

Opportunities for Adaptive Lighting

(Bi-level Lighting)

Dr. Michael Siminovitch

Professor, University of California, Davis Director, California Lighting Technology Center Associate Director, Energy Efficiency Center

Adaptive Lighting Design (50-60% savings in most buildings)

- 1. Vacancy occupancy
- 2. Demand respond
- 3. Daylighting

Adaptive Lighting Design: Lighting Responds to Need (50-60% savings in most buildings)

- Corridors
- Offices
- Stairwells
- Mechanical spaces
- Exterior

Typical Commercial Building Lighting Energy Use (Campus)

Bi-level Stairwells in State Buildings

Bi-level Stairwells in State Buildings

50% Savings: Large Purchase Programs Initiated

Bi-level Stairwells for all State Buildings

- Objective/directive to relight all government and state buildings by 2015
- Agreements with DGS
- Purchase program now developing

Daylighting Design

Simplified Daylighting Technology

Simulated Switching & Dimming

Target Illuminance at 50 fc - Switching Set Point at 75 fc

North-facing window at Davis, CA, on November 17, 2004

By 2020, Daylighting will be used in all new and existing offices and commercial spaces

Laboratory Daylighting University of California, Irvine

- UC Irvine
- 50% savings
- Design standard

Photocell to control window row fixtures

Fixture row closest to the window is controlled OFF (50% saving in labs)

Bi-level Corridor Lighting

 New study underway at UC Davis indicates corridors account for
25% of the annual campus lighting electricity use

Adaptive Lighting: Smart Corridors

Bi-level Corridors: Institutional

- Low level: 30-50%
- Maintains aesthetics
- Safety security
- Energy savings
- Demand response

Smart Corridors: EE & DR

Institutional

Commercial Office

Hotel Corridors (40-50% savings opportunity)

Testing Lab

- Dimming and switching
- Addressing functions
- Retrofit systems
- Human factors

UC Davis: Smart Exterior Lighting Initiative

All exterior light points will reduce automatically to 50% or less power upon vacancy and increase automatically to 100% upon occupancy.

Exterior Lighting: Significant opportunities to save energy through adaptive bi-level controls.

- Parking lots
- Parking garages
- Path way
- Building illumination
- Signage

Midnight: Six Cars in Structure

Exterior Lighting Systems Controls and Smart Systems

- Security
- Optics
- Color
- Maintenance

Next Generation Optics (directed flux, dark sky, fixture efficiency)

Bi-level Optic with Controls

- RF/PLC sensor
- Security
- Efficiency

Demonstrations Update: Arcade Creek Park & California Department of Public Health receive Bi-level Bollards

California Department of Public Health in Richmond. At the park, the bollard operated in low mode 85% of the time, and at the CDPH, the bollards consumed **78% less energy than the original luminaires.**

Smart Light: RF Bi-level Control

Hi-low metal halide/dimming system

Motion sensor

"Smart" Bi-level

- Makes LED cost effective
- Extends life
- Enhances security

North Entry: 2/3 installed

Sacramento State

Smart Bi-level (~60% savings) (\$50 added cost <1 year payback in new construction)

Campuswide Retrofit

LED BI-LEVEL SMART GARAGE VS. BASELINE HID TECHNOLOGY

TIME

By 2020, all exterior lighting will use adaptive controls

National Specification for Street Lighting

Adaptive capabilities for all exterior lighting

- 1. Base level power for standard illuminance
- 2. Low power level during vacancy
- 3. High level/flashing during emergency response
- 4. Dark sky

Adaptive Lighting: Street Lighting (40-50% savings)

Bi-level controls in Offices and Commercial spaces

Bi-level Controls 50% over CA code

- Utility funded
- Industry partners
- 3 large demo's
- Training guides

Lunch Time

- 30% saving opportunity
 - Vacancy controls
- Daylighting bi-level controls
 - 50% saving

Controls Protocol

- Automatic on 50%
- Manual on 100%
- Manual off
- Automatic off

Office Workplane Illuminance

26 fc

50% light level

100% light level

48 fc

Study Location

Phase 1 – 50% Auto ON

Controls Design and Integration Bi-level controls: 2–3 year payback

Bi-level in Other Non-daylit Spaces

- Spaces where auto-off won't work
- Safety and security
- Aesthetics and design integration

Utility spaces

- Copy rooms
- Storage spaces
- Mechanical
- Bathrooms

Copy rooms

Bi-level in larger public spaces

- More difficult
- Daylighting
- Vacancy

Lobby and Entry

Bi-level Controls Summary of Opportunities

Bi-level Daylighting Design Retrofits (40-50% saving opportunity)

- Design/technology
- Demonstration
- guidelines

Bi-level utility spaces (40-50% saving opportunity)

Bi-level stairwells

(40-50% saving opportunity)

Bi-level hallway Lighting (40-50% saving opportunity)

Bi-level Lobby

Bi-level Exterior Lighting (40-50% saving opportunity)

- Technology development
- Demonstrations
- Design guidelines

Bi-level Controls in Commercial Warehouses

- Aesthetic
- Security
- Energy

