Central Water Heating Workgroup
August 4, 2020

Design Implications: Load Shifting Central Water Heating Systems
GOAL: Advance the development and adoption of HPWH Technologies faster together

- HPWH are standard practice in new construction and retrofit
- COP ~ 3
- Low-GWP refrigerants
- Plug-and-play packaged systems
- Cost-effective
- Reliable
- Ability for load shift
Agenda

• What’s New? Discussion – 15 minutes

• Introduction to Design Implications of Load Shifting
 Jonathan Heller; Ecotope – 10 minutes

• EcoSizer Central HPWH Sizing Tool
 Paul Kintner; Ecotope – 15 minutes

• QAHV – Integration of Load Shifting Capabilities – 15 minutes
 Cain White; Mitsubishi Electric

• CTA-2045 Communications for Load Shifting – 15 minutes
 Geoff Wickes; NEEA and Tristan de Frondeville; Skycentrics

• JA-13 Central HPWH Systems Update – 10 minutes
 Pierre Delforge
Managing DHW Load Shape

- Water Heating – Baseline
- Water Heating – Load Shift
Equipment Sizing

1. Storage Volume
2. Output Capacity
Controls and Communications

- Shift
- Shape
- Shimmy
- Shed
• How much hot water do we have left?
• How much hot water do we need in next period of time?
EcoSizer
A CHPWH Sizing Tool

- Paul Kintner
- Central HPWH Working Group
- August 4th, 2020
Sizing and Equipment Selection

55 Tons
1,000 Gallons

5 Tons
520 Gallons
Two Separate DHW Loads

Primary Heating:
- Heating water for use
- Making cold water hot

Temperature Maintenance:
- Reheating water due to energy losses in the distribution system
- Keeping hot water hot

DHW Heating 15%
DHW Temp Maintenance 10%

DHW plant
DHW Load
- Number of People
- Gallons per Day per Person

Storage Efficiency

Aquastat Fraction

Inputs

Supply Temperature

DHW Load

- Number of People
- Gallons per Day per Person

Supply Water Temperature

Recirculation Losses

Max Daily Compressor Run Hours

Cold Water Temperature

Primary Setpoint

Storage Efficiency

Aquastat Fraction
Schematic Selection
Ecotope Modified ASHRAE Methodology (EMASHRAE)

Hot Water Demand – Water used by occupants
Hot Water Generation Rate – How much hot water is produced by HPWH per hour
Load shape from 118 unit building

Example given has 2000 gallons per day, 100 people, HPWH sized to run 16 hours
Estimating DHW Demand

Gallons Per Person Per Day

- ASHRAE
- Ecotope M&V
- CBECC-Res
EMASHRAE – Load Shifting

- Load Shifting between 5 pm and 8 pm
- Same methodology but hot water generation rate goes to 0
- Validates it has enough recovery for the whole after the event
- Expand storage volume, but still trades off with heating capacity
- If load shifting more hours than the HPWH is off per day going to have to increase hot water generation rate
EMASHRAE – Load Shifting

Comparison

- 100 people, 2000 gallons per day
- HPWH size to run 16 hours
- Without load shift and between 5 pm and 8 pm, and morning and evening.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Sized Volume (Gallons)</th>
<th>Heating Capacity kBTU/Hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Load Shift</td>
<td>530</td>
<td>83</td>
</tr>
<tr>
<td>5 pm to 8 pm</td>
<td>700</td>
<td>83</td>
</tr>
<tr>
<td>6 am to 10 am and 5 pm to 8 pm</td>
<td>950</td>
<td>104</td>
</tr>
</tbody>
</table>
Thank You

Paul Kintner – paul@ecotope.com

Input:

Funding:
QAHV – Case Study of Integration of Load Shifting Capabilities

Cain White
Mitsubishi Electric
Determine Utility Requirements

• **Effective design and integration requires clear established standards**
 - Time of use
 - Duration of use
 - Seasonal
 - Notice in advance of event (6, 12 or 24 hours ahead?)
 - What information does the Utility require in return?
 - How much are utilities prepared to spend to implement a solution?

• **Utilities must align on shape and structure of demand signal for equipment to respond**
 - CTA 2045 has not had significant market sales so far for Mitsubishi Electric
 - We sell equipment in all 50 states, therefore we need a repeatable solution that will work for all regions
Mitsubishi QAHV

• **2021 Product Launch**
 • Feasibility assessment complete
 • Currently undergoing UL testing
 • Application testing under way
 • Demonstration and M&V in design
 • Seattle multifamily project with Ecotope
 • CA EPIC project in San Francisco – AEA, Ecotope

• **QAHV Key Specifications**
 • CO2 Refrigerant – GWP of 1
 • 11 tons nominal
 • Capacity data to -13F ambient conditions
 • Systems operating in Europe down to -35F
 • Variable speed Mitsubishi Electric compressor
 • Variable speed pump built-in
 • Cascade control for multiple units
QAHV Capabilities

- Up to 16 QAHV units can be connected in parallel
- 40KW to 640KW system capacity
- QAHV can integrate up to 6 temperature sensors
 - Temperature sensors can determine the volume of stored hot water
- Cascade control built in – units will reduce capacity or turn off automatically
- Ability to limit the capacity of the system via utility signals
- Ability to ramp up production of hot water prior to an event
- Signals can be received from utility or consumer
 - Intending to implement a gateway device with open ADR 2.0b technology
- Successfully demonstrated load shifting with other Mitsubishi technologies
 - Utilizing CTA 2045 USNAP interface
CTA 2045 for Multi-family Overview

Geoff Wickes & Tristan de Frondeville

August 4th 2020

CLASSIFICATION LEVEL : PUBLIC,
CTA – 2045 Overview

- Origins
- Overview of how 2045 works
- Current key target markets (Unitary and split residential and small multi-family)
- How to extend into central systems
- CTA 2045-B next generation
- Where should control be placed
Origins of CTA-2045

- 2013 - Utilities want a future where they can access large electric appliances in homes and small businesses at scale
- Worked with Consumer Technology Association (CTA) to encourage broad manufacturer participation and adoption
- OEMs asked utilities what kind of connection required
- Utilities answered – With variety of solutions leading to universal port
- A universal port with a modular connection was deemed the best approach
How it works

Universal Communication Module (UCM)

Any Communication System

A/C or D/C type

Protocol Pass-through or Basic DR App

Socket Interface

Smart Grid Device (SGD)

e.g., EV Appliance HVAC Thermostat H2O Heater Solar Pools etc.

App layer Link layer PHY layer

RS485 (Line Voltage) SPI (Low Voltage)

Transport & Application Layer Agnostic

e.g., AMI HAN, LAN cellular, FM Pager, etc.
e.g., SEP OpenADR ClimateTalk etc.
How it works (details)

• Three Levels of Shed
 ▪ Shed
 ▪ Critical Peak Event
 ▪ Grid Emergency

• Two Levels of Load Up
 ▪ Load Up
 ▪ Advanced Load Up (Title 24, JA 13)

• Other design features
 - Customer Override/Opt Out – communicated to utility from device
 - OEM decides how their controls respond to the signals to balance customer needs
 - Modules can provide 24/7 scheduling to appliances that never had scheduling capabilities
 - Keeps the cost low at scale on the appliance (cloud and apps not required, can be provided in the module)
Current Key Target Markets

• Unitary Residential
• Split Residential
• Small Multi-family
Ideas on extending to Central Systems

• Coordinate with vendors looking to make plug and play systems
• Work with Ecotope to determine the ability of the system to shift the 3-4 hour evening peak, and 1-3 hour morning peak for seasonal TOU or daily streaming prices
• Work with vendors to determine the system response to the three levels of shed, and two levels of load up
• Work with vendors to determine the ability of the systems to report instantaneous power use and storage capacity in wH
What is coming in CTA-2045-B (Sep 2020)

- **Time of Use schedule formats** – This will help Title 24, JA 13, standard ways for utilities to post TOU schedules.

- **24 hour ahead streaming prices** – If SGD understands them great, or, module can translate to standard CTA-2045 commands.

- **Advanced Load Up** – To comply and match with Title 24 JA13 which defines and Advanced Load Up function

- **Mode control for water heaters** – To be able to change between Heat Pump only, Hybrid, etc.

- **More functionality** to control Mode, Fan speeds and other items in HVAC

- **A Test Mode** signal will be able to be sent to help with testing for certifications

- **Advance Warning/Resiliency** message can be sent to the SGD so that it can prepare for storms and outages
What is coming in CTA-2045 (Q4 2020)

Module can communicate via TCP/IP with the outside world either locally to a HEMS or to a third party cloud.

The module vendor generally communicates to the module to:

1. Send standard CTA-2045 signals
2. Update firmware
3. Manage connectivity
4. Report telemetry from the SGD
5. Report opt-outs from the SGD
CTA-2045 certification

- NEEA and OpenADR working together to develop certification methods for OEMs and Module Vendors
- OpenADR will host CTA-2045 which will help diffuse the current confusion in the market.
- Certified Product Lists will be hosted on OpenADR, CTA and NEEA websites.
JA13 for Central HPWH

- Pierre Delforge, NRDC
- Aug. 4, 2020

Charge off-peak

Shed load on peak

ramp need
~13,000 MW in three hours

overgeneration
risk

Net load - March 31
Objective

• Joint Appendix 13 ("JA13"), adopted by CEC on July 8, 2020
• Covers unitary residential HPWH only
• How about central HPWH?
 1. What is the current status of JA13 for central HPWH?
 2. What is the process for developing the proposed requirements?
 3. What is the timeline for input and roll-out?
 4. How can the people on the working group get involved?
JA13 in CA Title 24, 2022 Code Update

• CA 2022 building code:
 • CASE proposal mostly developed, workshops expected to start late Aug. / early Sep. Express terms by Dec. 2020, adoption mid-2021, effective Jan. 1, 2023

• Non-Res Grid Integration CASE proposal re. JA13:
 • Includes high-level update to JA13 to include Central HPWH (section 7.3.3), but few details, pending JA13 finalization and adoption
 • CASE proposal update in-progress

• Timeline:
 • Comment period on initial CASE proposal closed end June 2020
 • More opportunities to comment during formal proceeding Sep.-Dec. 2020
 • How to influence: Assess Appendix A straw proposal, get ready to submit comments and any additional proposals during first workshop comment period
Self-Generation Incentive Program (SGIP)

• Jan. 2020: CPUC decision allocates $45M for HPWH
 • Unitary + Central, Residential + Commercial

• Mar.-Jun.2020:
 • CPUC stakeholder working group and workshops

• Building Decarb Coalition (BDC) working group proposal:
 • 20% of budget for CHPWH + 15% for equity projects (incl. CHPWH) => $9-16M
 • Straw proposal to expand JA13 expansion to central and commercial (“Appendix A”)

• Timeline:
 • Sept. 2020: CPUC staff proposal
 • Oct. 2020: Comments on staff proposal
 • Q1’2021: CPUC Decision
Appendix A: Qualification Requirements for HPWHs – Requirements

Complement to Joint Appendix 13 (“JA13”) for commercial and central HPWH

Leverages JA13 with adjustments for commercial and central HPWH specifics
To qualify as a demand management heat pump water heater for the purposes of SGiP rebate eligibility, central and commercial HPWH must meet the same requirements as JA13 with the following adjustments to #2 and #4:

1. Safety Requirements
2. **Minimum Thermal Storage Requirements**
3. Control Requirements for Demand Management and Local Time-of-Use
4. **Load shifting performance requirements**
5. Non-standard mode exception
6. Local time management
7. Override and permanent disabling
8. User interface
9. Measurement and validation
2. Minimum Thermal Storage Requirements

<table>
<thead>
<tr>
<th>Unitary Residential (JA13, for reference)</th>
<th>Unitary Commercial</th>
<th>Central Residential</th>
<th>Central Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comply with First Hour Rating (FHR) in 2018 Uniform Plumbing Code (UPC)</td>
<td>Must have a minimum hot water delivery of 300 gallons per day</td>
<td>Must have a minimum 0.84 kWh thermal storage per person based on design occupancy of the project described in the SGIP rebate application.</td>
<td>Enough thermal storage to support a minimum 4 hours of compressor operation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The sizing calculation is based on an ambient air temperature of 67.5 F and an inlet water temperature of 58 F</td>
<td>The sizing calculation is based on an ambient air temperature of 67.5 F and an inlet water temperature of 58 F</td>
</tr>
</tbody>
</table>
4. Load Shifting Requirements

For a heat pump water heating system sized per the minimum storage requirements in section 2, above, and with the set point from the point of manufacture, the System shall be able to shift:

<table>
<thead>
<tr>
<th>Basic Load Up + Light Shed</th>
<th>Unitary Residential (JA13, for reference)</th>
<th>Unitary Commercial</th>
<th>Central Residential</th>
<th>Central Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A minimum of 0.5 kWh of electrical energy per event</td>
<td>A minimum of 1 kWh of electrical energy per 100 gallon storage per event</td>
<td>A minimum of 0.2 kWh of electrical energy per person per event (design occupancy)</td>
<td>4 hours minimum of compressor run time at nominal rated power (same 4 hours as thermal storage requirement, not additive)</td>
</tr>
<tr>
<td>Advanced Load Up + Light Shed</td>
<td>A minimum of 1 kWh of electrical energy per event, including at least 0.5 kWh on Advanced Load Up</td>
<td>A minimum of 2 kWh of electrical energy per 100 gallon storage per event</td>
<td>A minimum of 0.4 kWh of electrical energy per person per event, including at least 0.2 kWh on Advanced Load Up (design occupancy)</td>
<td></td>
</tr>
</tbody>
</table>