Point.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*


CHAT results are shown in Figure 2-4 and Figure 2-5. Median shifts in November to March precipitation (maximum and average) are increasing in the historical modeled record and the future projected periods. April to September precipitation median change is relatively flat, with some below average drops in precipitation between the historical period and the future projected years. Temperatures are projected to increase for all months and future years (through 2100). The boxplots reflect the trends. It is instructive to note that while median precipitation change is relatively small, there is more pronounced change in the projected streamflow median change. Temperature remains higher overall across all months and future periods.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

Figure 2-4. Salem, Oregon Observed and Projected Mean Monthly Flow, Precipitation, and Temperature Trends.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

Willamette Valley System Operations and Maintenance
Environmental Impact Statement

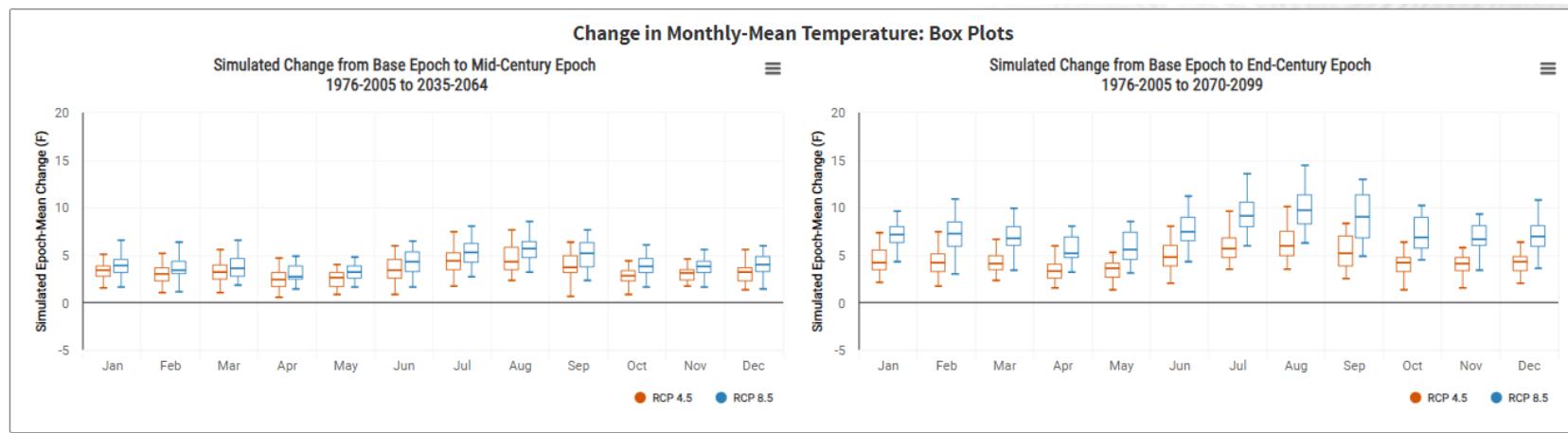


Figure 2-5. Salem, Oregon Mean Monthly Flow, Precipitation, and Temperature Trend Box Plots.

END NEW TEXT

3. OBSERVED TRENDS IN CURRENT CLIMATE LITERATURE REVIEW

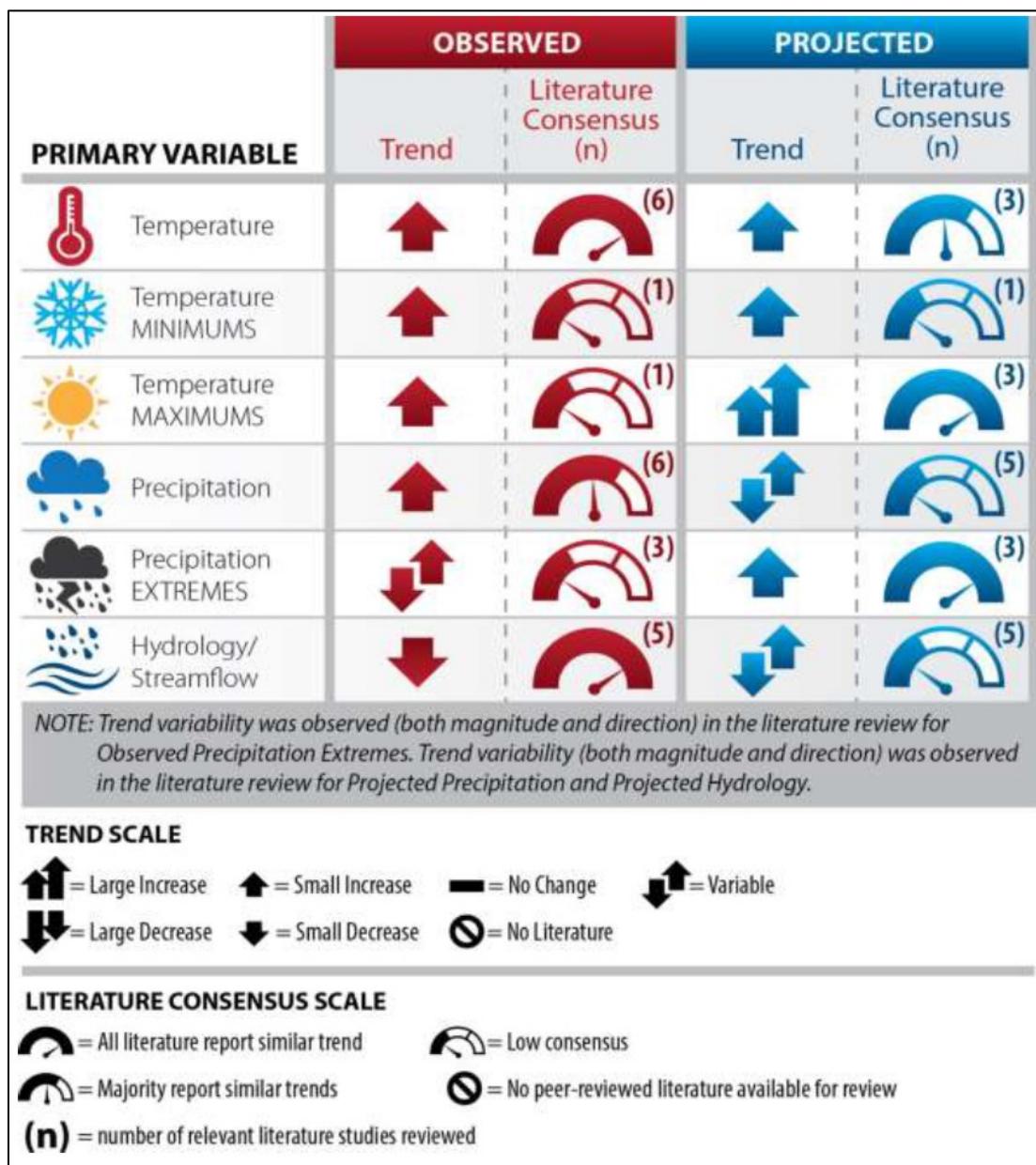
3.1 Climate Change Literature Syntheses

The September 2015 Literature Synthesis (known hereafter as the Literature Synthesis) conducted by the USACE Institute of Water Resources summarizes the available peer-reviewed literature related to trends in both observed and projected hydrometeorological variables for the Pacific Northwest Region (HUC 1709), which includes the Willamette River Basin. Figure 3-1 summarizes the findings from the Literature Synthesis and results are discussed in additional detail in the following paragraphs. It should be noted that this figure was produced in 2015 and substantial research has occurred since its publication. The number of relevant literature studies reviewed would likely increase for all hydrologic variables should this figure be updated. The literature review focuses on trends in observed, historical temperature, precipitation, and hydrology/streamflow changes.

Temperature. The Literature Synthesis found a strong consensus supporting increasing trends in observed temperature for the Pacific Northwest Region. The trends were apparent in average, minimum, and maximum temperature observations. Confidence in these increasing trends is supported most strongly in the region's coastal areas, which encompasses the Willamette River Basin.

THE DEIS HAS BEEN REVISED TO INCLUDE THE FOLLOWING INFORMATION IN THE FEIS

Precipitation. According to the Literature Synthesis, “Overall increasing trends have been identified in the Pacific Northwest Region’s annual average precipitation data for the latter half of the 20th century, especially in the coastal areas. Note, there is only a moderate consensus across the literature for annual average precipitation trends and this increasing trend is variable depending upon location and season.” There is a high level of consensus across the studies that more intense and extreme precipitation (high intensity) events are likely in the future. There is less literature consensus for observed extreme precipitation events.


Extreme precipitation trends may be tied closer to future changes to atmospheric rivers, but this is still being studied. Lower precipitation extremes are correlated to drought cycle trends that are harder to understand. The episodic changes can progress over decades and it’s difficult to determine if an observed trend is the result of long-term but natural variability or due to a real shift in weather patterns due to climate change. Given this uncertainty, resilience can be increased through measures that make available and/or increase additional system storage capacity.

END NEW TEXT

Hydrology / Streamflow. The Literature Synthesis found a strong consensus supporting decreasing trends in the region’s annual streamflow, particularly spring and summer flows, and 1 April Snow Water Equivalent (SWE) data for the latter half of the 20th century.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

Note that the identified trends of increasing precipitation and decreasing streamflow are not necessarily contradictory because of the complexity of Pacific Northwest hydrology. For example, lower SWE could have a larger impact than increased rainfall on the seasonal streamflow. Spring and summer flows are particularly sensitive to the region's SWE and therefore respond inversely to increasing trends in temperature. Also, the region's increasing trend in temperature correlates to an increased loss in water due to evaporation as well as decreases in snowpack.

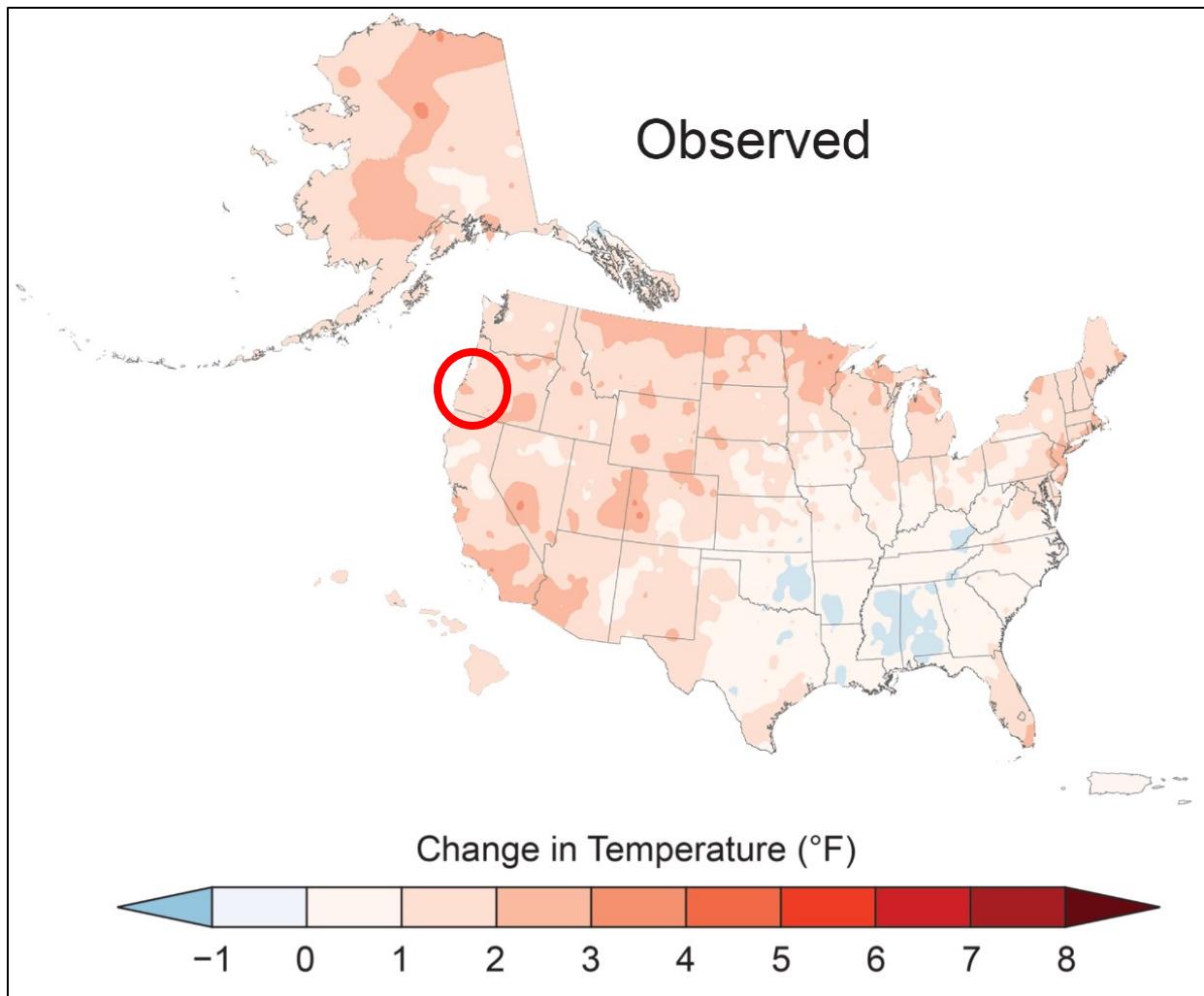
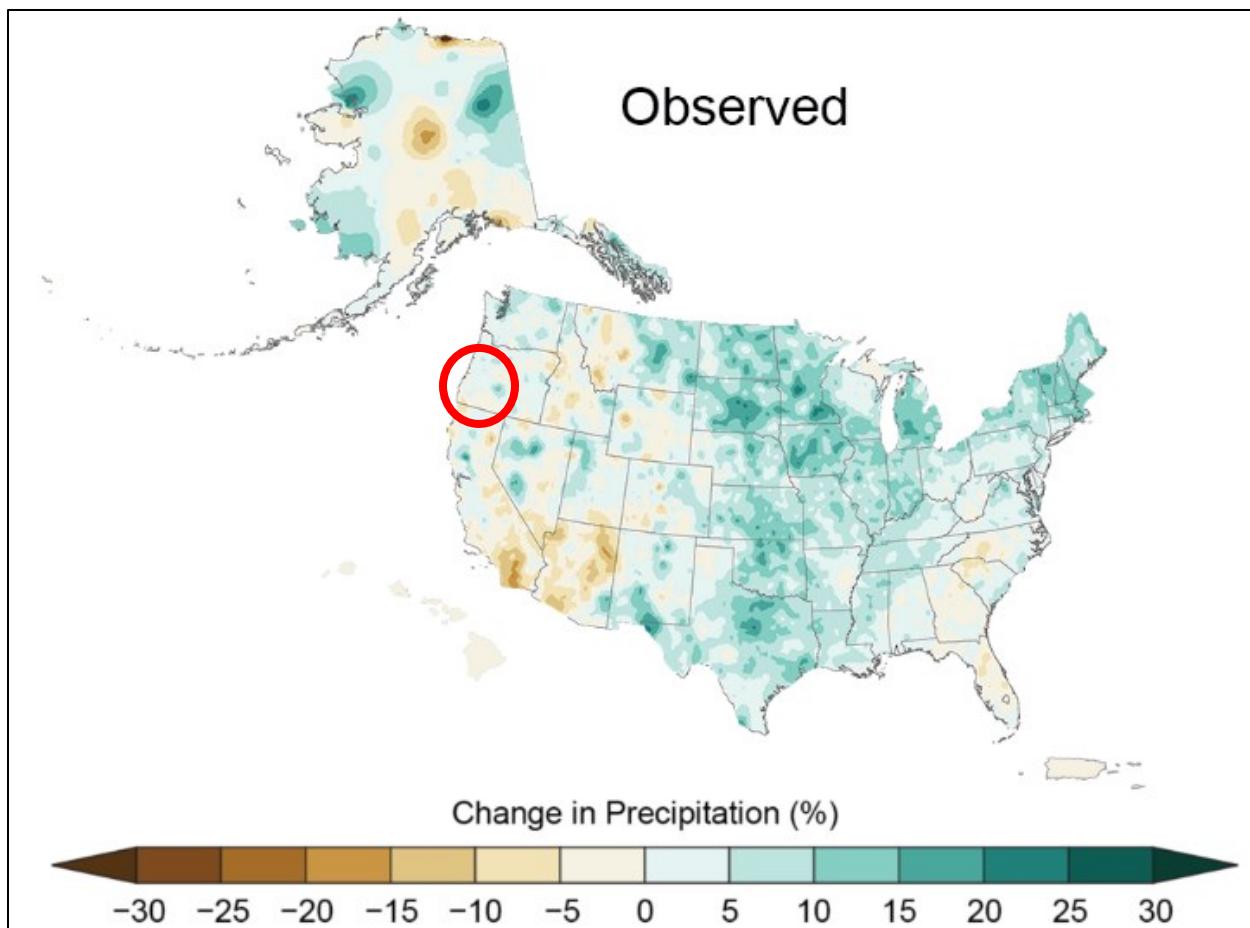
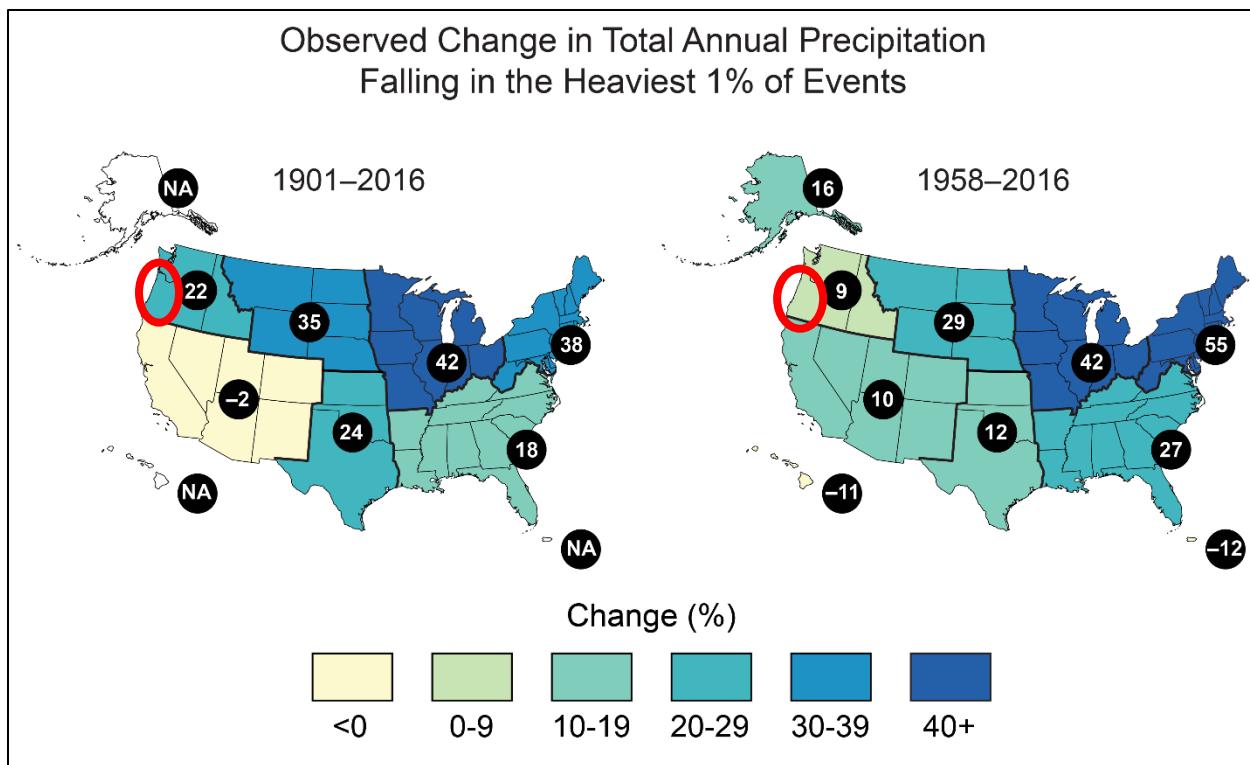


Figure 3-1. Summary of Literature Review Findings.

3.2 Fourth National Climate Assessment


The Fourth National Climate Assessment (NCA4) Volume II, released in 2018 (USGCRP 2018a, 2018b, 2018c), draws on science described in NCA4 Volume I and focuses on human welfare, societal, and environmental elements of climate change and variability for 10 regions and 18 national topics. Particular attention is paid to observed and projected risks, impacts, consideration of risk reduction, and implications under different mitigation pathways. Of particular interest in this qualitative analysis are the chapters regarding changing climate, water, and the Pacific Northwest Region (hereafter the Pacific Northwest), which includes the states of Oregon, Washington, and Idaho.

Temperature. Nationally, annual average temperatures have increased over the continental U.S. by 1.2°F over the last few decades and 1.8°F relative to the beginning of the last century. Figure 3-2, adapted from NCA4, displays observed changes in temperature for the period from 1986 through 2016 as compared with the historical average from the period 1901 through 1960 (for the continental U.S.). Note that virtually the entire Pacific Northwest, and much of the western U.S., has experienced warming of 1 to 2 degrees Fahrenheit. The approximate analysis area is circled in red in the following figures.


Figure 3-2. Observed Changes in Temperature.

Precipitation. Annual Precipitation since the beginning of the last century has increased across most of the northern and eastern U.S., whereas decreases have been observed across much of the southern and western U.S. Regional variation in observed precipitation change is much greater than in observed temperature change, as the influence of temperature on precipitation varies greatly based upon terrain, elevation, and proximity to moisture sources. Figure 3-3 displays the percent change in annual precipitation for the period 1986 through 2015 as compared with the historical baseline of 1901 through 1960. Looking more closely at the Pacific Northwest, most of the state of Oregon in the vicinity of the Willamette River Basin has observed an increase in annual precipitation between 0 percent and 5 percent, with some isolated areas experiencing a change between 5 percent and 10 percent.

Figure 3-3. Observed Changes in Precipitation.

There have been observed increases in the frequency and intensity of heavy precipitation events throughout much of the U.S. Figure 3-4 displays the percent increase in the amount of precipitation falling during the heaviest 1 percent of events (99th percentile of the distribution). The left map within Figure 3-4 displays the percent difference between the 1901 and 1960 historical baseline versus the 1986 to 2016 period, whereas the right map displays linear trend changes over the period between 1958 and 2016. Note that in both the left and right sides of the figure, the Pacific Northwest has experienced a moderate increase in the precipitation falling during extreme events. This indicates that extreme events have become increasingly intense over the past decades. The observed trends in heavy precipitation are supported by well-established physical relationships between temperature and humidity. These increases in annual and extreme precipitation depths and volumes have various implications for reservoirs, particularly those intended for flood risk management.

Figure 3-4. Observed Precipitation Change during the Heaviest 1% of Events.

3.3 Climate Hydrology Assessment

Statistical trend analyses, as executed via the Time Series Tool, TST, was used to examine trends in observed annual peak streamflow for the various gage locations shown in Table 1-2. TST is used to fit a linear regression to peak streamflow data in addition to providing a p-value indicating statistical significance of any given trend. The results presented in this section are focused on flood peaks. For discussion of other streamflow metrics of interest to the analysis, such as low flow periods and conservation season runoff volume, refer to Section 3.5.

Many of the flow gages selected for trend analysis have been heavily impacted by regulation over different periods of time. For gages where the observed period of record includes regulation effects, the annual peak streamflow dataset cannot be considered homogenous, and it is difficult to draw conclusions based on the trends identified within these datasets. In addition to assessing the entire period of record at regulated gage sites, subsets of data prior to and after reservoir construction were also analyzed.

The streamflow gage on the Willamette River at Salem (USGS number 14191000) can be used to illustrate how periods of reservoir regulation influence trends in streamflow. Peak annual flow for this gage is available on a continuous basis from 1893 until 2014 in the TST. The annual peak data from 1893 through 1940 represents a pre-regulation dataset because no reservoirs were constructed upstream of the gage until 1941. The time period of 1941 through 1970 represents an era of dam building and reservoir filling; this period disrupts the homogeneity and homoscedasticity of the streamflow dataset. After 1970, reservoir operations became

established, and the period of record can thus roughly be considered homogenous in terms of reservoir operation. For these reasons, the period of record for the Willamette River at Salem was analyzed over three time periods: 1) complete heterogenous period of record, 2) pre-regulation period, and 3) post-regulation period.

When dividing the period of record into different intervals of regulation for each gage, consideration was given to ensure that the shortened record length remained adequate for trend analysis. Of the gages whose record was divided based on regulation, the shortest record length was at the Willamette River at a Salem gage with a post-regulation record length of 44 years. This length was deemed sufficient for linear regression analysis. Additionally, there is uncertainty regarding whether the post-regulation period of record reflects homogenous reservoir operation because reservoir regulation is not always consistent over time and operational deviations are common. However, for the purposes of this analysis, reservoir operations were assumed to be consistent and the impacts of changes in regulation and deviations from typical operation were minor. Nonstationarity detection results, discussed below, offer further insight into the homogeneity of the peak streamflow dataset.

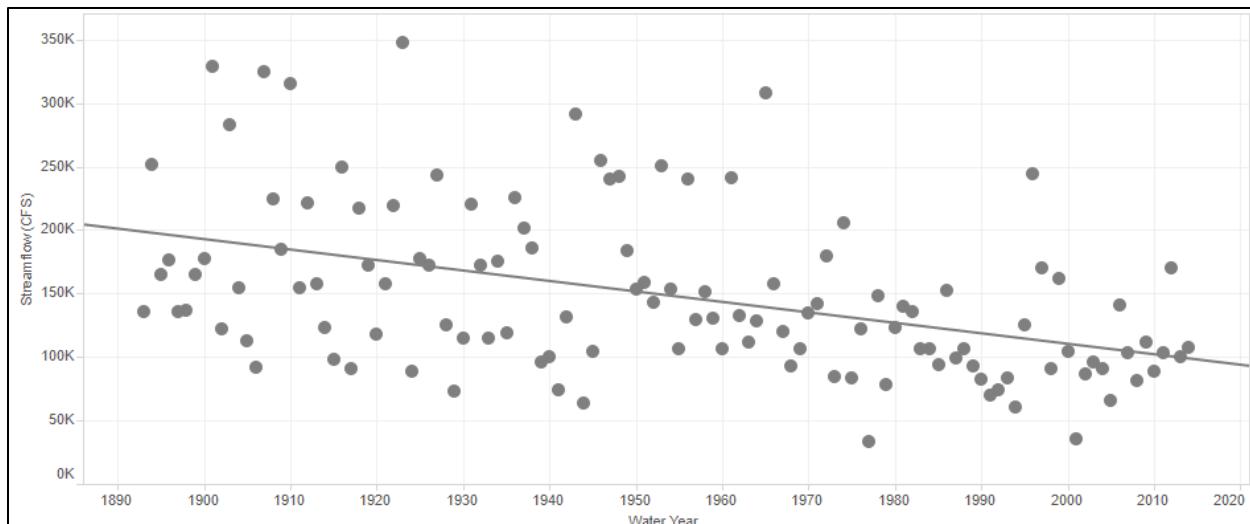
THE DEIS HAS BEEN REVISED TO INCLUDE THE FOLLOWING INFORMATION IN THE FEIS

For gages where naturalized flow datasets are available, regression analysis was performed within Microsoft Excel using the entire period of record available. These regression results can be directly compared with the output from the TST. Verification was made such that the subsets of data analyzed for trends and nonstationarity detections (NSDs) are consistent with what is recommended by the guidance. It is likely that “strong” nonstationarities are associated with the year when the dam was constructed. However, NSD is also driven by irrigation changes associated with farming and land clearing occurring as the region developed. NSDs are not automatically due to a “climate change signal” but are likely due to changes in normal water management operations and irrigation. Further NSDs at Salem, OR, described in Section 3.5, point to very low record sensitivity.

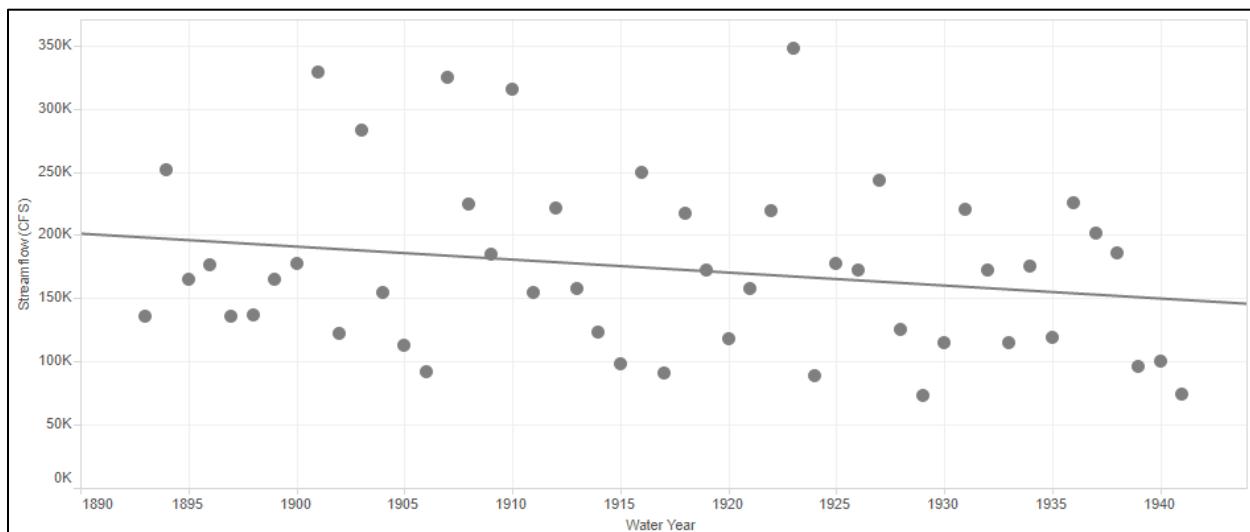
END NEW TEXT

A summary of the regression trends and their statistical significance is shown in Figure 3-5. Individual graphical output for each gage and period of record analyzed is shown in Figure 3-5 through Figure 3-22. Note that only five strongly statistically significant trends (p -value < 0.05) were detected, four of which were in the downward direction and were found when looking at the entire period of recorded flows at sites impacted by regulation. This is to be expected because the primary function of flood risk management regulation is to reduce peak flows. Thus, relative to the pre-regulation period, the post-regulation period consists of lower flood peaks resulting in the observed, downward trend. When these same gages were examined either by limiting the period of record to pre-regulation or post-regulation, the trends became statistically insignificant. Additionally, when simulated naturalized flow datasets were examined at these same locations, no statistically significant trends were found.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*


For the Coast Fork near Cottage Grove, statistically significant decreasing trends were found both within the complete, observed record and the portion of the record post-regulation. A weak decreasing trend was also observed within the naturalized streamflow record. It should be noted that the magnitude of these decreases is relatively minor, slightly above 12 cfs/year, when compared with peak annual flows, which have a median value of 2,650 cfs.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*


Table 3-1. Summary of Observed Streamflow Trends in Annual Peak Streamflow.

Gage Number	Gage Name and Location	POR Used	Period of Record Note	Regression Slope	P-value	Trend Direction	Trend Significance	Trend?
14191000	Willamette at Salem	1892-2014	Complete, minus gaps	-824.5	<0.0001	Downward	Strong	Yes
14191000	Willamette at Salem	1892-1941	Reregulation	-1026.3	0.142	Downward	Weak	No
14191000	Willamette at Salem	1970-2014	Post-regulation	-493.5	0.306	Downward	Insignificant	No
14191000	Willamette at Salem	1928-2008	No Regulation, No Irrigation	198.5	0.589	Downward	Insignificant	N/A
14190500	Luckiamute at Suver	1941-2014	Complete, minus gaps, pristine	-15.6	0.66	Downward	Insignificant	No
14178000	North Santiam blw Boulder	1929-2014	Complete, pristine	2.6	0.896	Neutral	Insignificant	No
14181500	North Santiam at Niagara	1939-2014	Complete, minus gaps	-138.4	<0.0001	Downward	Strong	Yes
14181500	North Santiam at Niagara	1955-2014	Post-regulation	-34	0.143	Downward	Weak	No
14181500	North Santiam at Niagara	1928-2008	No Regulation, No Irrigation	41.6	0.344	Upward	Insignificant	N/A
14153500	Coast Fork nr Cottage Grove	1939-2014	Complete	-12.8	0.002	Downward	Strong	Yes
14153500	Coast Fork nr Cottage Grove	1943-2014	Post-regulation	-12.1	0.009	Downward	Strong	Yes
14153500	Coast Fork nr Cottage Grove	1928-2008	No Regulation, No Irrigation	-11.4	0.178	Downward	Very Weak	N/A
14154500	Row River near Dorena	1936-2014	Complete, pristine	-15.5	0.578	Downward	Insignificant	No
14154500	Middle Fork Willamette nr Dexter	1947-2014	Complete	-263.1	<0.0001	Downward	Strong	Yes
14150000	Middle Fork Willamette nr Dexter	1967-2014	Post-regulation	18.6	0.552	Upward	Insignificant	No
14150001	Middle Fork Willamette nr Dexter	1928-2008	No Regulation, No Irrigation	-22	0.761	Downward	Insignificant	N/A
14187200	South Santiam nr Foster	1974-2014	Complete/Post-regulation	-17.6	0.705	Downward	Insignificant	No
14187200	South Santiam nr Foster	1928-2008	No Regulation, No Irrigation	23.2	0.725	Upward	Insignificant	N/A

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

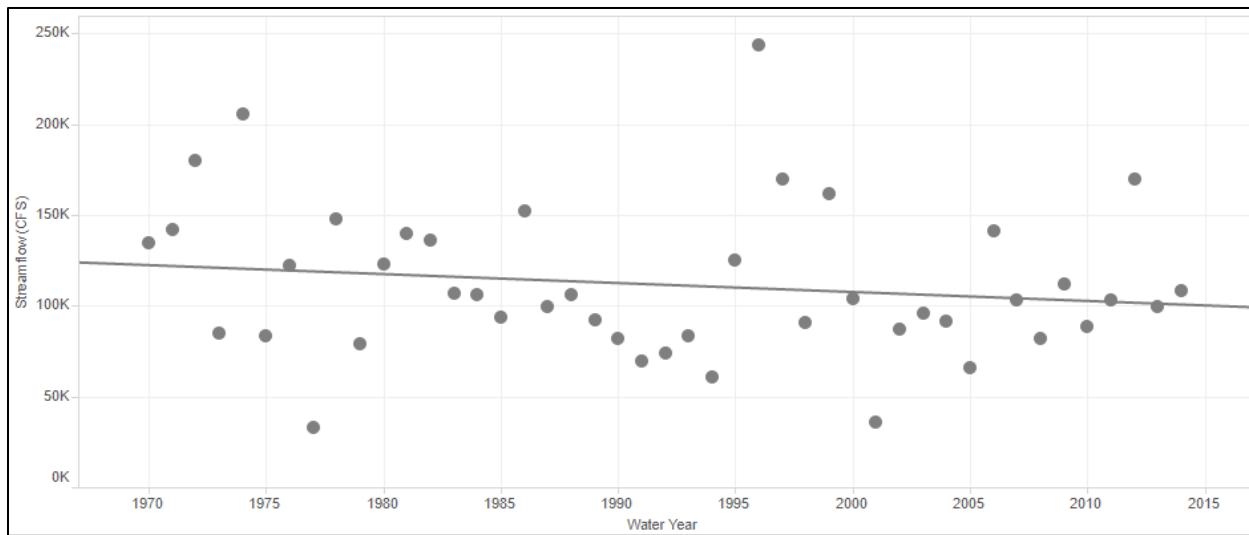


Figure 3-5. Willamette at Salem Complete Period of Record, 1892 through 2014.

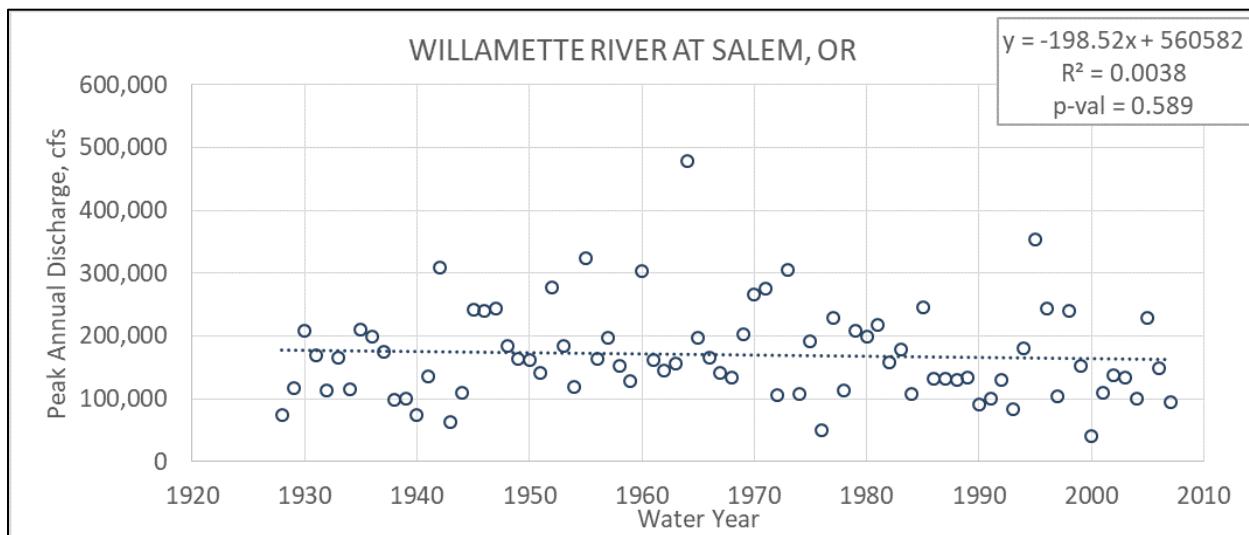


Figure 3-6. Willamette at Salem, Pre-regulation, 1892 through 1941.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

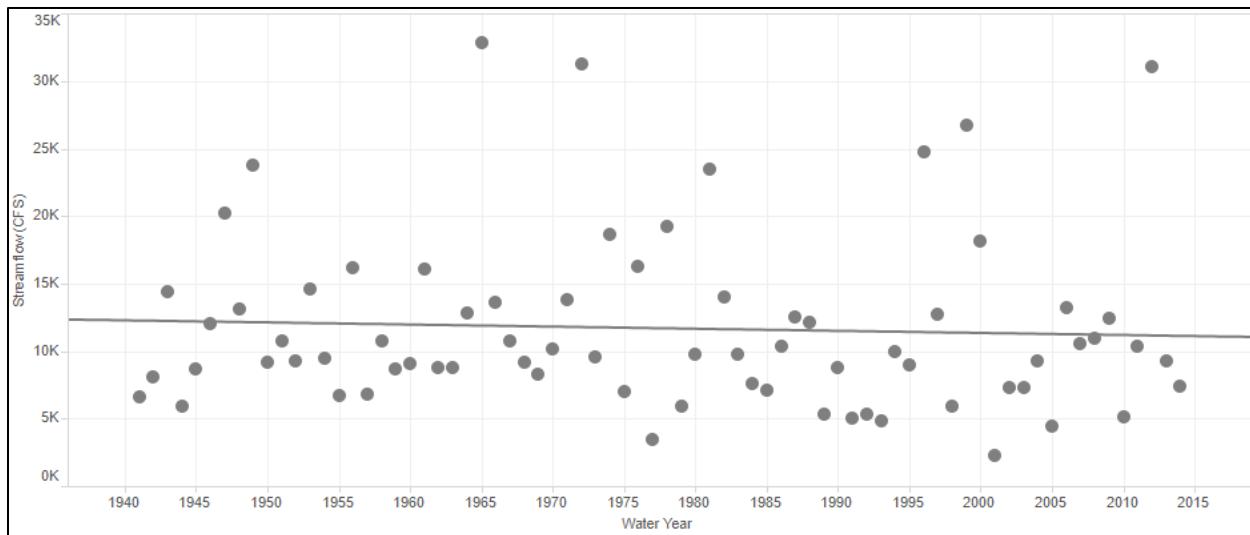


Figure 3-7. Willamette at Salem, Post-regulation, 1970 through 2014.

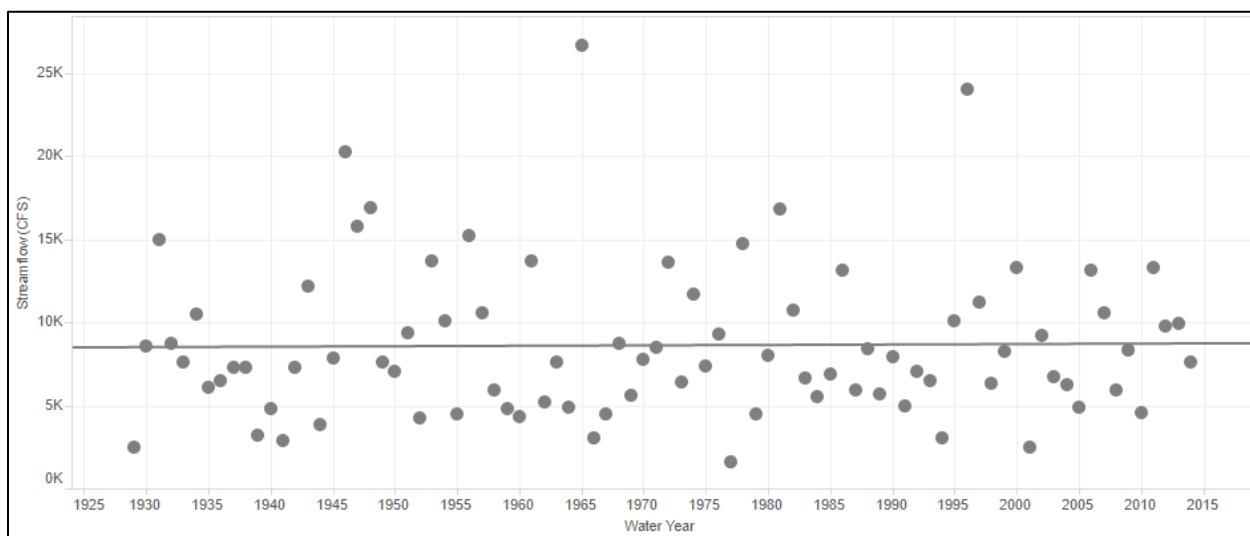


Figure 3-8. Willamette at Salem, Naturalized Flows, 1928 through 2008.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

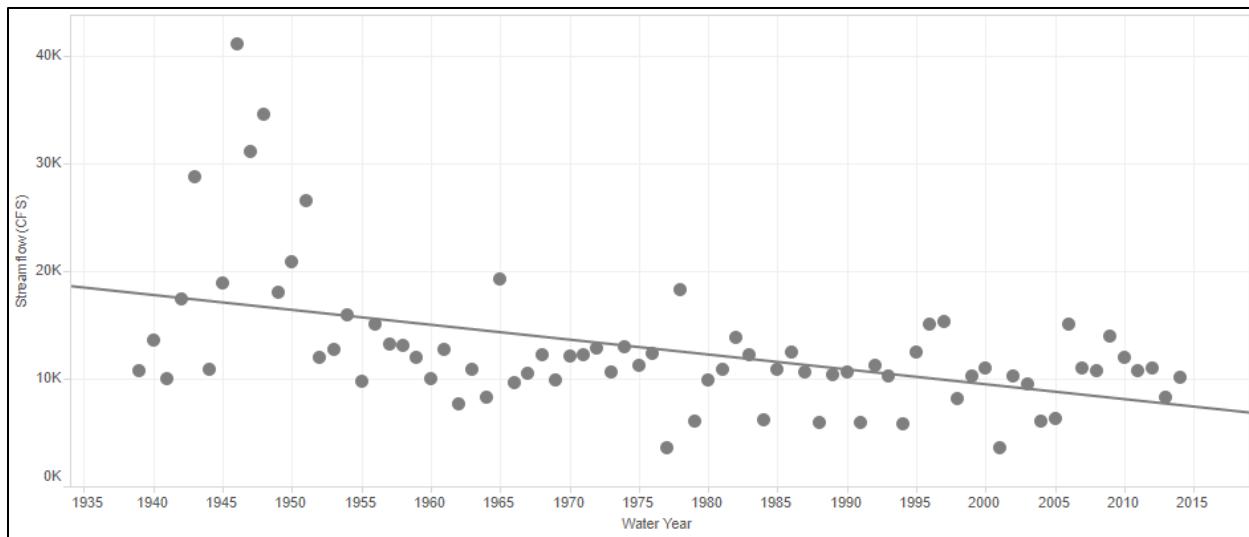


Figure 3-9. Luckiamute River near Suver, Complete Period of Record (minus data gaps), 1941 through 2014. Pristine.

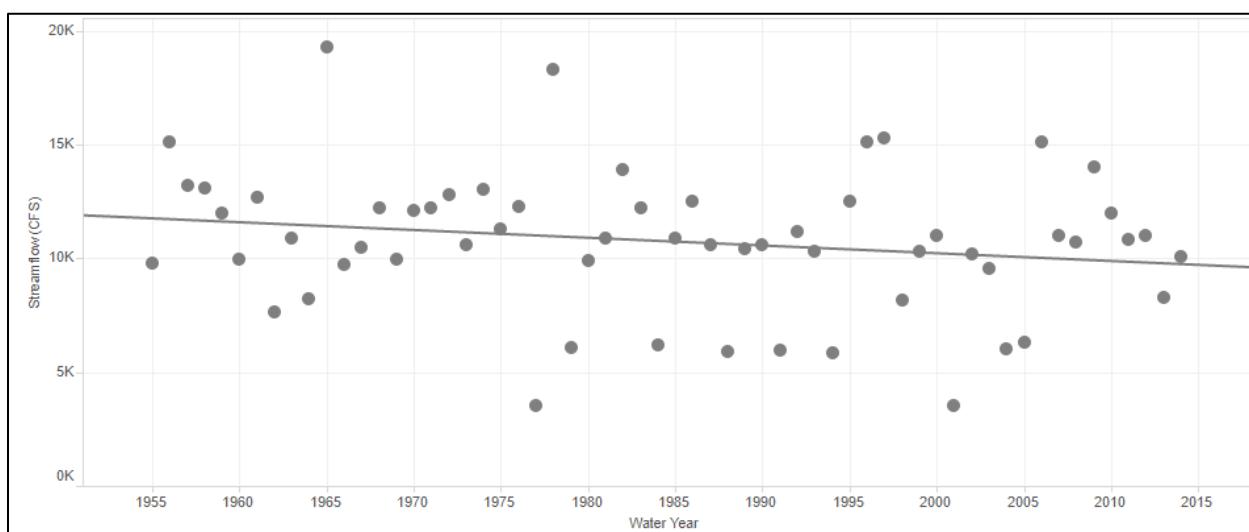


Figure 3-10. N. Santiam River below Boulder, Complete Period of Record, 1929 through 2014. Pristine.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

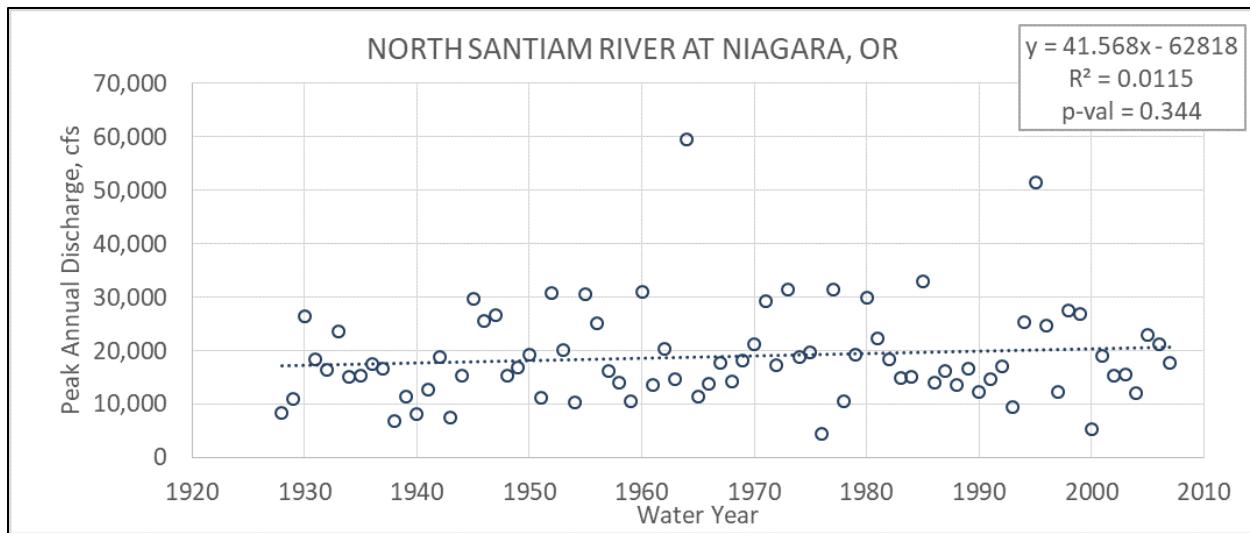


Figure 3-11. N. Santiam River at Niagara, Complete Period of Record (Minus Data Gaps), 1939 through 2014.

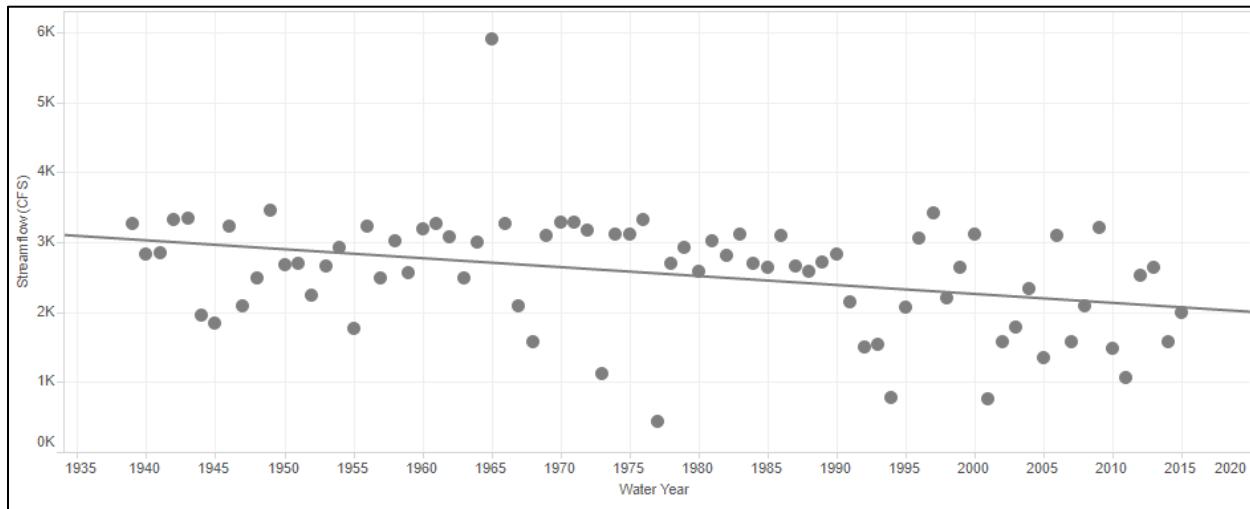


Figure 3-12. N. Santiam River at Niagara, Post-regulation, 1955 through 2014.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

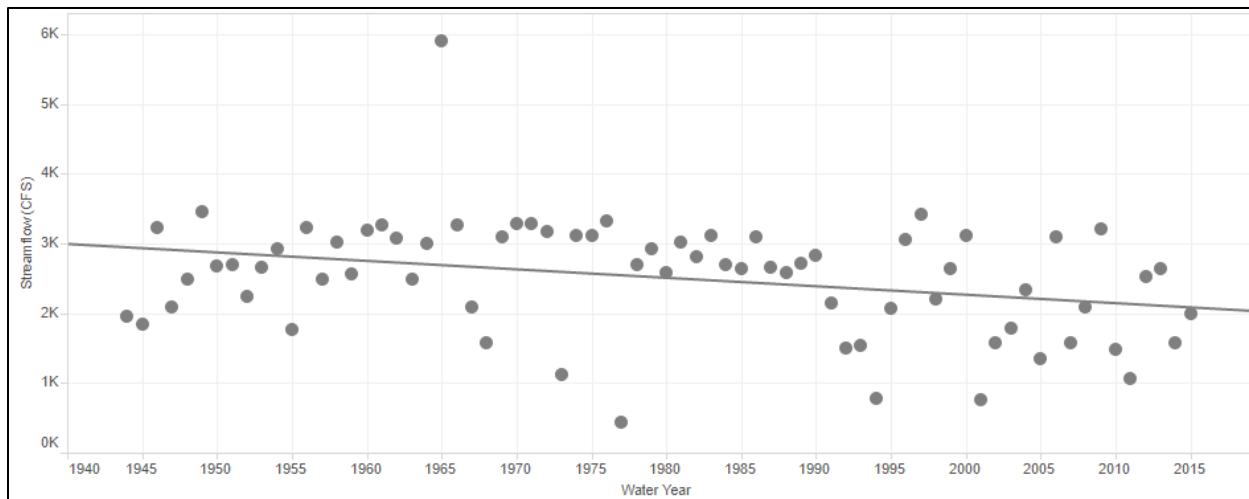


Figure 3-13. N. Santiam River at Niagara, Naturalized Flows, 1928 through 2008.

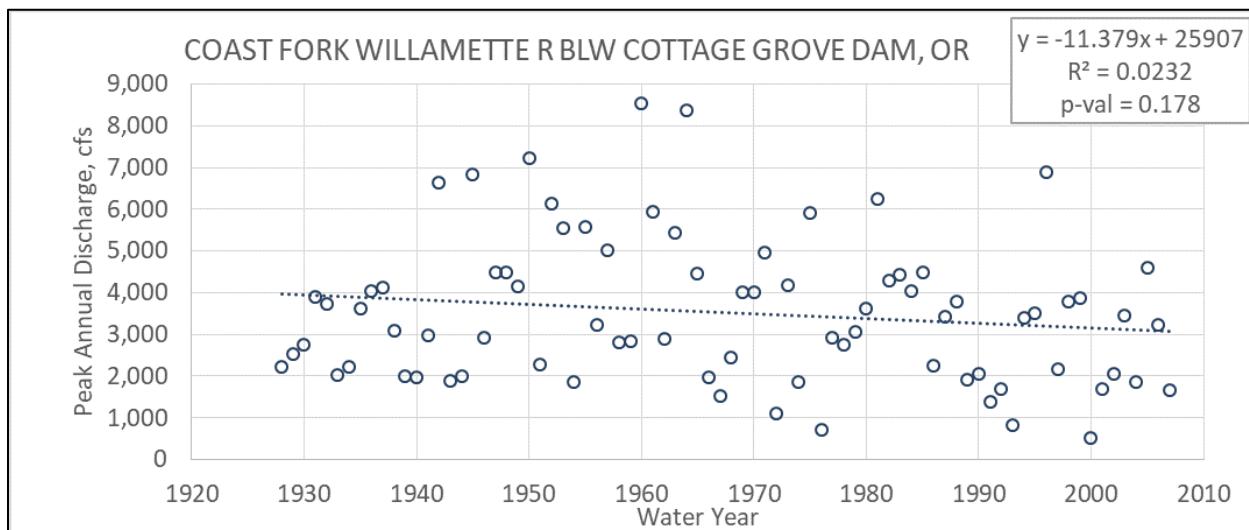


Figure 3-14. Coast Fork Willamette River below Cottage Grove Dam, Complete Period of Record, 1939 through 2014.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

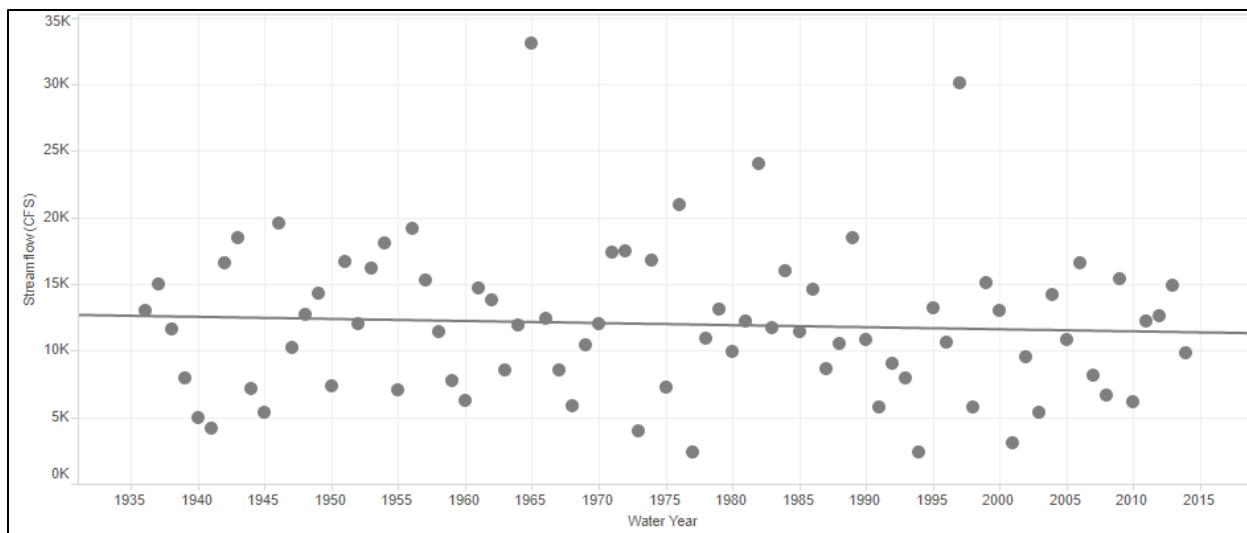


Figure 3-15. Coast Fork Willamette River below Cottage Grove Dam, Post-regulation, 1943 through 2014.

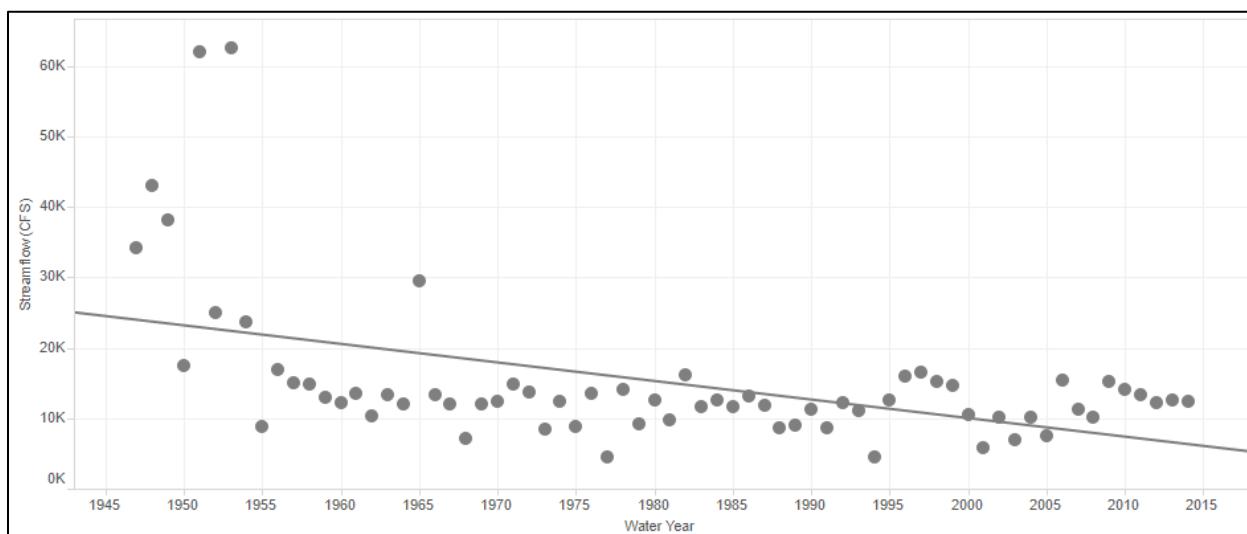
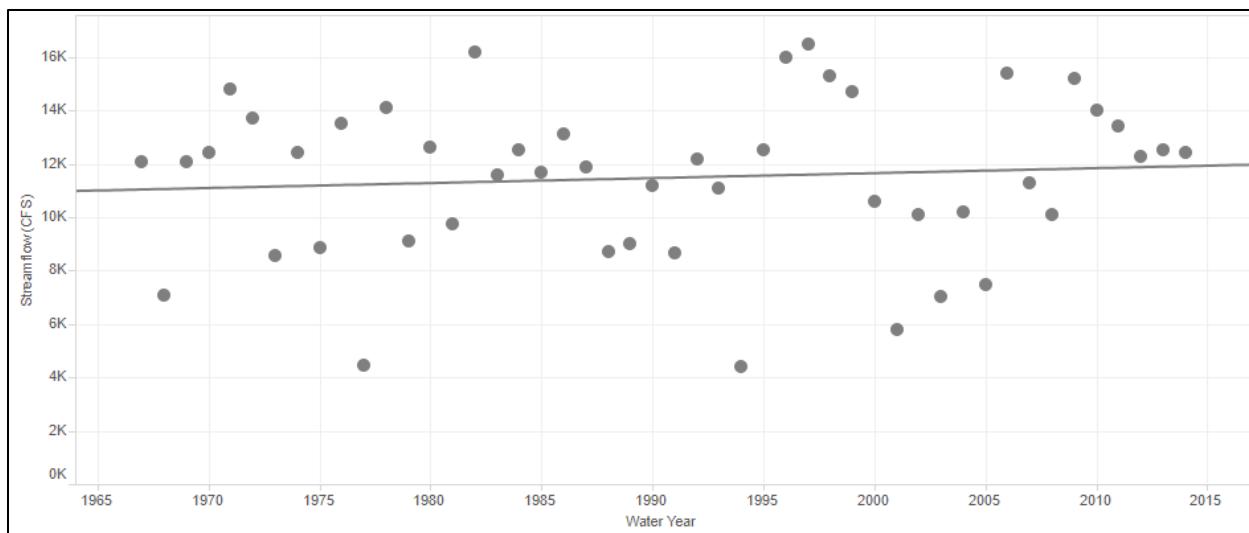


Figure 3-16. Coast Fork Willamette River below Cottage Grove Dam, Naturalized Flows, 1928 through 2008.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*



**Figure 3-17. Row River above Pitcher Creek, Complete Period of Record, 1936 through 2014.
Pristine.**

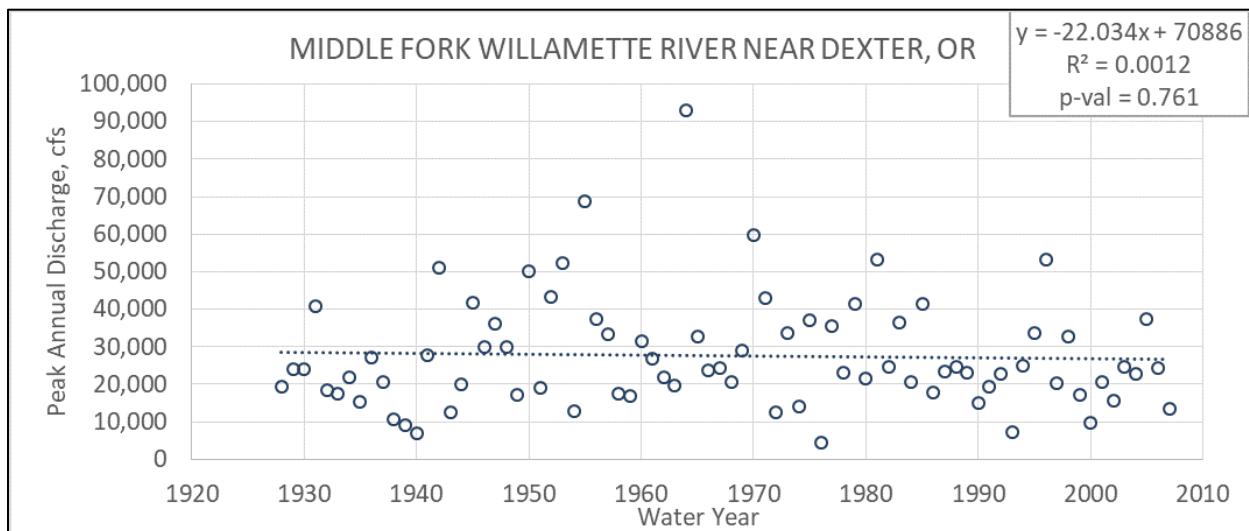


Figure 3-18. Middle Fork Willamette River near Dexter, Complete Period of Record, 1947 through 2014.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

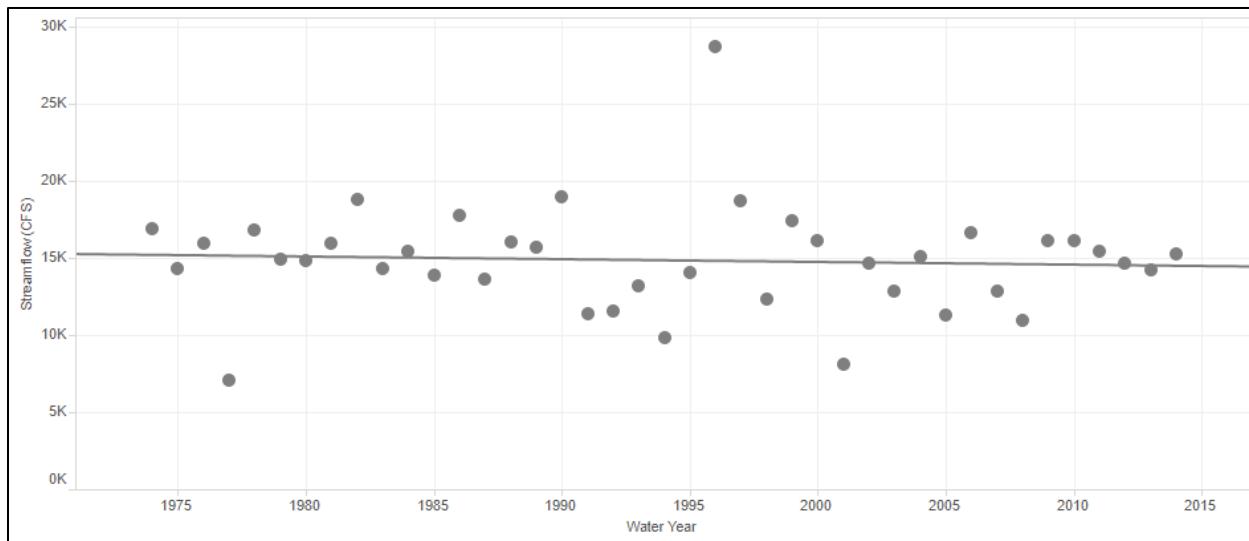


Figure 3-19. Middle Fork Willamette River near Dexter, Post-regulation, 1967 through 2014.

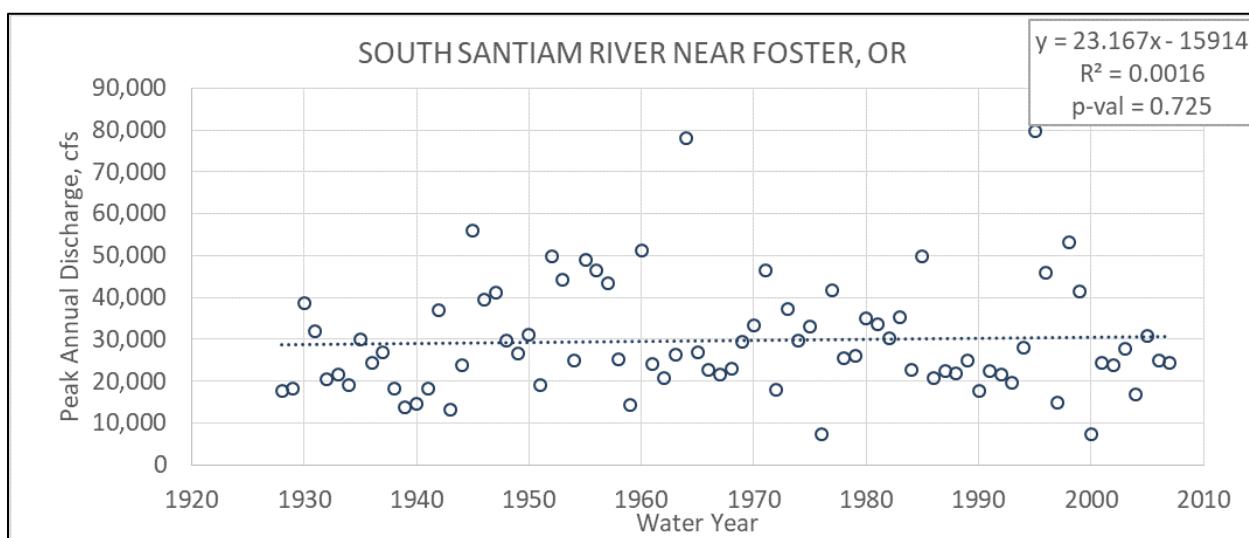


Figure 3-20. Middle Fork Willamette River near Dexter, Naturalized Flows, 1928 through 2008.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

Figure 3-21. S. Santiam River near Foster, Complete Period of Record, Post-regulation, 1974 through 2014.

Figure 3-22. S. Santiam River near Foster, Naturalized Flows, 1928 through 2008.

3.4 Nonstationarity Detection

THE DEIS HAS BEEN REVISED TO INCLUDE THE FOLLOWING INFORMATION IN THE FEIS

The USACE Nonstationarity Detection (NSD) Tool (USACE 2018b) was used to assess whether the assumption of stationarity, is valid for a given hydrologic time-series dataset. The Time Series Toolbox (TST) USACE 2018c has superseded the USACE NSD Tool. The capabilities in the legacy NSD Tool were added to the TST and NSD calculations are now identical to each other. Any reference to the USACE NSD Tool should be understood to also refer to the NSD Tool in the TST.

END NEW TEXT

Nonstationarities are detected using 12 different statistical tests that examine how the statistical characteristics of the dataset change with time (USACE 2017b, Engineering Technical Letter 1100-2-3, Guidance for Detection of Nonstationarities in Annual Maximum Discharges; USACE 2018b, Nonstationarity Detection Tool User Manual, version 1.2). The NSD Tool was applied to the same stream gage sites listed previously in Figure 3-23, and both the observed period of record and naturalized stream flow datasets were analyzed. For the simulated naturalized streamflow datasets, the TST was used to perform the NSD routines. A nonstationarity can be considered “strong” when it exhibits consensus among multiple NSD methods, robustness in detection of changes in statistical properties, and a relatively large change in the magnitude of a dataset’s statistical properties. Many of the statistical tests used to detect nonstationarities rely on statistical change points, which are points within the time-series data where there is a break in the statistical properties of the data such that data before and after the change point cannot be described by the same statistical characteristics. Similar to nonstationarities, change points must also exhibit consensus, robustness, and significant magnitude of change. For discussion of other streamflow metrics of interest to the analysis, such as low flow periods and conservation season runoff volume, refer to Section 3.5.

Figure 3-23 displays the NSD Tool output for the complete period of record (minus historical flows with large data gaps) for the Willamette River at Salem, OR. Note that there are multiple nonstationarities detected throughout the period of record. Most notably are the five nonstationarities detected between 1965 and 1967. These nonstationarities can be attributed to a significant decrease in mean annual peak flow. Also, during the period between 1952 and 1988, a gradual or smooth nonstationarity was detected by the Lombard Wilcoxon test. These nonstationarities show both consensus and robustness because they are detected by multiple statistical tests targeting different statistical properties (mean and overall distribution) all around the same time. The timing of this strong nonstationarity aligns neatly with the completion of many of the WVS flood risk reduction projects, whose primary intent is to lower peak flows, and allows this nonstationarity to be attributed to the upstream regulation. The smooth nonstationarity detected from 1952 through 1988 also aligns well with the period in which the WVS dams were coming online as flood risk reduction projects.

Figure 3-24 displays the application of 12 nonstationarity detection tests for the naturalized peak discharge record for the Willamette River at Salem. Because these simulated flows are not influenced by regulation and irrigation, it would be anticipated that the previously detected nonstationarities attributed to the construction of the dams would be absent. Only one uncorroborated nonstationarity was detected. Because this single nonstationarity in 1984 does not exhibit either consensus or robustness, it is unlikely to be operationally significant and the naturalized annual peak flow dataset can be homogenous across the period of record. It should be noted that just because the annual peak streamflow data was shown to be homogenous, this does not imply that all other aspects of the flow regime are homogenous. Other aspects of the flow regime, such as seasonal low flow, are discussed in Section 3.5.

Figure 3-25 and Figure 3-26 display NSD Tool results for two gages that were deemed pristine and largely free of influence from upstream regulation—the Luckiamute River near Suver and North Santiam River below Boulder. Neither of these gages indicate strong evidence of non-homogeneity.

Figure 3-27 and Figure 3-28 display NSD results for the North Santiam River at Niagara. The figures show the results of applying the NSD tests to the observed annual peak flows (NSD Tool) and naturalized annual peak flows (TST). Note that there appears to be a strong nonstationarity indicated by multiple statistical tests targeting changes in sample mean and distribution. This nonstationarity represents a significant decrease in sample mean detected around 1958 in the observed streamflow record. Additionally, a smooth nonstationarity was detected by the Lombard Wilcoxon statistical test spanning 1950 through 1961. This smooth nonstationarity indicates that the mean of the dataset is in flux throughout a period of time. The nonstationarities detected can be attributed to the construction of the Big Cliff and Detroit Dams, which are located just upstream of the gage. Both dams were constructed in 1953 with the reservoirs filling to their normal pools soon after. When the influence of these reservoirs was removed, no nonstationarities were detected.

Figure 3-29 and Figure 3-30 display the results of the NSD tests for the Coast Fork Willamette River below Cottage Grove Dam for the observed and naturalized annual peak streamflow datasets. In the observed record, there appears to be a strong nonstationarity detected around 1990. This nonstationarity is indicated by multiple statistical tests targeting changes in sample mean and overall statistical distribution. The detected nonstationarity coincides with a significant decrease in sample mean and is not present in the naturalized flow record. This 1990 nonstationarity is more difficult to attribute to reservoir regulation compared with the datasets analyzed thus far because it does not coincide with the recent construction of a reservoir. However, because the nonstationarity is not detected in the naturalized flow record, it is possible that a shift in reservoir operation may be causing this shift in hydrologic response, but documentation of a shift in reservoir operations does not exist in the Water Control Manual. Further investigation is required to fully rule out attribution of this nonstationarity to human-driven climate change or another less easily identifiable source of nonstationarity (e.g., gradual land use/land cover change, long-term persistent climate trends, etc.).

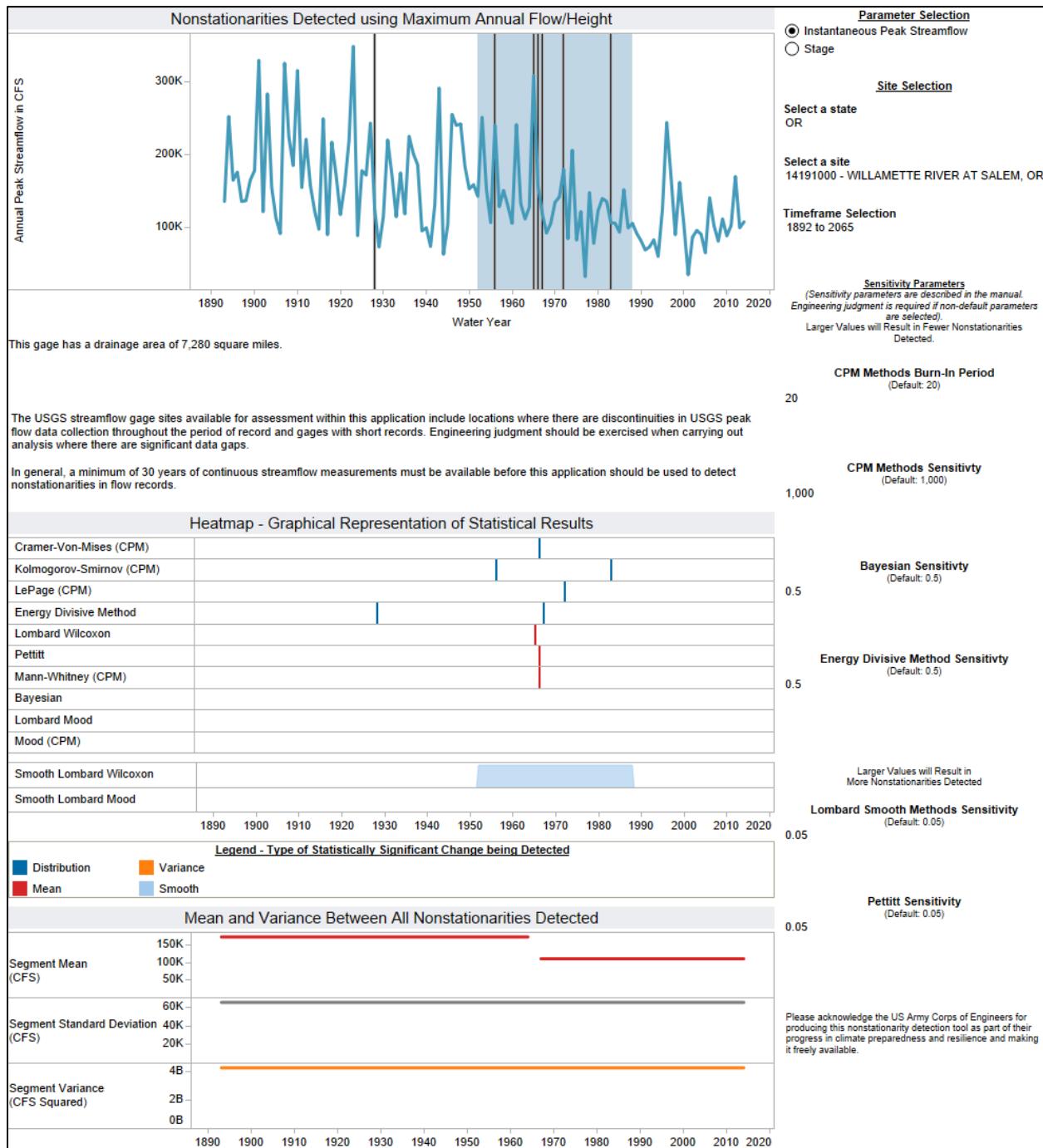
*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

For the Coast Fork Willamette River below Cottage Grove, significant decreases in post-regulation annual peak streamflow were detected by both the NSD Tool and indicated by the linear regression performed within the TST. Documentation of a change in the reservoir's regulation procedure around the late 1980s or early 1990s is lacking, but there appears to be at least a weak signal indicated here that cannot necessarily be attributed to regulation.

Figure 3-31 displays the NSD results for the Row River above Pitcher Creek and near Dorena. This gage was identified as being considered pristine and shows no evidence of nonstationarity within its period of record.

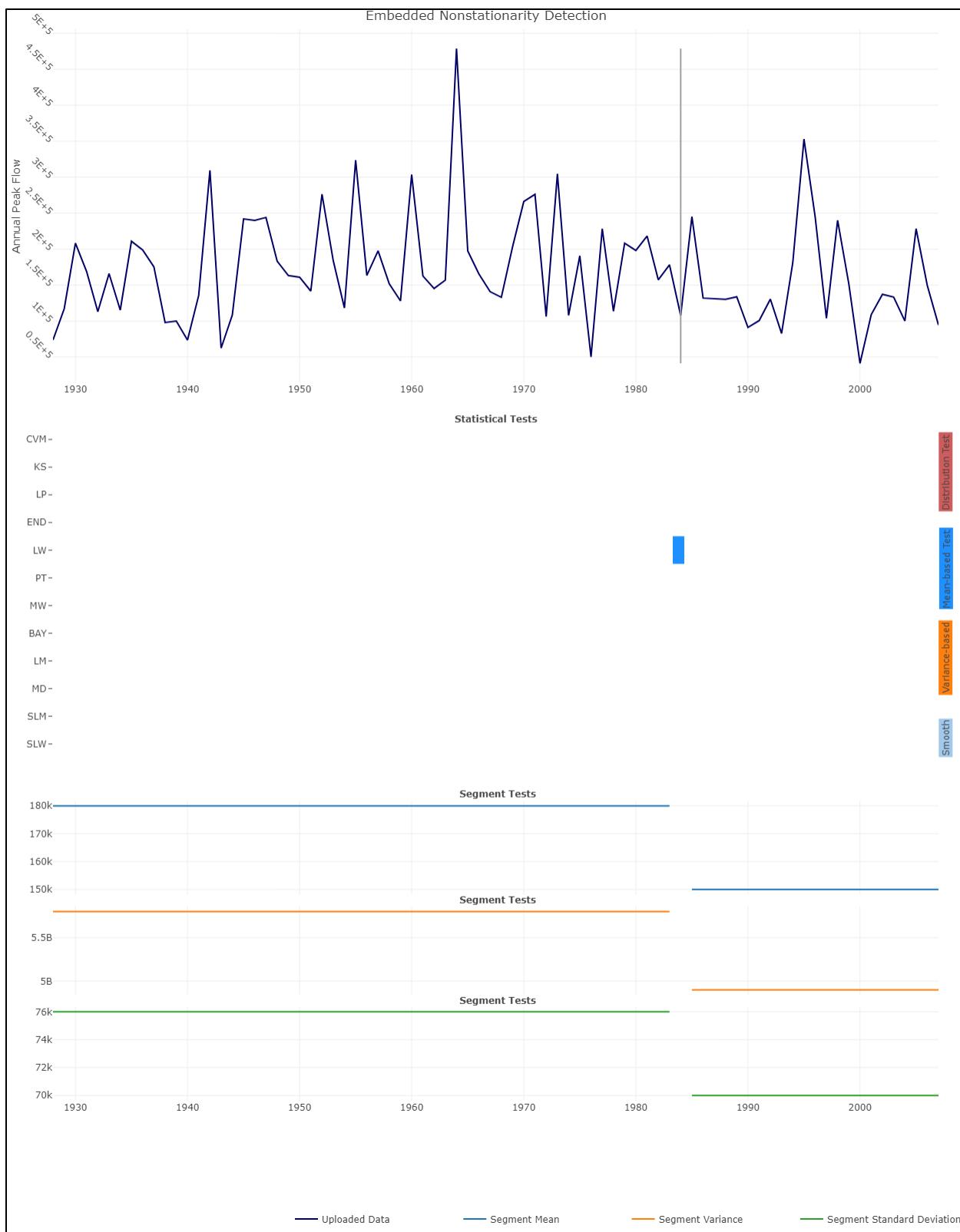
Figure 3-32 displays NSD results for the observed, annual peak streamflow record at Middle Fork Willamette River near Dexter and Figure 3-33 displays NSD results for the naturalized flow record. A strong nonstationarity is detected in the observed period of record centered around 1954 in addition to a smooth Lombard Wilcoxon nonstationarity spanning 1947 through 1961, and a Lombard Mood nonstationarity spanning 1952 through 1956. NSD tests targeted at identifying changes in mean overall distribution and variance indicate a nonstationarity around 1954. These nonstationarities coincide with a significant decrease in sample mean and variance. This nonstationarity is not present in the naturalized period of record. The detected nonstationarity can likely be attributed to the construction of Lookout Point Dam, which is located immediately upstream and was constructed in 1953.

Nonstationarities were not detected in either the observed or naturalized peak streamflow record for the South Santiam River near Foster, OR. Figures for this gage are not included in this report.

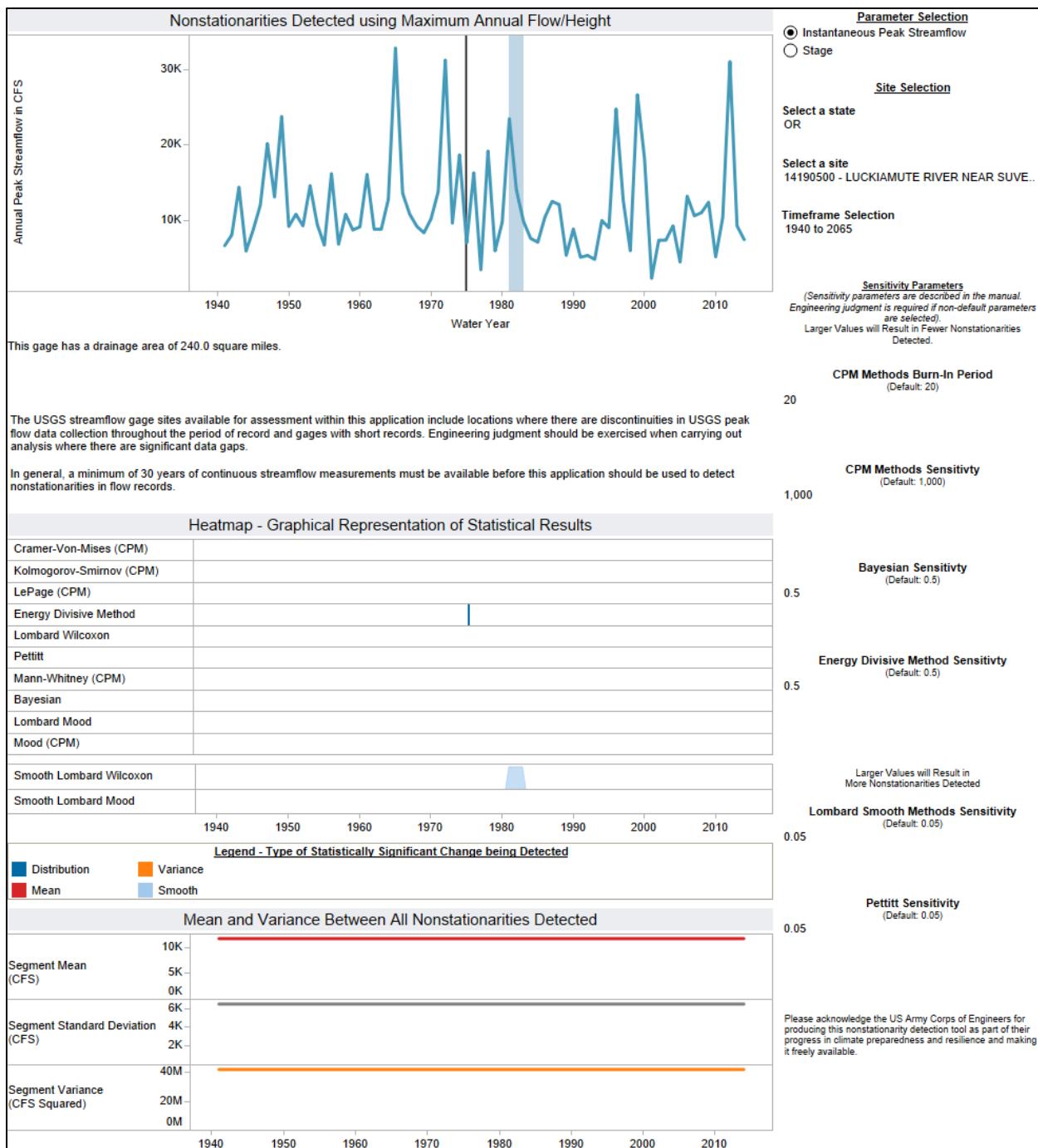

The NSD Tool's trend analysis tab was used to independently verify the linear trend analysis reported in the CHAT section. Overall, agreement upon trend direction and statistical significance was found between the NSD Tool and CHAT for all subbasins analyzed.

The NSD analysis across the Willamette River Basin for various gages as well as for observed and naturalized streamflow conditions resulted in the following conclusions:

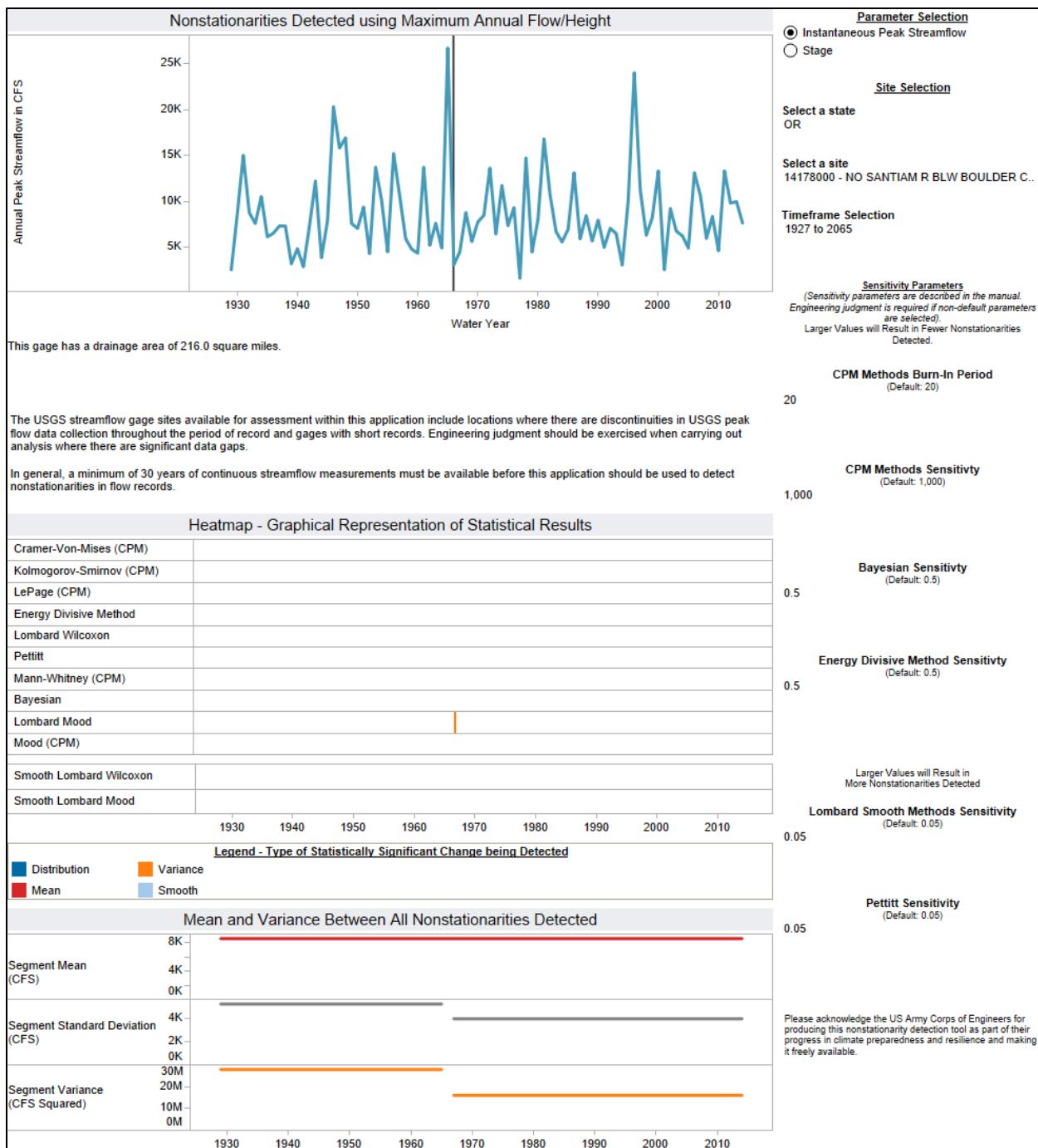
- When the regulated annual peak streamflow period of record is analyzed, nonstationarity is widespread and can be attributed to the construction and operation of reservoirs upstream from the stream gages.
- However, when the influence of regulation is removed, the previously detected nonstationarities generally disappear.
- Additionally, no strong nonstationarities are detected at relatively pristine (headwater) gage sites.
- It appears that climate change, long-term natural climate trends, and land use/land cover changes taken together are not significantly undermining the stationarity of the historically observed peak streamflow records in the Willamette River Basin.


Willamette Valley System Operations and Maintenance
Environmental Impact Statement

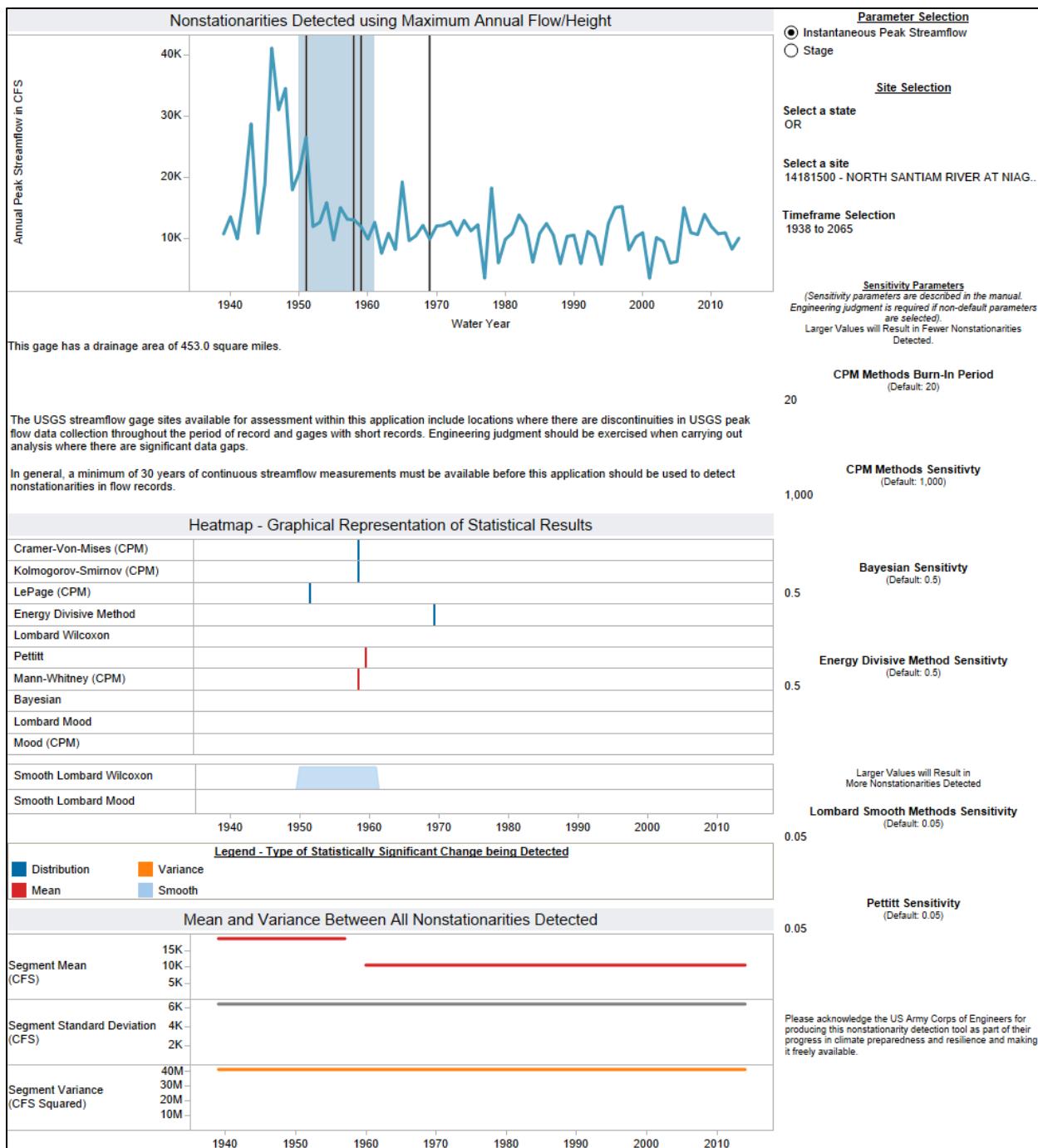
Note that for all outputs generated from the TST, CPM indicates a change point method and applies to the statistical NSD tests.


Figure 3-23. NSD for Willamette River at Salem, 1892 through 2014.

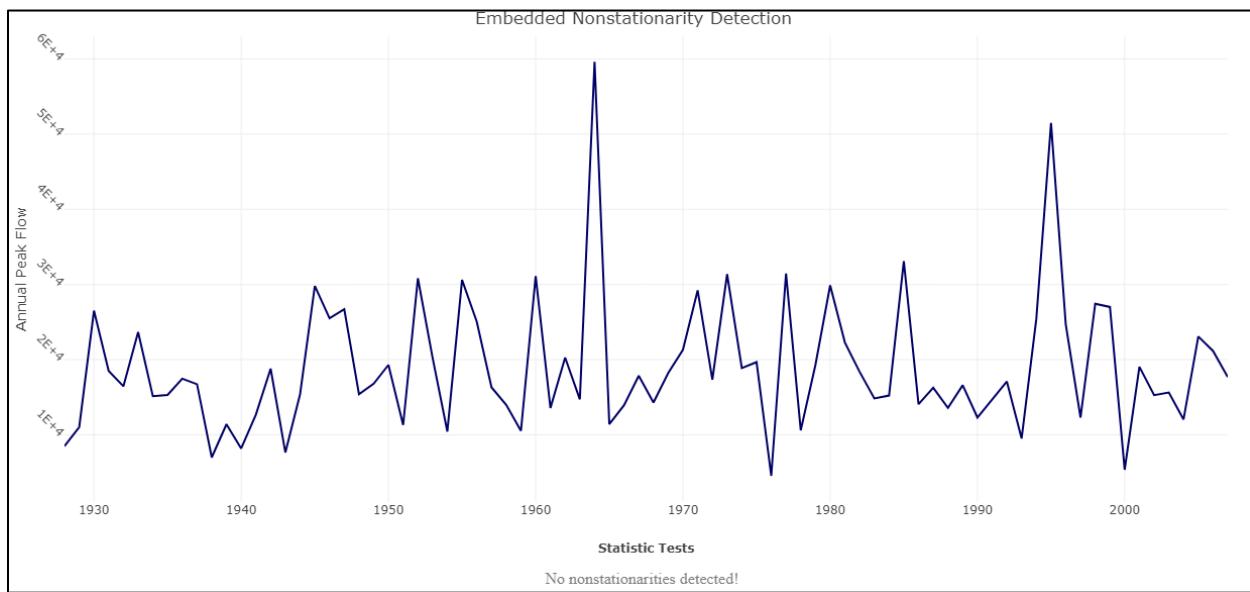
**Willamette Valley System Operations and Maintenance
Environmental Impact Statement**


Figure 3-24. NSD Willamette River at Salem, Naturalized Flows, 1928 through 2008.

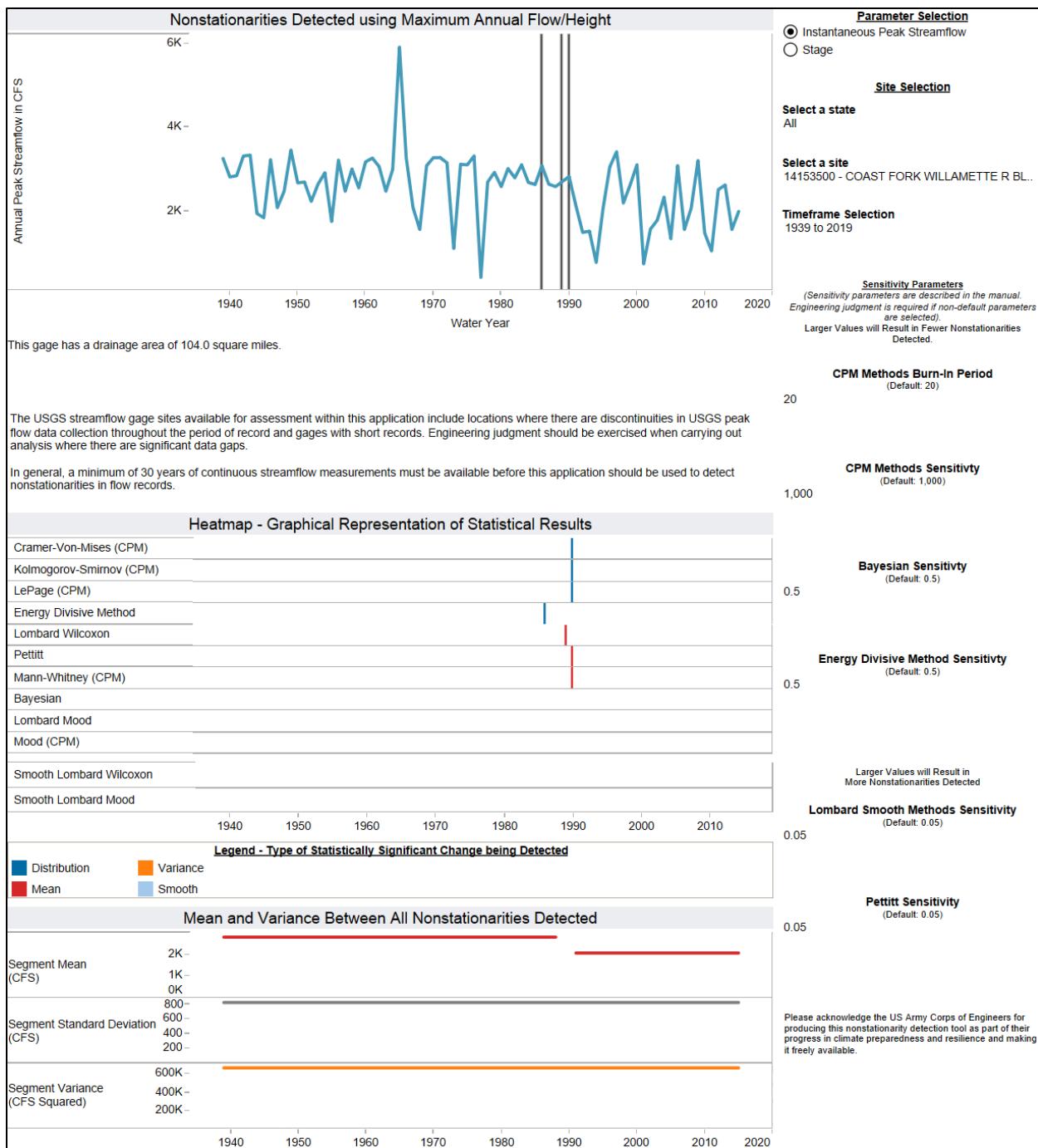
Willamette Valley System Operations and Maintenance
Environmental Impact Statement


Figure 3-25. NSD Luckiamute River near Suver, 1940 through 2014.

**Willamette Valley System Operations and Maintenance
Environmental Impact Statement**


Figure 3-26. NSD North Santiam River below Boulder, 1927 through 2014.

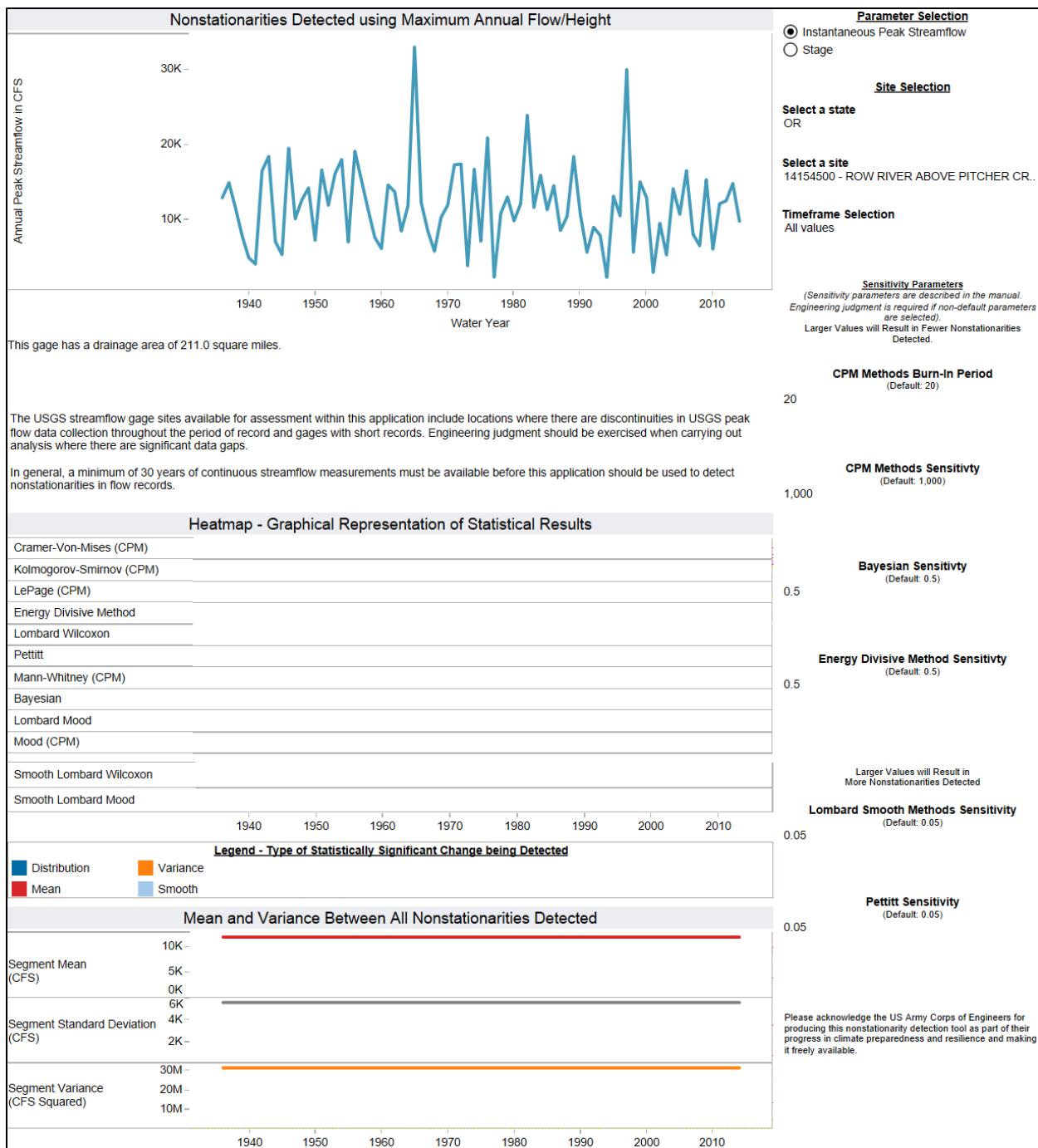
Willamette Valley System Operations and Maintenance Environmental Impact Statement


Figure 3-27. NSD North Santiam River at Niagara, 1938 through 2014.

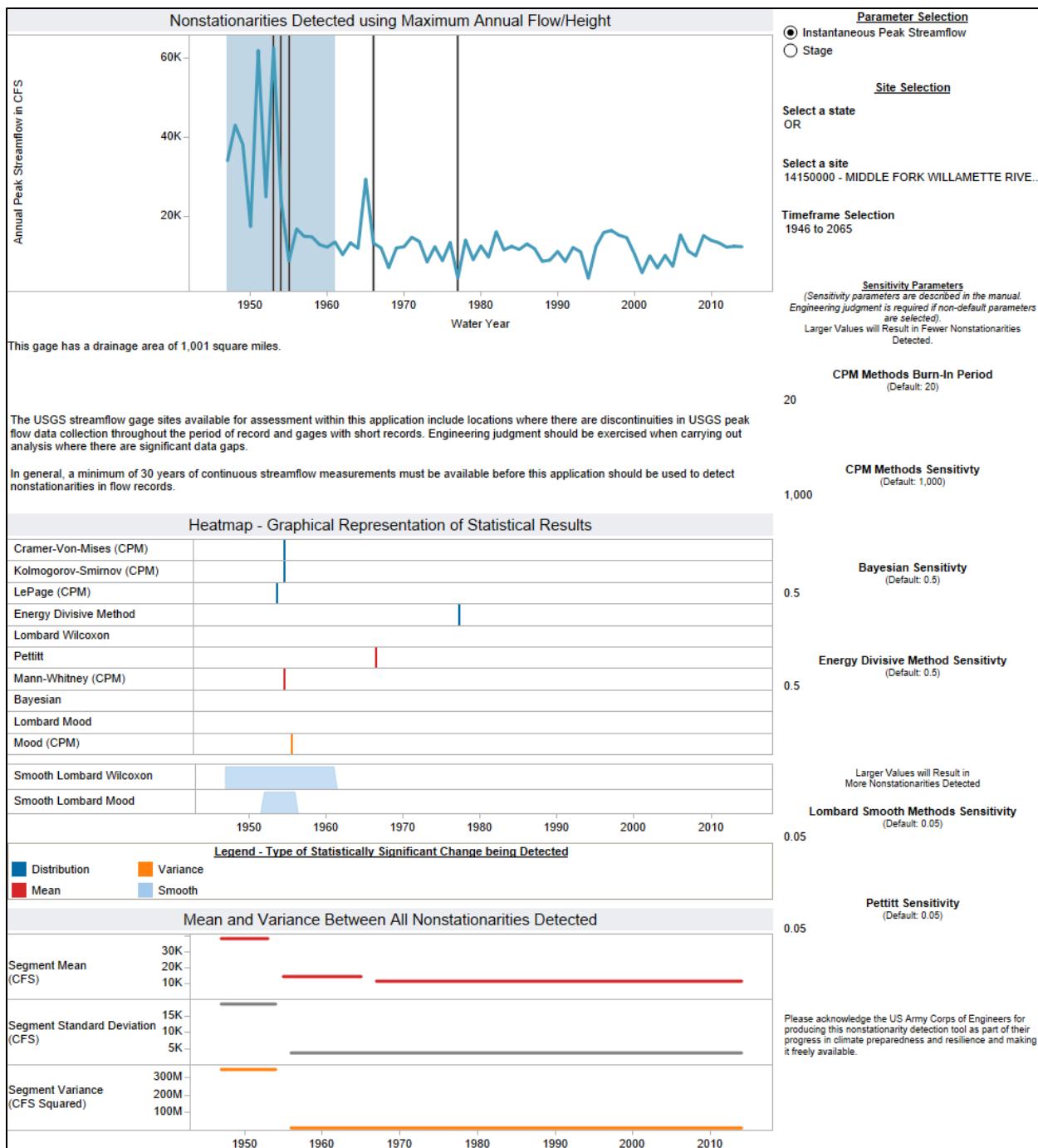
Willamette Valley System Operations and Maintenance
Environmental Impact Statement

Figure 3-28. NSD North Santiam River at Niagara, Naturalized Flows, 1928 through 2008.

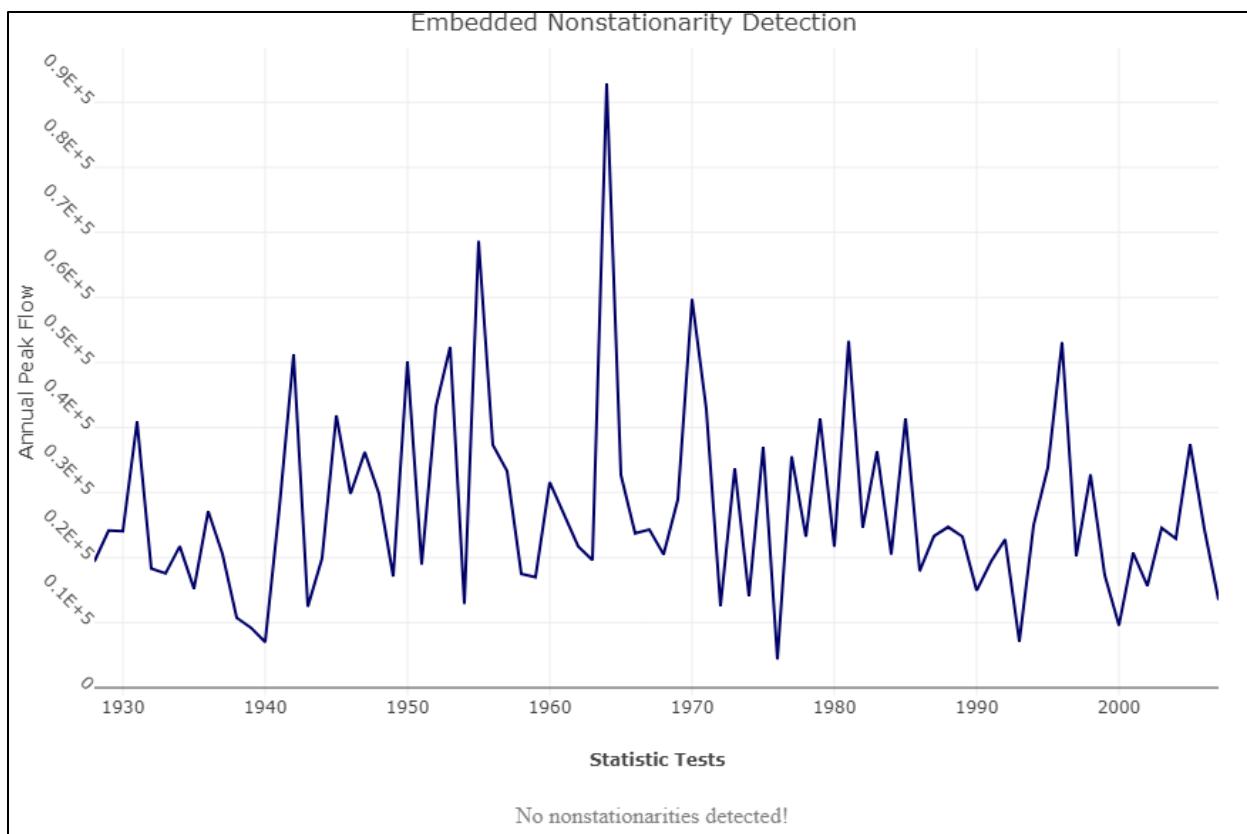
Willamette Valley System Operations and Maintenance Environmental Impact Statement


Figure 3-29. NSD Coast Fork Willamette River below Cottage Grove, 1939 through 2014.

Willamette Valley System Operations and Maintenance Environmental Impact Statement


Figure 3-30. NSD Coast Fork Willamette River below Cottage Grove, Naturalized Flows, 1928 through 2008.

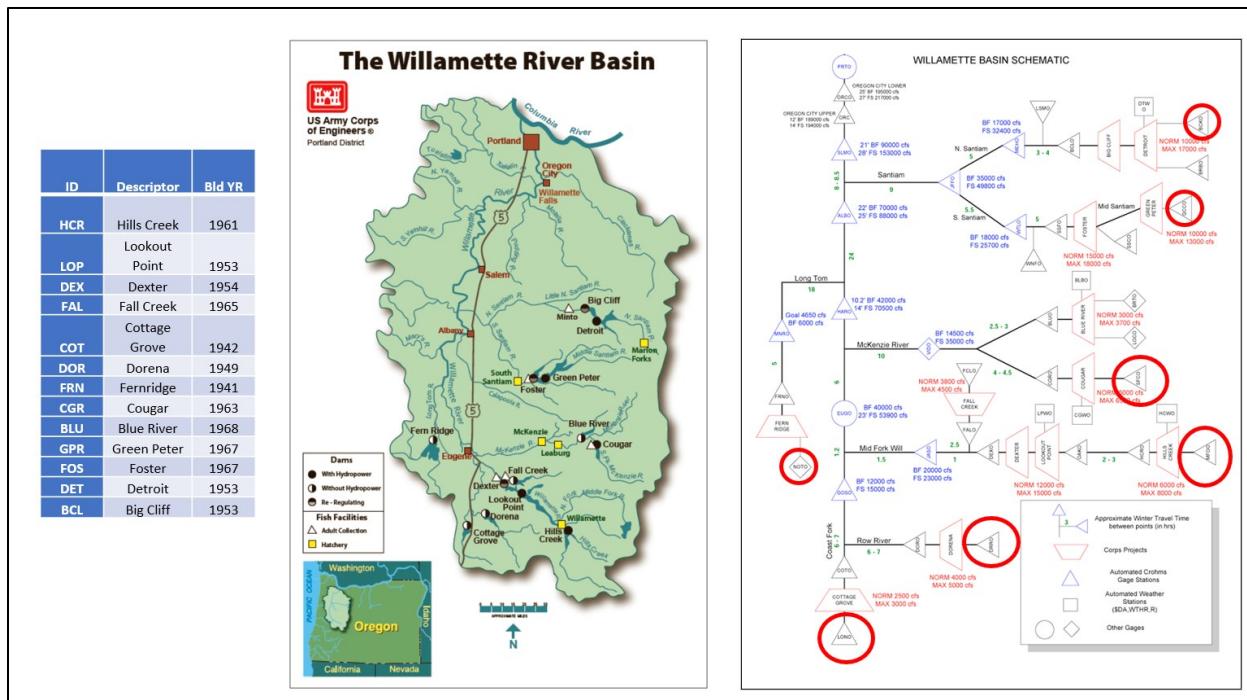
Willamette Valley System Operations and Maintenance
Environmental Impact Statement


Figure 3-31. NSD for the Row River at Pitcher Creek, near Dorena, 1936 through 2014.

**Willamette Valley System Operations and Maintenance
Environmental Impact Statement**

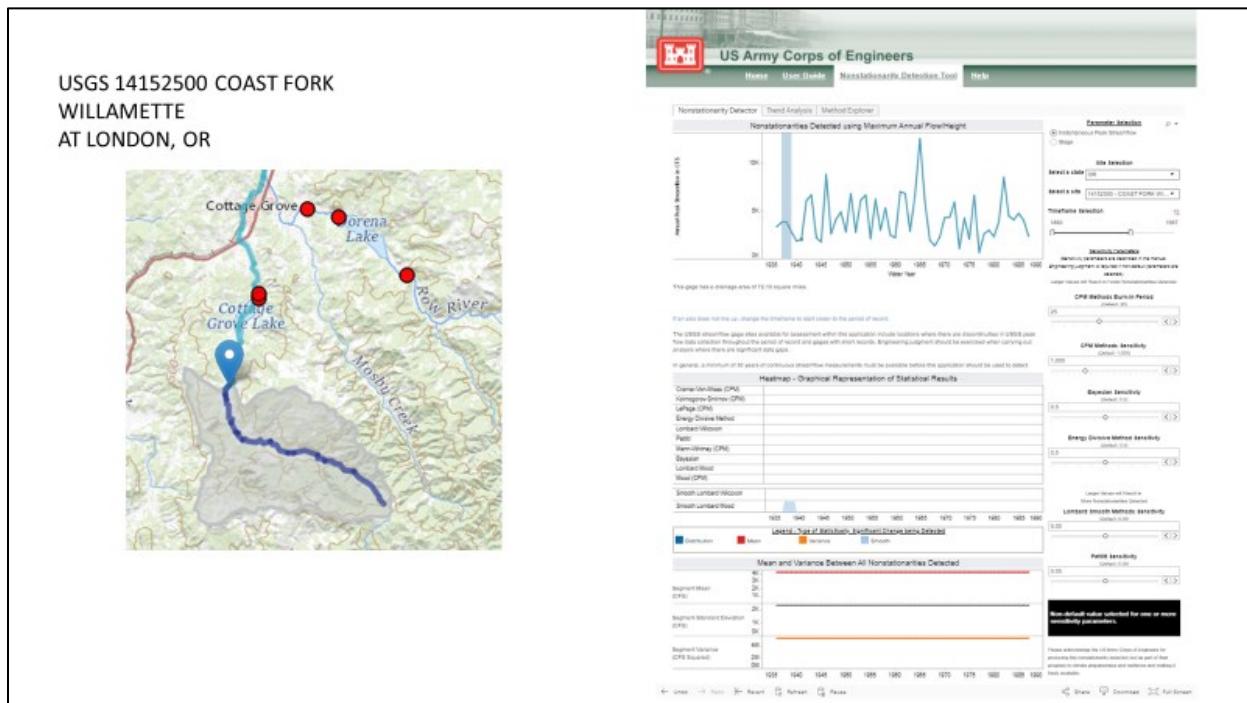
Figure 3-32. NSD Middle Fork Willamette River near Dexter, 1946 through 2014.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

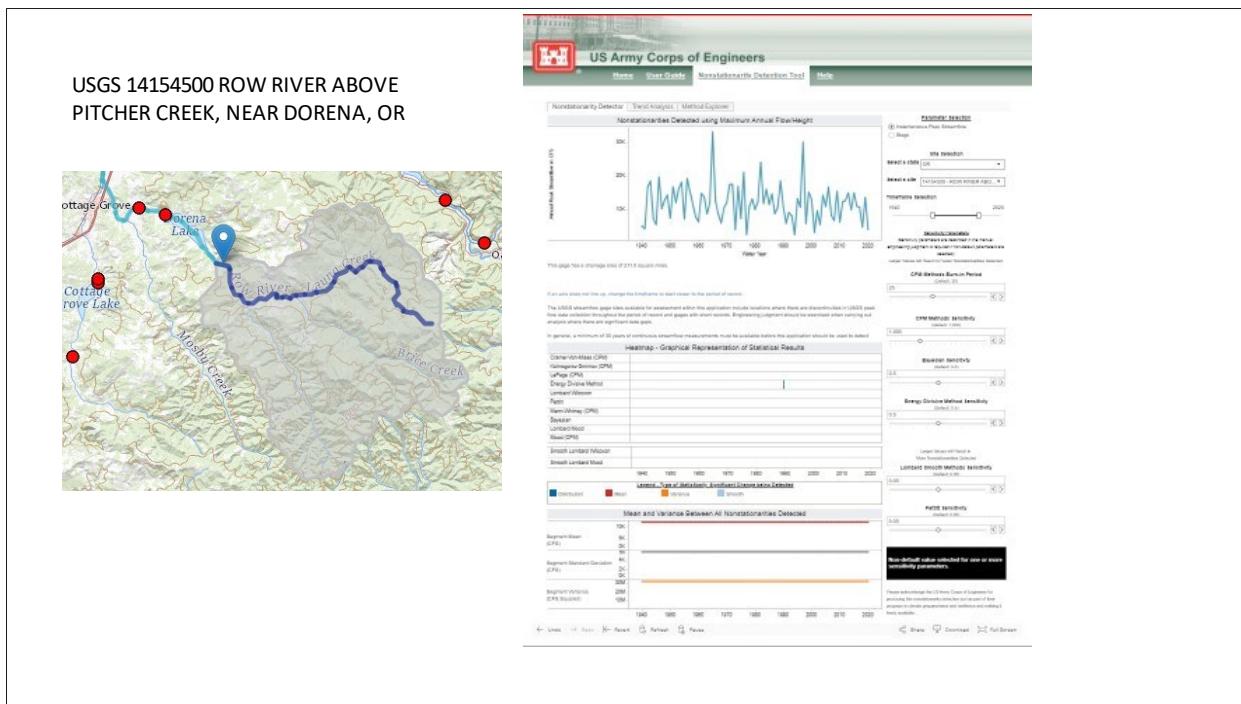

Figure 3-33. NSD Middle Fork Willamette River near Dexter, Naturalized Flows, 1928 through 2008.

THE DEIS HAS BEEN REVISED TO INCLUDE THE FOLLOWING INFORMATION IN THE FEIS

Overall, the agreement across the watershed and through various time periods indicates that all statistically significant trends are likely due to the influence of upstream regulation and likely not due to climatic shifts driving changes in hydrology. Trend detection and statistical significance was verified using the trend analysis tab of the NSD Tool.


Additional NSD analyses were performed for Willamette River Basin Y unregulated subbasin tributaries. These tributaries are of interest because these basins are not subject to the additional layers of analysis required to deregulate flows and any trends or lack of trends identified would be more reliable. Given the scale of this study, it was appropriate and worthwhile to include it. The analyses are graphically summarized in Figure 3-35 through Figure 3-40. NSD evaluation was made for Willamette River unregulated subbasins, shown in Figure 3-34.

**Willamette Valley System Operations and Maintenance
Environmental Impact Statement**


Figure 3-34. Locations of Additional NSD Analyses Sites.

No significant NSDs occurred in the basins analyzed. Note that it takes a positivity of three or more tests to establish high significance of the NSD detect.

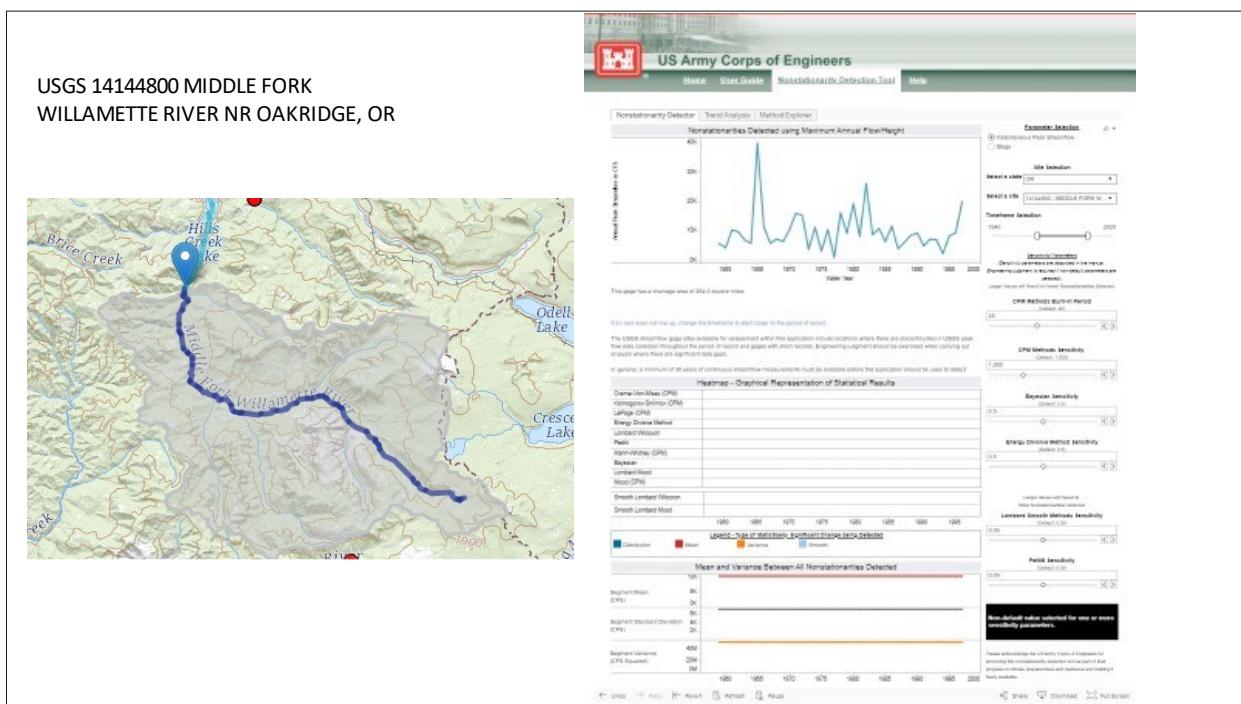
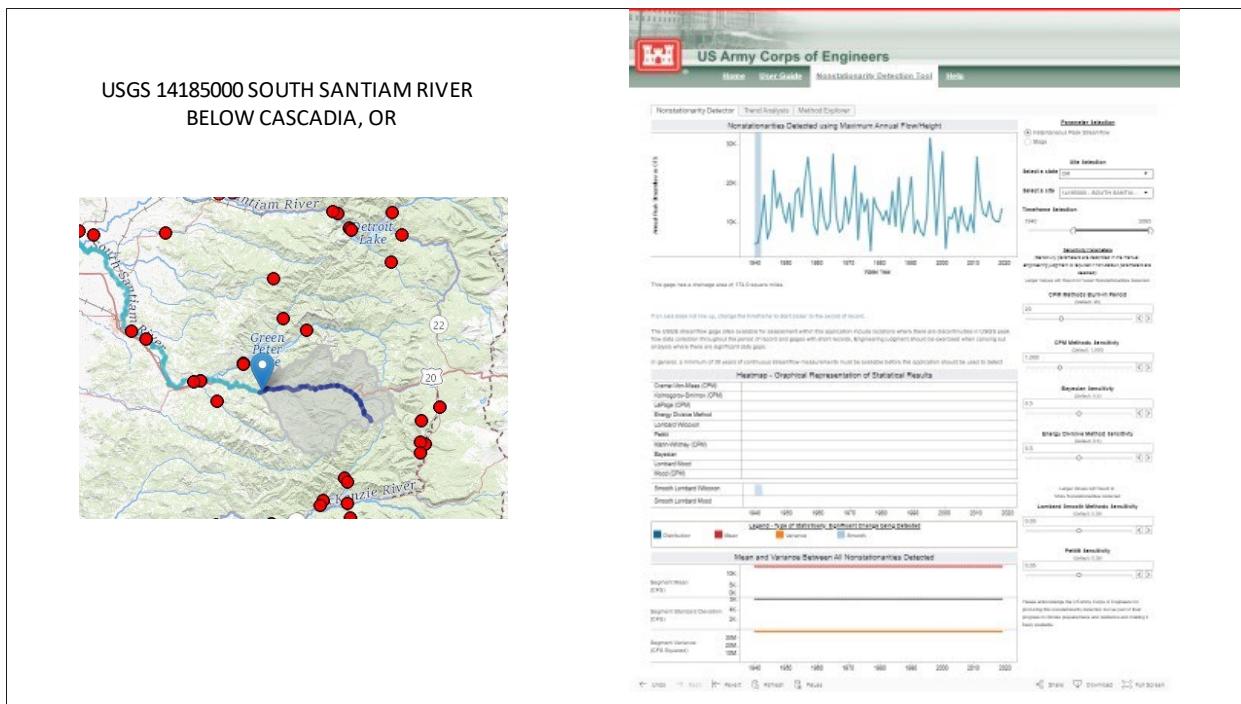


Figure 3-35. Coast Fork Willamette River NSD Analyses.

Willamette Valley System Operations and Maintenance Environmental Impact Statement


Figure 3-36. Row River NSD (Pristine) Analyses.

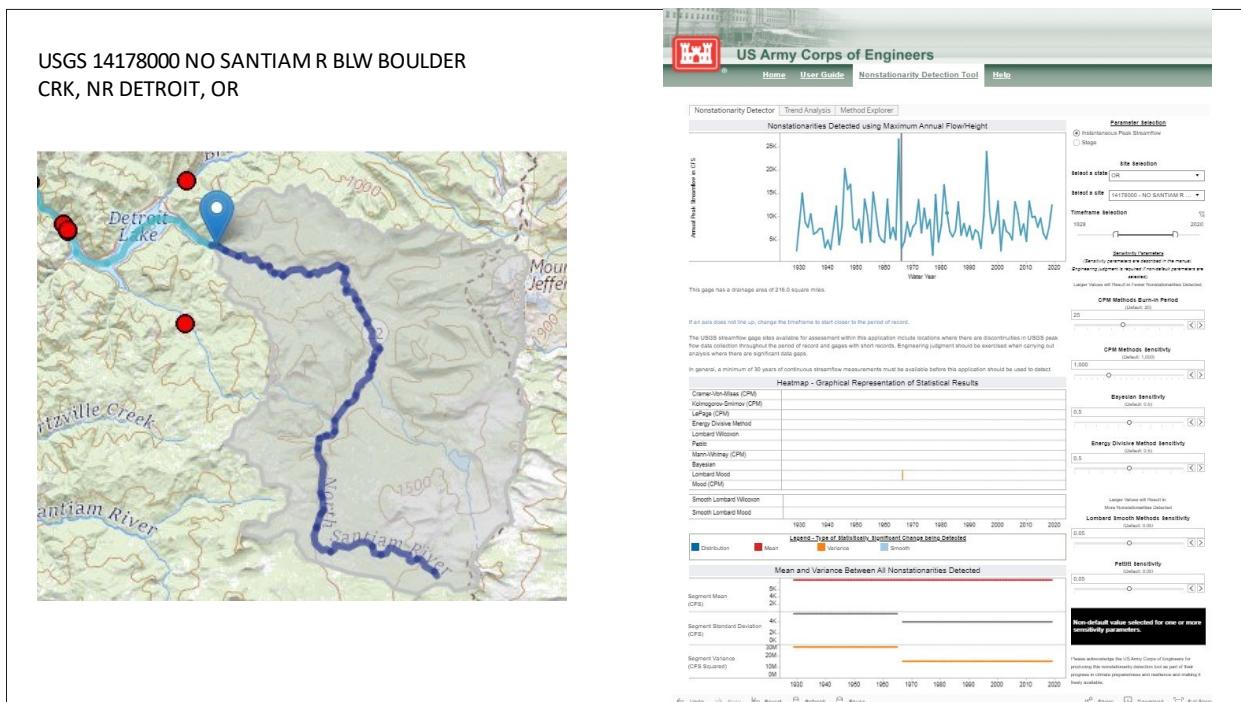


Figure 3-37. Middle Fork Willamette River NSD Analyses.

Willamette Valley System Operations and Maintenance Environmental Impact Statement

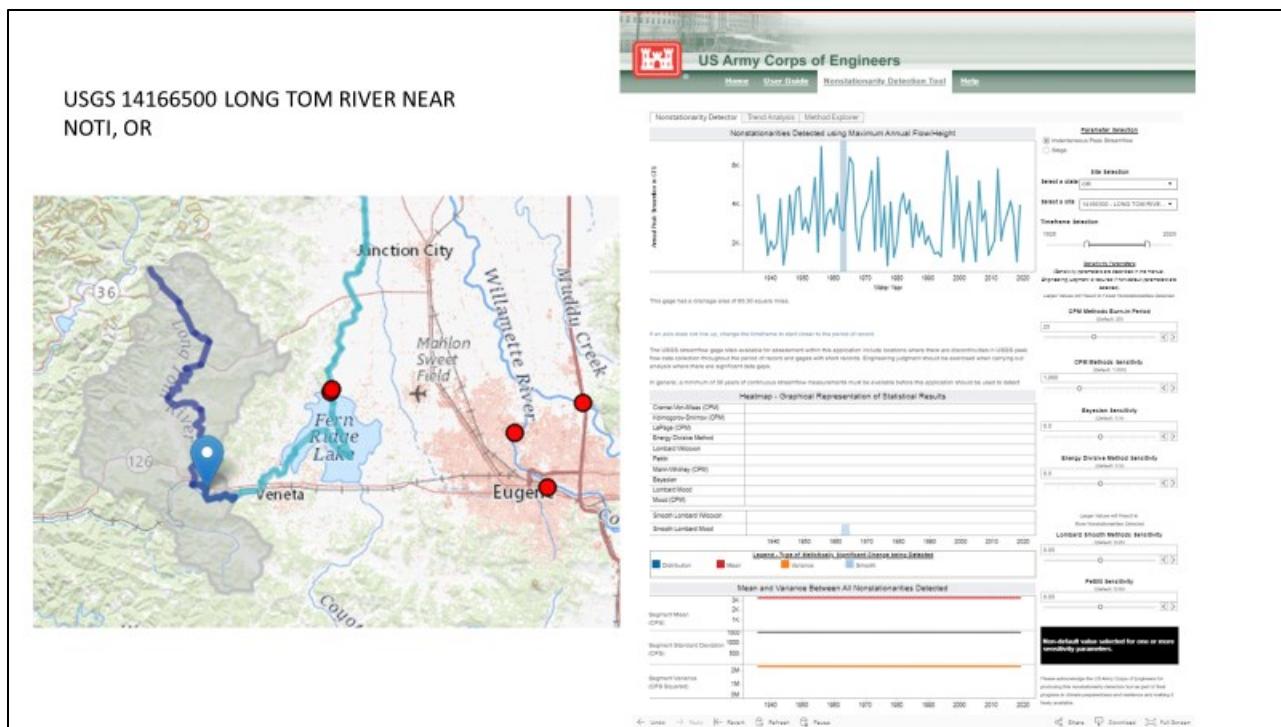


Figure 3-38. South Santiam NSD Analyses.

Figure 3-39. North Santiam NSD Analyses.

**Willamette Valley System Operations and Maintenance
Environmental Impact Statement**

Figure 3-40. Fern Ridge NSD Analyses.

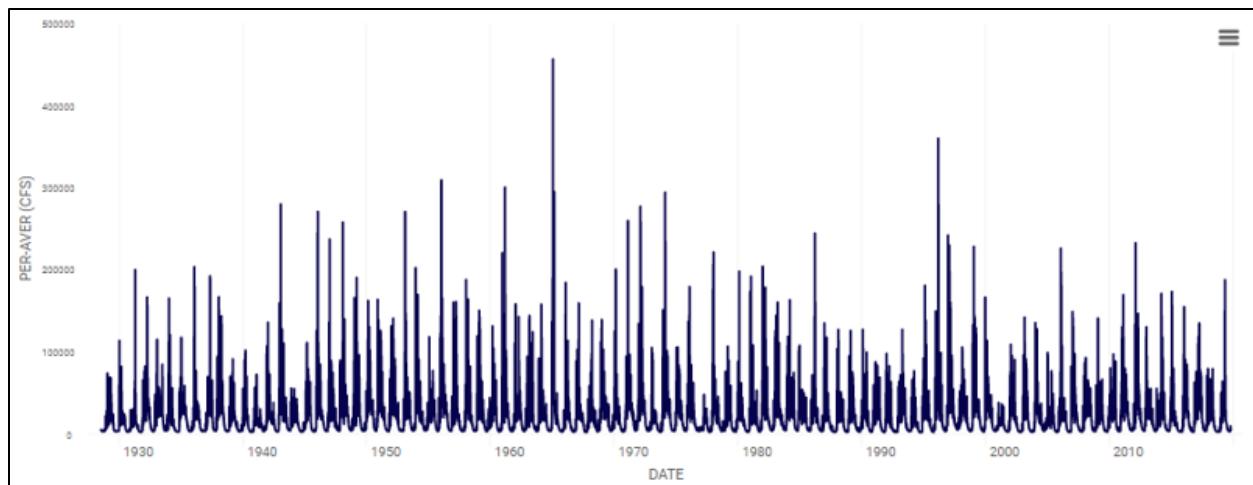
3.5 Nonstationarity and Trend Analyses for Additional Hydrologic Variables.

USACE prepared additional trend and nonstationarity analyses. The analyses were performed to assess potential annual and seasonal change in Willamette River downstream flows (i.e., at Salem, OR). The assumption of annual and seasonal stationarity was also tested. The analyses informed the decision to use the full range of years of the period of record in ResSim (USACE 2017c) and other EIS modeling efforts.

Strong evidence that climate change was driving any streamflow nonstationarities in the Willamette River Basin was lacking. Analyses did identify trends, but only for the 1-day average annual minimum flows (e.g., negatively sloped) trends across the period of record, which was statistically significant (p-value less than 0.05) (Table 3-2). USACE technical review requires strong evidence to accept truncating the record and discarding the earlier years of record. Supporting Mann-Kendall analyses did not appear to demonstrate this had been achieved. The details and results of the analyses are discussed below. However, it is relevant to note that additional trend analyses were performed and are summarized in Table 3-2. The additional trend analyses include statistical significance tests (e.g., T-test, Mann-Kendall, and Spearman Rank Order). These analyses lend support to the analyses presented here.

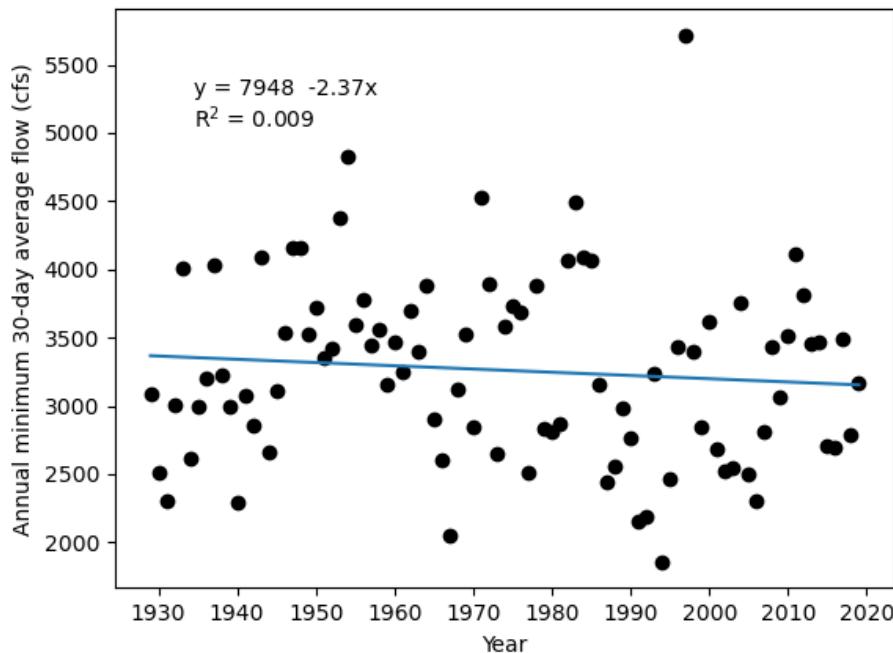
Daily unregulated flow at Salem, OR for 1928 through 2019 (91 years) were used for analyses purposes. Note that the WVS EIS ResSim analysis period of record is water years 1935 through 2019. An additional 7th year was added to the trend analyses dataset. The source of these 7 additional years was the Modified Flow dataset (BPA 2020). The Mann-Kendall test was initially

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

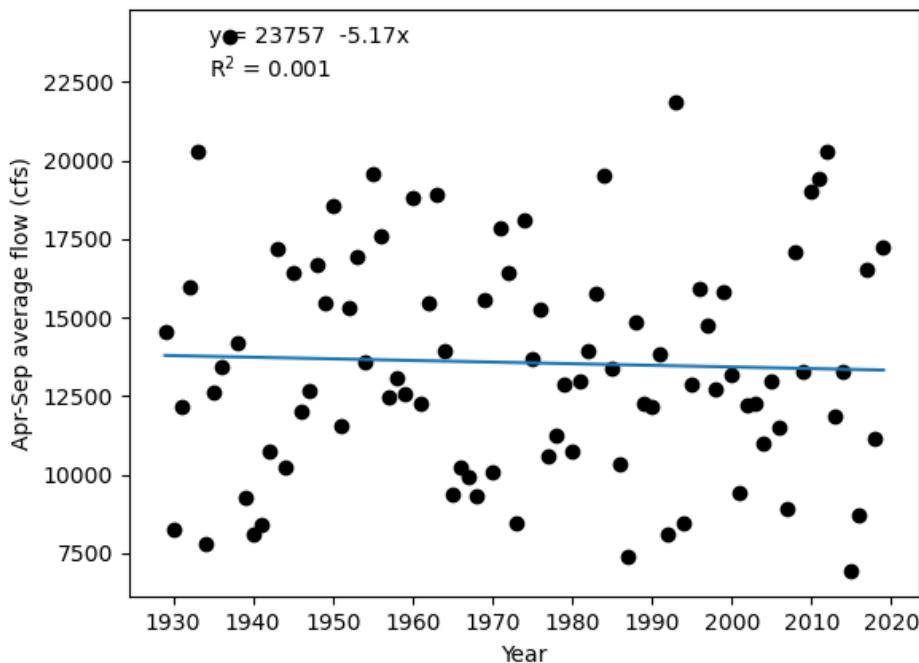

performed to determine whether trends were statistically relevant. The critical periods within a water year are:

- Lowest 30-day flow period of the year (typically sometime in August through September)
- April 1 – September 30 flows
- March 1 – May 31 flows
- June 1 – September 30 flows

Seasonality time windows were chosen that correspond to periods important to the Willamette Valley System water management operations. NOAA-NMFS also questioned whether the full period of record was adequately representative of more recent (e.g., past 10, 15, and 30 years) extreme events. Concern focused on refill (March through May) and low flow metrics occurring in the summer conservation (June through September) and early fall months. Overall, these analyses indicated that for the historical period of record, evidence supported use of the complete period of record for ResSim and other EIS modeling purposes.


END NEW TEXT

Analyses were performed at Salem, OR. Salem is a primary regulation control point and possesses a significant period of quality flow data. Although regulation effects are removed, the data would still include diversion and (irrigation) depletions. Results are graphically summarized in Figure 3-41. Overall, the evaluated periods did not show any statistically significant trends or differences between recent years.


Figure 3-41. Salem, Oregon, Unregulated Daily Average Flows, 1928 through 2019.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

Figure 3-42. Salem, Oregon, 30-day Minimum Flow.

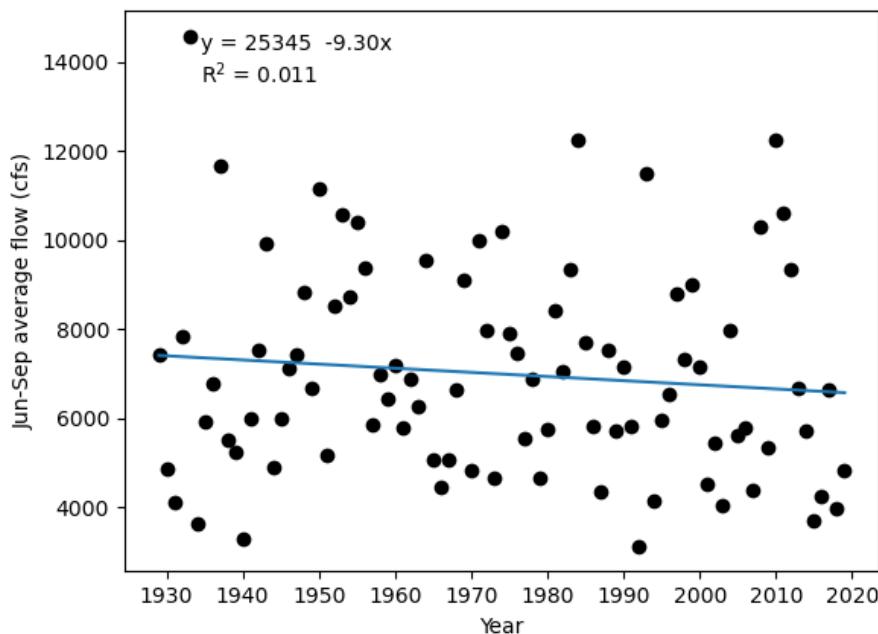

For the 30-day minimum flow, there was no discernible trend through the period of record. The Mann-Kendall Test, p-value of 0.35, which is greater than 0.05, indicated that this trend was not statistically significant.

Figure 3-43. Salem, Oregon, April through September.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

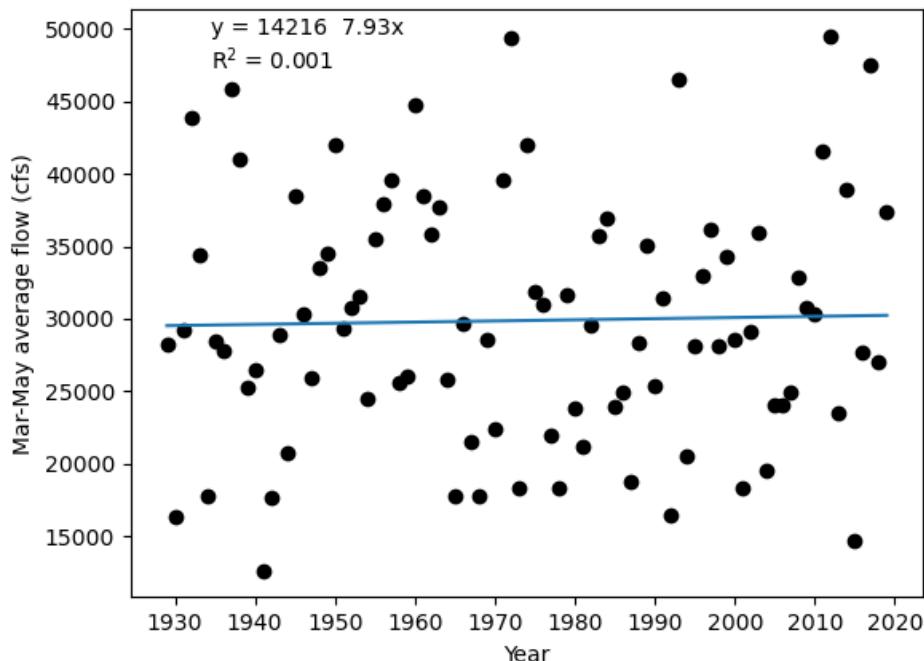

For the April 1 through September 30 average flow, there was no discernible trend through the period of record. The Mann-Kendall Test, p-value of 0.82, which is greater than 0.05, indicated that this trend was not statistically significant.

Figure 3-44. Salem, Oregon, June through September.

For the June 1 through September 30 average flow, there was no discernible trend through the period of record. The Mann-Kendall Test, p-value of 0.25, which is greater than 0.05, indicated that this trend was not statistically significant.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

Figure 3-45. Salem, Oregon, March through May.

For March through May average flow, there was no discernible trend through the period of record. The Mann-Kendall Test, p-value of 0.90, which is greater than 0.05, indicated that this trend was *not* statistically significant.

Additional analyses of the same unregulated Salem daily flow (e.g., “SLM unReg Flow”) were also performed with the TST, summarized in Table 3-2.

The TST is a web-web-centric application that performs trend analyses as well as nonstationarity analyses on a given timeseries. The tool is located at:

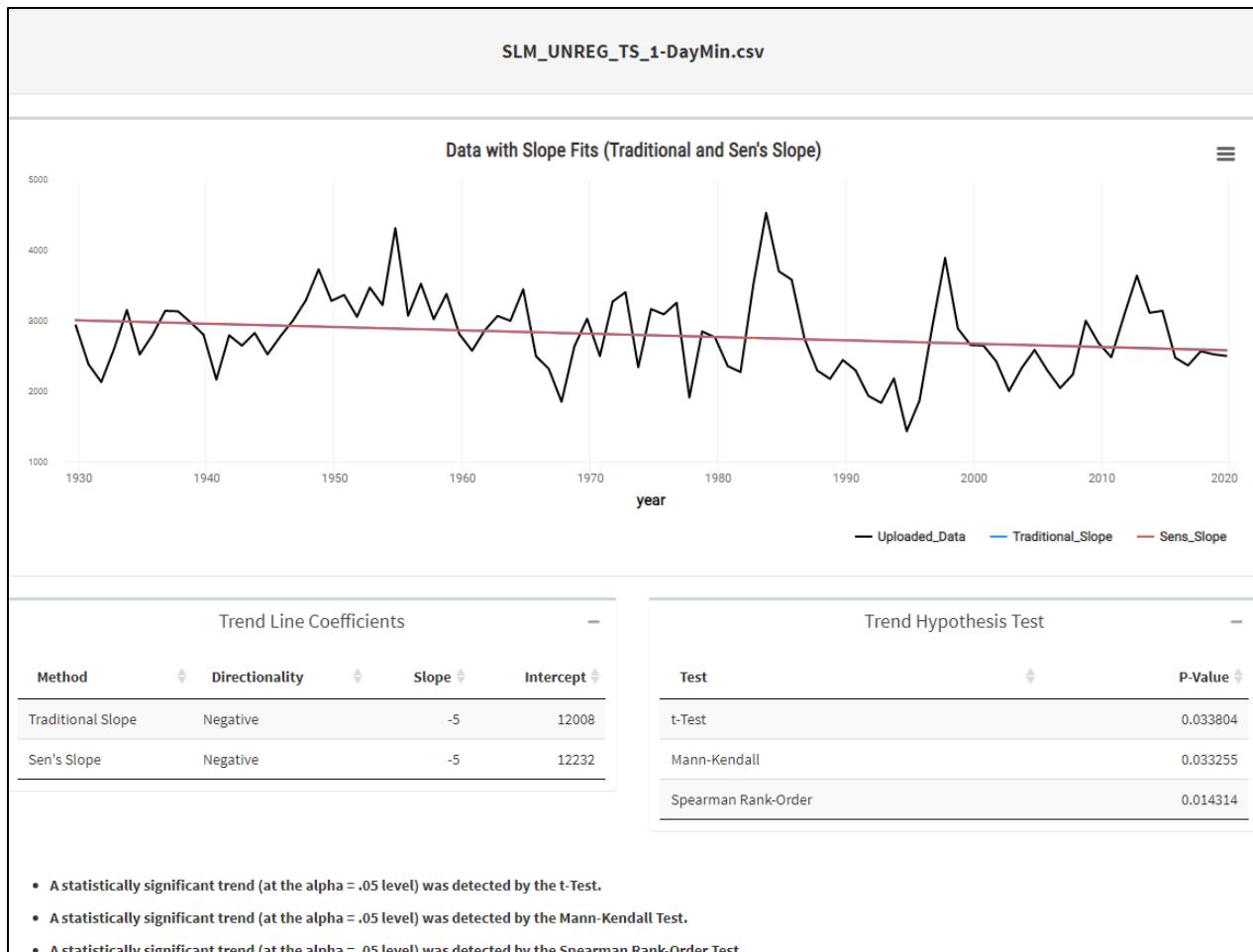
https://climate.sec.usace.army.mil/tst_app/.

Annual monthly and seasonal mean flows (cfs) were analyzed to determine if there were statistically relevant trends. Mann-Kendall and Spearman significance tests were performed on the timeseries. The annual and minimum trends were also of interest. Caution is needed when discussing directionality of trends that are nonsignificant. However, it may provide context for understanding and what may be the variable of concern. Most trends for the daily unregulated flows at Salem trended negative (Table 3-2). The exceptions were the winter months and the refill season (March through May), which trended positive (increasing flows). However, p-values were greater than 0.05 and therefore were not considered statistically significant trends. The only significant trend was found in the annual 1-day minimum flows because the 1-day annual minimum flow estimates have significant variability due to the computation method for producing unregulated flows. Overall, there appeared to be significant variability, which was attributed to how unregulated flows are computed. Removing the effects of reservoirs and routing naturalized flows downstream introduces some computational errors because the streamflow models do not perfectly replicate real streamflow lag and attenuation. At longer

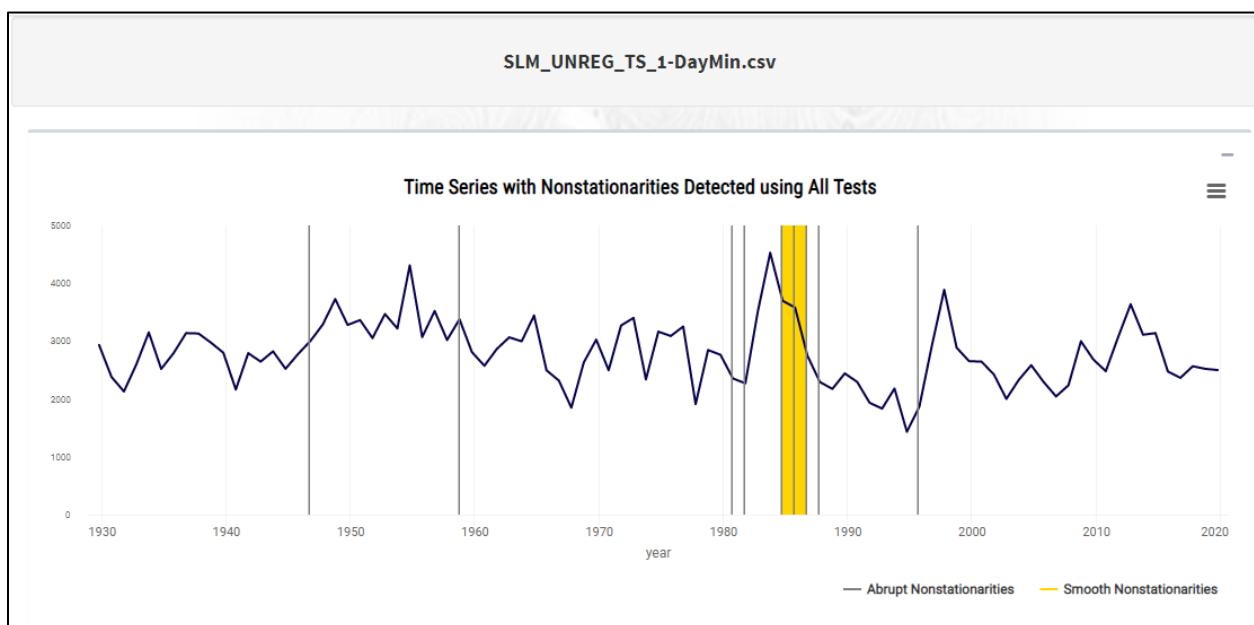
*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

durations, such as 7 days, these computational effects are minimal. There was no evidence of a strong and consistent trend in the record evaluated.

NSD was also evaluated. The threshold for instantaneous NSD significance is a positive detection across three or more NSD tests. The tests leveraged by the TST are the same as those in the NSD Tool (<https://climate.sec.usace.army.mil/nsd/>). The only difference is that the NSD evaluates annual maximum flow while the TST is configured to evaluate on a customized dataset, as was the case for the Salem unregulated flow.


Table 3-2. Unregulated Salem, Oregon Time-series, Trend, and Nonstationarity Analyses.

SLM UnReg Flow (Wys 1929-2019)				
Trend Variable	Sen's Slope (cfs/year)	p-value (Mann-Kendall)	p-value (Spearman Rank-Order)	Statistically Significant Strong Abrupt Nonstationarities Detected Yes (Year[s]) or No?
Annual Max 1-day	-235.23	0.32	0.36	No
Annual Min 1-day	-4.78	0.03	0.01	Yes(1946,1985,1986,1995)
Annual Min 7-day Mean	-1.94	0.49	0.30	Yes(1946,1985)
Annual Apr-Sep Av	-4.03	0.82	0.81	No
Annual Jun-Sep Av	-10.06	0.25	0.28	No
Annual Mar-May Av	4.88	0.90	0.95	No
Annual Mean Jan	24.11	0.83	0.74	No
Annual Mean Feb	-71.54	0.35	0.34	Yes(1948)
Annual Mean Mar	16.57	0.80	0.82	No
Annual Mean Apr	4.77	0.91	0.83	No
Annual Mean May	-20.56	0.61	0.66	No
Annual Mean Jun	-30.65	0.19	0.22	No
Annual Mean July	-9.19	0.28	0.29	No
Annual Mean Aug	-0.54	0.91	0.85	No
Annual Mean Sep	-0.42	0.91	0.64	Yes(1986)
Annual Mean Oct	-2.76	0.80	0.80	Yes(1946)
Annual Mean Nov	9.37	0.87	0.80	No
Annual Mean Dec	58.67	0.52	0.53	No


Note: Annual max. and min. mean daily flow and monthly mean flow. Green = increasing trend; red = decreasing trend. Statistically significant trends (p-value < 0.05) are in bold. NSD is tested for changes in the data mean, variance, and/or distribution.

Only the 1-day annual minimum flow estimates held statistical significance, with the p-value being 0.05 or less. Figure 3-46 shows the negative-sloped trend line. Figure 3-47 graphically shows the NSDs. Of the eight detections, four were deemed significant because three or more of the NSD tests were positive for a given NSD water year.

**Willamette Valley System Operations and Maintenance
Environmental Impact Statement**

Figure 3-46. Salem, Oregon Unregulated 1-day Minimum Flow Trend.

Figure 3-47. Salem, Oregon Unregulated 1-day Minimum Flow Nonstationarity Detections.

3.6 Summary of Observed Trends in Climate

Based on the literature review, there is consensus among the available sources supporting trends of increasing temperatures within Willamette River Basin. Observed changes in precipitation, however, are more variable and fluctuate by season and location. Even with the observed increases in precipitation, annual streamflow, and particularly spring and summer flows, have been observed as decreasing in the Pacific Northwest Region. This is largely attributed to the greater proportion of precipitation falling as rain as opposed to snow, which has altered the seasonality of the streamflow response with increasing flows in the winter/spring and decreasing flows in the summer/fall.

Based on the results of the linear regression analysis performed with the CHAT and the nonstationarity analysis, there is little evidence of statistically significant increasing or decreasing trends or nonstationarities within the Willamette River Basin that can be attributed to climate change. There are statistically significant decreasing trends and nonstationarities in observed, peak streamflow that can be directly attributed to the construction of flood risk management projects.

4. PROJECTED TRENDS IN FUTURE CLIMATE AND CLIMATE CHANGE

4.1 Literature Review

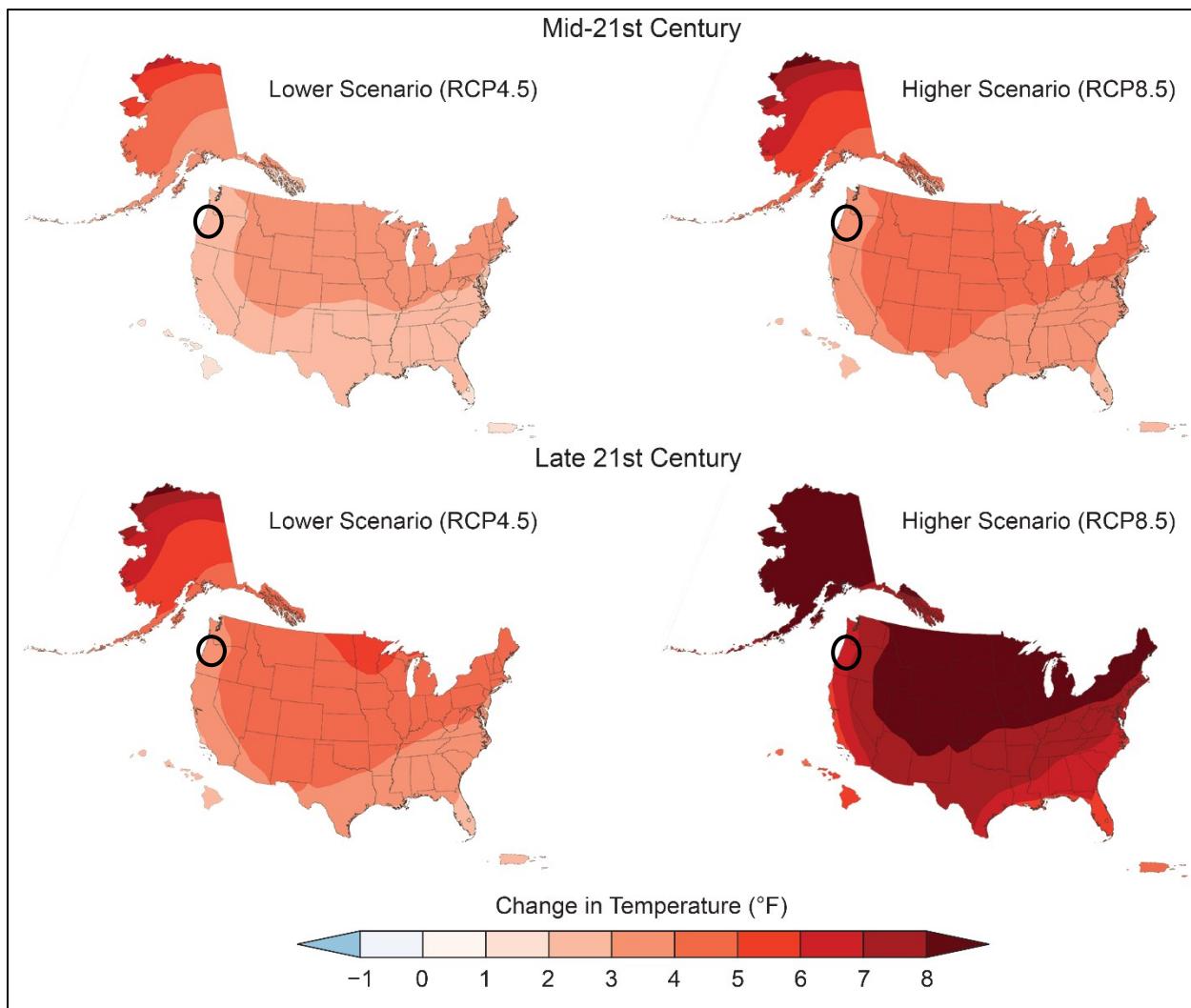
4.1.1 Recent U.S. Climate Change and Hydrology Literature Syntheses

In addition to the observed trends discussed previously, the 2015 USACE Literature Synthesis for the Pacific Northwest Region 17 also summarizes available literature for projected future trends in various hydrometeorological variables. These variables are projected using a variety of statistical methods in conjunction with global climate models (GCMs). Figure 3-1 summarizes the findings of the Literature Synthesis regarding projected hydroclimate and hydrologic (streamflow) trends. Additional discussion is provided in the following paragraphs.

Temperature. The 2015 USACE Literature Synthesis found strong consensus that maximum temperature extremes in the Pacific Northwest show an increasing trend over the next century. A moderate consensus was found supporting an increasing trend in annual average temperature and minimum temperature extremes. The increases in temperature will likely occur in the summer months. Additionally, it was found that extreme temperature events, including more frequent, longer, and more intense summer heat waves, can be expected in the long-term future as compared with the recent past.

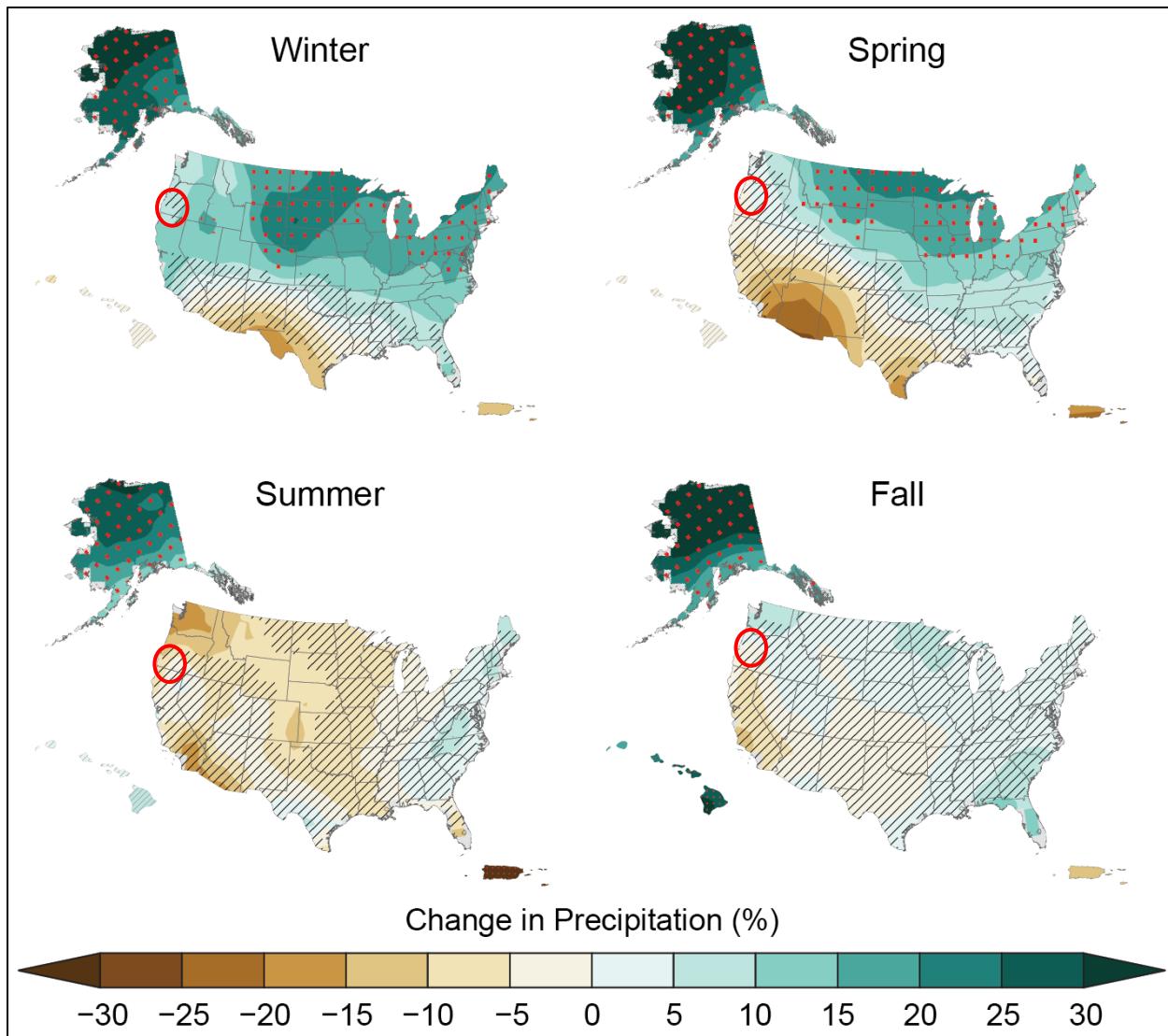
Precipitation. A strong consensus was found indicating that the intensity and frequency of extreme storm events will increase in the future in the Pacific Northwest Region. However, low consensus exists with respect to projected changes in total annual precipitation; results regarding total annual precipitation varied depended on location, season, GCM, and emission scenario.

Hydrology / Streamflow. Low consensus exists regarding projected changes in hydrology for the region. Large variability in the projected hydrologic parameters (e.g., runoff, streamflow, SWE) exist across the literature and vary with location, hydrologic modeling approach, GCM used, and adopted emission scenario.

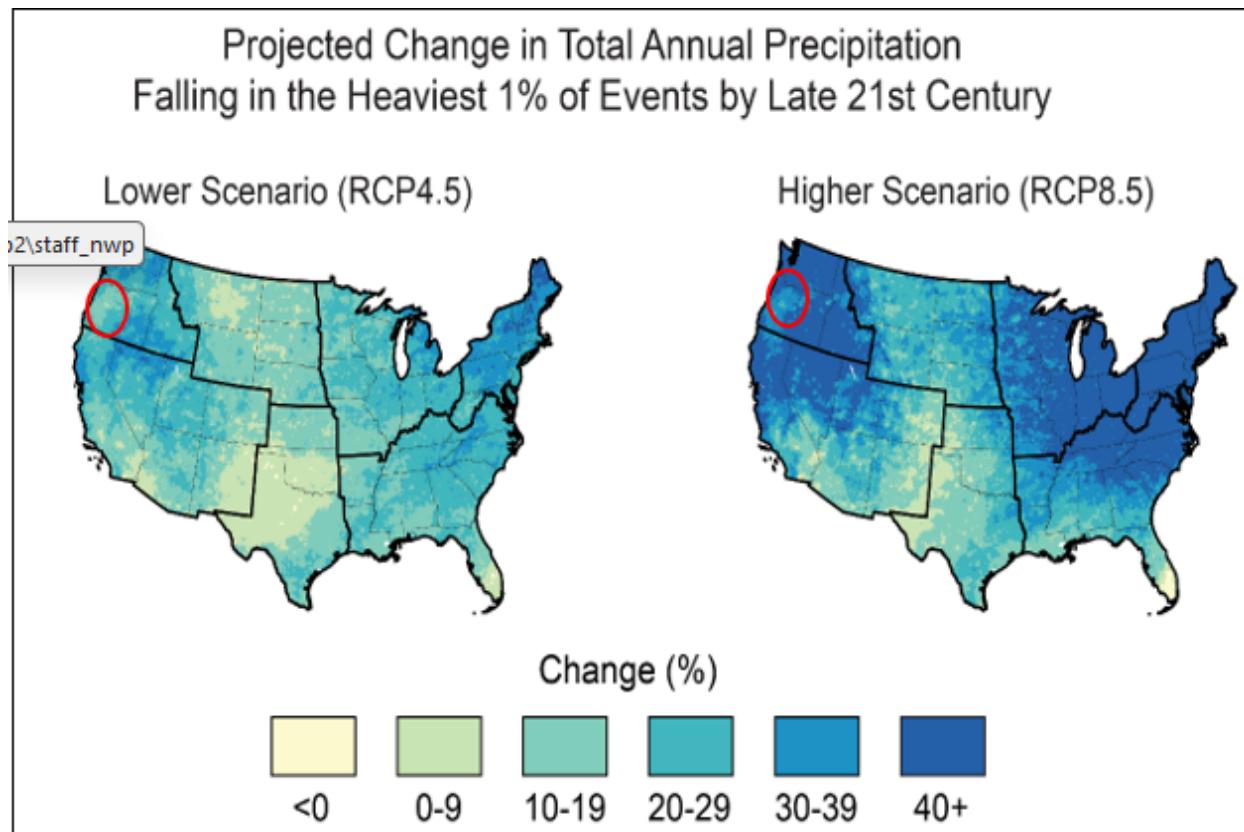

4.1.2 Fourth National Climate Assessment

In addition to the observed trends, the NCA4 (USGCRP 2018a) offers some insight into future climatic projections as well as the implications of these projections on risk, infrastructure, engineering, and human health.

Temperature. Increases in temperature of about 2.5°F are expected over the next few decades regardless of future greenhouse gas emissions. Temperature increases ranging from 3°F to 12°F are expected by the end of the century, depending on whether the world follows a higher or lower, future emission scenario. Extreme temperatures are expected to increase proportionally to the average temperature increases. Figure 4-1 displays future projected, annual, average temperatures for two future time periods, the mid-21st century and late-21st century. These are compared with the historical baseline period of 1986 through 2015. Additionally, projections are shown for two emission scenarios, or representative concentration pathways (RCPs) of greenhouse gases. RCP 8.5 is a higher emission scenario and RCP 4.5 is a moderate emission scenario.


Note that, in general, increases in projected temperature are greater in higher latitudes and lessen farther south in the United States. Coastal states, such as Oregon, are largely projected to experience less warming than interior regions. Regardless of spatial variation, temperature increases are projected for the entire U.S. under all emission scenarios.

Willamette Valley System Operations and Maintenance
Environmental Impact Statement


Figure 4-1. Future Projections of Temperature.

Precipitation. Both increases and decreases in average annual precipitation are expected over the coming decades depending on location, season, and various other factors. Figure 4-2 displays the seasonal variation in annual precipitation in the later part of the century as compared with the historical period of 1986 through 2015. Note that there is significant variation in projections depending on location and season. Also note that red dots indicate the projected trends due to climate change are large when compared with natural variations in climate, whereas the hatched areas show where the projected trends due to greenhouse gas emissions are relatively insignificant when compared to natural climate variability. Looking more closely at the Pacific Northwest and Willamette River Basin analysis area, most of the trends in precipitation can be considered relatively insignificant except for decreases in summer precipitation. Surface soil moisture is expected to decrease across most of the U.S. and will be accompanied by large declines in snowpack in the western U.S. as winter precipitation shifts from falling as snow to falling as rain. This hydrologic shift will likely cause additional stress on water supply, irrigation, and ecologic minimum flow needs.

Figure 4-2. Observed Percent Change in Precipitation during the 1 Percent Event.

The observed increases in frequency and intensity of heavy precipitation are projected to continue, with higher emission scenarios producing stronger increasing trends. Figure 4-3 displays the projected change in total annual precipitation falling during the heaviest 1 percent of storms between 2070 and 2099. Note that in the vicinity of the Willamette River Basin, under a moderate emission scenario (RCP 4.5), the annual precipitation falling during the heaviest 1 percent of events is expected to increase by approximately 10 percent to 19 percent. Under a higher emission scenario (RCP 8.5), the Basin is expected to experience extreme event precipitation increases of 30 percent to 39 percent. These trends are consistent with what would be expected with warmer temperatures because increased evaporation rates lead to higher levels of water vapor in the atmosphere which in turn leads to more frequent and intense precipitation events.

Figure 4-3. Projected Change in Future Precipitation (RCP 4.5/8.5).

There is potential for climate change-driven changes to hydrologic conditions to increase stress on infrastructure and water supply within the Willamette River Basin. As higher temperatures increase the proportion of cold season precipitation falling as rain rather than snow, higher streamflow is projected to occur in many basins, raising flood risks. Shifts in the timing of water supply, such as earlier snowmelt and declining summer flows, can adversely impact crop irrigation, which may increase stress on reservoirs. Many basins that have historically relied on snowmelt are anticipating declining streamflows in spring and summer months; for these basins, low flow periods are projected to be more prolonged and severe. If observed declines in higher elevation precipitation continue, this would exacerbate low streamflow conditions, resulting in decreased water supply and reservoir storage. Climate change is also expected to increase the risk from extreme events, both drought and flooding, potentially compromising the reliability of water supply, hydropower, and transportation. Isolated communities and those with systems that lack redundancy are the most vulnerable.

The NCA4 (USGCRP 2018a) qualitatively discusses some of the risks associated with projected, future climate conditions. The NCA4 report emphasizes that the likelihood of hydrometeorological phenomena like droughts, extreme storms, and flood events may be misrepresented when defined using historical records that are limited in length (approximately 10 to 100 years). Selected points from this discussion relevant to the Willamette River Basin include:

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

- Extreme precipitation events are projected to increase in a warming climate and may lead to more severe rainfall-driven floods and a greater risk of infrastructure failure.
- Long-lasting droughts and warm spells can compromise earthen dams and levees as a result of soil cracking due to drying, resulting in a reduction of soil strength, erosion, and land subsidence.
- The procedures used to design water resources infrastructure, estimations of probability of failure, and risk assessments for infrastructure typically rely on 10 to 100 years of observed data to define flood and rainfall intensity, frequency, and duration. This approach assumes that frequency and severity of extremes do not change significantly with time. However, numerous studies suggest that the severity and frequency of climatic extremes, such as precipitation and heat waves, have in fact been changing due to human-driven climate change. These changes represent a regionally variable risk of increased frequency and severity of floods and drought. Additionally, tree ring-based reconstructions of climate over the past 500 years for the U.S. illustrate a much wider range of climate variability than does the instrumental record (beginning around 1900). This historical variability includes wet and dry periods with statistics very different from those of the 20th century. Infrastructure design that uses recent historical data may underrepresent the risk seen from the paleo record, even without considering future climate change.

THE DEIS HAS BEEN MODIFIED TO REVISE THE FOLLOWING INFORMATION IN THE FEIS

- Statistical methods have been developed for defining climate risk and frequency analysis that incorporate observed and/or projected changes in extremes. However, these methods have not yet been widely incorporated into infrastructure design codes, risk assessments, or operational guidelines. Such methods are not readily available, even at a research stage, for supporting the EIS analyses. Also, the spatial resolution of such analyses and data would not support the EIS needs. The PDT considered this information early in the process.

END REVISED TEXT

- Climate change is expected to increase the frequency and/or intensity of many extreme events that affect infrastructure in the Northwest. Available vulnerability assessments for infrastructure show the prominent role those future extremes play. Because much of the existing infrastructure was designed and is managed for an unchanging climate, changes in the frequency and intensity of flooding, drought, wildfire, and heat waves affect the reliability of water, transportation, and energy services.

4.2 Oregon Climate Change Research Institute

In 2015, the Oregon Climate Change Research Institute (OCCRI) produced a report for the USACE Portland District titled, “Historical Trends and Future Projections of Climate and Streamflow in the Willamette Valley and Rogue River Basins.” OCCRI utilized projected climate datasets generated by the Pacific Northwest Hydroclimate Scenarios Project (Climate Impacts

Group 2010), also known as the Columbia Basin Climate Change Scenarios Project, to generate this report. The studies routed GCM-based projected, climate-changed meteorology through the Variable Infiltration Capacity model (VIC) for the Columbia River Basin, of which the Willamette River Basin is a part. The resulting streamflow projections were based on nine GCMs and two Coupled Model Intercomparison Project Phase 3 (CMIP3) emission scenarios (A1B and B1) and examined three time periods (30-year averages centered around 2025, 2045, and 2085). Nineteen unique combinations of GCMs and emission scenarios were considered; eight based on scenario A1B, eight based on scenario B1, and one historical baseline scenario.

CMIP3 GCM scenarios A1B and B1 represent moderate and optimistically low greenhouse gas emission scenarios, respectively. Scenario A1B corresponds to an average global temperature increase between 1.7°C and 4.4°C, with a best estimate of 2.8°C. Scenario B1 corresponds to an average global temperature increase of 1.1°C to 2.9°C, with a best estimate of 1.8°C. These scenarios, published in 2000, are outdated when compared with the CMIP5 greenhouse gas emission scenarios, also known as representative concentration pathways (RCPs), published in 2014. While the CMIP3 and CMIP5 emission scenarios are not interchangeable, CMIP3 scenarios A1B and B1 very roughly correspond to CMIP5 scenarios RCP 6.0 and RCP 4.5, respectively.

According to the Willamette Basin Review Feasibility Study (USACE 2018d), the OCCRI report describes general climate projections for 2030 through 2059 as having higher regional minimum and the maximum temperatures, meaning that both winters and summers will be warmer with a greater increase in summer temperatures than winter temperatures. This trend is described as having a high degree of confidence because all the GCM models reviewed had the same result. The amount of precipitation, however, varied among the various GCM models by both season and whether there is an increase or decrease in precipitation. Regardless of the precipitation changes, the models show that the warming temperatures decrease the snow water equivalent (SWE) as a proportion of the cumulative precipitation (P) in the Willamette River Basin. Willamette River subbasins, such as the North Santiam, that historically receive the most snow will have significant declines in the projected winter ratio of SWE/P. The more southern subbasins, such as the Middle Willamette, are projected to receive little or no snow in the future. The models that did show projected increases in winter rainfall precipitation also showed less snow accumulation, which affects the streamflows in each subbasin.

The combination of changes in precipitation patterns and increasing temperatures results in future streamflows that have higher winter flows and lower summer flows on average. Subbasins within the Willamette River Basin display differing sensitivity to these changes, which are largely correlated to the subbasin's projected loss of snowfall and that subbasin's hydrologic dependence on snow accumulation. The OCCRI report summarizes the impacts that projected changes in climate and streamflow response will have on USACE projects. The Hills Creek, Cougar, Detroit, and Big Cliff Dams are highly sensitive to projected changes in streamflow (Group A). This is largely because they are located at high topographic elevations and snowmelt has historically been a key hydrologic forcing at these sites. In 18 of the 19 future climate scenarios, these projects are described as exhibiting a projected increase in mean flow

during the period of December through March, with all 19 scenarios showing a projected decrease in mean flow for May through September.

The Cottage Grove, Dorena, and Fern Ridge reservoir projects are considered to have low streamflow sensitivity because snow accumulation and melt have a small influence on hydrologic response at these locations (Group B). These projects are described as exhibiting a trend toward increasing winter flows transitioning toward a trend in decreasing flow around April. There is relatively low variability in this trend across the results produced by the 19 GCM-based scenarios.

Lookout Point, Dexter, and Fall Creek projects are described as having moderate to high streamflow sensitivity (Group C). The contributing drainage area above these reservoirs is governed less by snowpack than by variability in total precipitation. These projects are described as exhibiting a projected increase in mean flow during the period December through March in the majority of the 19 future climate scenarios. All 19 future scenarios show decreasing summer flows. The Blue River project (Group C/D) is also considered to have a moderate to high streamflow sensitivity, with overall results similar to those described above for Lookout Point, Dexter, and Fall Creek Dams. However, this project's results were described separately in the OCCRI report (2015) because the project is slightly more sensitive to melting snowpack due to its higher topographic elevation and because the number of scenarios showing increasing winter flows is slightly different.

The OCCRI report (2015) describes the Green Peter and Foster reservoir projects as having low to moderate streamflow sensitivity (Group E). Slightly more than half of the future scenarios show increasing winter flow volumes, but all scenarios show decreasing summer flows.

4.3 Portland State University

Portland State University (PSU) published "Climate Change and Freshwater Resources in Oregon" in 2010 (Chang and Jones 2010). The report summarizes existing literature for the state of Oregon in a similar manner to the USACE literature syntheses. In general, the PSU study agrees with many of the conclusions previously described, stating: "Many Oregon streams will experience higher winter flows and reduced summer flows as temperature rises and the variability of precipitation increases."

4.4 Willamette Basin Review

The Willamette Basin Review Study, completed in 2019 (USACE 2019), focuses on reviewing and assessing reservoir operations within the Willamette River Basin for the purposes of municipal and industrial water supply, agricultural irrigation, and fish and wildlife minimum inflows. A semi-quantitative analysis was applied to inform how climate change might impact future operations within the basin. The climate-changed hydrology used was, for the most part, based upon the same data used in the OCCRI report, which was initially developed by the Pacific Northwest Hydroclimate Scenarios Project. The objective of the Willamette Basin Review focused primarily on water supply, which is driven by volume of runoff.

The Willamette Basin Review Study references much of the same literature included within this analysis and in general draws very similar conclusions. The report concludes that: “the warming climate [of the Willamette River Basin] is expected to bring warmer, drier summers to the basin, while the winters may have more rain and less snow. There is some indication that the maximum flows will increase in the wintertime and that less water will be available to meet water supply objectives in the summer months.”

The report also comments on the lack of available research targeted at identifying the timing of potential, future shifts in seasonality. For the Willamette River Basin, understanding how climate change might shift the timing of snowmelt-driven processes is particularly important. The current temporal resolution of projected meteorological data is too coarse to identify shifts in seasonality at a sub-monthly scale.

Changes in total inflow volume and seasonal shifts in precipitation and runoff from later to earlier in the year will likely influence the WVS’s ability to refill their reservoirs. However, the impacts that climate change could potentially have on the ability of WVS to refill are very sensitive to the seasonality of inflows and therefore a great deal of uncertainty exists associated with how climate change could potentially impact WVS’s ability to provide for water supply and environmental releases. Additional analysis and modeling are required to fully understand and quantify how refill will be impacted by climate change. The feasibility study does state that water demand currently exceeds available water supply during drier years; this is true for both regulated and unregulated streams. Additionally, the study found that increased water storage will likely be required in the future to meet the minimum required environmental flows.

4.5 Changes in Winter Atmospheric Rivers

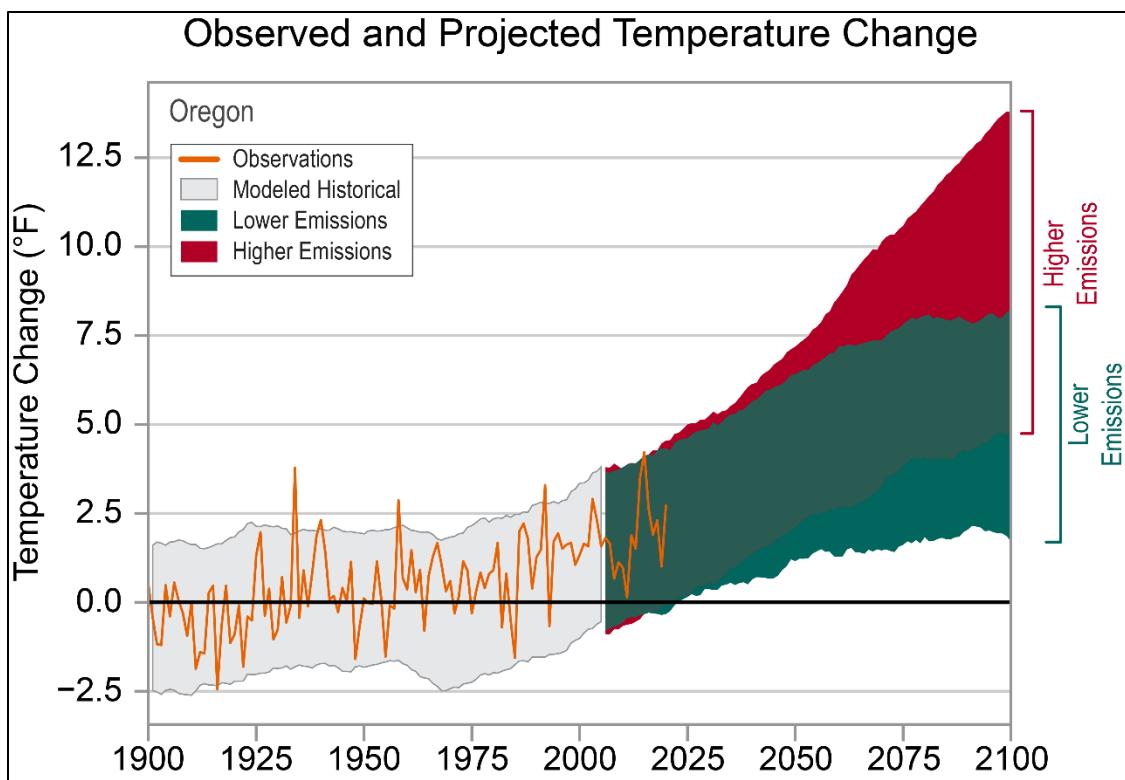
Warner et al. (2015) published a paper in the *Journal of Hydrometeorology* examining projected changes in atmospheric rivers along the west coast of North America using CMIP5 GCMs and RCP 8.5. RCP 8.5 represents a relatively high emission scenario corresponding to an ultimate radiative forcing of 8.5 Watts square meter. Basins like the Willamette River Basin located along the west coast of the United States receive a majority of their precipitation during the winter months with the most extreme events associated with atmospheric rivers (ARs). According to Warner et al., “ARs are narrow regions of large water vapor transport that extend from the tropics or subtropics into the extratropics [such as the Pacific Northwest].”

The report focuses on latitudes ranging between 33.75°N and 48.75°N. The centroid of the Willamette River Basin is located at approximately 44.5°N. Looking specifically at the latitude associated with WVS, the paper projects extreme precipitation events (1 percent chance exceedance or 99th percentile) to increase from approximately 20 mm/day to 24 mm/day; an increase of 20 percent over historical norms. Increases in precipitation are projected to be directly tied to increases in temperature. For a latitude of 44.5°N, an increase in precipitation of approximately 6 percent is projected per degree (°C) of warming. Additionally, the report states: “precipitation is greatly enhanced as atmospheric rivers intersect the coastal terrain

[such as the Cascade Mountain Range located in the Willamette River Basin], but it is uncertain how global warming will alter orographic enhancement.”

4.6 Ubiquitous Increases in Flood Magnitude

THE DEIS HAS BEEN MODIFIED TO REVISE THE FOLLOWING INFORMATION IN THE FEIS


Queen et al. (2021) published a study called, “Ubiquitous Increases in Flood Magnitude in the Columbia River Basin under Climate Change” that analyzed changes in water year (WY) maximum daily streamflows at 396 locations in the Columbia River Basin. The climate-changed hydrology used was based upon previous climate change datasets prepared by the University of Washington and used in recent Columbia River Basin regional climate studies. The flow frequency analysis of the Columbia River Basin was performed using 40 GCM projections, focusing the analysis on the highest emission scenario (RCP 8.5). The flow frequency analysis estimated the 10 through 1 percent Annual Exceedance Probability (AEP) flood statistics for time windows 1950 through 1999 and 2050 through 2099. Flood statistics from the two 50 percent AEP periods were compared to report projected relative changes in flood magnitude (flood ratios) for 65 river locations in the Pacific Northwest, 15 being in the Willamette River Basin. Increases in the ensemble means in flood magnitudes were found for all locations in the Basin. The Willamette River had calculated average flood ratios ranging from approximately 1.2 to slightly over 1.6. Spatially, the flood magnification ratio changes were higher at headwater locations, as were the largest changes and highest variability between projections. In the Willamette River Basin, the flood ratios appeared to vary by flow magnitude as well. The more frequent events tended to have higher flood ratios compared to less frequent events (e.g., the 1 percent AEP flood ratio was less than the 10 percent).

END REVISED TEXT

Queen et al. (2021) found that for the rain-dominant Willamette River Basin, the quantity and frequency of rain driven floods are projected to increase. The authors noted that the flood ratio estimates may be biased low due to modeling spatial and temporal duration resolution, 7-day versus daily, etc. The reduction in snowpack was also theorized to reduce the impacts from more frequent or higher magnitude rain-on-snow events. Projections for future increasing precipitation intensity (e.g., driven by atmospheric rivers) contained in the GCMs will still lead to more severe future flood ratios in the Basin.

4.7 NOAA State Climate Summary for Oregon, 2022

National Oceanic and Atmospheric Administration (NOAA) publishes state climate change summaries through the National Centers for Environmental Information (NCEI). The following summarizes observed and projected warming through 2100.

Figure 4-4. Observed and Projected Temperature Change for Oregon.

Source: NOAA 2022 <https://statesummaries.ncics.org/chapter/or/>

THE DEIS HAS BEEN MODIFIED TO REVISE THE FOLLOWING INFORMATION IN THE FEIS

Observed and projected changes are shown in Figure 4-4 for Oregon. Warming, both observed and projected, is the primary driver for other hydroclimate and hydrology trends associated with climate change in Oregon. The baseline 0 point (black line) is the 1901–1960 average temperature. Temperatures are near-surface air temperature. The observed period is 120 years (1900–2020). Projected changes for 2006–2100 are from an ensemble of GCM RCP 4.5 (lower) and RCP 8.5 (higher) emissions scenarios. Observed temperatures (orange line) have risen about 2.5°F since 1900. Shading indicates the range of annual temperatures from the set of models. The temperature changes shown above are the result of GCM models forced by reconstituted historical greenhouse gas data. In effect, the historical period shown above is not an observed dataset but a reconstruction based on GCM modeling forced with historical greenhouse gas input.

END REVISED TEXT

Other primary findings for Oregon pertaining to the Willamette River Basin analysis area included:

- Temperatures in Oregon have risen about 2.5°F since the beginning of the 20th century, and temperatures in the 1990s and 2000s were higher than any other historical period.

- Precipitation varies widely across the state and from year to year, with areas west of the Cascades also experiencing a large variation in rainfall amounts across the seasons.
- Unlike many areas of the United States, Oregon has not experienced an upward trend in the frequency of extreme precipitation events. Note that this agrees with the USACE Literature Synthesis but not NCA4.
- Under a higher emissions pathway, historically unprecedented warming is projected during this century. See Figure 4-4.
- Projected rising temperatures will raise the snow line—the average lowest elevation at which snow falls. This will increase the likelihood that precipitation will fall as rain instead of snow, reducing water storage in the snowpack, particularly at lower elevations that are now on the margins of reliable snowpack accumulation.
- Although projections of overall annual precipitation are uncertain, winter precipitation is projected to increase.
- The combination of drier summers, higher temperatures, and earlier melting of the snowpack is projected to increase the frequency and severity of wildfires.

4.8 Summary of Projected Trends in Climate

Across the range of literature reviewed for this analysis, there is general agreement regarding the hydrologic trends that can be expected in the future. In general, the following statements represent the probable hydrologic future that can be expected within the Willamette River Basin:

- Winter precipitation and streamflows are anticipated to increase over historical norms. This projection emphasizes the continued need for reservoirs to function as flood risk management projects into the future. The associated increases in reservoir inflow may lead to more frequent high pool events and prolonged periods of flood operation in the winter and spring seasons.
- Summer streamflows are consistently projected to decrease in the future relative to historical norms. There is strong consensus for this trend across the spectrum of climate model scenarios and within existing literature. This indicates that while reservoirs may be tasked to serve an increasing role in flood risk management, they may also be stressed in the summer months to supply adequate quantities of water for irrigation, water supply, and required ecologic minimum flows.
- The seasonal timing of the transition from higher winter flows to lower summer flows is not adequately addressed in the literature. This timing is of particular importance to anticipating required changes in reservoir operation.

- Projected future temperatures are anticipated to increase significantly over historical norms. This has various hydrologic implications, including increased atmospheric moisture, evapotranspiration rates, frequency of wildfires, hydropower demand, and water supply demand.

5. CLIMATE HYDROLOGY ASSESSMENT (CHAT)

THE DEIS HAS BEEN MODIFIED TO REVISE THE FOLLOWING INFORMATION IN THE FEIS

The USACE Climate Hydrology Assessment Tool (CHAT) (USACE 2016a) was used to assess projected, future trends within the Willamette River Basin HUC-1709. The tool displays the range of historical period annual maximum monthly streamflows up to 2005 through 2099. Future period projections span 2006 through 2099. The results shown in this document reflect the data and analyses used by the PDT at the time. The use of the newer version of CHAT would not materially change the potential effects to Resources.

END REVISED TEXT

Figure 5-1 displays the range of projections for 93 combinations of CMIP5 GCMs and RCPs produced using BCSD statistical downscaling. These flows are simulated using an unregulated VIC hydrologic model at the outlet of the Willamette River Basin (HUC-1709). At this outlet, the Willamette River has a drainage area of approximately 11,200 square miles as compared with the 7,280 square mile basin of the Willamette River at Salem, OR. It should be noted that the hindcast projections do not replicate historically observed precipitation or streamflow and should therefore not be compared directly with historical observations. This is in part because observed streamflows are impacted by regulation while the VIC model used to produce the results displayed in Figure 5-1 is representative of the unregulated condition.

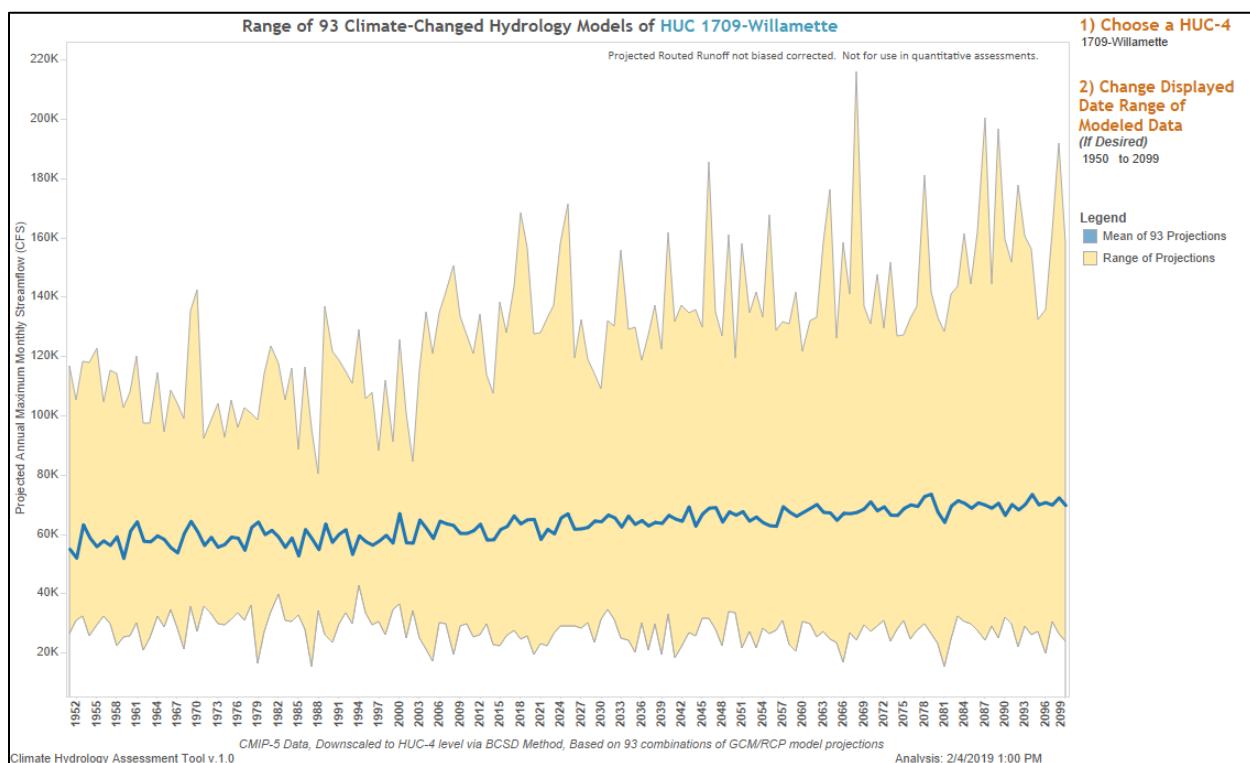
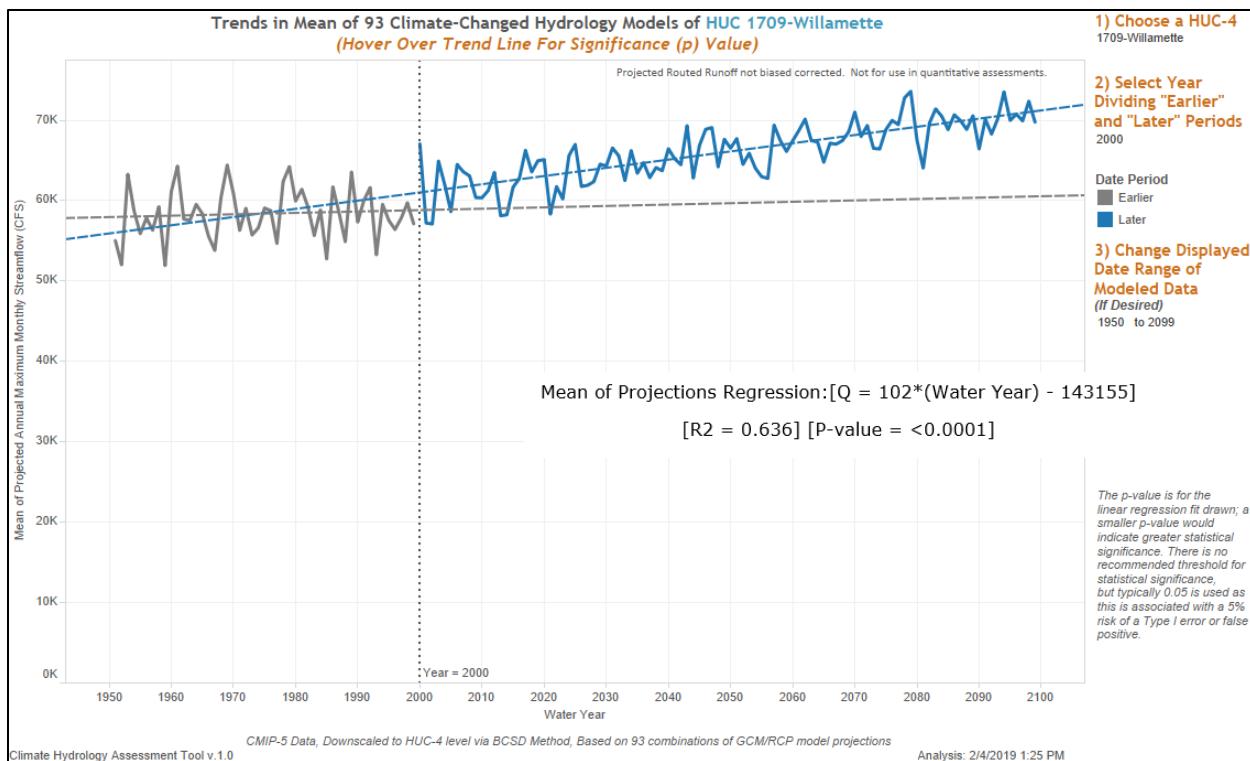

Upon examination of the range of model results, there is a clear increasing trend in the higher projections, whereas the lower projections appear to be relatively stable and unchanging through time. The spread of the model results also increases with time, which is to be expected as uncertainty in future projections increases as time moves away from the model initiation point. The difference in RCPs grows considerably during the latter half of the century, indicative of a substantial source of uncertainty in assumed emissions. Sources of variation and the significant uncertainty associated with these models include the boundary conditions applied to the GCMs as well as variation between GCMs and selection of RCPs applied. Each GCM and RCP independently incorporate significant assumptions regarding future conditions, thus introducing more uncertainty into the climate-changed projected hydrology. Climate model downscaling and a limited temporal resolution further contribute to the uncertainty associated with CHAT results. There is also uncertainty associated with the hydrologic models. The large spread of results shown in Figure 5-1 highlights current climatic and hydrologic modeling limitations and associated uncertainty.

Figure 5-2 displays only the mean result of the range of the 93 projections of future climate-changed hydrology, which are shown in Figure 5-1. A linear regression line was fit to this mean

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*


and displays an increasing trend with a slope of approximately 102 cfs/year, which is roughly a 5 percent increase through 2100. This would not have high operational system impact. The relative change is small compared to average annual basin flow. It should be noted that the p-value associated with this trend is less than 0.0001, indicating that the trend should be considered statistically significant.

These outputs from the CHAT qualitatively suggest that annual maximum monthly flows, and therefore annual peak flows, are expected to increase in the future relative to the current time. Another important caveat is that the CHAT tool is simulating an unregulated watershed. Reservoir operations can be expected to decrease the variance of flows shown in the CHAT as well as decrease the magnitude of their peaks. The results indicated by the CHAT largely agree with many of the trends found within the literature review regarding projected future extreme event streamflow.

Figure 5-1. Range of GCM/RCP Projections for the Willamette River Basin, HUC-1709.

Willamette Valley System Operations and Maintenance Environmental Impact Statement

Figure 5-2. Mean of GCM/RCP Projections for the Willamette River Basin, HUC-1709.

6. VULNERABILITY ASSESSMENT (VA)

The USACE Watershed Climate Vulnerability Assessment Tool (VA Tool) (USACE 2016b) facilitates a screening-level comparative assessment of how vulnerable a given HUC-4 watershed is to the impacts of climate change relative to the other HUC-4 watersheds within the continental United States. The VA Tool uses the Weighted Ordered Weighted Average (WOWA) method to represent a composite index of how vulnerable a given HUC-4 watershed (Vulnerability Score) is to climate change specific to a given business line. The HUC-4 watersheds with the top 20 percent of WOWA scores are flagged as being vulnerable.

When assessing future risk projected by climate change, the USACE Climate VA Tool makes an assessment for two 30-year epochs of analysis centered on 2050 and 2085. These two periods were selected to be consistent with many of the other national and international analyses. The VA tool assesses how vulnerable a given HUC-4 watershed is to the impacts of climate change for a given business line using climate hydrology based on a combination of projected climate outputs from the GCMs and RCPs. The top 50 percent of the traces is called "wet" and the bottom 50 percent of the traces is called "dry." Meteorological data projected by the GCMs is translated into runoff using the VIC macro-scale hydrologic model. For this assessment, the default National Standards Settings are used to carry out the vulnerability assessment.

It is also important to note that the VA Tool's results highlight some of the variability associated with the projected climate change data used as an input to the VA Tool. Because the wet and

dry scenarios each represent an average of 50 percent of the GCM outputs, the variability between the wet and dry scenarios underestimates the larger variability between all the underlying projected climate-changed hydrology estimates. This variability can also be seen between the 2050 and 2085 epochs as well as within various other analyses within this report, such as output from the CHAT.

6.1 VA Tool Analyses for the EIS

The VA Tool can be used to assess the vulnerability of specific USACE business lines such as “Flood Risk Reduction” or “Ecosystem Restoration” to projected climate change impacts. Assessments using this tool help to identify and characterize specific climate threats and particular sensitivities or vulnerabilities, at least in a relative sense, across regions and business lines. Business lines can be proxies for the vulnerabilities not expressly covered by the VA Tool. For example, vulnerability of the “Ecosystem Restoration” may be a proxy for aquatic or wildlife habitat vulnerability. All business lines available within the VA Tool were examined for outstanding vulnerabilities and none were found. For the designated business lines, the Willamette River Basin (HUC-1709) is not within the top 20 percent of vulnerable watersheds within the continental United States for any of the four scenarios, which is not to say that there is not any vulnerability to future climate change existing within the Basin. From that perspective, the VA Tool is an “order or magnitude” assessment tool and is most suited to general qualitative determinations. The VA business lines analyzed for this EIS are:

- Flood Risk Reduction
- Navigation
- Ecosystem Restoration
- Hydropower
- Recreation
- Water Supply
- Regulatory
- Emergency Management

The WVS EIS encompasses a range of resource areas and associated climate change vulnerabilities. The primary EIS resource areas (RAs) are listed below. For each, the most relevant VA business line(s) of interest are noted.

- **Hydrology and Hydraulics.** Focuses on the EIS Proposed Action, effects, and impacts to the WVS dams/reservoirs and downstream control points. Flood Risk Reduction, Navigation, Ecosystem Restoration, Water Supply, Hydropower, and Regulatory were primary VA business lines for this RA.

- **Water Quality.** Focuses on WVS streamflow temperature and total dissolved gas levels. Hazardous algal blooms have also become an issue for water quality. The proxy VA business line is primarily Ecosystem Restoration.
- **Fish and Aquatic Habitat.** Focuses on WVS management and impacts to Chinook salmon, bull trout, and Pacific lamprey. The proxy for this RA is primarily the Ecosystem Restoration and Regulatory business lines.
- **Hydraulics-Sediment-Transport.** Focuses on WVS Proposed Action impacts to change in sediment transport in Willamette River Valley subbasin reaches. Flood Risk Reduction, Ecosystem Restoration, and Regulatory were primary VA business lines for this RA.
- **Wetland-Veg-Wildlife.** Focuses on overall impacts to the terrestrial habitats such as wetlands, upland forested areas, etc. Ecosystem Restoration and Regulatory were primary VA business lines for this RA.
- **Cultural.** Focuses on impacts to the archeological and cultural resources for this resource area. Regulatory was considered the primary VA business lines for this RA.
- **Recreation.** Focuses on impacts to reservoirs and other USACE-managed recreational areas. Recreation was directly assessed by the VA Tool analyses.
- **Hydropower.** Bonneville Power Administration (BPA) manages WVS power production at USACE projects. Corps coordinates operations and its re-reg projects help manage power peaks downstream. Power was also directly assessed by the VA Tool analyses.
- **Water Supply.** Focuses on the conservation authorities that USACE also manages in the WVS. The Water Supply business line was also directly assessed by the VA Tool analyses.

6.2 VA Tool Results and Conclusions

The results of the VA analyses are presented below. The EIS-specific VA Tool indicators are summarized in Table 6-1. The following output graphics and tables summarize the eight business line VA analyses.

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

Table 6-1. VA Tool WOVA Score Indicators for WIL HUC-1709.

Indicator ID	Indicator Short Name	Indicator Name
8	8_AT_RISK_FRESHWATER_PLANT	% of freshwater plant communities at risk
65C	65C_MEAN_ANNUAL_RUNOFF	Mean annual runoff (cumulative)
65L	65L_MEAN_ANNUAL_RUNOFF	Mean annual runoff (local)
95	95_DROUGHT_SEVERITY	Drought Severity Index
130	130_FLOODPLAIN_POPULATION	Population in 500-year floodplain
156	156_SEDIMENT	Change in sediment load due to change in future precipitation
175C	175C_ANNUAL_COV	Annual CV of unregulated runoff (cumulative)
175L	175L_ANNUAL_COV	Annual CV of unregulated runoff (local)
192	192_URBAN_SUBURBAN	% of land that is urban/suburban
221C	221C_MONTHLY_COV	Monthly CV of runoff (cumulative)
221L	221L_MONTHLY_COV	Monthly CV of runoff (local)
277	277_RUNOFF_PRECIP	% change in runoff divided by % change in precipitation
297	297_MACROINVERTEBRATE	Macroinvertebrate index of biotic condition
441A	441A_0.2AEPFLOODPLAIN_AREA	Area in 0.2% Annual Exceedance Probability floodplain
443	443_POVERTY_POPULATION	Number of people below poverty line
447	447_DISABLED	% of people disabled
448	448_PAST_EXPERIENCE	Disaster resilience due to experience
450	450_FLOOD_INSURANCE_COMMUNITIES	Number of communities with flood insurance
568C	568C_FLOOD_MAGNIFICATION	Flood magnification factor (cumulative)
568L	568L_FLOOD_MAGNIFICATION	Flood magnification factor (local)
570C	570C_90PERC_EXCEEDANCE	Low flow (monthly flow exceeded 90% of time; cumulative)
570L	570L_90PERC_EXCEEDANCE	Low flow (monthly flow exceeded 90% of time; local)
571C	571C_10PERC_EXCEEDANCE	Flood flow (monthly flow exceeded 10% of time; cumulative)
571L	571L_10PERC_EXCEEDANCE	Flood flow (monthly flow exceeded 10% of time; local)
590	590_URBAN_500YRFLOODPLAIN_AREA	Acres of urban area within 500-year floodplain
700C	700C_LOW_FLOW_REDUCTION	Low flow reduction factor (cumulative)
700L	700L_LOW_FLOW_REDUCTION	Low flow reduction factor (local)

Note that "COV" is the coefficient of variation (COV, CV) for each year is the ratio of the standard deviation to the mean.

The link below directs the reader to pdf fact sheets that describe the VA driver metrics in greater detail:

<https://maps.crrel.usace.army.mil/apex/f?p=201:7:11301322170318::NO::>

**Willamette Valley System Operations and Maintenance
Environmental Impact Statement**

Figure 6-1. VA Tool Flood Risk Reduction Business Line.

Table 6-2. VA Flood Risk Indicators.

Indicator Code	Indicator Name	Description
175C	175C_ANNUAL_COV	Annual CV of unregulated runoff (cumulative)
277	277_RUNOFF_PRECIP	% change in runoff divided by % change in precipitation
568C	568C_FLOOD_MAGNIFICATION	Flood magnification factor (cumulative)
568L	568L_FLOOD_MAGNIFICATION	Flood magnification factor (local)
590	590_URBAN_500YR_FLOODPLAIN_AREA	Acres of urban area within 500-year floodplain

(Note: Red indicates the top vulnerability indicators.)

Table 6-3. WOWA Score for Flood Risk Reduction Business Line.

WIL HUC 17094	Flood Risk Reduction	Flood Risk Reduction
Epoch:	2050	2085
Dry Scenarios	46.84	49.4
Wet Scenarios	48.38	51.5

**Willamette Valley System Operations and Maintenance
Environmental Impact Statement**

Figure 6-2. VA Tool for Navigation Business Line.

Table 6-4. VA Navigation Indicators.


Indicator Code	Indicator Name	Description
95	95_DROUGHT_SEVERITY	Drought Severity Index
156	156_SEDIMENT	Change in sediment load due to change in future precipitation
192	192_URBAN_SUBURBAN	% of land that is urban/suburban
221C	221C_MONTHLY_COV	Monthly CV of runoff (cumulative)
277	277_RUNOFF_PRECIP	% change in runoff divided by % change in precipitation
441A	441A_0.2AEPFLOODPLAIN_AREA	Area in 0.2% Annual Exceedance Probability floodplain
568C	568C_FLOOD_MAGNIFICATION	Flood magnification factor (cumulative)
570L	570L_90PERC_EXCEEDANCE	Low flow (monthly flow exceeded 90% of time; local)

(Note: Red indicates the top vulnerability indicators.)

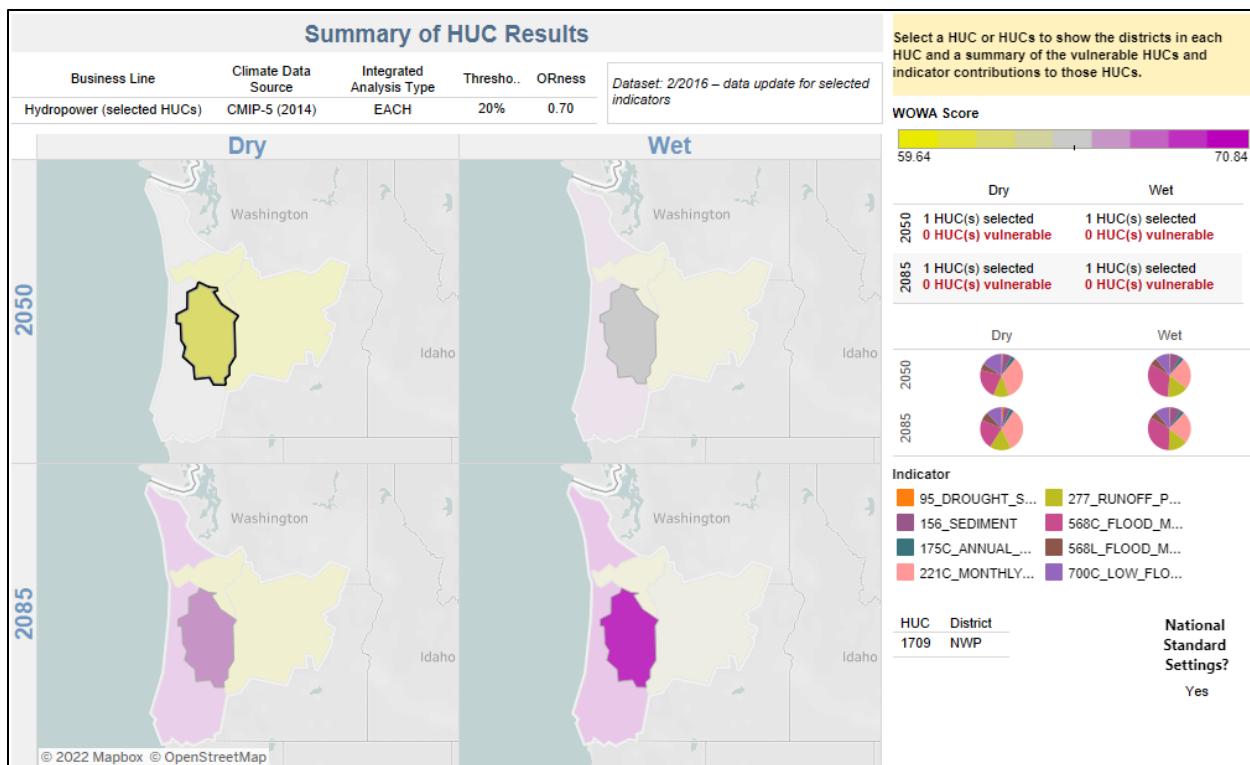
Table 6-5. VA WOWA Score for Navigation.

WIL HUC 17094	Navigation	Navigation
Epoch:	2050	2085
Dry Scenarios	63.09	65.24
Wet Scenarios	63.82	66.32

**Willamette Valley System Operations and Maintenance
Environmental Impact Statement**

Figure 6-3. VA Tool Ecosystem Restoration Business Line.

Table 6-6. VA Ecosystem Restoration Indicators.


Indicator Code	Indicator Name	Description
8	8_AT_RISK_FRESHWATER_PLANT	% of freshwater plant communities at risk
65L	65L_MEAN_ANNUAL_RUNOFF	Mean annual runoff (local)
156	156_SEDIMENT	Change in sediment load due to change in future precipitation
221C	221C_MONTHLY_COV	Monthly CV of runoff (cumulative)
277	277_RUNOFF_PRECIP	% change in runoff divided by % change in precipitation
297	297_MACROINVERTEBRATE	Macroinvertebrate index of biotic condition
568C	568C_FLOOD_MAGNIFICATION	Flood magnification factor (cumulative)
568L	568L_FLOOD_MAGNIFICATION	Flood magnification factor (local)
700C	700C_LOW_FLOW_REDUCTION	Low flow reduction factor (cumulative)

(Note: Red indicates the top vulnerability indicators.)

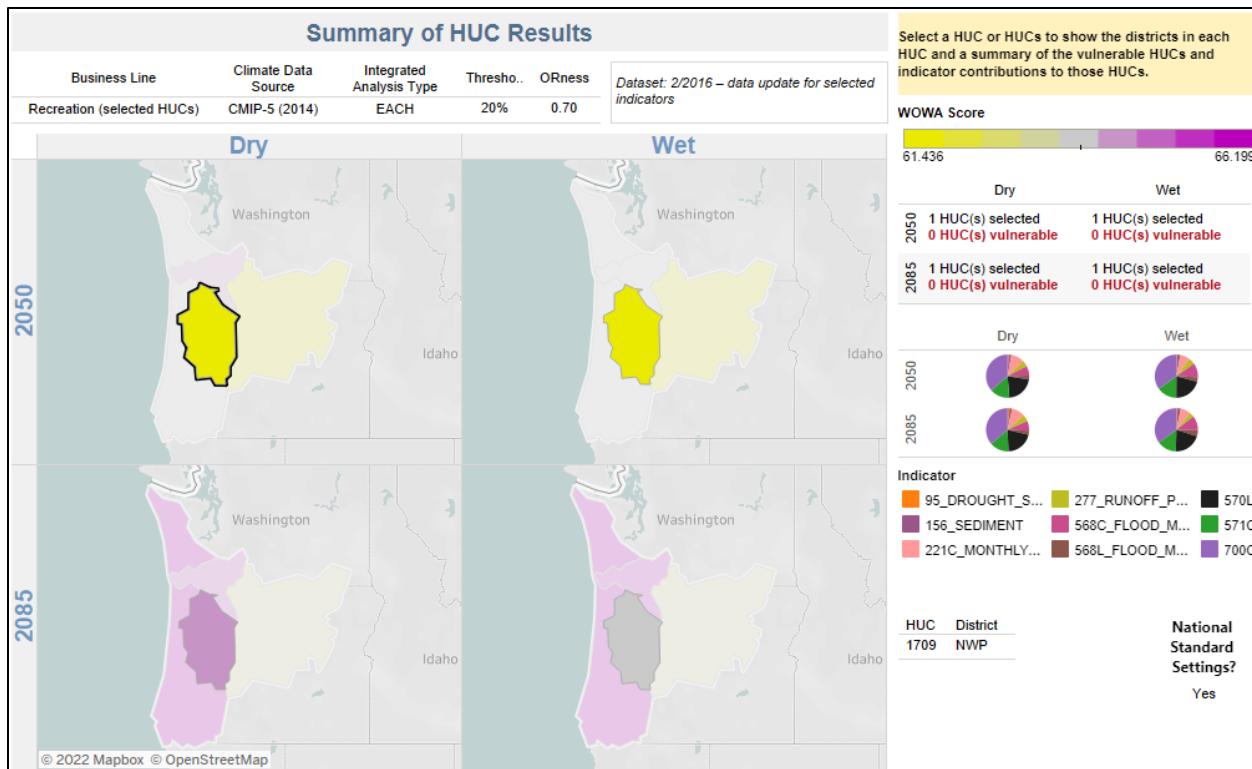
Table 6-7. VA WOWA Score for Ecosystem Restoration.

WIL HUC 17094	Ecosystem Restoration	Ecosystem Restoration
Epoch:	2050	2085
Dry Scenarios	65.27	65.54
Wet Scenarios	67.08	66.39

Willamette Valley System Operations and Maintenance Environmental Impact Statement

Figure 6-4. VA Tool Hydropower Business Line.

Table 6-8. VA Hydropower Indicators.


Indicator Code	Indicator Name	Description
8	8_AT_RISK_FRESHWATER_PLANT	% of freshwater plant communities at risk
65L	65L_MEAN_ANNUAL_RUNOFF	Mean annual runoff (local)
156	156_SEDIMENT	Change in sediment load due to change in future precipitation
221C	221C_MONTHLY_COV	Monthly CV of runoff (cumulative)
277	277_RUNOFF_PRECIP	% change in runoff divided by % change in precipitation
297	297_MACROINVERTEBRATE	Macroinvertebrate index of biotic condition
568C	568C_FLOOD_MAGNIFICATION	Flood magnification factor (cumulative)
568L	568L_FLOOD_MAGNIFICATION	Flood magnification factor (local)
700C	700C_LOW_FLOW_REDUCTION	Low flow reduction factor (cumulative)

(Note: Red indicates the top vulnerability indicators.)

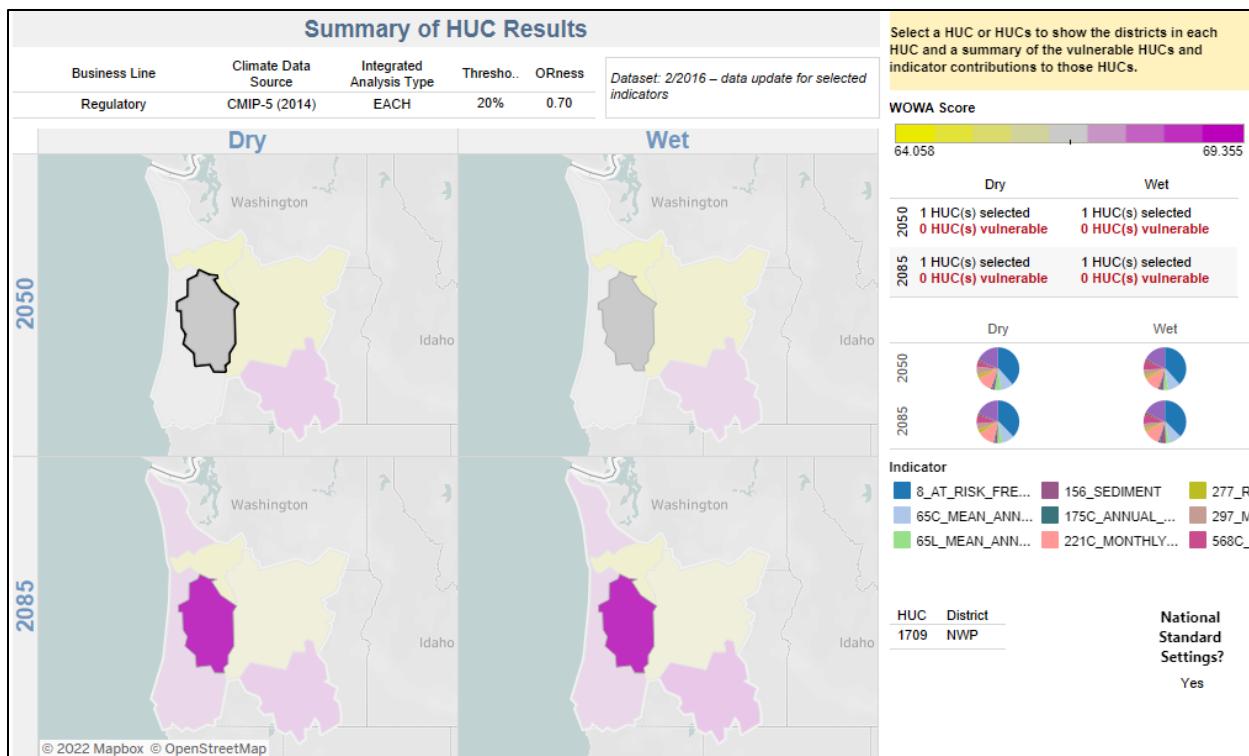
Table 6-9. VA WOWA Score for Hydropower.

WIL HUC 17094	Hydropower	Hydropower
Epoch:	2050	2085
Dry Scenarios	65.27	65.54
Wet Scenarios	67.08	66.39

**Willamette Valley System Operations and Maintenance
Environmental Impact Statement**

Figure 6-5. VA Tool Recreation Business Line.

Table 6-10. VA Recreation Indicators.


Indicator Code	Indicator Name	Description
95	95_DROUGHT_SEVERITY	Drought Severity Index
156	156_SEDIMENT	Change in sediment load due to change in future precipitation
221C	221C_MONTHLY_COV	Monthly CV of runoff (cumulative)
277	277_RUNOFF_PRECIP	% change in runoff divided by % change in precipitation
568C	568C_FLOOD_MAGNIFICATION	Flood magnification factor (cumulative)
568L	568L_FLOOD_MAGNIFICATION	Flood magnification factor (local)
570L	570L_90PERC_EXCEEDANCE	Low flow (monthly flow exceeded 90% of time; local)
571C	571C_10PERC_EXCEEDANCE	Flood flow (monthly flow exceeded 10% of time; cumulative)
700C	700C_LOW_FLOW_REDUCTION	Low flow reduction factor (cumulative)

(Note: Red indicates the top vulnerability indicators.)

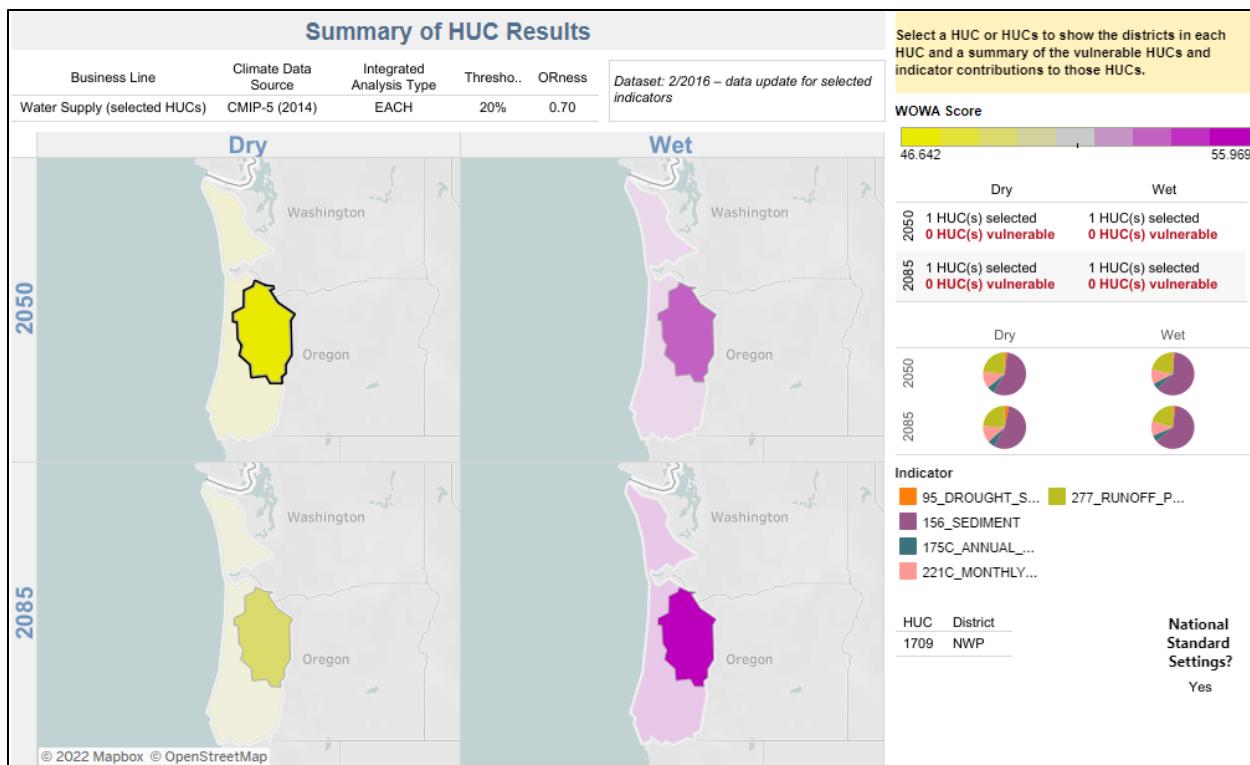
Table 6-11. VA WOWA Score for Recreation.

WIL HUC 17094	Recreation	Recreation
Epoch:	2050	2085
Dry Scenarios	61.11	64.12
Wet Scenarios	61.436	63.61

**Willamette Valley System Operations and Maintenance
Environmental Impact Statement**

Figure 6-6. VA Tool Regulatory Business Line.

Table 6-12. Regulatory Indicators.


Indicator Code	Indicator Name	Description
8	8_AT_RISK_FRESHWATER_PLANT	% of freshwater plant communities at risk
65C	65C_MEAN_ANNUAL_RUNOFF	Mean annual runoff (cumulative)
65L	65L_MEAN_ANNUAL_RUNOFF	Mean annual runoff (local)
156	156_SEDIMENT	Change in sediment load due to change in future precipitation
175C	175C_ANNUAL_COV	Annual CV of unregulated runoff (cumulative)
221C	221C_MONTHLY_COV	Monthly CV of runoff (cumulative)
277	277_RUNOFF_PRECIP	% change in runoff divided by % change in precipitation
297	297_MACROINVERTEBRATE	Macroinvertebrate index of biotic condition
568C	568C_FLOOD_MAGNIFICATION	Flood magnification factor (cumulative)

(Note: Red indicates the top vulnerability indicators.)

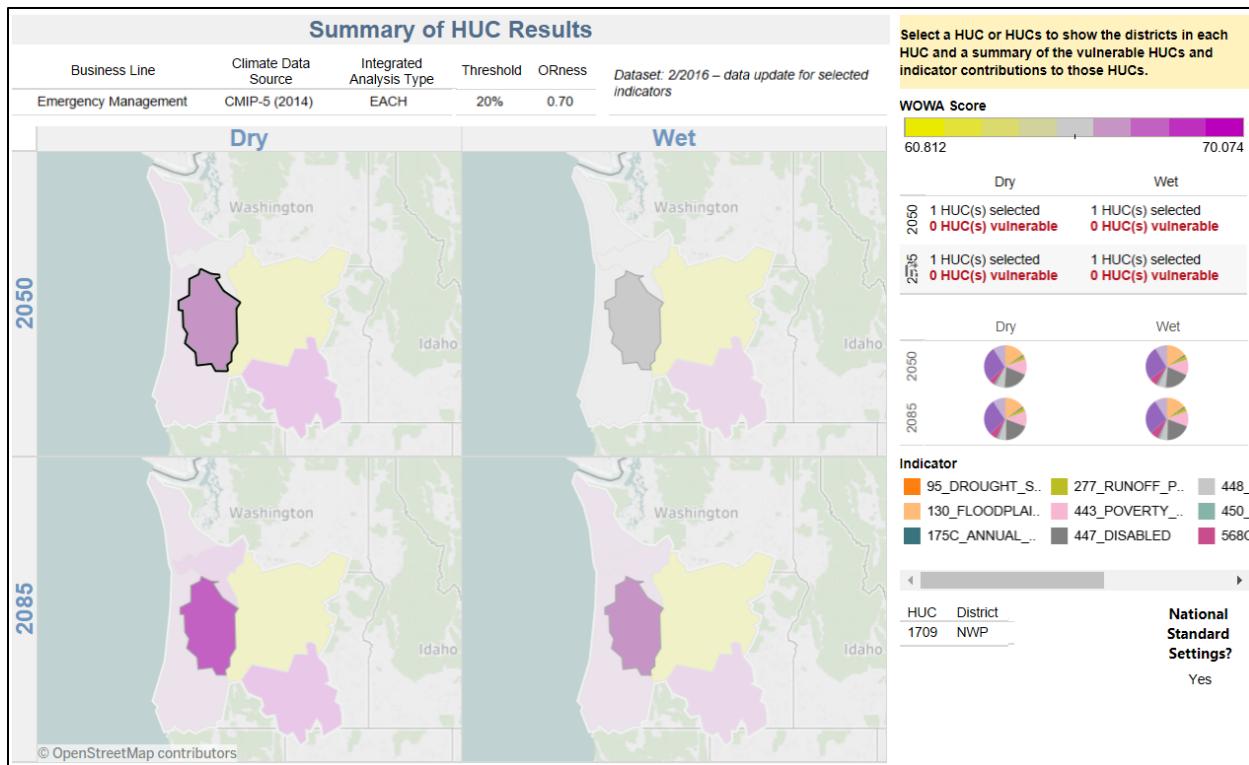
Table 6-13. VA WOWA Score for Regulatory.

WIL HUC 17094	Regulatory	Regulatory
Epoch:	2050	2085
Dry Scenarios	66.93	68.41
Wet Scenarios	66.95	68.57

**Willamette Valley System Operations and Maintenance
Environmental Impact Statement**

Figure 6-7. VA Tool Water Supply Business Line.

Table 6-14. Water Supply Indicators.


Indicator Code	Indicator Name	Description
95	95_DROUGHT_SEVERITY	Drought Severity Index
156	156_SEDIMENT	Change in sediment load due to change in future precipitation
175C	175C_ANNUAL_COV	Annual CV of unregulated runoff (cumulative)
221C	221C_MONTHLY_COV	Monthly CV of runoff (cumulative)
277	277_RUNOFF_PRECIP	% change in runoff divided by % change in precipitation

(Note: Red indicates the top vulnerability indicators.)

Table 6-15. VA WOWA Score for Water Supply.

WIL HUC 17094	Water Supply	Water Supply
Epoch:	2050	2085
Dry Scenarios	46.64	49.66
Wet Scenarios	52.86	55.32

**Willamette Valley System Operations and Maintenance
Environmental Impact Statement**

Figure 6-8. VA Tool Emergency Management Business Line.

Table 6-16. Emergency Management Indicators.

Indicator Code	Indicator Name	Description
95	95_DROUGHT_SEVERITY	Drought Severity Index
130	130_FLOODPLAIN_POPULATION	Population in 500-year floodplain
175C	175C_ANNUAL_COV	Annual CV of unregulated runoff (cumulative)
277	277_RUNOFF_PRECIP	% change in runoff divided by % change in precipitation
443	443_POVERTY_POPULATION	Number of people below poverty line
447	447_DISABLED	% of people disabled
448	448_PAST_EXPERIENCE	Disaster resilience due to experience
450	450_FLOOD_INSURANCE_COMMUNITIES	Number of communities with flood insurance
568C	568C_FLOOD_MAGNIFICATION	Flood magnification factor (cumulative)
700C	700C_LOW_FLOW_REDUCTION	Low flow reduction factor (cumulative)

(Note: Red indicates the top vulnerability indicators.)

Table 6-17. VA WOWA Score for Emergency Management.

WIL HUC 17094	Emergency Management	Emergency Management
Epoch:	2050	2085
Dry Scenarios	66.21	67.21
Wet Scenarios	65.57	66.53

6.3 VA Implications for Resource Areas

THE DEIS HAS BEEN MODIFIED TO REVISE THE FOLLOWING INFORMATION IN THE FEIS

Consequential vulnerability indicators (aka, “metric drivers”) that affected most of the resource areas were VA metrics that tended to reflect high and low flow seasonal or annual changes. Flood risk reduction vulnerability was driven by flood magnification (local and cumulative) and flood event encroachments into 500-year urbanized floodplains. The VA Higher peak flows and flow volumes are likely to stress the WVS EIS No-action Alternative (NAA) flood risk reduction objective and may increase future costs associated with flood damage. This trend broadly agrees with conclusions drawn from the literature review and the CHAT results discussed in Section 3.1, Climate Change Literature Syntheses and Section 3.3, Climate Hydrology Assessment. The literature review highlighted an increase in winter/early spring flows and decreasing summer flows.

Low flow metrics included in the VA Tool are a drought severity index, a low flow reduction factor, and the 90 percent AEP flow. The low flow reduction factor and 90 percent AEP flow variables contribute significantly to the Emergency Management and Recreation business lines’ VA scores for the Willamette River Basin. Despite including low flow metrics in the VA score, these variables do not contribute significantly to the Ecosystem Restoration, Water Supply, and Hydropower VA Tool output for the Willamette River Basin. VA driver 95 “drought severity,” was not a primary driver, although it occurred often. Driver 95 was conspicuously absent for the Willamette River Basin’s Ecosystem Restoration vulnerability business line. Another low flow metric driver, 700C, low flow reduction, was a driver for Ecosystem Restoration, Hydropower, Recreation, and Emergency Management but not Water Supply. And for those VA business lines, 700C was not identified as a major driver for the vulnerability.

VA drivers 221L and 221C, which represent the local and cumulative coefficient of variation of monthly runoff, are variables that indicate the degree of variability in monthly regulated flows: “...indicator [which] measures short-term variability in a region’s hydrology. It is the 75th percentile of annual ratios of the standard deviation of monthly runoff to the mean of monthly runoff” (VA Tool metric description). A higher value for NWP, Willamette region, may indicate that the WVS NAA may experience “...high[er] variability in monthly runoff within a year. Flash floods may occur in areas that experience frequent variation between wet and dry conditions” (VA Tool metric description) compared to historical norms.

Although the VA Tool does not provide directionality or variability for the indicator, it may reflect winter increasing flows and less summer base flow. The literature points to a decrease of relative flow and volume in the summer. Overall, VA hydrologic results support those climate change trend inferences.

SWE and wildfire driver metrics are not represented in the VA results. However, increasing Flood Risk Reduction for the Willamette (e.g., increasing WOWA scores through 2085) and an overall increase prevalence of the “277_RUNOFF_PRECIP,” “% change in runoff divided by % change in precipitation,” may point to the transition from SWE/freshet influence to a wholly

rain-driven pattern. This would be consistent with other assessments of future hydro-climate change trends (e.g., literature review studies and CHAT analyses). Other factors that could drive vulnerability exist, such as Wildfire risk that drives potential increase in sediment transport and the change in land cover that is the primary mechanism for increasing potential sediment supply. Higher rainfall and runoff will act to mobilize the sediment. With the occurrence of increased sediment, as indicated in the Navigation and Water Supply Vulnerability business lines, some degree of increasing likelihood of future wildfire may be suggested.

END REVISED TEXT

7. SUMMARY AND CONCLUSIONS

This climate change assessment was prepared to support the Willamette Valley System (WVS) Environmental Impact Statement (EIS). The Willamette Valley System operates 13 dams and reservoirs (projects) to meet multipurpose objectives. These include operations to reduce the risk and associated damages of flooding throughout the Basin as well as water conservation (water supply), power generation, fish and ecosystem function, and recreational purposes. The projects operate both collectively and individually as mandated by their water control manuals. The EIS PDT identified relevant climate change factors early in the process. Factors such as ambient temperature change, evaporation at reservoirs, changing flow peaks and timing, more frequent and intense occurrence of wildfires and their effects, changing SWE, and increasing water temperatures were perceived likely to impact EIS resource areas. Refer to Appendix F2 for additional discussion and analysis of these climate factors.

THE DEIS HAS BEEN REVISED TO INCLUDE THE FOLLOWING INFORMATION IN THE FEIS

Climate change was considered early in the EIS Preferred Alternative selection process. An explanation of the Preferred Alternative formulation is contained in FEIS Appendix A. Measures were brainstormed and screened out based on various criteria and rationale. Some brainstormed measures were seemingly well suited to address a particular climate stressor. For example, increasing water temperatures could be offset with a thermal regulation (temperature control) tower. The temperature control towers at each site in the Basin would likely offer some downstream cooling. However, the cooling effects can be localized and may not have long-term persistence. While providing a tower at each site could offset downstream water temperatures, the cost to build may be prohibitively expensive. Maximize Storage and deviations from prescribed shared water allocation, which are goals of the alternative but are not measures, would conceptually be climate resilient. Reallocation was out of scope of the WVS EIS. Regulation curve updates were considered but screened out due to impacts to the constraint of not impacting flood risk management purpose.

END NEW TEXT

Relevant climate change factors were consequential for the future climate vulnerability analyses and identification of residual risk. The Corps Climate Preparedness and Resilience (CPR) Community of Practice (USACE 2023) defines residual risk as the risk that remains after

measures have been put into place targeted at reducing risk. The Corps' response to climate change is adaptation focused and formulates measures and alternatives to be as resilient as possible. A more resilient feature is one that is conceptually more resistant to likely future conditions and/or possesses inherent flexibility to adapt successfully to projected changes.

THE DEIS HAS BEEN MODIFIED TO REVISE THE FOLLOWING INFORMATION IN THE FEIS

The nonstationarity detection (NSD) analyses and attribution of observed annual peak streamflows in the Basin led to the determination that there is little evidence for changing hydroclimate affecting the observed peak streamflow hydrology in the Willamette River Basin. This has implication primarily for the Corps' Flood Risk Reduction business line. There is not an abundance of evidence pointing to hydrologic nonstationarity or peak streamflow trends for monthly or seasonal flows either. Flood-level streamflow change is often the metric of greatest concern for water managers in the Willamette Valley System operations. But increasing concern has been given to the low flow metric changes as the most immediate vulnerability to manage. The low water metric changes are increasingly impactful to future WVS operations for ecosystem, water quality, etc.

END REVISED TEXT

It is estimated that the WVS will experience wetter winter flood seasons with less snow and more rain as well as warmer and drier summer conservation seasons in the future. These changes are supported by the literature as well as the CHAT results. The directionality of projected changes highlights the need for flexibility in future flood risk, refill, biological opinion, and conservation season operations. The future climate change factor trends will likely stress some authorized purposes of these reservoirs, such as water supply. Note that the uncertainty associated with future projections of hydrologic conditions is large.

Some residual risks will likely remain after EIS measures have been implemented. While the determinations presented in this assessment are qualitative, it should be noted that the residual risk could increase in the future as compared with present day residual risk.

It is likely that the WVS will be able to accommodate many future hydroclimatic and hydrologic changes. The EIS is operations focused, and its measures are designed to improve ecosystem function, facilitate downstream passage, and better regulate thermal flow regimes. A main objective is to provide optimal downstream flow conditions for fish passage and other environmental objectives. These measures are executed within the authorities and operational constraints identified in the water control manuals. Climate change has been identified as increasing the stress on many operational goals described in the EIS. However, proposed EIS operations focused on ameliorating the stressors that are also climate change factors will likely make any Preferred Alternative measures more resilient to future climate change factors.

Significant hydro-regulation capacity and flexibility are incorporated into existing water management plans. Therefore, the WVS is uniquely suited to be more resilient to future

seasonal flow fluctuations such as more extreme high and low water events. Being operational in nature, the WVS EIS is more able to adapt to highly uncertain and extreme events.

Potential resilience measures that are best able to reduce future flood risk, maintain water supply levels, avoid water quality impacts, maintain reservoir levels for recreation, and maintain downstream flow and passage conditions for fish may include structural modifications to individual reservoir projects. These improvements would be best if they increased the flexibility and range of the individual project and system operations. They could include acquisition of additional real estate for future infrastructure expansion, and changes to existing regulation outlets and spillways that provide more operational flexibility would also provide resilience to future climate effects. The goal would be to increase the range of operations that a project and/or the WVS could perform to cope with more extreme conditions due to climate change.

Based on this assessment, it is recommended that potential, future effects of climate change be treated as having a high degree of future uncertainty. Therefore, measures should not be assessed for specific, future climate change conditions. If this assumption proves to be inadequate when future observations or more refined projections become available, then a quantitative evaluation and revision of these results may be warranted. This could be part of the final adaptation plan as well. It is recommended that flow frequency and pool frequency be monitored and re-evaluated periodically in the future to determine how projected trends manifest themselves in future observations.

Table 7-1 summarizes WVS EIS-specific residual risks. ECB 2018-14 (rev1) states that in most cases, there will be risks to the project due to climate change that do not meet current evaluation criteria. The description of the Preferred Alternative should include a brief discussion of the residual risks resulting from changed climate conditions, and should include a table with rows for each major measure or feature (including nonstructural measures) and columns that describe the trigger event (i.e., climate variable that causes the risk), the hazard (i.e., resulting dangerous environmental condition), the harms (i.e., potential damage to the project or changed project output), and a qualitative assessment of the likelihood and uncertainty of this harm.

The residual risk table identifies climate change risks that remain after the proposed EIS actions are implemented. Residual risks are assigned a risk rating: likely, less likely, or highly likely.

The EIS is operational in nature, with proposed structural appurtenances to allow more flexible future water management. EIS actions coincidentally will operate to offset some of the same hydrologic and hydraulic vulnerability drivers and relevant factors of concern for climate change. Therefore, the EIS actions may be viewed as inherently more resilient to compound/coincident impacts of the alternative and climate change over the project's 50-year period and 100-year operating life cycle. The EIS actions will not exacerbate climate change impact or adversely affect the WVS and its environment. If the potential for harm is absent, this would imply low risk as well. Table 7-1 summarizes the residual risks, hazards, and likelihood of effects from climate change. The NAA residual risks stand out as being rated highly likely. That

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

reflects the idea that if nothing is done, climate change effects will progress; maximum impacts will be realized. If the measures are implemented considering the likely climate change effects (Table 7-1), the EIS can overall help ameliorate for climate change effects.

THE DEIS HAS BEEN MODIFIED TO REVISE THE FOLLOWING TABLE IN THE FEIS

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

Table 7-1. Residual Risk Table for the WVS EIS Alternatives Analyses.

Trigger	Hazard #	Hazard	Harm (or reduction in harm where specified)	Likelihood of Harm
Decreased Summer Precipitation in Combination with Warmer Summer Temperatures	1	Increased Wildfire intensity and frequency.	Wildfires can result in increased erosion that would further increase sediment loads and turbidity, and could further reduce the quantity and quality of some fish species and habitat.	LIKELY
			Wildfire would negatively affect all types of cultural resources.	
			Degradation of water quality in streams and rivers throughout the WRB (e.g., Higher pollutant loads etc.).	
	2	Decreased summer flows/prolonged conservation season low flow conditions (worsened by increased E-T due to warmer temperatures).	Climate change is likely to increase the demand for Municipal and Industrial (M&I) water supply and agricultural irrigation. A decrease in flow and water volumes in the summer may have an adverse effect on water supply as users aren't able to withdraw water from the stream for consumptive uses.	LIKELY
			Reservoirs will have to release more water to meet downstream flow targets as local inflows will be less. Reservoir storage volume is the primary driver for providing augmentation flows in summer and autumn. Immediately downstream of each dam, water temperature is dependent on temperature management (the ability to mix cooler, deeper lake water with warmer, surface lake water). Decreased water supply in the conservation season. WVS projects may reach their minimum water surface elevations more frequently. Reduced water levels in the summer that expose archaeological sites.	LESS LIKELY to LIKELY
			If reservoir levels are lower due to low summer flows and long-lasting droughts, shoreline erosion could occur and cause sedimentation and increased turbidity affecting water color, clarity, and texture.	LESS LIKELY to LIKELY
Increase in Frequency of Winter Extreme Precipitation Events	3	Future flood volumes may be larger than present and large flood volumes may occur more frequently. Flood hydrographs may be flashier.	Increased flooding (more frequent bank-full flows), Rule Curves dictating reservoir operations might not suffice during extreme wet conditions, and increased winter precipitation that erodes archaeological sites.	UNLIKELY

**Willamette Valley System Operations and Maintenance
Environmental Impact Statement**

Increase in Frequency, Duration, and Intensity of Droughts	4	Future droughts may be more severe than at present.	Lower summer streamflows imply that reservoirs will have to release more water to meet downstream flow targets. Downstream flow targets may not be met and Rule Curves dictating reservoir operations might not suffice during extreme dry conditions.	LIKELY
		Future droughts might occur at increasing frequency.		
Warmer Winter Temperatures	5	Shift from a combined rainfall-snowmelt regime to a rainfall only regime resulting in lower late winter/spring flows.	Reservoirs might not adequately fill. Reservoir storage volume is the primary driver for providing augmentation flows in summer and autumn. Immediately downstream of each dam, water temperature is dependent on temperature management (the ability to mix cooler, deeper lake water with warmer, surface lake water). Decreased water supply in the conservation season. Higher winter flows occurring in December-January would not be stored as the guide curves for Willamette Projects generally begin February 1. Therefore, climate change will likely lead to decreased release volumes in spring and summer compared to the NAA and could shorten the recreational season/reduce recreational opportunity.	HIGHLY LIKELY
			Reduction in Harm: Flood risk contribution from the annual spring snow melt a may be reduced, especially in higher elevation reservoirs that are presently influenced by snowpack.	HIGHLY LIKELY
	6	Shift from a combined rainfall-snowmelt regime to a rainfall only regime resulting in Higher Winter Flows.	Higher winter flows may increase TDG (Total Dissolved Gas) levels if no TDG management is in place, as turbine capacity at power projects would likely be exceeded more often and result in "spill" releases through non-power outlets.	LIKELY
			Increased winter and early spring flows may complicate WVS ability to initiate refill earlier.	LIKELY
			Reduction in Harm: Because the WVS will likely experience increasing winter (December through March) flow volumes due to climate change generally, it is possible that projects may be able to capture some additional flow, which could produce incremental increases in power generation during the winter.	LIKELY
			Because precipitation is not stored as snow (SWE) upstream of the reservoirs, fall and winter inflows are likely to increase, which could result in more frequent flood risk management operations and demand on the flood risk management storage within the reservoirs.	UNLIKELY
Increasing Temperatures	7	Warmer water temperatures.	Impairment/loss of lamprey, steelhead, and Chinook salmon habitat.	HIGHLY LIKELY
			Degradation of water quality in streams and rivers throughout the WRB (e.g., more HAB etc.).	
Increasing Variability in Spring Precipitation	8	Decreased spring flows.	Increased variability in spring precipitation may result in less reliable reservoir refill.	LIKELY

8. REFERENCES

Bonneville Power Administration (BPA). 2011. Level Modified Streamflow.

BPA. 2020. Level Modified Streamflow.

Chang, H. and Jones, J. 2010. *Climate Change and Freshwater Resources in Oregon*, Portland State University.

Climate Impacts Group. 2010. Final Report for the Columbia Basin Climate Change Scenarios Project, University of Washington. Available at <http://warm.atmos.washington.edu/2860/report/>

Climate Impacts Group. 2018. Website of Site Specific Data, for the Willamette River at Salem. Available at <http://warm.atmos.washington.edu/2860/products/sites/?site=4060>

Hegewisch, K. C., V. Laquindanum, E. Fleishman, H. Hartmann, and M. Mills-Novoa. Climate Toolbox Tool Summary series. Available at <https://climatetoolbox.org/tool-summaries>. Accessed: 2022.

U.S. Global Change Research Program (USGCRP). 2018a. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II, Chapter 2, National Topics: Our Changing Climate. Washington, DC, USA, 1515 pages. doi: 10.7930/NCA4.

USGCRP. 2018b. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II, Chapter 3, National Topics: Water. Washington, DC, USA, 1515 pages. doi: 10.7930/NCA4.

USGCRP. 2018c. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II, Chapter 24, Northwest Region. Washington, DC, USA, 1515 pages. doi: 10.7930/NCA4.

National Oceanic and Atmospheric Administration (NOAA). 2022. <https://statesummaries.ncics.org/chapter/or/>. Accessed: June 2022.

Oregon Climate Change Research Institute (OCCRI). 2015. *Historical Trends and Future Projections of Climate and Streamflow in the Willamette Valley and Rogue River Basins*.

Queen, L. E., P. W. Mote, D. E. Rupp, O. Chegwidden, and B. Nijssen. 2021. Ubiquitous increases in flood magnitude in the Columbia River basin under climate change. *Hydrology and Earth System Science*. Volume 25, pages 257–272. <https://doi.org/10.5194/hess-25-257-2021>.

U.S. Army Corps of Engineers (USACE). 2015. Recent US Climate Change and Hydrology Literature Applicable to US Army Corps of Engineers Missions, Pacific Northwest Region 17.

USACE. 2016a. Climate Hydrology Assessment Tool (CHAT).

*Willamette Valley System Operations and Maintenance
Environmental Impact Statement*

USACE. 2016b. Vulnerability Assessment (VA) Tool and User Guide. Version 1.1. Issued November 2016.

USACE. 2016. Engineering and Construction Bulletin 2016-25, Guidance for Incorporating Climate Change Impacts to Inland Hydrology in Civil Works Studies, Designs, and Projects. Issued 16 September 2016.

USACE. 2016. Willamette Basin Year in Review, Water Year 2015 (commonly referred to as the After Action Report, AAR).

USACE. 2017a. Master Water Control Manual for the Willamette Valley Project, Oregon. Draft version.

USACE. 2017b. Engineering Technical Letter (ETL) 1100-2-3. Guidance for Detection of Nonstationarities in Annual Maximum Discharges. Issued 28 April 2017.

USACE. 2017c. Appendix D, Willamette Basin Review – Flow Dataset Used for ResSim Analyses.

USACE. 2017. Appendix C, WBR – Calculation of Water Volumes Required to Meet Willamette BiOp Minimum Flows.

USACE. 2018a. Engineering and Construction Bulletin 2018-14. Guidance for Incorporating Climate Change Impacts to Inland Hydrology in Civil Works Studies, Designs, and Projects. Issued 10 September 2018.

USACE 2018b. Nonstationarity Detection (NSD) Tool and User Guide. Version 1.2. Issued May 2016, updated September 2018.

USACE. 2018c. Time Series Toolbox, Trend Analysis and Nonstationarity Detection.

USACE. 2018d. Willamette Basin Review Feasibility Study, Appendices A, B, and K. Draft version.

USACE. 2019. Qualitative Assessment of Climate Change Impacts, Willamette River Basin, Oregon. Northwest Division, Portland District, Dam and Levee Safety Section (CENWP-ENC-HC).

USACE. 2023. Climate Preparedness and Resilience (CPR) Community of Practice (CoP) Applications Portal. <https://maps.crrel.usace.army.mil/projects/rcc/portal.html>. Accessed 2023.

Warner, M., C. Mass, and E. Salathe. 2015. Changes in Winter Atmospheric Rivers along the North American West Coast in CMIP5 Climate Models. *Journal of Hydrometeorology*. Volume 16, pages 118–128. <https://doi.org/10.1175/JHM-D-14-0080.1>.

White, K., J. Arnold, and C. D. M. Smith. 2015. Recent U.S. Climate Change and Hydrology Literature Applicable to US Army Corps of Engineers Missions – Pacific Northwest Region 17.

Oregon State University. 2023. Willamette Water 2100. Available at <http://inr.oregonstate.edu/ww2100>. Accessed 2023.