

November 7th Momentum Savings Monthly Call

IS "SMART" THE NEW "GREEN"?

Unraveling a New, Dynamic and Complex Market

November 7, 2018

WHY DO WE CARE ABOUT THERMOSTATS?

Gain insights into an evolving and growing market

how savings will be incorporated into

the momentum savings model

Determine

RESEARCH OBJECTIVES

Define

technologies in market

Learn

what others found

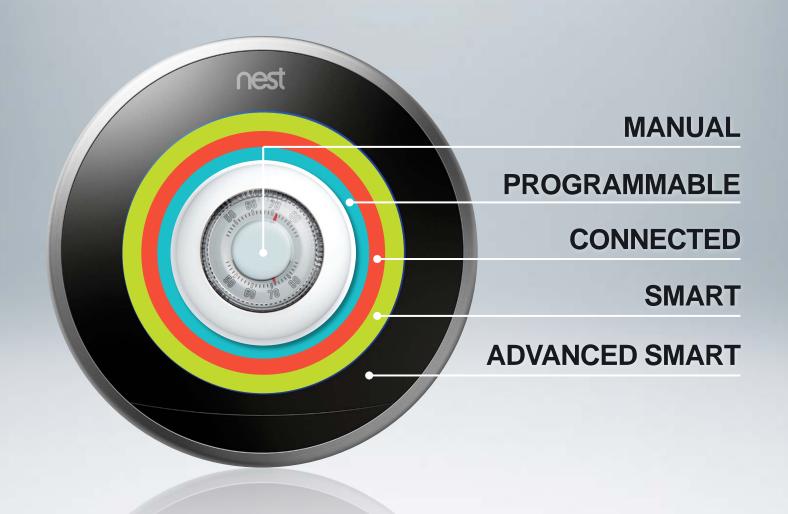
Understand

market dynamics

Assess

compatibility issues

RESEARCH ACTIVITIES



Market Actor Interviews

Literature Review

WHAT IS A "SMART THERMOSTAT"?

MAPPING FEATURES TO DEFINITIONS

Connected

- Scheduled setbacks
- Adjust remotely / has an app

Smart

Connected+

Proximity sensing (Geofencing)

Advanced Smart

Smart+

- Onboard occupancy sensing
- Heat pump optimization
- Learning algorithms

REGIONAL DEFINITIONS OF "SMART" ARE INCONSISTENT

Entity

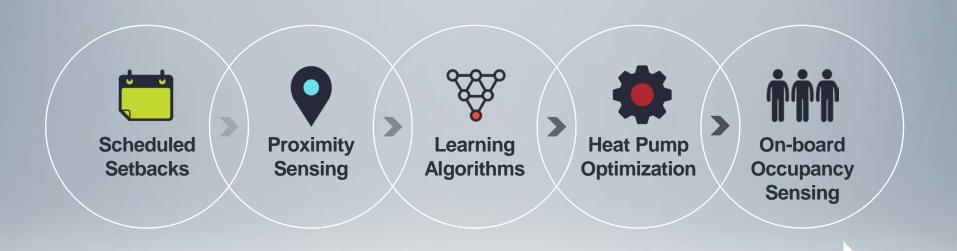
BPA and Energy Trust

What is included in their "smart" definition?

Advanced Smart Thermostats ONLY

RTF and RBSA II

Smart and Advanced Smart Thermostats


ENERGY STAR, PSE, and RBSA Wi-Fi category

Connected, Smart and Advanced Smart

WHAT FEATURES SAVE ENERGY?

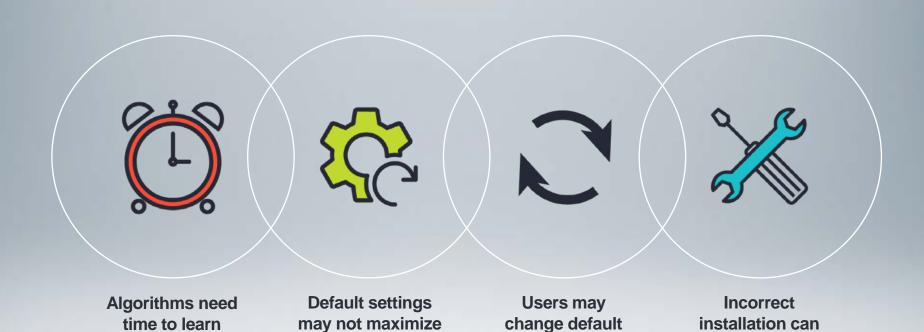
LEAST INFLUENCE ON EFFICIENCY MOST

ENERGY SAVINGS CAN EXIST... FOR ADVANCED SMART THERMOSTATS

Nest-only studies Nest & other Nest & ecobee ecobee-only

RESEARCH FINDINGS IN THE PACIFIC NW ARE FAIRLY CONSISTENT

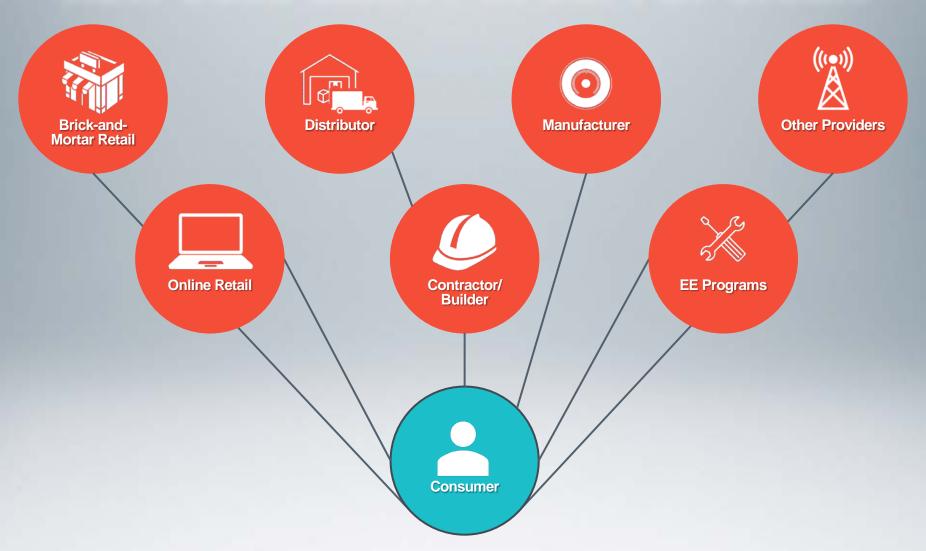
BPA/Franklin PUD


4% of total consumption 12% of heating and cooling load 745–955 kWh Annual Savings

Energy Trust

4.7% of total consumption12% of heating and cooling load781 kWh Annual Savings

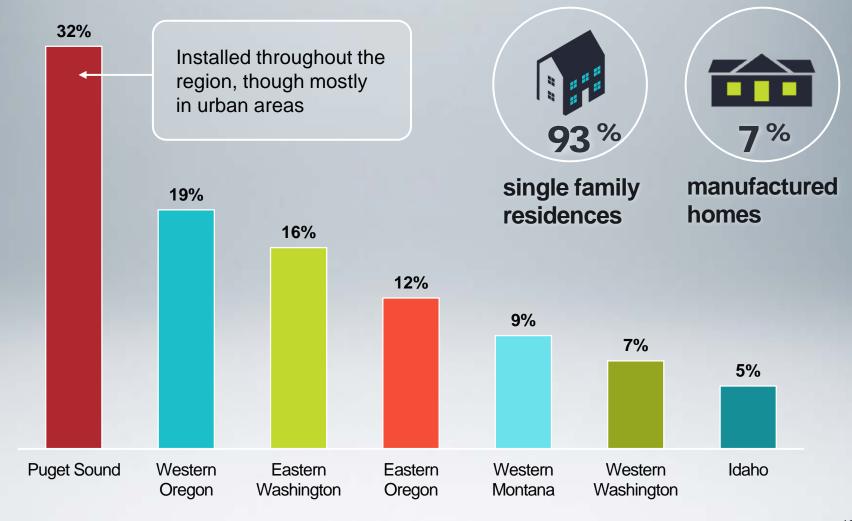
ADVANCED SMART THERMOSTATS DON'T NECESSARILY ALWAYS SAVE ENERGY


settings

energy savings

increase energy use

NEW COMPLEXITY IN SUPPLY CHAIN


COUNTING IS CHALLENGING

Analysis of RBSA II data suggests regional saturation of advanced smart thermostats was about 2% in 2016.

WHERE ARE THEY INSTALLED?

WITH WHAT SYSTEMS ARE THEY PAIRED?

Cooling

54% paired with central air conditioners

46% paired with air source heat pumps

Heating

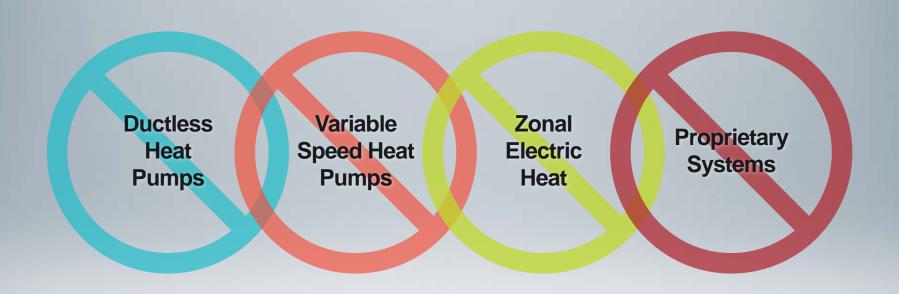
54% paired with gas furnaces

35% paired with air source heat pumps

6% paired with propane furnaces

4% paired with electric furnaces

1% paired with boilers



EXPLOSIVE GROWTH IS EXPECTED

THEY DON'T CURRENTLY WORK WITH EVERYTHING

RECOMMENDATIONS

Coalesce

Around Definitions

Strategy

for Tracking Market Change and Savings

Research

and Data on Growth and Performance

Awareness

of New Products

CONTACT

Bonnie Watson

BPA Project Manager bfwatson@bpa.gov

Get a copy of the detailed memo:

https://www.bpa.gov/EE/Utility/research-archive/Pages/hvac-market-research.aspx

Heat Pump Field Study: Pilot Results

11.7.2018

Study Objectives

- Assess baseline Air Source Heat Pump (ASHP)
 Commissioning, Controls, and Sizing (CC&S)
 practices of HVAC contractors in the region
- Inform RTF current practice baseline for Unit Energy Consumption (UEC) estimates

Current Plan

- Sample frame from permit records of homes who installed heat pump in last three years
- Regional study, IOUs and public power, two domains, east and west of Cascades
- Sample is budget driven, estimating 100 home sample
- 4-6 hour site visit includes heat pump testing, blower door and duct leakage tests, house audit to inform PTCS sizing tool and Ecotope tool developed for Idaho Power

Status

- 4 home pilot is complete
- Finalizing full study plans
- Will be reaching out to utilities soon, followed by participant recruitment
- Phillip will reach out to IOUs, BPA EERs reaching out to BPA customer utilities

Pilot Results

- Two homes in PSE, two homes in Inland Power
- Two variable speed and two single or multi-speed systems
- Generally found:
 - Systems are undersized
 - Aux heat lockout settings vary (and could be more aggressive);
 newer thermostat terminology takes some getting used to
 - Compressor lock outs showed mixed results
 - Air flow good
 - Capacity (temp split) good
 - Ducts in one home were leaky
 - Blower door tests found significant air leakage, not uncommon in homes of this age (1963-1981)

BONNEVILLE POWER /ADMINISTRATION

Sizing

Site	Installed Tons	PTCS	Idaho Tool	Spec Pro
Inland 1	3	3.5	3.5	3.5
Inland 2	3	4.5	5	5
PSE 1	3	3.5	4	4
PSE 2	3	4	4	4

Lockout Controls

Site	Aux lock out (PTCS 35F)	Compressor lock out (PTCS 5F)
	(= = = = ,	
Inland 1	NA	5
Inland 2	NA	-4
PSE 1	55	50
PSE 2	40	NA

Air Flow (CFM)

Site	Air Flow (325-500)
Inland 1	240 - 446
Inland 2	417
PSE 1	357
PSE 2	425

Capacity Test (temp split)

Duct Leakage

Lessons Learned

- Recruitment went well, 11% of homes we mailed recruitment letters to took survey and would have been eligible for site visit
- Calls to schedule site visits were effective: 5 of 6 sites called agreed to site visit, 1 home was ineligible due to having two heat pumps
- Thermostats are now more complicated; getting installation manuals on line before site visit is helpful
- Site visits are taking longer than expected

Next Steps

- Final sample design (November)
- Outreach to utilities (November)
- Participant recruitment (November December)
- Field work (Dec-April)
- Results (May June)

Contact

Phillip Kelsven, Project Manager pakelsven@bpa.gov

