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1. EXECUTIVE SUMMARY 
1.1. Reason for the Work 
This report documents the development and testing of approaches to estimating the 
uncertainty of savings estimates based on regression models. Some of the approaches are 
applicable to other types of data-driven models besides regression. 

The analysis of the various approaches was intended to confirm the validity of the 
implementation of one particular approach implemented in the Energy Charting and Metrics 
tool (ECAM). However, the analyses went further and estimated the validity or consistency of 
the various approaches tested. This report is intended to not only describe the ECAM approach, 
but also to make recommendations for further work, and to be educational in nature for an 
audience not deeply-versed in the statistics of ordinary linear regression.  

This work is important in the context of changes in the energy efficiency industry. The reliance 
on whole building programs is increasing. Such programs include existing building 
commissioning and building tune-ups, strategic energy management, and pay-for-performance. 
In all cases, it is desirable to not only have good estimates of energy savings, but to understand 
the uncertainty in those estimates. It is also of increasing importance to credibly estimate 
demand savings, whether from these same programs, or from demand response programs. 

1.2. Summary of the Work 
Four data sets were analyzed for the uncertainty in aggregated predictions from regression 
models. Such predictions allow the estimation of uncertainty in cumulative energy savings over 
a reporting period of multiple metering periods. These data sets can be summarized as follows: 

1. Synthetic data, linear relationship, no autocorrelation 

2. Synthetic data, linear relationship, moderate autocorrelation 

3. Synthetic data, linear relationship, higher scatter, higher autocorrelation 

4. Real data, 4-parameter relationship, X-values not independent 

The first data set met all of the requirements for ordinary least squares linear regression, and 
was used to check all of the methods. 

The analyses were performed using multiple methods. Four primary methods were used, with 
variants for specific data sets. 

1. Algebraic solution for aggregated uncertainty from OLS regressions, based on a derivation 
from Josh Rushton, Ph.D. To handle data sets with autocorrelation, the equations were 
modified using the ASHRAE FSU Approach to estimate an effective number of data points. 

2. ASHRAE FSU, from ASHRAE Guideline 14 

3. Improved FSU, from Yifu Sun and Juan-Carlos Baltazar, Ph.D. 

0.0. 
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4. Bootstrap Resampling 

a. Resample Data X-Y Pairs 

b. Resample Residuals 

c. Resample Normal Residuals 

The results showed that the OLS approach, improved FSU, and Bootstrapping X-Y pairs provide 
almost identical results for a linear data set without autocorrelation.  Their results match 
regardless of the length of the reporting period. ASHRAE FSU is close, but deviates for reporting 
periods less than or greater than about 6 to 7 months. 

For a data set with autocorrelation, it is well-known that not accounting for that 
autocorrelation can greatly underestimate the uncertainty, and these results confirm that. 
Based on the results for the bootstrap, it appears that the ASHRAE adjustment to handle 
autocorrelation may significantly overstate its impact with daily data. 

For data where the X-values are related, such as energy models based on outside air 
temperature, the approaches based on linear methods (OLS and FSU) appear to overestimate 
the uncertainty. The OLS approach is close, but the Improved FSU approach overestimated the 
uncertainty by more than 30% for data set 4. Resampling residuals or normal residuals gave 
what are believed to be the best uncertainty estimates for data set 4, but the OLS approach 
provided an estimate that was only 12% high.  

In the big picture, all of the approaches provided reasonable results. None of them were off 
from the others by an order of magnitude, or even a factor of two. The formulas for estimating 
uncertainty based on OLS seemed to work fairly well even for data requiring a 4-parameter 
model.  

The biggest issue appears to be for data sets with autocorrelation. The simple autocorrelation 
adjustment from ASHRAE is designed for models based on daily data. Hourly data has much 
more autocorrelation, and the autocorrelation may cover many lags—energy use may have a 
correlation to not only the energy use one hour prior, but several hours prior, a day prior, and 
even a week or more prior.  Therefore, the algebraic approaches to estimating the impact of 
autocorrelation should not be trusted if applied to hourly data. 

1.3. Author’s Comment 
Because of these industry changes, there also seems to be increasing overlap between 
measurement and verification (M&V) and program impact evaluation. Credible site-specific 
M&V can ease evaluation burdens. However, the former is often the domain of energy 
engineers and analysts, who often lack significant statistical expertise. The latter is often the 
domain of statisticians and economists, or other people with statistical expertise, but who lack 
engineering knowledge.  

In my opinion, it is valuable for both engineers and statisticians to learn from each other. 
Statisticians may find value in understanding how a measure might save energy, and how those 
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processes might show up in an energy model. To maximize the benefits of regression and other 
data-driven models, I believe that they should usually have physical significance. 

Similarly, statistical knowledge can help engineers not only quantify energy savings, but also 
provide early verification of performance of measures, identify when a site’s energy use is 
changing, provide fault detection, and in some cases even diagnose faults.  

Similarly, overall, this work may then, to some extent, reflect my opinions regarding the type of 
information that is valuable, but I believe it could be of wide interest in the industry, and 
particularly to energy engineers involved. 
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2. BACKGROUND AND LITERATURE REVIEW 
This section describes foundations of uncertainty estimation for ordinary least squares 
regressions (OLS), the challenges and issues in applying those approaches for energy models, 
and reviews some of the literature used in the energy efficiency industry and in preparing these 
analyses. 

As described in the International Performance Measurement and Verification Protocol (IPMVP), 
avoided energy consumption or demand quantifies savings in a reporting period relative to the 
energy that would have been consumed without the efficiency measure(s). To estimate savings, 
a model for the pre period is built using energy use as the dependent ‘y’ variable and some 
independent ‘x’ variable (e.g., weather) expected to explain most of the variation in use as the. 
Once the model is built, it can be used to forecast, or predict, energy use in the post or 
reporting period. This is the estimate of “what energy use would have been had the energy 
saving measure not been installed.” The difference between this prediction and the actual use 
is the estimated energy savings or “avoided energy use.” 

The adjusted baseline energy use is the sum of the forecasts for each of the points 
(measurement periods) in the reporting period. For example, if monthly billing data are used, it 
is the sum of the forecasted energy use for each monthly billing period within the reporting 
period. These forecasts are typically made with a statistical regression model. The reported 
savings are the adjusted baseline minus the actual metered energy. 

2.1. Foundations of Models and Uncertainty 
Engineers’ estimation of uncertainty, when estimated, have likely thus far been based on the 
ASHRAE Guideline 14-2014, Measurement and Verification of Energy, Demand, and Water 
Savings, or its predecessor, ASHRAE Guideline 14-2002, Measurement and Verification of 
Energy and Demand Savings. The approach is described in the Guideline’s Annex B, 
“Determination of Savings Uncertainty.” However, the Annex does not thoroughly explain the 
basis for the calculations. This section provides further explanation. Section 2.2 provides 
references for the information in Guideline 14, as well as other documents pertaining to the 
estimation of savings uncertainty of data-driven models. 

2.1.1. Confidence and Prediction Intervals for Ordinary Least 
Squares Regressions 

To evaluate the uncertainty in any value derived from regression fit, one must first determine 
whether the value should be thought of as an estimate or a prediction.  In the context of 
regression:   

 An Estimate is the average, or expected, y-value, given a specific x-value. The uncertainty in 
a regression Estimate is a Confidence Interval. 
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 A Prediction is the specific y-value that may accompany a specific x-value. The uncertainty 
in a regression Prediction is a Prediction Interval. 

The calculations of uncertainty in a model estimate or a point prediction is easily found in 
statistical literature. The BPA Regression for M&V: Reference Guide 1provides an explanation of 
Confidence Levels, Confidence Intervals, and Prediction Intervals. To help this document stand 
alone, part of that information is excerpted or paraphrased here. 

2.1.1.1. Confidence Level 

“Uncertainty is associated with a given confidence level or probability – for example, ‘We 
are 90% confident that the range 433 and 511 kWh bands the true value,’ or, as it is more 
commonly but less accurately expressed, ‘We are 90% confident that the true value lies 
between 433 and 511 kWh.’ Confidence level is an input number; for a given sample and 
regression, the higher the confidence level specified, the larger the estimated range that is 
likely to contain the true value that proportion of the time.” 

2.1.1.2. Confidence Interval 

“Confidence intervals define the range – an uncertainty band – that is expected to band the 
true regression, with a certain probability. The width of the confidence interval provides 
some idea of uncertainty about the estimated parameters. For example, the results of a 
regression analysis of savings may be reported as ‘500 kWh ±5% at the 95% confidence 
level’, this means that there is a 95% chance that the confidence interval of 475 to 525 kWh 
contains the true value of savings. A statement of ‘500 kWh ±5% at the 68% confidence 
level’ means that there is only a 68% chance that the true savings value is between these 
calculated limits, and a 32% chance that it is outside them.” 

Figure 1-1 shows a 95% confidence interval for a regression line. Contrast this with Figure 1-2, 
which shows 80% confidence intervals for the same set of data. The 95% confidence boundary 
is wider than the 80% confidence boundary. (Because the interval is quite narrow near the 
center of the data, it may appear that the boundary lines cross the black line for the model.  
They do not.) The confidence intervals in Figures 1-1 and 1-2 demonstrate that higher 
probability requirements (e.g. 95%) that an interval contains the true regression line require 
wider intervals than lower probabilities (e.g. 80%.) The wider the confidence interval, the more 
likely it is to contain the true regression line for the entire population of points. 

                                                                        
 
1 The BPA Regression for M&V: Reference Guide is available at  

https://www.bpa.gov/EE/Policy/IManual/Pages/IM-Document-Library.aspx 

https://www.bpa.gov/EE/Policy/IManual/Pages/IM-Document-Library.aspx
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Figure 1-1.  Data and Regression Line with a 95% Confidence Interval 

 

 

Figure 1-2 . Data and Regression Line with an 80% Confidence Interval 
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2.1.1.3. Prediction Interval 

A prediction interval is an estimate, based on earlier observations, of the interval in which 
future data points will fall, for an input probability. Prediction intervals are similar to confidence 
intervals, but rather than estimating the distribution of a parameter, prediction intervals are 
used to predict the distribution of future points by looking at the distribution of prior points. 

The prediction intervals in Figures 1-3 and 1-4, using the same data set as for Figures 1-3 and 
1-4, demonstrate that higher probabilities that an interval contains the true regression line 
require wider intervals than lower probabilities. In other words, the wider the confidence 
interval, the more likely it is to contain a future point. If you could count the points in Figure 1-
3, you would find that 95% of them fall within the prediction interval. Similar, for Figure 1-4, 
80% of the points fall within the prediction interval. 
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Figure 1-3.  Data and Regression Line with a 95% Prediction Interval 

 

Figure 1-4.  Data and Regression Line with an 80% Prediction Interval 
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2.1.1.4. Putting it All Together 

There are two separate types of uncertainty that need to be accounted for in estimating the 
uncertainty in an adjusted baseline, and these two types of uncertainty are related to the 
confidence and prediction intervals. Gaining an understanding of confidence and prediction 
intervals will help lead to an understanding of the uncertainty in the total uncertainty 
associated with the predictions for many points (x-y pairs) such as for an adjusted baseline. 

Figure 1-5 shows both confidence and prediction intervals for the two different confidence 
levels shown above, 80% and 95%. This is a duplicate of Figure 4-4 of the BPA Regression for 
M&V: Reference Guide. 

 

Figure 1-5 Data, Regression Line, and 95% Confidence and Prediction Intervals 

Figure 1-6 shows both confidence and prediction intervals for a 95% confidence level. 
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Figure 1-6 Data, Regression Line, and 95% Confidence and Prediction Intervals 
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Figure 1-7.  Detail of Model Confidence Interval  

The confidence interval is the uncertainty in the model, i.e. in the regression line. Furthermore, 
the uncertainty is assumed to be a normal distribution based on the ordinary linear regression 
assumption that the deviations of the points from the regression line are a normal distribution. 

y = 7.0373x - 4.1425

-50

0

50

100

150

200

250

300

0 10 20 30 40

Y

X

Data
Modeled
Min Estimate
Max Estimate
Min Prediction
Max Prediction



Uncertainty Approaches and Analyses for Regression Models and ECAM 

SBW Consulting, Inc. 11 
 

There is additional uncertainty, beyond the model uncertainty represented by the Confidence 
Interval, to be considered in making the prediction for an individual point, as shown in 
Figures 1-8 and 1-9.  Figure 1-8 shows the additional variability, and that it is the t-statistic 
times the standard error, or root mean squared error.  From the BPA Regression for M&V: 
Reference Guide: 

“Root mean squared error (RMSE) is an indicator of the scatter, or random variability, in the 
data, and hence is an average of how much an actual y-value differs from the predicted y-
value. It is the standard deviation of errors of prediction about the regression line. Standard 
error of the estimate (SE) is always adjusted by the number of parameters in the model. 
Keep in mind, however, that some sources include the adjustment for the number of 
parameters in their definition of RMSE; others do not. In this document, SE and RMSE are 
synonymous, and include the adjustment for the number of parameters in the model. 
Standard error of the estimate is sometimes called standard error of prediction.” 

 

 

Figure 1-8.  Sources of Uncertainty for Regression Predictions  

Figure 1-9 illustrates that aggregating the standard errors (multiplied by the t-statistic) with the 
confidence interval gives us the prediction interval. 
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Figure 1-9.  Prediction Interval for a Regression 

This aggregation is done by quadrature, the square root of the sum of the squares: 

Prediction Interval = �(𝑡 × 𝑆𝑡𝑆 𝐸𝐸𝐸𝐸𝐸 × 2)2 + (𝐶𝐸𝐶𝐶𝐶𝑆𝐶𝐶𝐶𝐶 𝐼𝐶𝑡𝐶𝐸𝐼𝐼𝐼)2 

2.1.1.5. Equations for Confidence and Prediction Intervals 

One Side of the Confidence Interval 

= 𝑡 × 𝑆𝑡𝑆 𝐸𝐸𝐸𝐸𝐸 ×  �        
1
𝐶

+
(𝑥 − �̅�)2

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=0

    

 One Side of the Prediction Interval 

= 𝑡 × 𝑆𝑡𝑆 𝐸𝐸𝐸𝐸𝐸 ×  �1 +
1
𝐶

+
(𝑥 − �̅�)2

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=0

    

Where 

 t is the t-statistic for the input confidence level and the number of points in the regression 
data 

 StdError, for Ordinary Linear Regression, is the same as the RMSE of the model residuals. 

 n is the number of points in the regression data 

 x is the independent variable value for which the interval is being computed 

 Xavg is the average of all the independent variable values for the points in the regression 
data 
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These equations can be found in any reputable source on ordinary linear regression.  Note that 
the only difference between the two equations is the presence of a “1 +” term inside the 
parentheses.  Algebraically, this “1 +” term represents the standard error. 

Since the uncertainty in the model—the confidence interval—and the standard error (times 
the t-statistic) are independent of each other, they are combined by quadrature to get the 
total prediction interval.  This may seem counterintuitive, since both of these terms include 
the standard error. However, the uncertainty in the model means that the model could be 
slightly higher or lower than the true relationship, and/or have a different slope. But if the 
model is different from the true relationship, it is different in the same way for every single 
prediction it makes. In contrast, the standard error represents “noise,” and it can be positive 
or negative, and have a different value, for every prediction.  This will be a key to further 
understanding. 

2.2. Challenge in Estimating Savings Uncertainty 
So, if all of this is well known, and described in statistical literature, why has the industry 
seemingly been challenged to properly use uncertainty in estimating savings from 
regressions? 

There are at least two important reasons: 

1. Uncertainty in savings estimates requires the aggregation of multiple predictions. There is 
a baseline prediction and associated uncertainty for every point in a reporting period. 
What is the combined uncertainty associated with all of these baseline predictions? The 
answer to this seems to be much harder to find in the literature. 

2. Many of the models used for estimating baseline energy use, and hence savings, violate 
the requirements for ordinary linear regression.  See the BPA Regression for M&V: 
Reference Guide for more information on these requirements.  

This document covers both of these issues; the first in a comprehensive fashion, and the 
second with some examples using resampling methods to check the validity of the approach 
based on ordinary linear regression. 

2.3. Literature Review 
This section describes various documents that were reviewed during the development and 
analysis of the various methods. It includes documents that are foundational or provide 
important background. 

2.3.1. ASHRAE Guideline 14-2014, Measurement and 
Verification of Energy, Demand, and Water Savings  

This covers uncertainty of regression-based energy savings in Annex B: Determination of 
Savings Uncertainty, especially in Section B4 “Uncertainty of Regression-Based Savings Models.” 

0.0. 
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It says that for utility bills, the measurement errors can be neglected, and the total uncertainty 
is based on the model prediction errors. It mentions three specific cases to be considered: 

1. weather-independent models, when for example lighting retrofits are being evaluated, 

2. weather-based regression models with uncorrelated residuals as assumed when analyzing 
monthly utility bills, and 

3. weather-based regression models with serially correlated residuals, as is often encountered 
with models based on hourly or daily data. 

Focusing on the second case for now, Annex B describes the fractional savings uncertainty—the 
uncertainty divided by the savings. This is closely related to statistical precision. Then it says,  

“Reddy and Claridge (2000) presented a method for determining uncertainty in actual 
savings for cases where baseline energy use can be fit to a linear model dependent on 
weather and/or other variables.” The Annex proceeds to show the matrix algebra to 
estimate uncertainty, and then says, “Reddy and Claridge then developed an approximation 
to eliminate the need for matrix algebra.” 

The approximation uses a 1.26 factor, which was empirically derived as described in Reddy and 
Claridge 2000. It also includes the assumption that there is no uncertainty in any estimated 
change points. 

Focusing on the third case, weather-based regression models with serially correlated residuals, 
Annex B documents another recommendation by Reddy and Claridge. They recommended the 
use of the autocorrelation coefficient ρ , assuming only lag-1 autocorrelation, to adjust the 
number of data points down to an effective number of independent data points. This number of 
independent data points is substituted for the number of actual data points in several places in 
the approximate equation. 

They also provide a short discussion of the calculation of ρ and its applicability for different 
data intervals. 

2.3.2. Uncertainty of “Measured” Energy Savings from 
Statistical Baseline Models, HVAC&R Research, January 2000.  
T. Agami Reddy, Ph.D. and David E. Claridge, Ph.D. 

This paper is a foundation for the uncertainty approaches and calculations in ASHRAE 
Guideline 14. It discusses the statistical criteria for goodness-of-fit, including the coefficient of 
determination, R2, and the coefficient of variation of the root mean square error, CV(RMSE). 
They discuss how both of those indices are normalized, with R2 describing how much of the 
variation is explained by the model, and CV(RMSE) describing how much of the variation is not 
explained by the model. More significantly, they discuss that R2 is of lesser utility when slopes 
are very high or when near zero, but that CV(RMSE) is not sensitive to slope. 

Perhaps the most important part of the paper is the derivation of the simplified equation 
described in Guideline 14 Annex B. They start with a key reference: “The prediction error of a 

0.0. 
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sum of m future observations (as is needed for determining energy savings) is given by Theil 
(1971).”2 The equation from Thiel uses matrix algebra and Reddy and Claridge simplified it using 
numerical trials, arriving at the equation with the 1.26 factor which they said “holds to within 
about 10% accuracy.” 

They also recommend the use of the autocorrelation coefficient ρ to adjust the number of data 
points down to an effective number of independent data points as mentioned in the discussion 
for ASHRAE Guideline 14. 

2.3.3. Analysis and Improvement on the Estimation of Building 
Energy Savings Uncertainty, ASHRAE preprint provided by the 
author, 2012. Yifu Sun and Juan-Carlos Baltazar, Ph.D. 

This paper describes an improvement to the ASHRAE equation for fractional savings uncertainty 
developed by T. Agami Reddy, Ph.D. and others, and published in Uncertainty of “Measured” 
Energy Savings from Statistical Baseline Models and in ASHRAE Guideline 14.  

From the paper’s introduction: “In this paper, the derivation of the original matrix algebra 
expression for energy savings uncertainty and Reddy and Claridge’s simplified expression is 
studied for the case of weather dependent model. Then, the comprehensive equation and the 
simplified equation are compared to analyze their relationships, which are verified by a series 
of cases. Based on the case study, how these assumptions impact on the uncertainty estimation 
is illustrated. Eventually, an improved method is introduced to calculate the energy savings 
uncertainty both simply and accurately, excluded the impact from the different number of 
monitored month under the savings analysis period.” 

Baltazar and Sun show that the ASHRAE simplified method, with the 1.26 factor, is correct for a 
certain number of post-implementation time periods, but deviates for longer and shorter 
reporting periods. They introduced an improved method that replaces the 1.26 factor with a 
second order polynomial. 

2.3.4. International Performance Measurement and 
Verification Protocol Volume 1 

IPMVP 2012, Concepts and Options for Determining Energy and Water Savings Volume 1 is the 
prior international standard for M&V. It has now been superseded by International 
Performance Measurement and Verification Protocol Core Concepts, April 2016. The Core 
Concepts are intended to be supplemented by “Application Guides.” However, the Application 
Guide for Statistics and Uncertainty has yet to be finalized, so this discussion refers to Statistics 
and Uncertainty for IPMVP, EVO 2014.  Appendix B Uncertainty of the 2012 Volume I document 
is very similar. 
                                                                        
 
2 Thiel, H. 1971. Principles of Econometrics. John Wiley & Sons, New York. 
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Statistics and Uncertainty for IPMVP covers sources of uncertainty, defines statistical terms, and 
covers issues and calculations regarding modeling, sampling, and metering. It then discusses 
combining components of uncertainty, provides calculations of uncertainty for point estimates 
and for savings, and gives an example. 

In my opinion, the formula provided for aggregating multiple point prediction uncertainties into 
an aggregate uncertainty is flawed. It does not provide an empirical factor to simplify matrix 
algebra like ASHRAE, but assumes that aggregate uncertainty, e.g. the standard error of the 
annual savings estimate, is simply the square root of the sum of the squares of the standard 
error of the estimate. This will underestimate the uncertainty, because it does not include the 
uncertainty in the model itself. 

2.3.5. FEMP M&V Guidelines: Measurement and Verification for 
Performance-Based Contracts Version 4.0 

The FEMP M&V Guidelines do not cover the uncertainty associated with regression models, but 
refer to Guideline 14 and IPMVP. 

2.3.6. Regression for M&V: Reference Guide, Bonneville Power 
Administration, 2012. 
Part of the Implementation Manual Document Library available as of March 2017 at 
https://www.bpa.gov/EE/Policy/IManual/Pages/IM-Document-Library.aspx 

This document is intended as a primer on ordinary linear regression for energy engineers and 
analysts. It provides information on the advantages and disadvantages of regression and 
describes a recommended regression process. It introduces the common model types used, 
primarily for commercial and residential buildings, and discusses the use of continuous and 
categorical variables. 

Confidence levels, confidence intervals, prediction intervals, and their relationships to savings 
uncertainty are explained in layperson’s or engineer’s terms, while trying to be faithful to the 
accurate statistical meaning. 

The process of validating models, including an explanation of statistical tests and measures, is 
covered along with the formulas to calculate the statistical tests in Microsoft Excel. Model 
bias, including how its definitions and descriptions vary in the energy efficiency literature, is 
described.  Analysis of residuals is introduced, but it does not include the very useful time series 
plot of residuals. The document concludes with an example and an Appendix with a glossary of 
statistical terms. 

The document does not cover the aggregate uncertainty of many predictions. It gives an 
example, but it is not clear how the aggregate uncertainty is derived. 

Full disclosure: I was the original primary author of this document. 

https://www.bpa.gov/EE/Policy/IManual/Pages/IM-Document-Library.aspx
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2.3.7. Verification by Energy Modeling Protocol, Bonneville 
Power Administration, 2012.  
Part of the Implementation Manual Document Library available as of March 2017 at 
https://www.bpa.gov/EE/Policy/IManual/Pages/IM-Document-Library.aspx 

The Energy Modeling Protocol overlaps some with the Regression Reference Guide, but it is 
intended as an application document, more prescriptive and less educational. It describes using 
regression or other data-driven models in general, then goes into procedures. It describes the 
use of charts, identifying measurement boundaries, selecting time intervals, and calculating 
savings. A unique but very useful section contrasts multiple regression and multiple models, 
tying the multiple model approach into the distinction between continuous and categorical 
variables made in the Regression Reference Guide. 

The document recommends the use of the ASHRAE Fractional Savings Uncertainty equations. It 
discusses tools available for modeling and estimating savings, and provides an example. 

Full disclosure: I was the original primary author of this document. 

2.3.8. Applied Data Analysis and Modeling for Energy Engineers 
and Scientists, Springer (2011).  T. Agami Reddy 

This textbook covers the wide range of topics implied by its title.  Topic areas include 
probability concepts, data collection and preliminary data analysis, statistical inferences, least 
squares regression, design of experiments, optimization methods, data mining methods, 
analysis of time series data, parameter estimation methods, inverse methods, and risk analysis. 

For the work discussed in this paper, sections dealing with ordinary linear regression and time 
series data analysis were used for learning and review. In particular, the sections covering the 
Bootstrap and other Resampling Methods were studied. Several other sections, such as 
“Analysis of Time Series Data,” were skimmed for relevant information and understanding. 

2.3.9. Bayesian Analysis of Savings from Retrofit Projects, found 
on the web.  Paper was to be published in ASHRAE 
Transactions, Volume 118, Part 2. 2012. John Shonder and 
Piljae IM. 

From the abstract, “The objective of this paper is to show that Bayesian inference provides a 
consistent framework for estimating savings and savings uncertainty in retrofit projects. The 
paper discusses prior methods to estimate savings uncertainty from regression models, 
including the method in ASHRAE Guideline 14. It states that the prior methods are 
approximations, and have limitations and inaccuracies. 

This paper covers two major examples, the first data set was fit using a simple linear model 
having no autocorrelation, and the second was fit using a 5-parameter model. The second data 
set also had significant autocorrelation. For the first example, the paper shows that the 

https://www.bpa.gov/EE/Policy/IManual/Pages/IM-Document-Library.aspx
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Bayesian approach used provides the same result as frequentist statistics, for both the mean 
response estimate and for the uncertainty. For the second example, the Bayesian approach 
provided an estimate of savings that was 5% lower than the 5-parameter model, and a 95% 
confidence interval that was 37% wider. However, I viewed these results with suspicion. The 
paper only showed the 5-parameter model plotted with the data, not the Bayesian model. The 
parameters derived using the Bayesian approach, when plotted, appeared to be a much poorer 
fit to the data.  

Although there is a possible issue with the second example, the paper was useful in describing a 
resampling approach that is related to the Bootstrap approach described later in this paper.  

2.3.10. Notes and Memos 

Jim Stewart, Ph.D. of Cadmus wrote a memo, dated August 24, 2016, as part of an industrial 
program impact evaluation. The subject was a Proposed Framework for Estimating Standard 
Error of Forecast Method Energy Savings. The memo described a “recommended approach for 
estimating the standard errors of forecast model savings estimates. It presented “a framework 
for deriving the standard error of the forecast model savings estimates,” provided an example, 
and presented formulas for standard errors of both forecast and pre-post type models.  

In summary, the memo “demonstrated that forecast savings estimate has two sources of 
uncertainty: the first is the variance of the adjusted baseline and the second is the variance of 
metered energy use. Both components should be accounted for to obtain an accurate estimate 
of the variance of the savings estimate.” This is the same approach that was derived by Josh 
Rushton and described in Section 3. However, this memo retains the matrix algebra for of the 
calculation.  

The following class notes provide some confirmation of the ASHRAE approach for correlated 
residuals. 

http://seismo.berkeley.edu/~kirchner/eps_120/Toolkits/Toolkit_11.pdf 

This is part of the “condensed notes” for a class on Analysis of Environmental Data at the 
University of California, Berkeley: 

http://seismo.berkeley.edu/~kirchner/eps_120/EPSToolkits.htm 

The notes describe how to “Adjust your uncertainty estimates to account for the loss of degrees 
of freedom. Serial correlation leads to underestimates of uncertainty (and thus overestimates 
of statistical significance) because when residuals are not independent, the effective number of 
degrees of freedom can be much smaller than the sample size would indicate. In principle, one 
should be able to account for this loss of degrees of freedom by calculating the "effective" 
sample size--that is, the number of independent measurements would be functionally 
equivalent to your set of nonindependent measurements. You then use this "effective" sample 
size, neff, in place of n in calculating standard errors and performing significance tests.” 

The notes provide the same equation to adjust the number of data points using the lag-1 
autocorrelation coefficient. It also describes issues with this approach, including that it assumes 

http://seismo.berkeley.edu/~kirchner/eps_120/Toolkits/Toolkit_11.pdf
http://seismo.berkeley.edu/~kirchner/eps_120/EPSToolkits.htm
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that ρ is the true autocorrelation coefficient, even though it is based on a sample, and provides 
a reference for a proposed improvement. 

Another confirmation of the ASHRAE approach for correlated residuals was found in some 
notes for a class at the University of Arizona, “GEOS 585A, Spring 2015.” The notes themselves 
appear to originally be from Georgia Tech, but I could not find the originals. The title of the 
notes is simply “Autocorrelation.” The last section in the notes is titled “Effective Sample Size” 
and it provides the same equation as Reddy and Claridge to scale the number of data points 
down to the number of “effective” data points. 

It seems certain that a text on econometrics, time series analysis, or regression would present 
the same equation, but I did not review any complete textbooks on these subjects. 

2.3.11. Other Published Papers 

The papers listed below are either predecessors to documents listed above, or useful 
background information on the uncertainty of energy savings estimates from data-driven 
models. 

Reddy, T. A., J. K. Kissock, and D.K. Ruch, 1998. “Uncertainty in Baseline Regression Modeling 
and in Determination of Retrofit Savings” Journal of Solar Energy Engineering. 

Ruch, D.K., , J. K. Kissock, and T. A. Reddy, 1999. “Prediction Uncertainty of Linear Building 
Energy Use Models with Autocorrelated Residuals,” Journal of Solar Energy Engineering. 

Subbarao, Kris, Lei Yafeng, and T. Agami Reddy, 2011.  “The Nearest Neighborhood Method to 
Improve Uncertainty Estimates in Statistical Building Energy Models,” ASHRAE Preprint. To be 
published in ASHRAE Transactions, Volume 117, Part 2. 
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3. DESCRIPTION OF METHODS ANALYZED (UNCERTAINTY 
EQUATIONS AND CROSS-CHECKS) 
This section introduces the formulas and/or approaches for each of the methods analyzed. 

3.1. ASHRAE Guideline 14 Equation 
The following is paraphrased from the BPA Energy Modeling Protocol, although it originally 
came from Guideline 14. The form of the simplified ASHRAE equation for “weather models with 
correlated residuals “can cover cases with and without autocorrelation, so that is the form 
shown here: 

Weather models with correlated residuals are models where each point has a relationship with 
the points associated with recent prior timestamps. There is the potential for correlated 
residuals (known as time-series autocorrelation) when the time unit is short, such as with 
hourly models. There can also be autocorrelation with daily models. 

For these types of models, the equation is: 

∆𝐸𝑠𝑠𝑠𝑠,𝑚

𝐸𝑠𝑠𝑠𝑠,𝑚
 = 𝑡 ×

1.26 ∙ 𝐶𝐶 �𝐶𝐶′ �1 + 2
𝐶′�

1
𝑚�

1/2

𝐹
 

Where: 

CV is the coefficient of variation of the root mean squared error CV(RMSE). 

𝐶𝐶(𝑅𝑅𝑆𝐸) =  
��∑  × (𝐸𝑖 − 𝐸𝚤�𝑖 )2/(𝐶 − 𝑝)�

𝐸
 

F=Savings fraction=Esave/Ebaseline 
t=Student’s t-statistic 
( )i = measured value 
(^)i = predicted value 
(_)i = average value 
n= number of points in the baseline period 
m= number of points in the post period 
p=the number of model parameters 
n' is the effective number of points after accounting for autocorrelation. 

ρ
ρ

+
−

⋅=
1
1' nn  

Where: 

ρ  is the autocorrelation coefficient, which is the square root of the R2 calculated for the 
correlation between the residuals and the residuals for the prior time period.  
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3.2. Improved Approach Based on Guideline 14 
This is the improved formula developed by Sun and Baltazar.  

They showed that the deviation of the simplified equation results from the true value based on 
the comprehensive matrix equation was in the form of a polynomial. Therefore, the improved 
method replaces the 1.26 factor with a second order polynomial, using the number of months 
in the reporting period as a variable in the polynomial. There are different coefficients 
depending upon whether the data has daily or monthly intervals. 

The improved formula is: 

∆𝐸𝑠𝑠𝑠𝑠,𝑚

𝐸𝑠𝑠𝑠𝑠,𝑚
 = 𝑡 ∙

(𝐼𝑅2 + 𝑏𝑅 + 𝐶) ∙ 𝐶𝐶 �𝐶𝐶′ �1 + 2
𝐶′�

1
𝑚�

1/2

𝐹
 

Where: 

M=number of months of reporting period data 
a, b, and c are defined as follows: 

Data Interval Monthly Daily 

a -0.00022 -0.00024 

b 0.03306 0.03535 

c 0.94054 1.00286 

 

3.3. Exact Formula for Ordinary Least Squares 
Regression 

3.3.1. Derivation 

Josh Rushton, Ph.D. (Mathematics and Stochastic Processes, University of Wisconsin-Madison), 
provided a derivation of the aggregated uncertainty of many predictions. This derivation is 
provided below, with permission. It is derived for OLS regressions. Part of the purpose of work 
for this paper was to test the derived formula’s applicability to more complex regressions. 

Assume the model that generates the data is of this form: 

𝑦 =  𝛽0  +  𝛽1 ∙ 𝑥 + 𝜀,     where 𝜀 ~ 𝑁(0,𝜎2)  

We fit the model using pre-period data �𝑥𝑖
pre, 𝑦𝑖

pre�
𝑖=1
𝑛pre

, and the fitted model is this: 

𝑦 =  �̂�0  +  �̂�1 ∙ 𝑥 + 𝜀,     where 𝜀 ~ 𝑁(0, 𝑠2)  
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We want to use the fitted model to predict total consumption for a post-period data set, 

�𝑥𝑖
post�

𝑖=1

𝑚post

.   

The estimate is this: 

𝑦�  =  � ��̂�0 + �̂�1𝑥𝑖
post� 

𝑚post

𝑖=1

=  �̂�0 × 𝑚post  +  �̂�1 × � 𝑥𝑖
post

𝑚post

𝑖=1

 

 

(1) 

This expression does not include error terms, so the only uncertainty embedded in 𝑦� is 
uncertainty in the estimated parameters �̂�0 and �̂�1.  We can think of 𝑦� as our fitted model’s 
best guess at the mean total consumption for 𝐶 observation periods with the temperature 

values �𝑥𝑖
post�

𝑖=1

𝑚𝑝

. 

Model uncertainty (uncertainty in the mean total consumption for the post period): 

𝑠𝐶(𝑦�)  =  
𝑠 × 𝑚𝑝𝑝𝑠𝑝

�𝐶𝑏𝑠𝑠𝑠
× �1 +  

��̅�𝑏𝑠𝑠𝑠 −  �̅�𝑝𝑝𝑠𝑝�
2

Var(𝑥𝑏𝑠𝑠𝑠)
�

1/2

 

 

(2) 

Note that if  𝑚𝑝𝑝𝑠𝑝  =  𝐶𝑏𝑠𝑠𝑠 and 𝑥𝑖
post = 𝑥𝑖𝑏𝑠𝑠𝑠  (i.e., post period conditions are same as pre-

period), the model uncertainty reduces to this: 

𝑠𝐶(𝑦�)  =  𝑠 ∙ √𝐶 

Intuitively, the reason is that the data set used to fit the model,  (𝑥𝑖, 𝑦𝑖)𝑖=1𝑛  basically 
constitutes a single observation of the actual total consumption for a year like that, and the 
actual total consumption (which is the same as 𝑦� in this case) equals the mean consumption, 
𝐸[𝑦�], plus 𝐶 noise terms.   

Derivation 

Several steps are needed to derive expression (2) from the standard OLS matrix formulas.  First, 
we first re-write equation (1) in matrix terms: 

𝑦�  = �𝑚𝑝𝑝𝑠𝑝 ∑𝑥𝑖
post�  ��̂�0

�̂�1
� = 𝒙post sum′ ��̂�0

�̂�1
� 

 

(3) 

To calculate the variance of 𝑦� we use the fact that for any random vector 𝒛 and any compatible 
non-random matrix 𝑅, the covariance of the matrix product is given by Cov(𝑅𝒛) =
𝑅Cov(𝒛)𝑅′.  In the present case, 𝒛 = 𝜷� = ��̂�0, �̂�1�′ and 𝑅 = 𝒙post sum′ yields this expression: 

Var(𝑦�) = 𝒙post sum′Cov�𝜷�� 𝒙post sum

= 𝒙post sum′𝜎2(𝑋′𝑋)−1 𝒙post sum
 (4) 
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Here, 𝑋 is the standard OLS design matrix populated with the baseline (pre-case) data.  To put 
this in a form similar to expression (2), we start with the inner-most part of expression (4) and 
work our way out (since (𝑋′𝑋)−1 only involves pre-case data, we drop the “pre” superscript for 
the derivation of the inverse): 

𝑋′𝑋 = � 1 1 ⋯ 1
𝑥1 𝑥2 ⋯ 𝑥𝑛

� �

1 𝑥1
1 𝑥2
⋮ ⋮
1 𝑥𝑛

�

= �
𝐶 ∑𝑥𝑖
∑𝑥𝑖 ∑𝑥𝑖2

�

= 𝐶 �
1 �̅�

�̅� 𝑥2���
�

 

The inverse of the matrix is product is 
therefore: 
   

(𝑋′𝑋)−1 = �
1
𝐶
��

1
𝑥2��� − (�̅�)2

� �
𝑥2��� −�̅�

−�̅� 1
�

= �
1
𝐶
� �

1
Var(𝑥)

� �
𝑥2��� −�̅�

−�̅� 1
�

 

 
 

Next, we use the expression for (𝑋′𝑋)−1 to re-write (4): 

Var(𝑦�) = 𝒙post sum′Cov�𝜷�� 𝒙post sum

= 𝒙post sum′𝜎2 �
1

𝐶base
� �

1
Var(𝑥base)

� �
𝑥2���base −�̅�base
−�̅�base 1

�  𝒙post sum

= �
𝜎2

𝐶base
� �

1
Var(𝑥base)

� �𝑚post ,   ∑𝑥𝑖
post� �

𝑥2���base −�̅�base
−�̅�base 1

�  �
𝑚post

∑𝑥𝑖
post�

= �
𝜎2𝑚post

2

𝐶base
� �

1
Var(𝑥base)

� [1 ,  �̅�post] �
𝑥2���base −�̅�base
−�̅�base 1

�  �
1

�̅�post
�

 

 

(5) 

Finally, we multiply out the matrix product in this expression and simplify as follows: 

[1 ,  �̅�post] �
𝑥2���base −�̅�base
−�̅�base 1

�  �
1

�̅�post� = �𝑥2���base −  �̅�post�̅�base ,    − �̅�base +  �̅�post�  �
1

�̅�post�

= 𝑥2���base −  �̅�post�̅�base − �̅�base �̅�post + � �̅�post�
2

= 𝑥2���base − 2 �̅�post�̅�base + � �̅�post�
2

= Var(𝑥base) + ( �̅�base)2 − 2 �̅�post�̅�base + � �̅�post�

= Var(𝑥base) + � �̅�base −  �̅�post�
2

 

 

(6
) 
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Combining expressions (5) and (6) we obtain 

Var(𝑦�) = 𝒙post sum′Cov�𝜷�� 𝒙post sum

= �
𝜎2𝑚post

2

𝐶base
� �

1
Var(𝑥base)

� �Var(𝑥base) + � �̅�base −  �̅�post�
2
�

= �
𝜎2𝑚post

2

𝐶base
��1 +

� �̅�base −  �̅�post�
2

Var(𝑥base)
�

 

 

(7) 

To translate the variance expression (7) into the standard error, replace 𝜎 by 𝑠 and take the 
square root.  The result is expression (2), shown again below. 

𝑠𝐶(𝑦�)  =  
𝑠 ×  𝑚𝑝𝑝𝑠𝑝

�𝐶𝑏𝑠𝑠𝑠
× �1 +  

��̅�base −  �̅�post�
2

Var(𝑥base) �

1
2

 

 

(2) 

Noise is simply the baseline standard error aggregated by quadrature for the number of points 
in the post period: 

�𝑠2  × 𝑚𝑝𝑝𝑠𝑝   =   𝑠 ×  �𝑚𝑝𝑝𝑠𝑝   

Prediction uncertainty is model uncertainty combined by quadrature with the noise: 

𝑠𝐶 �𝑦� +  �𝜀𝑖�  =  ��
𝑠 ∙ 𝑚𝑝𝑝𝑠𝑝

�𝐶𝑏𝑠𝑠𝑠
�
2

× �1 + 
��̅�base −  �̅�post�

2

Var(𝑥base)
� +  𝑠2 × 𝑚𝑝𝑝𝑠𝑝 

For this, if 𝑚𝑝𝑝𝑠𝑝 = 𝐶𝑏𝑠𝑠𝑠 and 𝑥𝑖
post = 𝑥𝑖base, we get: 

𝑠𝐶 �𝑦� +  �𝜀𝑖� = �𝐶 × 𝑠2 + 𝐶 × 𝑠2 = √2𝐶 × 𝑠 

3.3.2. Discussion 

Note that model and noise uncertainty aggregate differently. The model uncertainty 
aggregates directly with mpost whereas the noise uncertainty aggregates with the square root of 
mpost. This explains why the ASHRAE approach was improved by changing the fixed coefficient 
of 1.26 with a polynomial. 

Ruch, Kissock, and Reddy noted that “A common but incorrect practice for computing 
prediction error bounds of the sum of daily predictions is to sum in quadrature the prediction 
error bounds of the daily predictions… However…all of the daily predictions of energy use are 
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based on the same estimated regression coefficients and are therefore correlated. 
Consequently, summing in quadrature will underestimate the correct prediction error bound.” 

In layperson’s terms, to the extent the model is different from the true relationship, it is 
different for every prediction in the same way, and hence the model uncertainty aggregates 
with mpost.  In contrast, the noise uncertainty is random, so it aggregates with the square 
root of mpost. 

3.3.3. Handling Autocorrelation 

In the presence of autocorrelation, exact closed-form solutions are not generally available even 
for point estimates so statisticians typically employ numerical approximation methods. To 
approximate the impact of autocorrelation, the ASHRAE equation adjusts mpost by the ratio of 
nbase/n’base.  Empirical checks for the data sets in this work suggest that this adjustment should 
only be applied to the noise portion, so the final equation is: 

𝑡 × 𝑠𝐶 �𝑦� +  �𝜀𝑖�  = 𝑡 × 𝑠 × �𝑚𝑝𝑝𝑠𝑝

𝐶𝑏𝑠𝑠𝑠

2
× �1 +  

��̅�𝑏𝑠𝑠𝑠 −  �̅�𝑝𝑝𝑠𝑝�
2

𝐶𝐼𝐸(𝑥𝑏𝑠𝑠𝑠)
� + 𝑚𝑝𝑝𝑠𝑝 ×

𝐶𝑏𝑠𝑠𝑠
𝐶′𝑏𝑠𝑠𝑠

 

M&V practitioners needing a simplified method to estimate uncertainty should use this 
equation. 

3.3.4. Development from Confidence and Prediction Interval 
Equations 

This is not a derivation, but just a development of the same equations as above, starting from 
the confidence and prediction intervals, and using the same aggregations—straight sum or 
square root of the sum of the squares—as derived above.  This shows that the derivation above 
is consistent with confidence and prediction intervals, and was used to help verify the proper 
implementation of the above equations in ECAM. 
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Table 3-1.  Development of Model Uncertainty Aggregated Over Many Points 

Steps Standard Confidence half-interval, 
aggregated by SUM 

Confidence half-interval, 
without t-statistic  

𝑠 ×  �(1/𝐶𝑏𝑠𝑠𝑠   +   (𝑥 − �̅�)2/(�(𝑥 − �̅�)2)) 

(𝑠 is the standard error of the estimate for the baseline 
regression, and is the same as RMSE) 

The included adjustment for 
x different from Baseline 
period �̅� 

                                 + (𝑥 − �̅�)2/(∑(𝑥 − �̅�)2))                                  

Simplified by eliminating 
adjustment for �̅� 𝑠 ×  �(1/𝐶𝑏𝑠𝑠𝑠 

Aggregating  
for mpost points 𝑚𝑝𝑝𝑠𝑝  ×  𝑠 ×  �(1/𝐶𝑏𝑠𝑠𝑠 

Algebraic rephrasing 
𝑠 ×  𝑚𝑝𝑝𝑠𝑝

�𝐶𝑏𝑠𝑠𝑠
 

 

Table 3-2.  Development of Standard Error Aggregated Over Many Points 

Steps Standard Error (Noise), 
aggregated by Quadrature 

Standard Error 𝑠  

Aggregating by Quadrature 
(square root of the sum of 
squares) for mpost points 

�𝑠2  ×  𝑚𝑝𝑝𝑠𝑝 

Algebraic rephrasing 𝑠 ×  �𝑚𝑝𝑝𝑠𝑝 

 

3.4. Bootstrap Approaches 
Statistical bootstrapping falls under the broader heading of resampling and it involves a 
relatively simple procedure repeated many times. Bootstrapping provides a method for 
estimating confidence intervals when traditional uncertainty equations fail. The bootstrap 
resamples data from a sample to develop parameter distributions and or distributions of 
results. The key assumption for the bootstrap is that the distribution of the parameter in the 
sample closely approximates its distribution in the population, and that the distribution in the 
bootstrap sample (resample) closely approximates its distribution in the sample. I.e. the 
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bootstrap sample is a close representation of the sample, and the sample is a close 
approximation of the population. 

The bootstrap's uncertainty estimates were accepted as relatively sound because of the 
method's directness and transparency.  In other words, agreement with the bootstrap, or block 
bootstrap for data sets with autocorrelation, was taken as support for a simpler method, and 
disagreement was taken as cause for concern.  Further study is recommended to confirm the 
reliability of such comparisons. 

In a bootstrap, a sample is drawn, with replacement, from the original sample; parameters are 
estimated; the savings is estimated; and the process is repeated many times. “With 
replacement” means that after an item is drawn for the bootstrap sample, it is placed back into 
the original sample ‘deck,’ so that it is again available to be drawn as part of the bootstrap 
sample. Therefore, for each bootstrap sample, some items can be drawn multiple times, 
whereas others may not be drawn at all.  Each bootstrap sample, however, has the same 
number of members as the original sample. 

There are various criteria to determine how many bootstrap samples are needed, but the 
approach I used was to simply plot the distributions of the savings estimates until the 
distribution was reasonably smooth and would not change significantly with additional 
bootstrap samples. 

Because of my familiarity with Microsoft Excel, and to provide transparency of the work, all of 
these analyses were done in Excel.  

It was also very important to the flexibility needed for these comparisons: For most of these 
tests two separate draws were completed for each savings estimate. This was done to get 
correspondence with the two sources of uncertainty described in Section 2: 

1. Model Uncertainty 
2. Noise 

Getting these two sources of uncertainty separately allowed comparison of the results from 
application of the linear equations for OLS. 

After getting the distributions for the coefficients and each component of uncertainty, I used 
the 5th percentile and 95th percentile values to give me the range of values (range of 
coefficients and range of errors) for a 90% confidence level. Subtracting the 5th percentile 
value from the 95th percentile value, then dividing by 2 provided an interval for comparison 
with the OLS standard errors times the t-statistic. 

Since this process was new to me, I used a large number of draws, from 10,000 to 100,000, 
while testing the process. I used a couple of different visualizations to make sure that I had 
sufficient draws, and that the results made sense.  The most important were the histograms of 
the errors.  An example, for 30,000 draws, n=365, and m=180, is shown in Figures 3-1 and 3-2. 
The highlighted bars are those nearest the 5th and 95th percentiles. 

0.0. 
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Figure 3-1.  Histogram of Model Errors for 30,000 Bootstrap Samples  

 

  

Figure 3-2.  Histogram of Noise Errors for 30,000 Bootstrap Samples 

The bins nearest the 5th and 95th percentile are highlighted.  You can see that the histograms 
are quite smooth, indicating that the number of samples is sufficient.   
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3.4.1. Bootstrap Approach Assuming All Values are 
Independent 

This approach was used for the simplest bootstrap analyses.  

3.4.1.1. Data Set 

The data set is summarized as: 

 Synthetic data 

 365 data points 

 No autocorrelation 

 ~Normal distribution of residuals 

A synthetic data set was used so that its characteristics would be known. It was based on a 
known linear relationship. The use of this synthetic data with known characteristics facilitated 
the initial comparison with the exact solution for the aggregate uncertainty for OLS. The use of 
365 points was arbitrary, but that number obviously represents daily data. 

The data, with the regression line, equation, and prediction limits for a 90% confidence level, 
are shown in Figure 3-3. 

 

Figure 3-3.  Regression Line, Equation, And Prediction Limits for the Synthetic Data  

Figure 3-4 shows a lag chart. This chart plots, for the OLS model, the residuals at time t+1 versus 
the residuals at time t. Since there is no relationship, there is no autocorrelation. This is further 
confirmed by the Durbin-Watson statistic of 2.000. Durbin-Watson values vary between 0 and 
4, with values significantly less than 2 indicating positive autocorrelation, and values 
significantly greater than 2 indicating negative autocorrelation. A value of 2 indicates no 
autocorrelation. 
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Figure 3-4.  Lag Plot for Model Residuals for Synthetic Data Set 

Figure 3-5 shows a histogram of residuals, which roughly approximates a normal distribution. 

 

Figure 3-5.  Histogram of Residuals for Synthetic Data Set 

3.4.1.2. Bootstrap Process 

Figure 3-6 shows the part of the spreadsheet with the bootstrap sampling. 
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Figure 3-6.  Portion of Spreadsheet Used for Bootstrap Resampling 

The columns shown are Columns M through X in the workbook, as indicated by the letters 
above the colored area.  

Column M provides a random number to draw the corresponding Record number—X,Y pair, 
Avg prod and Avg energy—in the bootstrap sample. The Rand of 111 indicates that the 111th 
X,Y pair is drawn, and their values are 18.29 and 138.50. Again, the draw can repeat data pairs, 
or omit data pairs entirely. In this particular draw, Record Number 1 was drawn 2 times, Record 
Number 2 was drawn 1 time, and Record Number 3 was not drawn at all. Record number 62 
was drawn 5 times.  

Column N has the X value associated with the record number from Column M. 

Column O has the Y value associated with the record number from Column M 

Using the set of drawn points represented in Columns N and O, OLS is used to get the Intercept 
and Slope coefficients shown above those columns. Farther up in Column N, below “iSamples,” 
is the number of bootstrap samples that the code will run. 

Column P has the list of record numbers in the order of the original data. 

Column Q has the X value associated with the record number from Column P. 

Column R has the Y value associated with the record number from Column P. 

In other words, Columns Q and R have the X and Y values for the original data, in the order of 
the original data. The spreadsheet has the original data in columns to the left of what is shown, 
but they were repeated in these columns for clarity. 

iSamples
30,000      

Intercept Slope mPost
51.183331 4.957609 180

Totals: 55,697    55,096    55,204    108          53.7         0.9           54.6         
M N O P Q R S T U V W X

Rand Avg prod
Avg 
energy

Record 
number Avg prod

Avg 
energy Modeled

Model 
Error Rand2

Model 
Error

Model 
Residual

Total 
Error

111 18.295115 138.504 1 15.21896 132.9941 126.633 0.154 196 0.337026 -8.46424 -8.12722
95 12.621476 118.88 2 15.52848 124.2796 128.1675 0.163 23 0.320673 -1.71675 -1.39608

202 26.242115 184.7821 3 22.49536 159.1026 162.7065 0.361 220 0.380398 -1.66925 -1.28885
302 23.217608 169.7278 4 16.99809 131.6905 135.4532 0.205 66 0.337389 -3.98408 -3.64669
187 16.119348 131.0174 5 19.007 143.6533 145.4126 0.262 246 0.365826 -2.96538 -2.59956
229 25.579869 182.5789 6 8.47089 87.42839 93.1787 -0.037 363 0.258527 -0.24163 0.016897
306 22.679374 177.5888 7 23.87815 175.1003 169.5619 0.400 126 0.321126 4.14255 4.463676
289 28.122693 190.8132 8 27.9802 188.942 189.8982 0.517 114 0.338637 1.646535 1.985171
113 15.671965 142.9598 9 20.09503 157.2123 150.8067 0.293 282 0.351705 4.539678 4.891383
315 17.33219 142.8871 10 23.01077 170.544 165.2617 0.376 247 0.372042 1.074525 1.446567

Run Bootstrap
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Column S has the estimated values 𝑌�  for the Avg prod (X) value shown in column Q, based on 
the Intercept and Slope shown, which was estimated for this bootstrap sample.  

Column T has the Model Error: the difference between the actual Y and 𝑌� . 

Columns M through T have 365 values, since there were 365 X,Y pairs in the original data. 

Column U has the a random number to draw the additional bootstrap sample associated with 
this approach.  

To clarify the two separate draws, they were used to separate the mean response (model) 
uncertainty from the noise uncertainty.  The first sample was used to get the model 
coefficients.  The second draw was to get the range of model residuals for the estimated 
coefficients.  In hindsight, it may have been more computationally efficient to do a loop-in-loop 
set of draws—making multiple draws for each set of model coefficients—and fewer total model 
draws, but I made the second draw every time I made the first draw. 

The number of points in the second bootstrap match the input number of points in the post 
(reporting) period. This value is shown above in Column U, under “mPost.” Therefore, this 
analysis was for 180 days in the reporting period, and Columns U through X each have 180 
values in them. 

Column V has the Model Error value from the record in column T for the random draw in 
column U. In other words, the value 0.337026 is for the 196th value in Column T.  

Column W has the Model Residual from the original data (that residual is to the left of the data 
shown, in Column F) for the record number shown in Column U. 

Column X adds the results in Column V and Column W to get the Total Error for each point. 

The values above the letters “V”, “W”, and “X” indicating those columns are the totals for those 
columns. Each time a new pair of bootstrap samples is drawn (Columns 1 and 9), the associated 
Intercept and Slope, and the total Model Error, Model Residual (Noise), and Total Error are 
saved in columns Z through AD, as shown in Figure 3-7. 

 

Figure 3-7.  Bootstrap Samples’ Model Coefficients and Errors 

Y Z AA AB AC AD

Intercept Slope
 Model 

Error 
 Model 

Residual 
 Total 
Error 

51.27104 4.936832 (5.5)         42.0         36.5         
51.54564 4.920138 (18.0)       33.7         15.7         
51.06814 4.964354 54.1         (32.1)       22.1         
52.38379 4.920265 133.9      (41.9)       92.0         
51.66731 4.917121 (6.0)         (30.2)       (36.3)        
51.94632 4.918226 48.1         (15.7)       32.4         
51.77716 4.904323 (34.4)       10.8         (23.6)        
49.89925 4.995203 (45.5)       (43.9)       (89.3)        
52.37292 4.879445 (22.6)       116.4      93.8         
52.62343 4.891738 74.4         (10.9)       63.5         



Uncertainty Approaches and Analyses for Regression Models and ECAM 

SBW Consulting, Inc. 33 
 

There are 30,000 records in Columns Z through AD, corresponding to the value for iSamples in 
Column N. 

These records are summarized above in Columns Y through AD, with an additional check in 
Column AE. Various percentile values Intercept and Slope, and the total Model Error, Model 
Residual, and Total Error, are calculated as indicated by Figure 3-8. 

 

Figure 3-8.  Percentiles of Bootstrapped Model Coefficients and Errors 

The difference between the 95th and 5th percentile values are shown in the numbers at the 
bottom. These are the 90% confidence intervals estimated by the bootstrap. (In Bayesian terms, 
this is called a “credible interval.”)  

Column AE adds a check on the Total Error, using quadrature to combine the Model Error and 
Model Residual. This check is not used for all the bootstrap approaches implemented, since it is 
not valid for some models and data sets, but it is valid here. As can be seen, that check provides 
essentially the same results as the Total Error column, except for slight differences at the tails 
of the distribution. 

Columns AE through AL provide the data for the histograms of Model Errors and Model 
Residuals. The histograms use 50 bins, so there are 50 records in these columns. Figure 3-9 
shows the first 10 records for the data for the histograms. 

 

percentile Intercept Slope
Model 
Error

Model 
Residual

Total 
Error QuadError

0.01% 47.4         4.75        (178.7)     (246.3)     (300.2)     304.3
5.00% 49.7         4.84        (79.3)       (111.4)     (137.0)     136.78       

10.00% 50.1         4.86        (61.1)       (87.1)       (106.4)     106.4
20.00% 50.6         4.89        (40.2)       (57.6)       (71.5)        70.3
50.00% 51.5         4.93        (0.2)         (0.7)         (0.3)          0.7
80.00% 52.4         4.97        39.7         57.9         70.1         70.2
90.00% 52.8         4.99        61.1         87.8         106.8       106.9
95.00% 53.2         5.01        79.6         113.0      138.2       138.20       
99.99% 55.1         5.12        182.2      255.9      317.4       314.1

1.75         0.0838   79.46      112.20    137.59     137.49       
Y Z AA AB AC AD AE
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Fiegure 3-9.  Data for Histograms of Residuals 

This example used 30,000 bootstrap samples. Compare the histograms In Figures 3-9 and 3-10 
with Figures 3-1 and 3-2. Note how the distributions became much smoother with the larger 
number of samples. Because I didn’t want an insufficient number of samples to affect the 
results, 30,000 samples were used for this analysis. 

3.4.2. Block Bootstrap Approach for Autocorrelated Residuals 

A regular bootstrap does not retain the order of the data. Hence, any time series relationships 
are lost. If residuals are autocorrelated, then the time series nature of the data is important and 
must be preserved. One solution to this is to resample the data in blocks. For example, with 
daily data, two or more days will be treated as a block and kept together when resampling. 

These analyses were performed for two data sets. First, a new synthetic data set was created. It 
used the same X-values as the prior synthetic data set, and was based on the same relationship, 
but it was created to have mild autocorrelation. 

Figure 3-10 shows the lag plot for this data set. Compare with Figure 3-1, and note that this 
chart shows a slight positive autocorrelation. Correspondingly, the Durbin-Watson statistic for 
this data set is 0.93. 

AE AF AG AH AI AJ AK AL

Min of Bin
Max of 
Bin Bin

Model Error 
Count in Bin Min of Bin

Max of 
Bin Bin

Model 
Residual 
Count in Bin

-178.7 -171.5 -178.7 to -171.5 3 -246.3 -236.3 -246.3 to -236.3 5
-171.5 -164.3 -171.5 to -164.3 5 -236.3 -226.2 -236.3 to -226.2 6
-164.3 -157.1 -164.3 to -157.1 6 -226.2 -216.2 -226.2 to -216.2 7
-157.1 -149.8 -157.1 to -149.8 11 -216.2 -206.1 -216.2 to -206.1 17
-149.8 -142.6 -149.8 to -142.6 11 -206.1 -196.1 -206.1 to -196.1 18
-142.6 -135.4 -142.6 to -135.4 26 -196.1 -186.0 -196.1 to -186.0 30
-135.4 -128.2 -135.4 to -128.2 45 -186.0 -176.0 -186.0 to -176.0 54
-128.2 -121.0 -128.2 to -121.0 64 -176.0 -166.0 -176.0 to -166.0 71
-121.0 -113.8 -121.0 to -113.8 84 -166.0 -155.9 -166.0 to -155.9 101
-113.8 -106.5 -113.8 to -106.5 125 -155.9 -145.9 -155.9 to -145.9 141
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Figure 3-10.  Lag Plot for Synthetic Data With Medium Autocorrelation 

A key question with autocorrelation and a block bootstrap is, how big a block to use? E.g., for 
how many days is the energy use related? It depends on how many lags of autocorrelation are 
present. Is it only related to the prior day, i.e. lag 1? Is it related to the prior 4 days? One way to 
do this is with an autocorrelation plot, which indicates the relationship between points with 
different lags. I created some of these, but it was also intuitive to just try different block sizes 
and plot the results to show when the estimated aggregated error ceased to increase with 
increasing block size. Analyses for this first data set used block sizes of 1, 2, 4, 7, and 14 points. 

Using a block size of 1 is the same as using a regular bootstrap, since the same number of 
points are in a block. As block sizes increase, the aggregated error was expected to increase 
since it would now include the effect of autocorrelation. Once the block size reaches the 
maximum lag present, the aggregated error would no longer change.  

The second data set used for these analyses was again synthetic. However, the data set was 
created to have more scatter and more autocorrelation. Figure 3-11 shows the data set with 
the OLS fit line and the 90% prediction interval. 
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Figure 3-11.  Data, Regression Line, and 90% Prediction Intervals for Synthetic Data with 
More Scatter and Significant Autocorrelation 

Figure 3-12 shows the autocorrelation plot for this data set. The Durbin-Watson statistic is 0.61. 

 

Figure 3-12.  Lag Plot for Synthetic Data with Higher Autocorrelation 

3.4.3. Bootstrap Approach for Data With a Relationship 
Between Independent Variable Values 

The approach in the prior section was the foundation for the next two bootstrap analyses.  

Another modified approach may be needed for common commercial and residential building 
energy models. Even with monthly data, which can reasonably be assumed to not have serial 
correlation, the data points are not independent.  Since the X-axis independent variable is 
outside air temperature, there is a certain distribution of these temperatures that will occur 
over the course of a year.  Ignoring this constraint on the range of independent variables could 

y = 7.0373x - 4.1425
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affect the estimated uncertainty relative to the true uncertainty.  The X-values are related 
because of the limitation on the range of temperatures likely at a given time of the year.   

A solution is to resample residuals instead of data pairs.  Add the residuals to the fitted lines of 
a model built from the original data to create a new data sample, create new models, and 
proceed as normal. 

The issue with this approach, I think, is that it assumes homoscedasticity—the residuals to be 
resampled can come from any part of the original regression, since they are randomly sampled, 
and applied to any part of the new data set being created.  

In contrast, the approach of resampling data pairs, presented in the prior section, assumes 
independence of the X-values, but does not assume homoscedasticity. 

To look at the impact of the X-values having a relationship with each other, three bootstrap 
analyses were performed: 

1. Resample data pairs as described in the prior section. 

2. Resample the residuals based on the fit of a least squares regression for the original data 
set. 

3. Resample a normal distribution of residuals based on the fit and standard error of a least 
squares regression for the original data set. 

Approaches 2 and 3 retain the distribution of the X-values. With a resampling of the data pairs, 
a bootstrap sample could have too many hot temperatures and cold temperatures, and too few 
mid temperatures, and hence give an unreasonable estimate of savings and uncertainty. 

For this analysis, a real set of monthly data was used. This data set had a distinct change in 
slope. Hence, the least squares fit was for a 4-parameter model with a change point. The data 
and model are shown in Figure 3-13. No scales are shown since this is customer data. 

 

Figure 3-13.  Monthly Data With a Relationship Between Independent Variable Values 

This data set had no autocorrelation, since it was monthly data.  

Note, however, that the prediction intervals show that there is heteroscedasticity. This affects 
the accuracy of the approaches, including the bootstrapping of the raw residuals. The 
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Max Modeled

0.0. 
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bootstrapping of the normal residuals is expected to provide the most accurate estimation of 
uncertainty. 

Monthly data was chosen for several reasons: 

 A poor distribution of temperatures is more likely to occur with monthly data, so the 
difference between resampling data pairs or residuals would be more apparent. 

 There was interest in finding what a bootstrap approach would find for the most likely 
change point, since it was somewhat ambiguous for this data set. 

 It is faster to process monthly data because of the relatively few number of data points. 

The process changes for this data set and resampling of residuals, relative to the approach for 
the synthetic data set that met all the requirements for OLS regression, were as follows: 

X-values (temperatures) were not resampled. 

Y-values (energy) were calculated as the OLS fit for that temperature and adjusted based on 
either a resampled residual, or a random value from a normal distribution of residuals. 

The coefficients to be estimated included four parameters instead of two: 

1. Intercept 

2. Left Slope 

3. Change Point temperature 

4. Right Slope 

For each bootstrap sample, the additional coefficients were saved along with the Model Error, 
Model Residual, and Total Error. 

In the remaining aspects, the process was the same as the process described for the synthetic 
data set without autocorrelation. 

0.0. 
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4. RESULTS FOR EACH METHOD ANALYZED 
There were four data sets analyzed. These were described in the preceding section, and are 
summarized here: 

1. Synthetic data, linear relationship, no autocorrelation 

2. Synthetic data, linear relationship, moderate autocorrelation 

3. Synthetic data, linear relationship, higher scatter, higher autocorrelation 

4. Real data, 4-parameter relationship, X-values not independent 

A point of clarification in the results shown in this section: The “errors” quantified are not a 
bias—all of the models were unbiased. Instead, the errors are one side of a confidence band on 
a savings estimate.  

4.1. Results for Synthetic Data with a Linear 
Relationship and No Autocorrelation 
The coefficients and uncertainties were estimated for these approaches” 

 OLS 

 Bootstraps 

 ASHRAE Fractional Savings Uncertainty 

 Improved ASHRAE Fractional Savings Uncertainty  

The uncertainties were estimated for the following lengths of reporting periods (days): 

 30 

 60 

 90 

 180 

 365 

The bootstraps for these analyses used 10,000 samples. This appeared to be near the minimum 
to get smooth histograms of errors. Figures 4-1 and 4-2 show the histograms of Model Errors 
and of Residuals Errors respectively 
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Figure 4-1.  Histogram of Model Errors for 10,000 Bootstrap Samples 

 

  

Figure 4-2.  Histogram of Noise Errors for 10,000 Bootstrap Samples 

 

The histogram in Figure 4-2 is a little rough, indicating that the number of samples is near a 
minimum for reliable results. Contrast these figures with Figures 3-1 and 3-2 and the impact of 
the decreased number of samples can be seen. 
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4.1.1. Coefficients 

Table 4-1 summarizes the results from the estimation of coefficients and their errors. The first 5 
columns show the 50th percentile value from the bootstraps and the last column is for OLS. 

Table 4-1.  Comparison of Coefficients and their Errors for Bootstrap and OLS Approaches 

 

The results are very close for all parameters. This is expected, because the bootstrap uses OLS 
to estimate the coefficients for each sample drawn, and hence the 50th percentile values should 
be very close to the corresponding OLS coefficients 

4.1.2. Uncertainty 

Table 4-2 summarizes the equations used for the formulaic (non-bootstrap) estimations of 
uncertainty, summarizing Section 3. For definitions of variables, refer to Section 3.  Note that 
the ASHRAE approaches do not divide the uncertainty into parts, but only estimate total 
uncertainty. 

In Tables 4-2 and 4-3, “aggregate error” means the error associated with adjusted baseline 
predictions for all the points, i.e. the aggregate for all of the time intervals. 

mPost 30 60 90 180 365 OLS
Intercept at X=0 51.461 51.456 51.456 51.457 51.467 51.462
Slope 4.92967 4.92861 4.92933 4.92931 4.92901 4.92919
Error of the Intercept 1.762 1.797 1.792 1.735 1.757 1.725
Error of the Slope 0.08440 0.08489 0.08497 0.08342 0.08311 0.08263
Note: For the coefficient errors for OLS, the Error is the t-statistic (1.649) X the Standard Error
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Table 4-2.  Uncertainty Equations 

Model aggregate 
error by OLS 𝑡 × 𝑠𝐶(𝑦�)  =  𝑡 ×

𝑠 ×  𝑚𝑝𝑝𝑠𝑝

�𝐶𝑏𝑠𝑠𝑠
× �1 +  

��̅�base −  �̅�post�
2

Var(𝑥base) �

1
2

  

 

Noise aggregate error 
by OLS, with 
adjustment for 
autocorrelation 

𝑡 × 𝑠 ×  �𝑚𝑝𝑝𝑠𝑝 × 𝐶𝑏𝑠𝑠𝑠/𝐶𝑝𝑝𝑖𝑚𝑠 

Total aggregate error 
by OLS 

�(Model aggregate error)2 +  (Noise aggregate error)2 

Total aggregate 
ASHRAE FSU ∆𝐸𝑠𝑠𝑠𝑠,𝑚

𝐸𝑠𝑠𝑠𝑠,𝑚
= 𝑡 ×

1.26 ∙ 𝐶𝐶 �𝐶𝐶′ �1 + 2
𝐶′�

1
𝑚�

1/2

𝐹
 

Total aggregate 
Improved ASHRAE 
FSU 

Data Sets 1 through 3, daily data:  

∆𝐸𝑠𝑠𝑠𝑠,𝑚

𝐸𝑠𝑠𝑠𝑠,𝑚
 = 𝑡 ×

(𝐼𝑅2 + 𝑏𝑅 + 𝐶) ∙ 𝐶𝐶 �𝐶𝐶′ �1 + 2
𝐶′�

1
𝑚�

1/2

𝐹
 

 

Table 4-3 summarizes the results from the estimation of model and noise errors for OLS and 
bootstraps, and total errors for all four methods. Note that the ASHRAE approaches do not 
divide the uncertainty into parts, but only estimate total uncertainty. 

These values are for an 90% confidence level. 

Table 4-3.  Comparison of Savings Errors for All Four Approaches for Data Set 1 

 
Again, note that all of the values are quite close, except the original ASHRAE FSU approach. 
Figure 4-3 shows the model and noise errors in chart form. Figure 4-4 shows the total errors for 
each approach. 

mpost 30 60 90 180 365
Model aggregate error by OLS 13.2 26.5 39.7 79.4 160.9
Model aggregate error by Bootstrap 13.5 27.0 40.2 79.4 158.8
Noise aggregate error by OLS 46.1 65.2 79.9 113.0 160.9
Noise aggregate error by Bootstrap 45.9 64.5 79.0 112.0 157.0
Total aggregate error by OLS 48.0 70.4 89.2 138.1 227.6
Total aggregate error by Bootstrap 48.2 69.7 89.1 135.9 225.5
Total aggregate error by ASHRAE FSU 58.3 82.4 101.0 142.8 203.3
Total aggregate error by Improved FSU 48.0 70.1 88.6 136.4 224.7
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Figure 4-3.  Model and Noise Aggregate Errors by Approach and Length of Reporting Period 

 

Figure 4-4.  Total Aggregate Errors by Approach and Length of Reporting Period  

0

50

100

150

200

250

0 50 100 150 200 250 300 350

Ag
gr

eg
at

e 
Er

ro
r i

n 
En

er
gy

 U
se

mPost, Number of Post Period Points

model aggregate error
model aggregate error by Bootstrap
noise aggregate error
noise aggregate error by Bootstrap

0

50

100

150

200

250

0 50 100 150 200 250 300 350

Ag
gr

eg
at

e 
Er

ro
r i

n 
En

er
gy

 U
se

mPost, Number of Post Period Points

total aggregate error
total aggregate error by Bootstrap
total aggregate error by ASHRAE FSU
total aggregate error by Improved FSU



Uncertainty Approaches and Analyses for Regression Models and ECAM 

44  SBW Consulting, Inc.  
 

4.2. Results for Synthetic Data with a Linear 
Relationship and Moderate Autocorrelation 
These analyses were only performed for reporting periods of one year. 

To estimate the block sizes needed to account for the autocorrelation, an autocorrelation plot 
(also called a correlogram) was created. Figure 4-4 shows the autocorrelation plot. 

 

Figure 4-5.  Autocorrelation Plot for Data Set 2 

Figure 4-5 shows that only the Lag-1 Autocorrelation Coefficient is significant. Hence, a block 
size of two might be all that is required to fully account for autocorrelation using a block 
bootstrap. Despite this inference, I ran the bootstrap for all the block sizes listed above. Also, 
only the basic bootstrap without blocks was run for only 10,000 samples. The other analyses 
were run for 30,000 bootstrap samples, with checks using 100,000 samples. Table 4-4 shows 
the results of the analyses for Data Set 2. 

Table 4-4.  Comparison of Savings Errors for All Four Approaches for Data Set 2.  

 
This information may be seen more clearly in Figure 4-6. 
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OLS + 
Autocorr. FSU

Improved 
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Block 
 Size Samples

Model 
Error

Noise 
Error

Total 
Error

169 169 239 308 308 435 392 433 1 10,000    169 169 240
169 169 239 308 308 435 392 433 2 30,000    210 209 295
169 169 239 308 308 435 392 433 4 30,000    226 227 319
169 169 239 308 308 435 392 433 4 100,000  228 226 319
169 169 239 308 308 435 392 433 7 30,000    227 230 324
169 169 239 308 308 435 392 433 7 100,000  230 229 326
169 169 239 308 308 435 392 433 14 30,000    229 228 322
169 169 239 308 308 435 392 433 14 100,000  228 229 323

84 119 146 84 119 146 276 7 30,000    229 229 324
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Figure 4-6.  Total Error vs. Block Size for Data Set 2    

Figure 4-6 shows that a block size of 4 is needed before the estimated error ceases to increase. 
This is higher than expected based on the autocorrelation plot. 

More importantly, it shows, as expected, that not accounting for autocorrelation 
underestimates the error, as shown by the values for OLS and the bootstrap without blocks (i.e. 
block size =1.) 

As expected, the ASHRAE FSU equation estimates a lower total uncertainty for a full year of 
data than the improved equation. This is the same result shown for Data Set 1, and the issue 
found by Sun and Baltazar in their research. 

The OLS + Autocorrelation estimate uses the same adjustment for effective number of points as 
the FSU equations. Since the OLS and improved FSU equations provided the same result for 
Data Set 1, which didn’t have autocorrelation, it is not surprising that they provide the same 
result here since they use the same adjustment for autocorrelation. 

However, even the improved FSU equation does not provide results that match the block 
bootstrap. It estimates an error at the 90% confidence level that is about 35% higher 
(433/319 – 1) than the bootstrap. 

I theorize some reasons why the Improved FSU equation gives different results: 

 The adjustment for the effective number of points uses only the Lag-1 autocorrelation 
coefficient, and higher order lags appear to be important. 

 The adjustment for the effective number of points is itself an approximation. 

These are just possibilities. It is also possible that the block bootstrap is not providing the 
correct results, possibly because of an incorrect implementation. 
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4.3. Results for Synthetic Data with a Linear 
Relationship, Higher Scatter and Higher Autocorrelation 
The same block sizes as above were used for these analyses, plus a block size of 5. 

Figure 4-7 shows the autocorrelation plot for Data Set 3. It shows that lags up to 5 may be 
important. 

 

Figure 4-7.  Autocorrelation Plot for Data Set 3 

The bootstrap was run for block sizes of 1, 2, 4, 5, 7, and 14. The results are shown in Table 4-5. 

Table 4-5.  Comparison of Savings Errors for All Four Approaches for Data Set 3 

 
This information may be seen more clearly in Figure 4-8. 
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Block 
 Size Samples

Model 
Error

Noise 
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Total 
Error

1164 1166 1648 2747 2747 3885 3513 3883 1 10,000    1164 1166 1648
1164 1166 1648 2747 2747 3885 3513 3883 2 10,000    1505 1495 2118
1164 1166 1648 2747 2747 3885 3513 3883 4 30,000    1903 1903 2688
1164 1166 1648 2747 2747 3885 3513 3883 4 100,000  1909 1901 2690
1164 1166 1648 2747 2747 3885 3513 3883 5 100,000  2037 2028 2883
1164 1166 1648 2747 2747 3885 3513 3883 7 30,000    2187 2180 3090
1164 1166 1648 2747 2747 3885 3513 3883 14 30,000    2332 2327 3271
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Figure 4-8.  Total Error vs. Block Size for Data Set 3 

Here, a failure to account for the increased autocorrelation would vastly underestimate the 
uncertainty. Using the block size of 7 as the minimum appropriate, and assuming the bootstrap 
is providing a good estimate of uncertainty, not accounting for autocorrelation would 
underestimate the true uncertainty by nearly 50%. 

Again, the uncertainty estimated by the improved FSU equation matches the OLS with the same 
adjustment for the effective number of points. Also, the FSU equations continue to estimate 
higher uncertainties than the block bootstrap. 

4.4. Results for Real Data with a 4-Parameter 
Relationship, X-Values Not Independent 
Table 4-6 shows the results for the OLS approach, both FSU approaches, and three resampling 
approaches. These analyses were for a 24-month baseline and a 24-month reporting period. 

Table 4-6.  Estimated Uncertainties by Approach for a Data Set With Related X-Values  

 
The OLS approach might not be considered applicable, since the model is not linear. However, 
its utility for these applications is of interest. OLS showed the highest uncertainty. This is not 
surprising, since OLS assumes that all data pairs are independent, but here the X-values are not 
independent. Surprisingly, the improved FSU shows much higher uncertainty than the OLS 
approach. 
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Of the bootstrap methods, the resampling of data pairs had the highest uncertainty. This was 
expected, since samples could have mostly cold temperatures, or mostly high temperatures. 
Because the data should actually be constrained to reasonable distributions of temperatures, 
and because of heteroscedasticity in the residuals, a relatively high estimate of uncertainty was 
expected. 

The resampling of residuals showed lower uncertainty than the resampling of normal residuals. 
This is surprising, because the heteroscedasticity should mean a wider distribution of sampled 
residuals. I suspect that the implementation of the normal residuals could be at fault here. The 
implementation used the RMSE for the total model as the center of the normal residuals, and 
this was multiplied by the t-statistic to get the 90% confidence interval for the normal residuals 

The bootstrapping of normal residuals results in an estimated uncertainty that is very close to 
the estimate for bootstrapping the raw residuals.  

The improved FSU shows much higher uncertainty than the OLS approach. The original FSU 
provides uncertainty estimates close to the bootstrap estimates since, relative to the improved 
FSU, it underestimates uncertainty for reporting periods longer than 8 months. Since the close 
estimate to the bootstrap is a result of this error, little confidence should be placed in this 
approach for other data sets. 

Figure 4-10 shows these results for the total errors. 

 

Figure 4-10 Estimated Uncertainties by Approach for a Data Set With Related X-Values  

For this data set the improved calculation did not make a large difference 
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5. CHOSEN APPROACH FOR UNCERTAINTY ESTIMATION 
IN ECAM 
ECAM version 5 implements both the Rushton equations for OLS and the Improved FSU 
equation. The OLS equations are modified in a manner similar the ASHRAE approach to 
handling autocorrelation. However, the OLS equations apply the ASHRAE autocorrelation 
adjustment only to the noise portion of the uncertainty, since this appears to be more accurate 
for these data sets. 

These approaches meet the current need for a reasonably accurate estimate of uncertainty 
while not requiring excessive computation time. 

The OLS equation is used for the actual estimation of uncertainty in ECAM and the Improved 
FSU equation is included as a reference to a known standard.  Since it is based on the two 
separate components of uncertainty—model uncertainty and noise—as described in Section 2, I 
trust the OLS equations more than the ASHRAE equations to still provide reasonable results 
when applied to situations that don’t fit the requirements for linear regression. Users should 
still be careful in trusting results for data with significant autocorrelation. 
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6. RECOMMENDED FURTHER WORK 
The data sets analyzed were relatively simple to model. Three of the data sets could be fit with 
a linear regression. The fourth data set required a model with 4-parameters.  

However, many energy models are more complex. With daily data, it is not unusual to have 2 or 
3 daytypes, with each daytype model having 3, 4, or 5 parameters, for a total of 6 to 12 
parameters or more in the overall model. With hourly data, models may have even more 
parameters. It would be beneficial to know how well these methods for estimating uncertainty 
perform for more complex models and models built on shorter-interval data with more 
autocorrelation. 

In addition, a more computationally intensive study could directly evaluate the quality of the 
different uncertainty methods by iteratively simulating baseline and post-period data from 
known distributions (as with data sets 1, 2, and 3), creating prediction intervals base on 
baseline data for each method, and checking whether the actual (simulated) post-period values 
agree with the prediction interval.  By repeating this experiment many times, one can estimate 
the actual coverage rate of the different intervals.  A 90% prediction interval should cover the 
target roughly 90% of the time. 
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