DEMAND RESPONSE POTENTIAL ASSESSMENT RESULTS

WORK COMPLETED IN SUMMER OF 2024

Agenda

Project Overview

Demand Response Potential Assessment (DRPA) Results

Next Steps

Questions

PROJECT OVERVIEW

Project Background

Since 2018, BPA assesses demand response with other supply side resources in the Resource Program.

The Resource Program examines uncertainty in loads and resources to develop a least-cost portfolio of resources that meet BPA's obligations.

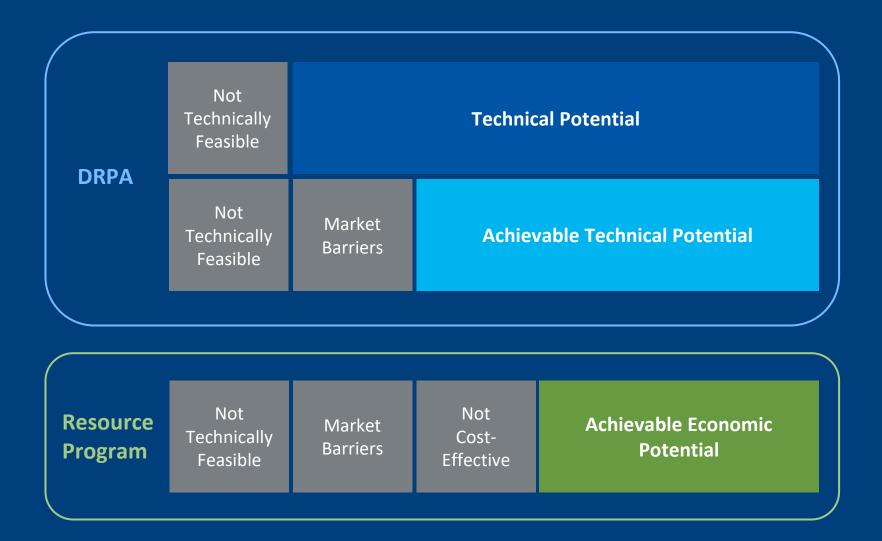
Demand Response (DR) is selected based on BPA's need, availability, and cost.

DRPAs develop estimates of EE and DR resources for Resource Program.

Ensures all potential DR is included and evaluated against competing alternatives.

2024 Resource Program Update

2022 Resource Program


2024-2043 (2021 DRPA)

2024 Resource Program

2026-2045 (2023 DRPA)

Updated BPA Forecasts
New Climate Data Changes
Geographical Regions
Load Sensitivities
EE and DR Assumptions Updates

Types of Potential

DRPA Project Goals

Develop 20-year
estimates of
achievable DR
potential and
associated costs in
BPA's service territory
(2026 – 2045)

Produce DR
supply curves for
use in BPA's
Resource Program
modeling

Importance of DR

NW Power Council

- DR selected to offset regional system needs during peaking and ramping periods.
- 520 MW of DVR, 200 MW of residential Time of Use selected to be acquired across the region by 2027.

BPA

- Since 1985, collaborated on regional pilots and demonstrations.
- Readied organization for commercial roll-out.
- BPA would rely on customer involvement in DR.

Methodology Overview

Resource Program Timeline Updated Stock Data Updated BPA Load Forecasts

Ramp Rates

Interaction with Energy Efficiency

Frequent Use Products

Geographic Split

Overall Goal: Update 2021 supply curves to align with BPA's Resource Program, while updating impacts of frequent use products.

DR Products

Product Category	Product	Summer	Winter
	Residential DLC - Electric Vehicle Service Equipment	✓	✓
	Residential DLC - Electric Resistance Water Heater (ERWH) Switch	✓	✓
	Residential DLC - ERWH Grid-Enabled	✓	✓
	Residential DLC - Heat Pump Water Heater (HPWH) Switch	✓	\checkmark
	Residential DLC - HPWH Grid-Enabled	✓	✓
Direct Load Control	Residential DLC - BYOT	✓	\checkmark
(DLC)	Residential DLC – HVAC Switch	✓	\checkmark
	Commercial DLC – Medium HVAC Switch	✓	\checkmark
	Commercial DLC - Small HVAC Switch	✓	✓
	Agricultural DLC - Irrigation District DR	✓	
	Agricultural DLC - Irrigation Central Control DR	✓	
	Agricultural DLC - Irrigation Standard DR	✓	
Demand	Industrial Demand Curtailment	✓	✓
Curtailment	Commercial Demand Curtailment	✓	✓
DVR	Utility DVR	✓	✓
Rate-Driven	Residential Rate-Driven DR - TOU	✓	✓
Demand Response	Residential Rate-Driven DR - CPP	✓	✓
via Time-Varying	Commercial Rate-Driven DR - CPP	✓	✓
Prices	Industrial Rate-Driven DR - CPP	✓	✓

How to Understand DR Potential

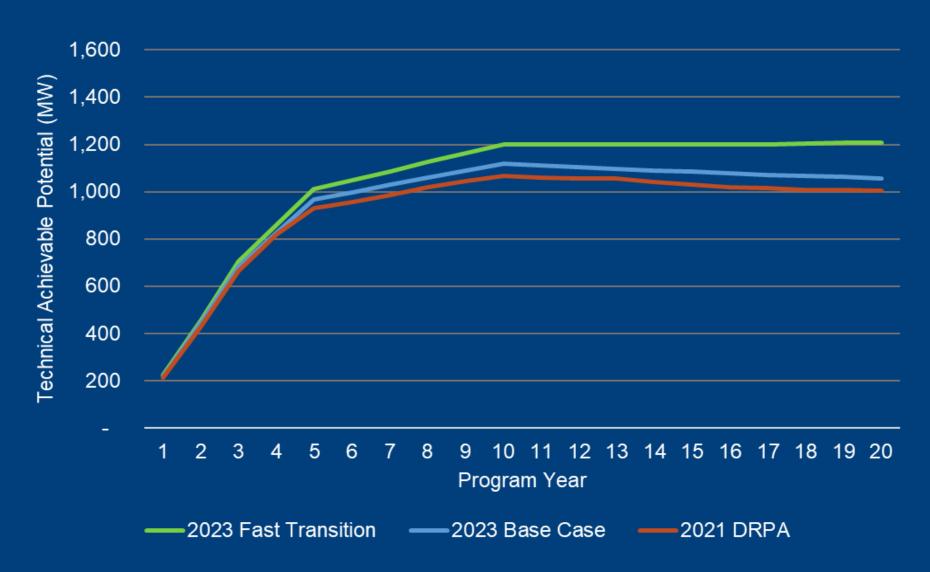
Capacity (MW) reduction for a DR event in given year, averaged across hours and events

Differentiated by season

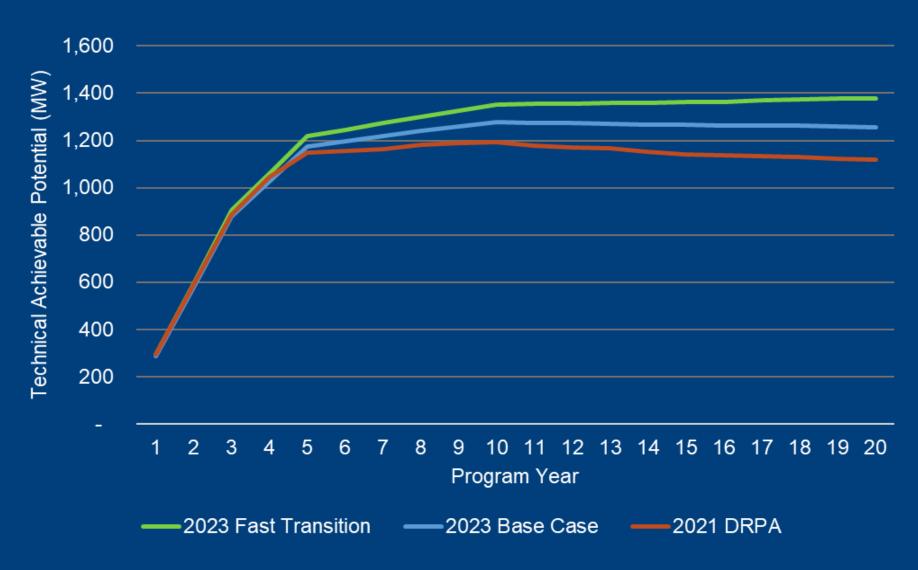
Participation and results are cumulative across years

Include interaction with energy efficiency adoption

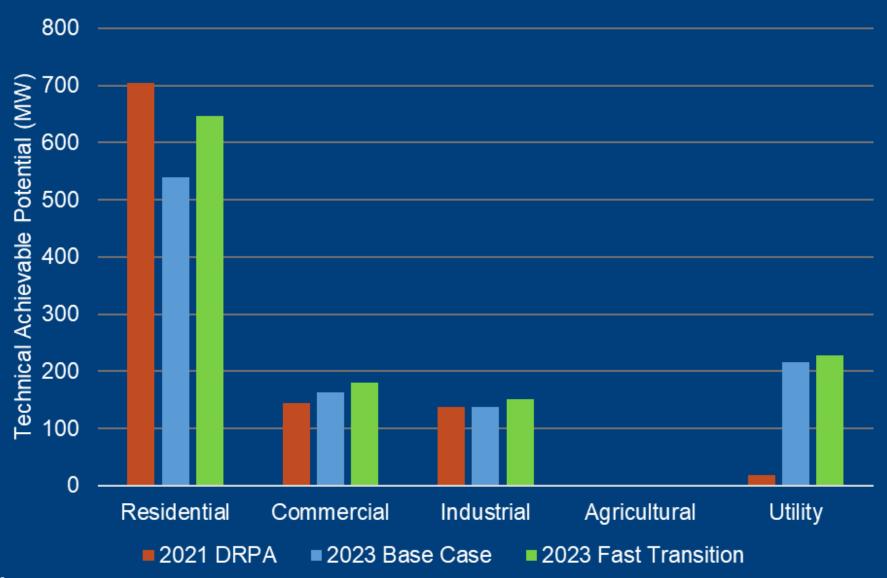
Results are additive across products

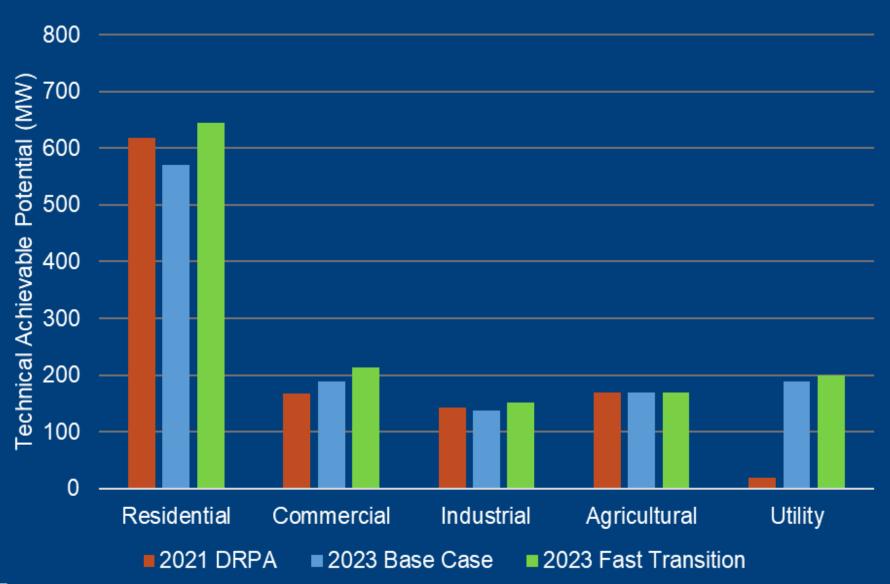


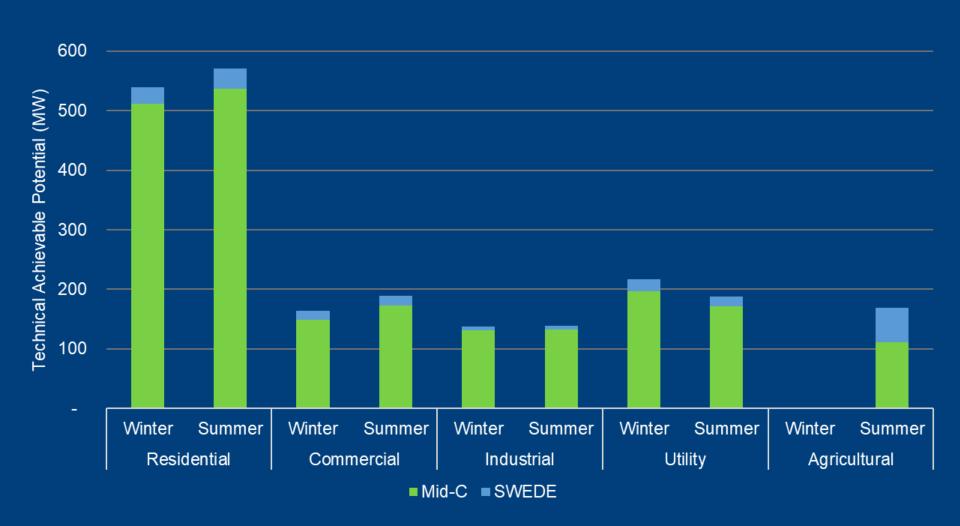
2023 DRPA Results Summary

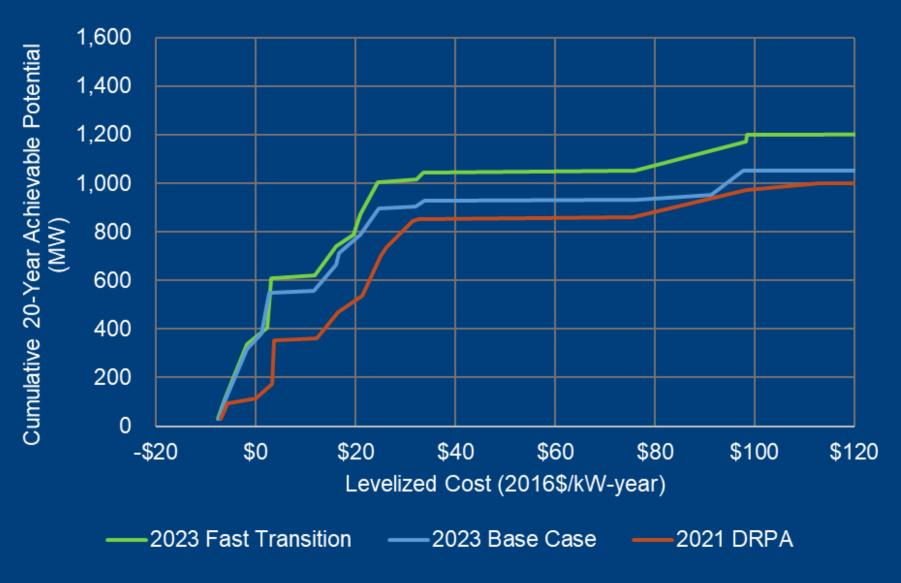

	Cumulative Winter Achievable Technical Potential (MW)		
	5-Year	10-Year	20-Year
2021 DRPA	929	1,066	1,005
2023 Base Case	967	1,117	1,056
2023 Fast Transition	1,011	1,200	1,206

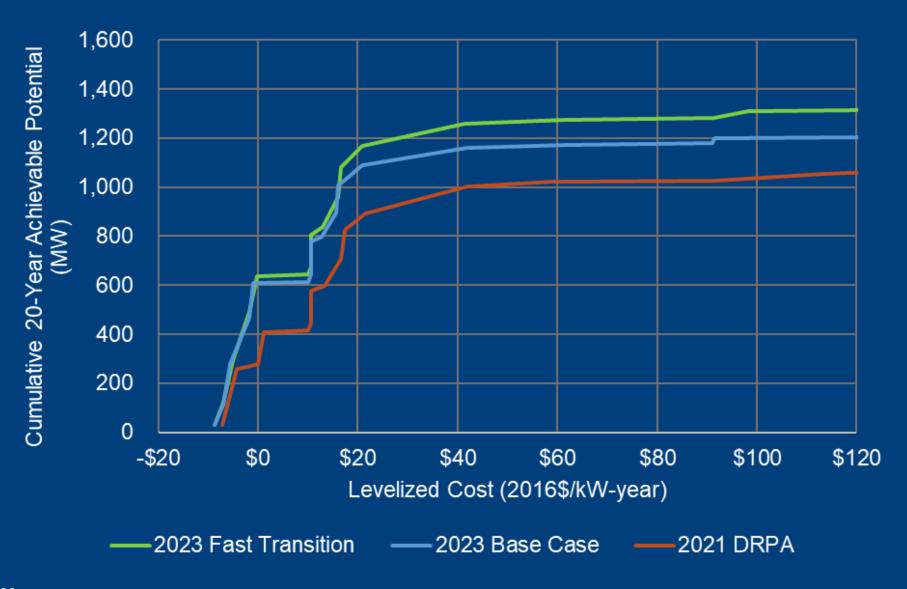
	Cumulative Summer Achievable Technical Potential (MW)		
	5-Year	10-Year	20-Year
2021 DRPA	1,150	1,193	1,117
2023 Base Case	1,176	1,278	1,256
2023 Fast Transition	1,218	1,351	1,379


Annual Winter Potential Summary


Annual Summer Potential Summary


Winter Achievable Potential by Sector


Summer Achievable Potential by Sector


Achievable Potential by Sector, Season, & Geography

Winter Supply Curve

Summer Supply Curve

Frequent Use Products

Demand Response Product	Winter Event Timing	Summer Event Timing	Energy Shifts
DVR	5 a.m. to 10 a.m. 4 p.m. to 10 p.m. July to April		None
Time-of-Use Rates	7 a.m. to 10 a.m. 5 p.m. to 8 p.m. Weekdays	5 p.m. to 8 p.m. Weekdays	Throughout the day based on typical residential load shape
Electric Vehicle (EV) Supply Equipment	4 p.m. to 8 p.m. Daily	4 p.m. to 8 p.m. Daily	Throughout the day based on typical EV charging load shape
Electric Resistance Water Heater Switch (ERWH-Switch)	6 a.m. to 9 a.m. 5 p.m. to 9 p.m.	4 p.m. to 8 p.m.	Over the hour following events
Heat Pump Water Heater Switch (HPWH-Switch)	6 a.m. to 9 a.m. 5 p.m. to 9 p.m.	4 p.m. to 8 p.m.	Over the two hours following events
Grid-Enabled Electric Resistance Water Heater (ERWH-Grid)	6 a.m. to 9 a.m. 5 p.m. to 9 p.m.	5 p.m. to 9 p.m.	Over the hour before and after events
Grid-Enabled Heat Pump Water Heater (HPWH-Grid)	6 a.m. to 9 a.m. 5 p.m. to 9 p.m.	5 p.m. to 9 p.m.	Over the two hours before and after events

Conclusions

Higher potential from DVR and electrification, based on input assumptions.

Summer potential is higher due to air conditioning and irrigation loads.

Some products will realize less potential over time as certain EE measures are adopted.

BPA's Resource
Program will
determine value of
frequent use
products based on
new hourly inputs.

Load Sensitivity Analysis

Base Case
Medium Load Adder

Fast Transition

Medium Load Adder

Base Case High Load Adder Fast Transition
High Load Adder

Overall Goal: Allow BPA Resource Program team to determine impact to Resource Program results under different load scenarios.

Load Sensitivity – Annual Multiplying Factors

Six-Year DRPA Results – Load Sensitivity

	Six-Year Cumulative Achievable Technical Potential - aMW		
Sensitivity Scenario	BPA 2023 DRPA Base Case 2026 to 2031	BPA 2023 DRPA Fast Transition 2026 to 2031	
No Load Adder	2,195	2,293	
Medium Load Adder	2,311	2,410	
High Load Adder	2,899	3,000	

20-Year DRPA Results – Load Sensitivity

	20-Year Cumulative Achievable Technical Potential - aMW		
Sensitivity Scenario	BPA 2023 DRPA Base Case 2026 to 2045	BPA 2023 DRPA Fast Transition 2026 to 2045	
No Load Adder	2,312	2,586	
Medium Load Adder	2,884	3,188	
High Load Adder	3,404	3,735	

NEXT STEPS

Resource Program Modeling

Resource Program
Results in
Fall 2024

BPA-developed resources, including this presentation and the underlying data and workbooks will be made available.

