Why was this document developed?
This document was developed for contractors participating in the Performance Tested Comfort Systems, or PTCS program, and provides an alternative to using a True Flow Plate to determine airflow.

What is the purpose of this document?
This document consolidates information about airflow settings for the most commonly installed air handlers. Excerpts from the manufacturers’ manuals are provided below, each with information on setting and identifying airflow.

How do you use this document?
Use the manuals and external static pressure, or ESP, measurements to set the airflow to meet the PTCS specification of 325 – 500 CFM/ton. Manufacturer fan tables can be used on their own to identify the airflow settings needed for PTCS heat pump projects. Page 2 and 3 explain the process for estimating airflow using static pressure measurements and flow tables. If your air handler is not included in this document, use the installation manual for your product to identify airflow or use flow plates.

If you have any questions, please contact PTCS at ResHVAC@bpa.gov or 1.800.941.3867
Estimating Airflow Using Static Pressure Measurements & Flow Tables

Using Static Pressure to Measure Airflow

• Static pressure measurements can be used with manufacturer fan tables to estimate airflow. Proper airflow and fan settings can ensure comfort and energy efficiency, and may extend the life of the heat pump.

• Use of a flow plate is the preferred method to determine airflow; however, the external static pressure-airflow lookup table approach is also approved by PTCS.

Proper Pressure Tap Placement

• Most manufacturer fan tables note testing return static pressure between the filter and air handler, and supply static pressure in the supply plenum with enough distance to avoid turbulence.

• PTCS requires the return static pressure to be measured downstream from the coil when reporting external static pressure. If the manufacturer specifies drilling upstream of the filter and notes a pressure drop for the filter, be careful as this drop is often lower than the filter you’re using. Contact your filter manufacturer for applicable pressure-drop data.

• A static pressure probe is required for external static pressure measurements. Taking pressure measurements without a static pressure probe will give non-valid results.

Identifying Airflow

• Using the information in the table below, if you have a blower motor speed at medium and an external static pressure of 0.40, the total airflow is 1175 CFM. If you have a 3-ton heat pump attached to the air handler, this would be close to the optimal airflow of 400 CFM/ton (1175 CFM/3 tons = 392 CFM/ton).

Additional Tips

• If your readings seem higher or lower than expected, take static pressure measurements at another location or on another side of the plenum, ensure your probe is past any duct liner or use a longer static pressure probe.

• Many systems are rated with a dry coil. If you are taking static pressure measurements with a wet coil, your airflow may be lower than shown in the fan table.

• PTCS allows external static pressures up to 0.8 inches of water column or 200 pascals. Most manufacturers suggest 0.5 inches of water column (125 pascals) or less.

Example of a Manufacturer-Provided External Static Pressure-Airflow Lookup Table (showing total CFM at intersection)

<table>
<thead>
<tr>
<th>Blower Motor Speed Setting</th>
<th>External Static Pressure (Inches of Water Column)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>High</td>
<td>1606</td>
</tr>
<tr>
<td>Medium-high</td>
<td>1511</td>
</tr>
<tr>
<td>Medium</td>
<td>1300</td>
</tr>
<tr>
<td>Medium-low</td>
<td>1104</td>
</tr>
<tr>
<td>Low</td>
<td>913</td>
</tr>
</tbody>
</table>

Contact PTCS at ResHVAC@bpa.gov or 1.800.941.3867
Steps to Measure Airflow Using External Static Pressure Measurements

1. Measure return static pressure (downstream from the filter, 0.28 inches of water column in this example). (See Fig. 1)

2. Measure supply plenum static pressure (0.34 inches of water column in this example). (See Fig. 2)

3. Calculate external static pressure (return static pressure + supply static pressure; 0.28 + 0.34 = 0.62 inches of water column in this example).

4. Round the external static pressure to the nearest pressure in the manufacturer's table (0.62 rounds to 0.60 in this example).

5. Find where the external static pressure and blower speed settings intersect on the manufacturer's airflow table, 1078 CFM (shown on the table).

6. Confirm the CFM/ton meets PTCS specification of 325–500 CFM/ton or manufacturer specified airflow requirements. Example: This is an airflow of 359 CFM/ton if this is a 3-ton heat pump, meeting PTCS specifications.

7. If the airflow does not meet PTCS specifications or manufacturer specified airflow requirements, change the speed setting and restart the process at step 1.

Table

<table>
<thead>
<tr>
<th>Blower Motor Speed Setting</th>
<th>External Static Pressure (Inches of Water Column)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>High</td>
<td>1606</td>
</tr>
<tr>
<td>Medium-high</td>
<td>1511</td>
</tr>
<tr>
<td>Medium</td>
<td>1300</td>
</tr>
<tr>
<td>Medium-low</td>
<td>1104</td>
</tr>
<tr>
<td>Low</td>
<td>913</td>
</tr>
</tbody>
</table>

Contact PTCS at ResHVAC@bpa.gov or 1.800.941.3867
Click on a link below to take you to the relevant airflow information...

Amana
AVPTC
AVPEC

American Standard
GAM5B
TAM9A
TEM6A
TEM8A

Bryant
40MBAA
CNPV
FB4CNF-P
FE4A
FV4C
FX4D

Carrier
40MBAA
CNPV
FB4CNF-P
FE4A
FV4C
FX4D
Coleman

AE Series
AP Series
AVC Series
AVV Series
ME Series
MP Series
MVC Series

Daikin

ARUF
ASPT
DVPEC
DVPTC
FTQ-PA
FTQ-TA
MBR
MBVC

Goodman

ASPT
AVPTC
MBVC

Lennox

CBA25UH
CBA25UHE
CBA38MV
CBX40UHV
Mitsubishi
PVA
SVZ-KP 12, 18
SVZ-KP 12, 36, 24, 30, 36

Payne
40MBAA
FB4CNF-P
FE4A
FV4C
PF4MNB
PF4MNP

Rheem
RH1T
RH2T

Trane
GAM5B
TAM9A
TEM4A
TEM6A
TEM8A

York
AE Series
AP Series
AVC Series
ME Series
MVC Series
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Amana

Model: AVPTC

<table>
<thead>
<tr>
<th>Tons</th>
<th>AVPTC25B14B*, AVPTC33C14B*</th>
<th>Tons</th>
<th>AVPTC39C14B*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>600</td>
<td>2.5</td>
<td>1,000</td>
</tr>
<tr>
<td>2</td>
<td>800</td>
<td>3</td>
<td>1,200</td>
</tr>
<tr>
<td>2.5</td>
<td>1,000</td>
<td>3.5</td>
<td>1,400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tons</th>
<th>AVPTC29B14B*</th>
<th>Tons</th>
<th>AVPTC49C14B*, AVPTC49D14B*, AVPTC59C14B*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>600</td>
<td>3</td>
<td>1,200</td>
</tr>
<tr>
<td>2</td>
<td>800</td>
<td>3.5</td>
<td>1,400</td>
</tr>
<tr>
<td>2.5</td>
<td>1,000</td>
<td>4</td>
<td>1,600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tons</th>
<th>AVPTC31C14B*, AVPTC35B14B*</th>
<th>Tons</th>
<th>AVPTC59D14B*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>800</td>
<td>3.5</td>
<td>1,400</td>
</tr>
<tr>
<td>2.5</td>
<td>1,000</td>
<td>4</td>
<td>1,600</td>
</tr>
<tr>
<td>3</td>
<td>1,200</td>
<td>4.5</td>
<td>1,800</td>
</tr>
<tr>
<td>4</td>
<td>2,000</td>
<td>5</td>
<td>2,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tons</th>
<th>AVPTC37D14B*</th>
<th>Tons</th>
<th>AVPTC61D14B*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1,200</td>
<td>4</td>
<td>1,600</td>
</tr>
<tr>
<td>4</td>
<td>1,800</td>
<td>4.5</td>
<td>1,106</td>
</tr>
<tr>
<td>5</td>
<td>2,000</td>
<td>5</td>
<td>1,340</td>
</tr>
</tbody>
</table>

Notes:
1. For installations with a communicating outdoor unit, airflow is set automatically by the condenser or heat pump. No indoor airflow setting is needed for the install.
2. For installations with a non-communicating outdoor unit, target airflows are listed in the tables above.
3. Recommended external static pressures are 0.1–0.5 in. wc (0.6 in. wc and above not recommended).
4. Listed airflow values are targets only. Actual airflow may deviate from targets due to variations in individual installations and may be adjusted using trim values in the CoolCloud app or onboard push button menus.
5. For most installations, 400 SCFM per ton is desirable.
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Amana

Model: AVPEC

<table>
<thead>
<tr>
<th>MODEL</th>
<th>STAGE</th>
<th>AIRFLOW CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>AVPEC25E14A*</td>
<td>High</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>510</td>
</tr>
<tr>
<td>AVPEC37C14A*</td>
<td>High</td>
<td>1190</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>810</td>
</tr>
<tr>
<td>AVPEC59D14A*</td>
<td>High</td>
<td>1445</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>880</td>
</tr>
<tr>
<td>AVPEC61D14A*</td>
<td>High</td>
<td>1645</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1080</td>
</tr>
</tbody>
</table>

Note: During cooling operation outdoor will determine the indoor airflow
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: American Standard

Model: GAM5B

GAM5B0A18 AIRFLOW PERFORMANCE TABLE

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g.)</th>
<th>SPEED TAPS - 230 VOLTS</th>
<th>SPEED TAPS - 208 VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>4 †</td>
</tr>
<tr>
<td>0</td>
<td>1081</td>
<td>977</td>
</tr>
<tr>
<td>0.1</td>
<td>1044</td>
<td>922</td>
</tr>
<tr>
<td>0.2</td>
<td>995</td>
<td>880</td>
</tr>
<tr>
<td>0.3</td>
<td>956</td>
<td>830</td>
</tr>
<tr>
<td>0.4</td>
<td>914</td>
<td>788</td>
</tr>
<tr>
<td>0.5</td>
<td>872</td>
<td>749</td>
</tr>
<tr>
<td>0.6</td>
<td>838</td>
<td>707</td>
</tr>
<tr>
<td>0.7</td>
<td>802</td>
<td>650</td>
</tr>
<tr>
<td>0.8</td>
<td>755</td>
<td>598</td>
</tr>
<tr>
<td>0.9</td>
<td>708</td>
<td>539</td>
</tr>
</tbody>
</table>

NOTES:
1. Values are with wet coil and without filters.
2. Contact your particular filter manufacturer for pressure drop data.
3. Electric heater pressure drop is negligible and is included within the airflow data.
4. Tap 1 is an continuous fan speed tap for single stage systems. Airflow adjustment is required for 2 stage systems. See Airflow adjustment section.
5. † Factory Setting

GAM5B0A18M11SB, GAM5B0A18M11EA MINIMUM HEATER AIRFLOW CFM

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Air Speed Tap Without Heat Pump</th>
<th>With Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYEAA04BK1AA</td>
<td>Tap 3</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAA04LG1AA</td>
<td>Tap 3</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAA05BK1AA</td>
<td>Tap 3</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAA05LG1AA</td>
<td>Tap 3</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAA08BK1AA</td>
<td>Tap 3</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAA08LG1AA</td>
<td>Tap 3</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAA10BK1AA</td>
<td>Tap 3
①</td>
<td>Tap 5
①</td>
</tr>
<tr>
<td>BAYEAA10LG1AA</td>
<td>Tap 5</td>
<td>Tap 5
②</td>
</tr>
<tr>
<td>BAYEAC15BK1AA</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BAYEAC20BK1AA</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

① Heater not qualified for downflow installations
② Approved for 240 V only

Note: Heating and cooling speeds are the same, factory set at Speed Tap #4.

Note: A “G” only signal from the comfort control will run the blower at a lower speed, factory set at Speed Tap #1. See the Sequence of Operation for additional information.

Note: Speed Tap 1 is NOT used for two stage systems. Two stage systems will require an airflow adjustment.
GAM5B0A24 AIRFLOW PERFORMANCE TABLE

AIRFLOW PERFORMANCE

GAM5B0A24M21SB, GAM5B0A24M21EA

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g)</th>
<th>AIRFLOW (CFM)</th>
<th>Speed Taps - 230 VOLTS</th>
<th>Speed Taps - 208 VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>4 †</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1081</td>
<td>977</td>
<td>937</td>
</tr>
<tr>
<td>0.1</td>
<td>1044</td>
<td>922</td>
<td>868</td>
</tr>
<tr>
<td>0.2</td>
<td>995</td>
<td>880</td>
<td>817</td>
</tr>
<tr>
<td>0.3</td>
<td>956</td>
<td>830</td>
<td>767</td>
</tr>
<tr>
<td>0.4</td>
<td>914</td>
<td>788</td>
<td>719</td>
</tr>
<tr>
<td>0.5</td>
<td>872</td>
<td>749</td>
<td>680</td>
</tr>
<tr>
<td>0.6</td>
<td>838</td>
<td>707</td>
<td>628</td>
</tr>
<tr>
<td>0.7</td>
<td>802</td>
<td>650</td>
<td>566</td>
</tr>
<tr>
<td>0.8</td>
<td>755</td>
<td>598</td>
<td>511</td>
</tr>
<tr>
<td>0.9</td>
<td>708</td>
<td>539</td>
<td>460</td>
</tr>
</tbody>
</table>

NOTES:
1. Values are with wet coil and without filters.
2. Contact your particular filter manufacturer for pressure drop data.
3. Electric heater pressure drop is negligible and is included within the airflow data.
4. Tap 1 is an continuous fan speed tap for single stage systems. Airflow adjustment is required for 2 stage systems. See Airflow adjustment section.
5. † Factory Setting

GAM5B0A24M21SB, GAM5B0A24M21EA MINIMUM HEATER AIRFLOW CFM

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Air Speed Tap</th>
<th>Without HP</th>
<th>With HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYEAC04BK1AA</td>
<td>Tap 3</td>
<td></td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAC04LG1AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAYEAC05BK1AA</td>
<td>Tap 3</td>
<td></td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAC05LG1AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAYEAC08BK1AA</td>
<td>Tap 3</td>
<td></td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAC08LG1AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAYEAC10BK1AA</td>
<td>Tap 3 †</td>
<td></td>
<td>Tap 5 †</td>
</tr>
<tr>
<td>BAYEAC10LG1AA</td>
<td>Tap 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAYEAC10LG3AA</td>
<td>Tap 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAYEABC15BK1AA</td>
<td>Tap 5</td>
<td></td>
<td>Tap 5 ‡</td>
</tr>
<tr>
<td>BAYEABC20BK1AA</td>
<td>Tap 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Heating and cooling speeds are the same, factory set at Speed Tap #4.
- Note: A “G” only signal from the comfort control will run the blower at a lower speed; factory set at Speed Tap #1. See the Sequence of Operation for additional information.
- Note: Speed Tap 1 is NOT used for two stage systems. Two stage systems will require an airflow adjustment.

① Heater not qualified for downflow installations

② Approved for 240 V only
GAM5B0B30 AIRFLOW PERFORMANCE TABLE

EXTERNAL STATIC (in w.g) vs AIRFLOW (CFM)

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g)</th>
<th>AIRFLOW PERFORMANCE</th>
<th>Speed Taps - 230 VOLTS</th>
<th>Speed Taps - 208 VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>4 †</td>
</tr>
<tr>
<td>0.0</td>
<td>1282</td>
<td>1150</td>
<td>979</td>
</tr>
<tr>
<td>0.1</td>
<td>1238</td>
<td>1094</td>
<td>931</td>
</tr>
<tr>
<td>0.2</td>
<td>1186</td>
<td>1047</td>
<td>863</td>
</tr>
<tr>
<td>0.3</td>
<td>1141</td>
<td>986</td>
<td>803</td>
</tr>
<tr>
<td>0.4</td>
<td>1091</td>
<td>935</td>
<td>721</td>
</tr>
<tr>
<td>0.5</td>
<td>1033</td>
<td>866</td>
<td>649</td>
</tr>
<tr>
<td>0.6</td>
<td>977</td>
<td>799</td>
<td>554</td>
</tr>
<tr>
<td>0.7</td>
<td>914</td>
<td>732</td>
<td>490</td>
</tr>
<tr>
<td>0.8</td>
<td>846</td>
<td>646</td>
<td>429</td>
</tr>
<tr>
<td>0.9</td>
<td>771</td>
<td>587</td>
<td>376</td>
</tr>
</tbody>
</table>

NOTES:
1. Values are with wet coil and without filters.
2. Contact your particular filter manufacturer for pressure drop data.
3. Electric heater pressure drop is negligible and is included within the airflow data.
4. Tap 1 is an continuous fan speed tap for single stage systems. Airflow adjustment is required for 2 stage systems. See Airflow adjustment section.
5. † Factory Setting

GAM5B0B30M21SB, GAM5B0B30M21EA MINIMUM HEATER AIRFLOW CFM

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Air Speed Tap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without HP</td>
</tr>
<tr>
<td>BAYEAA04BK1AA</td>
<td>Tap 2</td>
</tr>
<tr>
<td>BAYEAA04LG1AA</td>
<td>Tap 2</td>
</tr>
<tr>
<td>BAYEAA05BK1AA</td>
<td>Tap 2</td>
</tr>
<tr>
<td>BAYEAA05LG1AA</td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAA08BK1AA</td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAA08LG1AA</td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAC010BK1AA</td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAC010LG1AA</td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAC010LG3AA</td>
<td>Tap 3 ‡</td>
</tr>
<tr>
<td>BAYEAC15BK1AA</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAC15LG3AA</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEBC20BK1AA</td>
<td>-</td>
</tr>
<tr>
<td>BAYEAC25BK1AA</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: Heating and cooling speeds are the same, factory set at Speed Tap #4.

Note: A “G” only signal from the comfort control will run the blower at a lower speed, factory set at Speed Tap #1. See the Sequence of Operation for additional information.

Note: Speed Tap 1 is NOT used for two stage systems. Two stage systems will require an airflow adjustment.

‡ 208 V not approved for upflow installations

Go To Model List
GAM5B0B36 AIRFLOW PERFORMANCE TABLE

AIRFLOW PERFORMANCE

EXTERNAL STATIC

(in w.g)

<table>
<thead>
<tr>
<th>External Static (in w.g)</th>
<th>AIRFLOW (CFM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Taps - 230 VOLTS</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1438</td>
</tr>
<tr>
<td>0.1</td>
<td>1394</td>
</tr>
<tr>
<td>0.2</td>
<td>1350</td>
</tr>
<tr>
<td>0.3</td>
<td>1301</td>
</tr>
<tr>
<td>0.4</td>
<td>1253</td>
</tr>
<tr>
<td>0.5</td>
<td>1205</td>
</tr>
<tr>
<td>0.6</td>
<td>1155</td>
</tr>
<tr>
<td>0.7</td>
<td>1099</td>
</tr>
<tr>
<td>0.8</td>
<td>1039</td>
</tr>
<tr>
<td>0.9</td>
<td>964</td>
</tr>
</tbody>
</table>

NOTES:
1. Values are with wet coil and without filters.
2. Contact your particular filter manufacturer for pressure drop data.
3. Electric heater pressure drop is negligible and is included within the airflow data.
4. Tap 1 is an continuous fan speed tap for single stage systems. Airflow adjustment is required for 2 stage systems. See Airflow adjustment section.
5. † Factory Setting

GAM5B0B36M31SB, GAM5B0B36M31EA MINIMUM HEATER AIRFLOW CFM

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Air Speed Tap</th>
<th>Without HP</th>
<th>With HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYEAC04BK1AA</td>
<td>Tap 2</td>
<td></td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAC04LG1AA</td>
<td>Tap 2</td>
<td></td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAC05BK1AA</td>
<td>Tap 2</td>
<td></td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAC05LG1AA</td>
<td>Tap 2</td>
<td></td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAC08BK1AA</td>
<td>Tap 3</td>
<td></td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAC08LG1AA</td>
<td>Tap 3</td>
<td></td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAC10BK1AA</td>
<td>Tap 4</td>
<td></td>
<td>Tap 5</td>
</tr>
<tr>
<td>BAYEAC10LG1AA</td>
<td>Tap 4</td>
<td></td>
<td>Tap 5</td>
</tr>
<tr>
<td>BAYEAC10LG3AA</td>
<td>Tap 4</td>
<td></td>
<td>Tap 5</td>
</tr>
<tr>
<td>BAYEABC15BK1AA</td>
<td>Tap 4</td>
<td></td>
<td>Tap 5</td>
</tr>
<tr>
<td>BAYEABC15LG3AA</td>
<td>Tap 4</td>
<td></td>
<td>Tap 5</td>
</tr>
<tr>
<td>BAYEABC20BK1AA</td>
<td>Tap 4</td>
<td></td>
<td>Tap 5</td>
</tr>
<tr>
<td>BAYEACC25BK1AA</td>
<td>Tap 4</td>
<td></td>
<td>Tap 5</td>
</tr>
</tbody>
</table>

Note: Heating and cooling speeds are the same, factory set at Speed Tap #4.

Note: A “G” only signal from the comfort control will run the blower at a lower speed, factory set at Speed Tap #1. See the Sequence of Operation for additional information.

Note: Speed Tap 1 is NOT used for two stage systems. Two stage systems will require an airflow adjustment.
GAM5B0C42 AIRFLOW PERFORMANCE TABLE

AIRFLOW PERFORMANCE
GAM5B0C42M31SB, GAM5B0C42M31EA

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g)</th>
<th>AIRFLOW (CFM)</th>
<th>Speed Taps - 230 VOLTS</th>
<th>Speed Taps - 208 VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>4 †</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1644</td>
<td>1575</td>
<td>1401</td>
</tr>
<tr>
<td>0.1</td>
<td>1596</td>
<td>1525</td>
<td>1346</td>
</tr>
<tr>
<td>0.2</td>
<td>1550</td>
<td>1480</td>
<td>1300</td>
</tr>
<tr>
<td>0.3</td>
<td>1509</td>
<td>1437</td>
<td>1252</td>
</tr>
<tr>
<td>0.4</td>
<td>1463</td>
<td>1391</td>
<td>1205</td>
</tr>
<tr>
<td>0.5</td>
<td>1420</td>
<td>1345</td>
<td>1151</td>
</tr>
<tr>
<td>0.6</td>
<td>1376</td>
<td>1301</td>
<td>1085</td>
</tr>
<tr>
<td>0.7</td>
<td>1332</td>
<td>1251</td>
<td>1020</td>
</tr>
<tr>
<td>0.8</td>
<td>1271</td>
<td>1179</td>
<td>969</td>
</tr>
<tr>
<td>0.9</td>
<td>1199</td>
<td>1119</td>
<td>924</td>
</tr>
</tbody>
</table>

NOTES:
1. Values are with wet coil and without filters.
2. Contact your particular filter manufacturer for pressure drop data.
3. Electric heater pressure drop is negligible and is included within the airflow data.
4. Tap 1 is an continuous fan speed tap for single stage systems. Airflow adjustment is required for 2 stage systems. See Airflow adjustment section.
5. † Factory Setting

GAM5B0C42M31SB, GAM5B0C42M31EA MINIMUM HEATER AIRFLOW CFM

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Air Speed Tap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without HP</td>
</tr>
<tr>
<td>BAYEAC04BK1AA</td>
<td>Tap 2</td>
</tr>
<tr>
<td>BAYEAC04LG1AA</td>
<td></td>
</tr>
<tr>
<td>BAYEAC05BK1AA</td>
<td>Tap 2</td>
</tr>
<tr>
<td>BAYEAC05LG1AA</td>
<td></td>
</tr>
<tr>
<td>BAYEAC08BK1AA</td>
<td>Tap 2</td>
</tr>
<tr>
<td>BAYEAC08LG1AA</td>
<td></td>
</tr>
<tr>
<td>BAYEAC10BK1AA</td>
<td>Tap 2</td>
</tr>
<tr>
<td>BAYEAC10LG1AA</td>
<td></td>
</tr>
<tr>
<td>BAYEAAC10LG3AA</td>
<td>Tap 2</td>
</tr>
<tr>
<td>BAYEABC15BK1AA</td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEABC15LG3AA</td>
<td></td>
</tr>
<tr>
<td>BAYEABC20BK1AA</td>
<td></td>
</tr>
<tr>
<td>BAYEABC25BK1AA</td>
<td></td>
</tr>
</tbody>
</table>

Note: Heating and cooling speeds are the same, factory set at Speed Tap #4.

Note: A “G” only signal from the comfort control will run the blower at a lower speed, factory set at Speed Tap #1. See the Sequence of Operation for additional information.

Note: Speed Tap 1 is NOT used for two stage systems. Two stage systems will require an airflow adjustment.
GAM5B0C48 AIRFLOW PERFORMANCE TABLE

AIRCIRC PERFORMANCE
GAM5B0C48M41SB, GAM5B0C48M41EA

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g)</th>
<th>AIRFLOW (CFM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Speed Taps - 230 VOLTS</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1913</td>
</tr>
<tr>
<td>0.1</td>
<td>1874</td>
</tr>
<tr>
<td>0.2</td>
<td>1834</td>
</tr>
<tr>
<td>0.3</td>
<td>1791</td>
</tr>
<tr>
<td>0.4</td>
<td>1748</td>
</tr>
<tr>
<td>0.5</td>
<td>1708</td>
</tr>
<tr>
<td>0.6</td>
<td>1668</td>
</tr>
<tr>
<td>0.7</td>
<td>1629</td>
</tr>
<tr>
<td>0.8</td>
<td>1588</td>
</tr>
<tr>
<td>0.9</td>
<td>1541</td>
</tr>
</tbody>
</table>

NOTES:
1. Values are with wet coil and without filters.
2. Contact your particular filter manufacturer for pressure drop data.
3. Electric heater pressure drop is negligible and is included within the airflow data.
4. Tap 1 is an continuous fan speed tap for single stage systems. Airflow adjustment is required for 2 stage systems. See Airflow adjustment section.
5. † Factory Setting

20.2 Adjustments for 2-Stage outdoor HP models

16 SEER Heat Pump Models

<table>
<thead>
<tr>
<th>OD MODEL</th>
<th>ID MODEL</th>
<th>SPEED TAP</th>
<th>SYSTEM STAGE</th>
<th>CFM</th>
<th>ESP</th>
</tr>
</thead>
<tbody>
<tr>
<td>4TWR6024A*</td>
<td>GAM5B0A24M21*</td>
<td>4</td>
<td>H</td>
<td>800</td>
<td>0.333</td>
</tr>
<tr>
<td>4TWR6024G*</td>
<td>GAM5B0A24M21*</td>
<td>3</td>
<td>L</td>
<td>750</td>
<td>0.293</td>
</tr>
<tr>
<td>4A6H6024G*</td>
<td>GAM5B0A24M21*</td>
<td>3</td>
<td>H</td>
<td>750</td>
<td>0.383</td>
</tr>
<tr>
<td></td>
<td>GAM5B0B30M21*</td>
<td>2</td>
<td>L</td>
<td>665</td>
<td>0.301</td>
</tr>
<tr>
<td>4TWR6036A*</td>
<td>GAM5B0B36M31*</td>
<td>4</td>
<td>H</td>
<td>1150</td>
<td>0.500</td>
</tr>
<tr>
<td>4TWR6036A*</td>
<td>GAM5B0B36M31*</td>
<td>3</td>
<td>L</td>
<td>1005</td>
<td>0.382</td>
</tr>
<tr>
<td>4A6H6036E*</td>
<td>GAM5B0B36M31*</td>
<td>4</td>
<td>H</td>
<td>1375</td>
<td>0.468</td>
</tr>
<tr>
<td>4TWR6048A*</td>
<td>GAM5B0C42M31*</td>
<td>3</td>
<td>L</td>
<td>1235</td>
<td>0.378</td>
</tr>
<tr>
<td>4TWR6048G*</td>
<td>GAM5B0C42M31*</td>
<td>4</td>
<td>H</td>
<td>1575</td>
<td>0.400</td>
</tr>
<tr>
<td>4A6H6048G*</td>
<td>GAM5B0C48M41*</td>
<td>2</td>
<td>L</td>
<td>1420</td>
<td>0.325</td>
</tr>
<tr>
<td>4TWR6060A*</td>
<td>GAM5B0C60M51*</td>
<td>3</td>
<td>H</td>
<td>1700</td>
<td>0.390</td>
</tr>
<tr>
<td>4TWR6060E*</td>
<td>GAM5B0C60M51*</td>
<td>2</td>
<td>L</td>
<td>1645</td>
<td>0.365</td>
</tr>
</tbody>
</table>

* Factory Setting
<table>
<thead>
<tr>
<th>OD MODEL</th>
<th>ID MODEL</th>
<th>SPEED TAP</th>
<th>SYSTEM STAGE</th>
<th>CFM</th>
<th>ESP</th>
</tr>
</thead>
<tbody>
<tr>
<td>4TWR7024A*</td>
<td>GAM5B0A24M21*</td>
<td>4</td>
<td>H</td>
<td>800</td>
<td>0.333</td>
</tr>
<tr>
<td>4TWR7024A*</td>
<td>GAM5B0B24M21*</td>
<td>3</td>
<td>L</td>
<td>750</td>
<td>0.293</td>
</tr>
<tr>
<td>4TWR7024A*</td>
<td>GAM5B0A24M21*</td>
<td>3</td>
<td>H</td>
<td>750</td>
<td>0.383</td>
</tr>
<tr>
<td>4TWR7024A*</td>
<td>GAM5B0B24M21*</td>
<td>2</td>
<td>L</td>
<td>665</td>
<td>0.0301</td>
</tr>
<tr>
<td>4TWR7036A*</td>
<td>GAM5B0B36M31*</td>
<td>4</td>
<td>H</td>
<td>1150</td>
<td>0.500</td>
</tr>
<tr>
<td>4TWR7036A*</td>
<td>GAM5B0B36M31*</td>
<td>3</td>
<td>L</td>
<td>1005</td>
<td>0.382</td>
</tr>
<tr>
<td>4TWR7048A*</td>
<td>GAM5B0C48M41*</td>
<td>4</td>
<td>H</td>
<td>1575</td>
<td>0.400</td>
</tr>
<tr>
<td>4TWR7048A*</td>
<td>GAM5B0C48M41*</td>
<td>2</td>
<td>L</td>
<td>1420</td>
<td>0.325</td>
</tr>
<tr>
<td>4TWR7060A*</td>
<td>GAM5B0C60M51*</td>
<td>3</td>
<td>H</td>
<td>1700</td>
<td>0.390</td>
</tr>
<tr>
<td>4TWR7060A*</td>
<td>GAM5B0C60M51*</td>
<td>2</td>
<td>L</td>
<td>1645</td>
<td>0.365</td>
</tr>
</tbody>
</table>
Manufacturer: American Standard

Model: TAM9A

- EVC TEST: Scroll to desired test and push the <Enter> key.
 - OPEN - When selected, the EEV will drive to the full open position (OPEN 500).
 - CLOSE - When selected, the EEV will drive to the closed position (CLOSE 056).

- CONTROL CFM: Press <Enter> key to initiate control.
 - First value is current selection, Second value is actual airflow.
 - Use left or right menu keys to decrease or increase airflow in 100 CFM increments.
 - Press ENTER to initiate new CFM demand. Actual airflow is updated every six seconds.

- UNIT TEST: Press <Enter> key to initiate test. (Unit must be in Standby or Idle mode)
 - Once test is started, the screen update automatically and navigation is not allowed.
 - UNIT TEST may only be interrupted by a thermostat demand or turning off the power.

NOTE: EVC TEST and/or AUX HEAT TEST will be skipped if the associated control(s) id are not discovered.
<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>250 CFM/ton/Watts</td>
<td>407/546</td>
<td>420/403</td>
<td>350 CFM/ton/Watts</td>
<td>534/603</td>
<td>540/581</td>
</tr>
<tr>
<td></td>
<td>350 CFM/ton/Watts</td>
<td>534/603</td>
<td>549/531</td>
<td>350 CFM/ton/Watts</td>
<td>534/603</td>
<td>549/531</td>
</tr>
<tr>
<td></td>
<td>400 CFM/ton/Watts</td>
<td>617/597</td>
<td>637/517</td>
<td>350 CFM/ton/Watts</td>
<td>534/603</td>
<td>540/581</td>
</tr>
<tr>
<td></td>
<td>450 CFM/ton/Watts</td>
<td>691/762</td>
<td>710/763</td>
<td>350 CFM/ton/Watts</td>
<td>534/603</td>
<td>540/581</td>
</tr>
<tr>
<td></td>
<td>2.5 tons</td>
<td>593/700</td>
<td>612/608</td>
<td>350 CFM/ton/Watts</td>
<td>534/603</td>
<td>540/581</td>
</tr>
<tr>
<td></td>
<td>350 CFM/ton/Watts</td>
<td>717/763</td>
<td>733/717</td>
<td>350 CFM/ton/Watts</td>
<td>534/603</td>
<td>540/581</td>
</tr>
<tr>
<td></td>
<td>400 CFM/ton/Watts</td>
<td>810/768</td>
<td>827/711</td>
<td>350 CFM/ton/Watts</td>
<td>534/603</td>
<td>540/581</td>
</tr>
<tr>
<td></td>
<td>450 CFM/ton/Watts</td>
<td>903/764</td>
<td>918/702</td>
<td>350 CFM/ton/Watts</td>
<td>534/603</td>
<td>540/581</td>
</tr>
<tr>
<td></td>
<td>2.5 tons</td>
<td>741/760</td>
<td>757/759</td>
<td>350 CFM/ton/Watts</td>
<td>534/603</td>
<td>540/581</td>
</tr>
<tr>
<td></td>
<td>350 CFM/ton/Watts</td>
<td>861/760</td>
<td>877/759</td>
<td>350 CFM/ton/Watts</td>
<td>534/603</td>
<td>540/581</td>
</tr>
<tr>
<td></td>
<td>400 CFM/ton/Watts</td>
<td>1001/760</td>
<td>1017/759</td>
<td>350 CFM/ton/Watts</td>
<td>534/603</td>
<td>540/581</td>
</tr>
<tr>
<td></td>
<td>2.5 tons</td>
<td>741/760</td>
<td>757/759</td>
<td>350 CFM/ton/Watts</td>
<td>534/603</td>
<td>540/581</td>
</tr>
<tr>
<td></td>
<td>350 CFM/ton/Watts</td>
<td>903/764</td>
<td>918/702</td>
<td>350 CFM/ton/Watts</td>
<td>534/603</td>
<td>540/581</td>
</tr>
<tr>
<td></td>
<td>400 CFM/ton/Watts</td>
<td>1001/760</td>
<td>1017/759</td>
<td>350 CFM/ton/Watts</td>
<td>534/603</td>
<td>540/581</td>
</tr>
<tr>
<td></td>
<td>2.5 tons</td>
<td>741/760</td>
<td>757/759</td>
<td>350 CFM/ton/Watts</td>
<td>534/603</td>
<td>540/581</td>
</tr>
<tr>
<td></td>
<td>350 CFM/ton/Watts</td>
<td>903/764</td>
<td>918/702</td>
<td>350 CFM/ton/Watts</td>
<td>534/603</td>
<td>540/581</td>
</tr>
<tr>
<td></td>
<td>400 CFM/ton/Watts</td>
<td>1001/760</td>
<td>1017/759</td>
<td>350 CFM/ton/Watts</td>
<td>534/603</td>
<td>540/581</td>
</tr>
</tbody>
</table>

- **Factory Setting**
- **Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.**
- **Torque mode will reduce airflow when static is above approximately 0.3" water column.**
- **All heating modes default to Constant CFM.**
- **Cooling airflow values are with wet coil, no filter.**

TAM9A0A24 Minimum Heating Airflow Settings

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>BAYEAAC045BK1</th>
<th>BAYEAAC041LG1</th>
<th>BAYEAAC085BK1</th>
<th>BAYEAAC100BK1</th>
<th>BAYEAAC101LG1</th>
<th>BAYEAAC115BK1</th>
<th>BAYEAAC115LG1</th>
<th>BAYEAAC150LG1</th>
<th>BAYEAAC200LG1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAM9A0A24</td>
<td>638/713</td>
<td>638/700</td>
<td>675/700</td>
<td>600/713</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

WITHOUT HEAT PUMP / WITH HP — SEE AIR HANDLER NAMEPLATE FOR APPROVED COMBINATIONS
TAM9A0B30 AIRFLOW PERFORMANCE

<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTING</th>
<th>COOLING AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>290 CFM/ton</td>
<td>38/49</td>
<td>79/67</td>
<td>119/66</td>
<td>47/60</td>
<td>7/69</td>
<td>151/106</td>
</tr>
<tr>
<td>330 CFM/ton</td>
<td>73/61</td>
<td>117/72</td>
<td>163/80</td>
<td>90/60</td>
<td>120/70</td>
<td>186/110</td>
</tr>
<tr>
<td>400 CFM/ton</td>
<td>82/62</td>
<td>124/91</td>
<td>197/103</td>
<td>124/91</td>
<td>151/106</td>
<td>219/143</td>
</tr>
<tr>
<td>450 CFM/ton</td>
<td>91/63</td>
<td>131/123</td>
<td>212/159</td>
<td>151/106</td>
<td>186/110</td>
<td>253/183</td>
</tr>
</tbody>
</table>

TAM9A0B30 Minimum Heating Airflow Settings

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>BAYEAA010G3</th>
<th>BAYEAA015G1</th>
<th>BAYEAA020G1</th>
<th>BAYEAA025G1</th>
<th>BAYEAA020G1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAM9A0B30</td>
<td>722/908</td>
<td>722/1020</td>
<td>765/1063</td>
<td>600/908</td>
<td>735/1063</td>
</tr>
</tbody>
</table>

*1 Factory Setting
* Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.

- Torque mode will reduce airflow when static is above approximately 0.35" water column.
- All heating modes default to Constant CFM.
- Cooling airflow values are with wet coil, no filter.
<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 tons</td>
<td>CFM</td>
<td>Watts</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>290</td>
<td>CFM</td>
<td>Watts</td>
<td>609</td>
<td>318</td>
<td>305</td>
<td>310</td>
</tr>
<tr>
<td>370</td>
<td>CFM</td>
<td>Watts</td>
<td>765</td>
<td>475</td>
<td>471</td>
<td>471</td>
</tr>
<tr>
<td>450</td>
<td>CFM</td>
<td>Watts</td>
<td>960</td>
<td>612</td>
<td>612</td>
<td>612</td>
</tr>
<tr>
<td>2.5 tons</td>
<td>CFM</td>
<td>Watts</td>
<td>742</td>
<td>462</td>
<td>462</td>
<td>462</td>
</tr>
<tr>
<td>3 tons†</td>
<td>CFM</td>
<td>Watts</td>
<td>985</td>
<td>612</td>
<td>612</td>
<td>612</td>
</tr>
<tr>
<td>3.5 tons</td>
<td>CFM</td>
<td>Watts</td>
<td>672</td>
<td>462</td>
<td>462</td>
<td>462</td>
</tr>
<tr>
<td>290</td>
<td>CFM</td>
<td>Watts</td>
<td>871</td>
<td>571</td>
<td>571</td>
<td>571</td>
</tr>
<tr>
<td>370</td>
<td>CFM</td>
<td>Watts</td>
<td>1039</td>
<td>671</td>
<td>671</td>
<td>671</td>
</tr>
<tr>
<td>450</td>
<td>CFM</td>
<td>Watts</td>
<td>1175</td>
<td>725</td>
<td>725</td>
<td>725</td>
</tr>
<tr>
<td>450</td>
<td>CFM</td>
<td>Watts</td>
<td>1329</td>
<td>802</td>
<td>802</td>
<td>802</td>
</tr>
<tr>
<td>450</td>
<td>CFM</td>
<td>Watts</td>
<td>1579</td>
<td>967</td>
<td>967</td>
<td>967</td>
</tr>
</tbody>
</table>

- †Factory Setting
- Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.
- Torque mode will reduce airflow when static is above approximately 0.35" water column.
- All heating modes default to Constant CFM.
- Cooling airflow values are with wet coil, no filter.

TAM9A0C36 Minimum Heating Airflow Settings

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>BAYEAAAC046K1</th>
<th>BAYEAAAC04SLG1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAM9A0C36</td>
<td>076/979</td>
<td>076/1236</td>
</tr>
<tr>
<td></td>
<td>927/1236</td>
<td>927/975</td>
</tr>
<tr>
<td></td>
<td>927/1288</td>
<td>1039/1339</td>
</tr>
<tr>
<td></td>
<td>1236/1442</td>
<td></td>
</tr>
</tbody>
</table>

WITHOUT HEAT PUMP / WITH HP — SEE AIR HANDLER NAMEPLATE

Go To Model List
<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFM</td>
<td>Watts</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

- **Factory Setting**
- Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.
- Torque mode will reduce airflow when static is above approximately 0.35" water column.
- All heating modes default to Constant CFM.
- Cooling airflow values are with wet coil, no filter.

TAM9AOC42 Minimum Heating Airflow Settings

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>BAYEAA04BKK1</th>
<th>BAYEAA04GKL</th>
<th>BAYEAA08BKK1</th>
<th>BAYEAA08GKL</th>
<th>BAYEAA10BKK1</th>
<th>BAYEAA10GKL</th>
<th>BAYEAA12BKK1</th>
<th>BAYEAA12GKL</th>
<th>BAYEAA15BKK1</th>
<th>BAYEAA15GKL</th>
<th>BAYEAA20BKK1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAM9AOC42</td>
<td>970/1093</td>
<td>970/1330</td>
<td>1035/1350</td>
<td>920/1093</td>
<td>1035/1430</td>
<td>1150/1495</td>
<td>1300/1610</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WITHOUT HEAT PUMP / WITH HP — SEE AIR HANDLER NAMEPLATE
TAM9A0C48 AIRFLOW PERFORMANCE

<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTINGS</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTINGS</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 tons</td>
<td>CFM</td>
<td>Watts</td>
<td>894 / 1010, 69 / 91, 90 / 114</td>
<td>72 / 77</td>
<td>Watts</td>
<td>953 / 903, 68 / 156</td>
</tr>
<tr>
<td></td>
<td>350 CMF/ton</td>
<td></td>
<td>1067 / 1100, 106 / 132, 907 / 145</td>
<td>72 / 77</td>
<td>Watts</td>
<td>671 / 745, 189 / 236</td>
</tr>
<tr>
<td></td>
<td>400 CMF/ton</td>
<td></td>
<td>1200 / 1314, 145 / 175, 1122 / 156</td>
<td>72 / 77</td>
<td>Watts</td>
<td>671 / 745, 189 / 236</td>
</tr>
<tr>
<td></td>
<td>450 CMF/ton</td>
<td></td>
<td>1345 / 1451, 1352 / 1576</td>
<td>72 / 77</td>
<td>Watts</td>
<td>671 / 745, 189 / 236</td>
</tr>
<tr>
<td>3.5 tons</td>
<td>CFM</td>
<td>Watts</td>
<td>1034 / 1149, 98 / 123, 1041 / 149</td>
<td>72 / 77</td>
<td>Watts</td>
<td>671 / 745, 189 / 236</td>
</tr>
<tr>
<td></td>
<td>350 CMF/ton</td>
<td></td>
<td>1220 / 1336, 152 / 183, 1235 / 1496</td>
<td>72 / 77</td>
<td>Watts</td>
<td>671 / 745, 189 / 236</td>
</tr>
<tr>
<td></td>
<td>400 CMF/ton</td>
<td></td>
<td>1365 / 1490, 212 / 223, 1399 / 1415</td>
<td>72 / 77</td>
<td>Watts</td>
<td>671 / 745, 189 / 236</td>
</tr>
<tr>
<td></td>
<td>450 CMF/ton</td>
<td></td>
<td>1510 / 1649, 290 / 343, 1576 / 1592</td>
<td>72 / 77</td>
<td>Watts</td>
<td>671 / 745, 189 / 236</td>
</tr>
<tr>
<td>4 tons</td>
<td>CMF</td>
<td>Watts</td>
<td>1168 / 1298, 1373 / 1620, 1251 / 1278</td>
<td>72 / 77</td>
<td>Watts</td>
<td>671 / 745, 189 / 236</td>
</tr>
<tr>
<td></td>
<td>350 CMF/ton</td>
<td></td>
<td>1308 / 1451, 212 / 226, 1385 / 1426</td>
<td>72 / 77</td>
<td>Watts</td>
<td>671 / 745, 189 / 236</td>
</tr>
<tr>
<td></td>
<td>400 CMF/ton</td>
<td></td>
<td>1453 / 1600, 303 / 370, 1439 / 1439</td>
<td>72 / 77</td>
<td>Watts</td>
<td>671 / 745, 189 / 236</td>
</tr>
<tr>
<td></td>
<td>450 CMF/ton</td>
<td></td>
<td>1600 / 1741, 379 / 454, 1593 / 1439</td>
<td>72 / 77</td>
<td>Watts</td>
<td>671 / 745, 189 / 236</td>
</tr>
<tr>
<td>4.5 tons**</td>
<td>CMF</td>
<td>Watts</td>
<td>1290 / 1429, 1277 / 1534, 1210 / 1587</td>
<td>72 / 77</td>
<td>Watts</td>
<td>671 / 745, 189 / 236</td>
</tr>
<tr>
<td></td>
<td>350 CMF/ton</td>
<td></td>
<td>1540 / 1600, 290 / 343, 1576 / 1592</td>
<td>72 / 77</td>
<td>Watts</td>
<td>671 / 745, 189 / 236</td>
</tr>
<tr>
<td></td>
<td>400 CMF/ton</td>
<td></td>
<td>1690 / 1741, 379 / 454, 1593 / 1439</td>
<td>72 / 77</td>
<td>Watts</td>
<td>671 / 745, 189 / 236</td>
</tr>
<tr>
<td></td>
<td>450 CMF/ton</td>
<td></td>
<td>1840 / 1881, 429 / 511, 1790 / 1800</td>
<td>72 / 77</td>
<td>Watts</td>
<td>671 / 745, 189 / 236</td>
</tr>
</tbody>
</table>

- † Factory Setting
- ** Not an actual OD size
- Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.
- Torque mode will reduce airflow when static is above approximately 0.4" water column.

TAM9A0C48 Minimum Heating Airflow Settings

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>BAYEAC040K1</th>
<th>BAYEAC040LG1</th>
<th>BAYEAC080K1</th>
<th>BAYEAC080LG1</th>
<th>BAYEAC100K1</th>
<th>BAYEAC100LG1</th>
<th>BAYEAC150K1</th>
<th>BAYEAC150LG1</th>
<th>BAYEAC200K1</th>
<th>BAYEAC200LG1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAM9A0C40</td>
<td>1063 / 1100</td>
<td>1063 / 1500</td>
<td>1125 / 1500</td>
<td>1000 / 1100</td>
<td>1125 / 1563</td>
<td>1250 / 1625</td>
<td>1500 / 1750</td>
<td>1625 / 1801</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Without Heat Pump / With HP — See Air Handler Nameplate
TAM9A060 AIRFLOW PERFORMANCE

CONSTANT CFM MODE / CONSTANT TORQUE MODE

<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CMF Power</td>
<td>(0.1) 0.3 0.5 0.7</td>
<td>CMF Power</td>
<td>(0.1) 0.3 0.5 0.7</td>
</tr>
<tr>
<td></td>
<td>Watts</td>
<td>1040/1151 1060/1056 1079/941 1066/799</td>
<td>Watts</td>
<td>1039/1065 1071/1074</td>
</tr>
<tr>
<td></td>
<td></td>
<td>94/119 151/148 203/166</td>
<td>95/151 201/203</td>
<td></td>
</tr>
<tr>
<td>3.5 tons</td>
<td>1312/1343 1332/1216 1336/1174</td>
<td>1349/1068</td>
<td>1347/1068</td>
<td></td>
</tr>
<tr>
<td></td>
<td>171/178 236/210 249/229</td>
<td>159/165 270/271</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1408/1496 1425/1246 1429/1346</td>
<td>1423/1256</td>
<td>1407/1423</td>
<td></td>
</tr>
<tr>
<td></td>
<td>206/230 274/273 337/301</td>
<td>339/319 440/325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 tons</td>
<td>1565/1590 1579/1583 1580/1515</td>
<td>1564/1590</td>
<td>1564/1590</td>
<td></td>
</tr>
<tr>
<td></td>
<td>224/212 248/249 416/376</td>
<td>274/348 416/416</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1106/1304 1108/1223</td>
<td>1109/887</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>131/164 192/196 248/220</td>
<td>297/234 337/325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5 tons T</td>
<td>1400/1495 1449/1444</td>
<td>1495/1277</td>
<td>1407/1423</td>
<td></td>
</tr>
<tr>
<td></td>
<td>235/245 306/300 372/308</td>
<td>320/322 379/334</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1507/1689 1602/1623</td>
<td>1602/1475</td>
<td>1532/1399</td>
<td></td>
</tr>
<tr>
<td></td>
<td>205/332 360/369 429/399</td>
<td>490/420 543/430</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1770/1873 1794/1913</td>
<td>1768/1679</td>
<td>1702/1597</td>
<td></td>
</tr>
<tr>
<td></td>
<td>366/443 468/401 543/512</td>
<td>612/534 621/546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 tons</td>
<td>1322/1431 1340/1359</td>
<td>1332/1369</td>
<td>1321/1232</td>
<td></td>
</tr>
<tr>
<td></td>
<td>174/211 240/245 300/271</td>
<td>353/288 397/329</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1646/1667 1660/1602</td>
<td>1667/1451</td>
<td>1564/1578</td>
<td></td>
</tr>
<tr>
<td></td>
<td>315/320 392/357 463/396</td>
<td>277/407 382/416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5 tons T</td>
<td>1770/1873 1831/1783</td>
<td>1837/1624</td>
<td>1723/1675</td>
<td></td>
</tr>
<tr>
<td></td>
<td>306/443 468/401 543/512</td>
<td>612/534 621/546</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1969/2099 2004/2042</td>
<td>2013/1933</td>
<td>1837/1624</td>
<td></td>
</tr>
<tr>
<td></td>
<td>290/394 394/351 452/365</td>
<td>415/348 463/356</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1452/1557 1469/1489</td>
<td>1468/1327</td>
<td>1452/1327</td>
<td></td>
</tr>
<tr>
<td></td>
<td>224/265 294/301 358/329</td>
<td>415/348 463/356</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 tons</td>
<td>1817/1926 1831/1783</td>
<td>1837/1624</td>
<td>1723/1675</td>
<td></td>
</tr>
<tr>
<td></td>
<td>315/394 394/351 452/365</td>
<td>415/348 463/356</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>516/590 607/629 690/660</td>
<td>766/602 832/695</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5 tons T</td>
<td>2231/2347 2245/2292</td>
<td>2252/2271</td>
<td>2232/2252</td>
<td></td>
</tr>
<tr>
<td></td>
<td>741/842 842/797 934/806</td>
<td>1003/844 1024/924</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **T** Factory Setting
- **T** Not an actual OD size
- Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.
- Torque mode will reduce airflow when static is above approximately 0.4" water column.

TAM9A060 MINIMUM HEATING AER FLOW CFM — HEATER MATRIX

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>BAYEAC044K1</th>
<th>BAYEAC064LG1</th>
<th>BAYEAC068B1</th>
<th>BAYEAC108K1</th>
<th>BAYEAC108LG1</th>
<th>BAYEAC10LG3</th>
<th>BAYEABC15B1</th>
<th>BAYEABC15LG3</th>
<th>BAYEABC20B1K</th>
<th>BAYEABC25B1K</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAM9A060</td>
<td>1063 / 1100</td>
<td>1063 / 1500</td>
<td>1125 / 1500</td>
<td>1000 / 1100</td>
<td>1125 / 1563</td>
<td>1250 / 1625</td>
<td>1500 / 1750</td>
<td>1625 / 1813</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WITHOUT HEAT PUMP / WITH HP — SEE AIR HANDLER NAMEPLATE

Go To Model List
Manufacturer: American Standard

Model: TEM6A

7. Blower

This unit is supplied with a variable speed motor with a direct drive blower wheel which can obtain various air flows. The unit is shipped with factory set cooling and heating air flows. Performance tables are available for additional airflow settings. Disconnect all power to the unit before making any adjustments to the airflow settings. Be sure to check the air flow and the temperature drop across the evaporator coil to ensure sufficient air flow.

8. Airflow Adjustment

⚠️ CAUTION

EQUIPMENT DAMAGE!
Failure to follow this procedure may result in equipment damage.
Disconnect power to the air handler before changing dip switch positions.

Blower speed changes are made on the ECM Fan Control. The ECM Fan Control controls the variable speed motor.

There is a bank of 8 dip switches. The dip switches work in pairs to match the airflow for the outdoor unit size (tons), cooling airflow adjustment, Fan off-delay options, and heating airflow adjustment. The switches appear as shown in Figure 2, p. 7

Figure 1. ECM Fan Control

Go To Model List
TEM6A0B24H21SB COOLING AIRFLOW PERFORMANCE, WET COIL, NO FILTER, NO HEATER

<table>
<thead>
<tr>
<th>OUTDOOR UNIT SIZE (TONS)</th>
<th>SPEED SETTING</th>
<th>AIRFLOW SETTING</th>
<th>CIP SWITCH SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SW1</td>
<td>SW2</td>
<td>SW3</td>
</tr>
<tr>
<td>1.5</td>
<td>LOW</td>
<td>353 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>401 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>451 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>2</td>
<td>LOW</td>
<td>343 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>390 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>439 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>2.5</td>
<td>LOW</td>
<td>300 CFM/ton</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>340 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>383 CFM/ton</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

* Factory Default Setting

Table 5. Air Flow Performance

<table>
<thead>
<tr>
<th>OUTDOOR UNIT SIZE (TONS)</th>
<th>SPEED SETTING</th>
<th>AIRFLOW SETTING</th>
<th>CIP SWITCH SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SW1</td>
<td>SW2</td>
<td>SW3</td>
</tr>
<tr>
<td>1.5</td>
<td>LOW</td>
<td>394 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>448 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>493 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>2</td>
<td>LOW</td>
<td>393 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>446 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>491 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>2.5</td>
<td>LOW</td>
<td>350 CFM/ton</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>398 CFM/ton</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>437 CFM/ton</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>
TEM6A0830H21SB COOLING AIRFLOW PERFORMANCE, WET COIL, NO FILTER, NO HEATER

<table>
<thead>
<tr>
<th>OUTDOOR UNIT SIZE (TONS)</th>
<th>SPEED SETTING</th>
<th>AIRFLOW SETTING</th>
<th>DIP SWITCH SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SW1</td>
<td>SW2</td>
<td>SW3</td>
</tr>
<tr>
<td>1.5</td>
<td>LOW</td>
<td>353 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>401 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>451 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>2</td>
<td>LOW</td>
<td>343 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>390 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>439 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>2.5</td>
<td>LOW</td>
<td>300 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>340 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>383 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>LOW</td>
<td>310 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>330 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

* Factory Default Setting

TEM6A0830H21SB HEATING AIRFLOW PERFORMANCE, NO FILTER, NO HEATER

<table>
<thead>
<tr>
<th>OUTDOOR UNIT SIZE (TONS)</th>
<th>SPEED SETTING</th>
<th>AIRFLOW SETTING</th>
<th>DIP SWITCH SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SW1</td>
<td>SW2</td>
<td>SW3</td>
</tr>
<tr>
<td>1.5</td>
<td>LOW</td>
<td>394 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>448 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>493 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>2</td>
<td>LOW</td>
<td>393 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>446 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>491 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>2.5</td>
<td>LOW</td>
<td>350 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>398 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>437 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>LOW</td>
<td>325 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>346 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>
Table 9. Air Flow Performance

<table>
<thead>
<tr>
<th>OUTDOOR UNIT SIZE (TONS)</th>
<th>SPEED SETTING</th>
<th>AIRFLOW SETTING</th>
<th>DIP SWITCH SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SW1 SW2 SW3 SW4</td>
<td></td>
<td></td>
<td>0.1 0.3 0.5 0.7 0.9</td>
</tr>
<tr>
<td>2.5</td>
<td>LOW</td>
<td>300 CFM/ton</td>
<td>ON ON OFF ON</td>
<td>CFM Watts</td>
<td>761 63 755 98 719 131 654 163 560 193</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>341 CFM/ton</td>
<td>ON ON OFF OFF</td>
<td>CFM Watts</td>
<td>862 82 861 120 158 781 196 235</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>384 CFM/ton</td>
<td>ON ON ON OFF</td>
<td>CFM Watts</td>
<td>962 106 963 147 190 915 234 279</td>
</tr>
<tr>
<td>3</td>
<td>LOW</td>
<td>319 CFM/ton</td>
<td>OFF ON OFF ON</td>
<td>CFM Watts</td>
<td>961 106 962 147 189 914 233 279</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>363 CFM/ton</td>
<td>OFF ON OFF OFF</td>
<td>CFM Watts</td>
<td>1092 146 1093 192 249 1060 288 337</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>408 CFM/ton</td>
<td>OFF ON ON OFF</td>
<td>CFM Watts</td>
<td>1231 196 1231 249 301 353 404</td>
</tr>
<tr>
<td>3.5</td>
<td>LOW</td>
<td>315 CFM/ton</td>
<td>ON OFF OFF ON</td>
<td>CFM Watts</td>
<td>1104 150 1104 197 245 1072 293 343</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>357 CFM/ton</td>
<td>ON OFF OFF OFF</td>
<td>CFM Watts</td>
<td>1258 209 1258 263 317 1229 359 421</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>402 CFM/ton</td>
<td>ON OFF ON OFF</td>
<td>CFM Watts</td>
<td>1418 286 1418 347 406 1379 462 516</td>
</tr>
<tr>
<td>4</td>
<td>LOW</td>
<td>308 CFM/ton</td>
<td>OFF OFF OFF ON</td>
<td>CFM Watts</td>
<td>1238 199 1238 253 306 1210 357 408</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>350 CFM/ton</td>
<td>OFF OFF OFF OFF</td>
<td>CFM Watts</td>
<td>1412 282 1412 344 404 1349 462 517</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>394 CFM/ton</td>
<td>OFF OFF ON OFF</td>
<td>CFM Watts</td>
<td>1570 393 1572 436 466 1406 483 532</td>
</tr>
</tbody>
</table>

(1) Factory Default Setting

Note:
- TEM6A0C36H315B, TEM6A0C42H415B COOLING AIRFLOW PERFORMANCE, WET COIL, NO FILTER, NO HEATER
- TEM6A0C36H415B, TEM6A0C42H415B HEATING AIRFLOW PERFORMANCE, NO FILTER, NO HEATER

Go To Model List
<table>
<thead>
<tr>
<th>OUTDOOR UNIT SIZE (TONS)</th>
<th>SPEED SETTING</th>
<th>AIRFLOW SETTING</th>
<th>DIP SWITCH SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOW</td>
<td>324 CPM/ton</td>
<td>ON ON OFF ON</td>
<td>CPM Watts</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>368 CPM/ton</td>
<td>ON ON OFF OFF</td>
<td>CPM Watts</td>
<td>1120</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>423 CPM/ton</td>
<td>ON ON ON OFF</td>
<td>CPM Watts</td>
<td>1282</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>314 CPM/ton</td>
<td>OFF ON OFF ON</td>
<td>CPM Watts</td>
<td>1116</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>357 CPM/ton</td>
<td>OFF ON OFF OFF</td>
<td>CPM Watts</td>
<td>1263</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>411 CPM/ton</td>
<td>OFF ON OFF OFF</td>
<td>CPM Watts</td>
<td>1449</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>298 CPM/ton</td>
<td>ON OFF OFF ON</td>
<td>CPM Watts</td>
<td>1207</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>339 CPM/ton</td>
<td>ON OFF OFF OFF</td>
<td>CPM Watts</td>
<td>1368</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>389 CPM/ton</td>
<td>ON OFF ON OFF</td>
<td>CPM Watts</td>
<td>1564</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>305 CPM/ton</td>
<td>OFF OFF OFF ON</td>
<td>CPM Watts</td>
<td>1534</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>347 CPM/ton</td>
<td>OFF OFF OFF OFF</td>
<td>CPM Watts</td>
<td>1740</td>
</tr>
</tbody>
</table>

* Factory Default Setting
* Airflow must not exceed 1800 cfm in horizontal right, horizontal left, and downflow applications due to condensate blowoff. The 5 ton high tap shall not be used in these applications.

Table 11. Air Flow Performance

<table>
<thead>
<tr>
<th>OUTDOOR UNIT SIZE (TONS)</th>
<th>SPEED SETTING</th>
<th>AIRFLOW SETTING</th>
<th>DIP SWITCH SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOW</td>
<td>360 CPM/ton</td>
<td>ON ON OFF ON</td>
<td>CPM Watts</td>
<td>1097</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>400 CPM/ton</td>
<td>ON ON OFF OFF</td>
<td>CPM Watts</td>
<td>1125</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>440 CPM/ton</td>
<td>ON ON ON OFF</td>
<td>CPM Watts</td>
<td>1333</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>340 CPM/ton</td>
<td>OFF ON OFF ON</td>
<td>CPM Watts</td>
<td>1232</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>387 CPM/ton</td>
<td>OFF ON OFF OFF</td>
<td>CPM Watts</td>
<td>1366</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>426 CPM/ton</td>
<td>OFF ON ON OFF</td>
<td>CPM Watts</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>330 CPM/ton</td>
<td>ON OFF OFF ON</td>
<td>CPM Watts</td>
<td>1364</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>375 CPM/ton</td>
<td>ON OFF OFF OFF</td>
<td>CPM Watts</td>
<td>1509</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>413 CPM/ton</td>
<td>ON OFF OFF ON</td>
<td>CPM Watts</td>
<td>1659</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>326 CPM/ton</td>
<td>OFF OFF OFF ON</td>
<td>CPM Watts</td>
<td>1637</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>362 CPM/ton</td>
<td>OFF OFF OFF OFF</td>
<td>CPM Watts</td>
<td>1814</td>
</tr>
</tbody>
</table>
Table 13. Air Flow Performance

<table>
<thead>
<tr>
<th>OUTDOOR UNIT SIZE (TONS)</th>
<th>SPEED SETTING</th>
<th>AIRFLOW SETTING</th>
<th>DIP SWITCH SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SW1</td>
<td>SW2</td>
<td>SW3</td>
</tr>
<tr>
<td>3</td>
<td>LOW</td>
<td>323 CPM/ton</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>367 CPM/ton</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>415 CPM/ton</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>3.5</td>
<td>LOW</td>
<td>315 CPM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>358 CPM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>404 CPM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>4</td>
<td>LOW</td>
<td>309 CPM/ton</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>351 CPM/ton</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>396 CPM/ton</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>5</td>
<td>LOW</td>
<td>295 CPM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>335 CPM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>379 CPM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

* Factory Default Setting
Minimum Airflow CFM

TEM6A0B24H21SB, TEM6A0B30H21SB

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Airflow CFM With Heat Pump</th>
<th>Minimum Airflow CFM Without Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHTR1564BRK, BAYHTR1504LUG</td>
<td>660</td>
<td>600</td>
</tr>
<tr>
<td>BAYHTR1565BRK, BAYHTR1505LUG</td>
<td>660</td>
<td>600</td>
</tr>
<tr>
<td>BAYHTR1568BRK, BAYHTR1508LUG</td>
<td>780</td>
<td>600</td>
</tr>
<tr>
<td>BAYHTR1510BRK, BAYHTR1510LUG</td>
<td>780</td>
<td>600</td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td>1050</td>
<td>850</td>
</tr>
<tr>
<td>BAYHTR3510LUG</td>
<td>780</td>
<td>600</td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td>900</td>
<td>850</td>
</tr>
</tbody>
</table>

TEM6A0C36H31SB, TEM6A0C42H41SB

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Airflow CFM With Heat Pump</th>
<th>Minimum Airflow CFM Without Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHTR1564BRK, BAYHTR1504LUG</td>
<td>875</td>
<td>675</td>
</tr>
<tr>
<td>BAYHTR1565BRK, BAYHTR1505LUG</td>
<td>875</td>
<td>675</td>
</tr>
<tr>
<td>BAYHTR1568BRK, BAYHTR1508LUG</td>
<td>950</td>
<td>820</td>
</tr>
<tr>
<td>BAYHTR1510BRK, BAYHTR1510LUG</td>
<td>1000</td>
<td>820</td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td>1000</td>
<td>820</td>
</tr>
<tr>
<td>BAYHTR3510LUG</td>
<td>875</td>
<td>820</td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td>1000</td>
<td>950</td>
</tr>
<tr>
<td>BAYHTR1533BRK</td>
<td>1300</td>
<td>1140</td>
</tr>
</tbody>
</table>

TEM6A0C48H41SB, TEM6A0C60H51SB

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Airflow CFM With Heat Pump</th>
<th>Minimum Airflow CFM Without Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHTR1564BRK, BAYHTR1504LUG</td>
<td>1200</td>
<td>975</td>
</tr>
<tr>
<td>BAYHTR1565BRK, BAYHTR1505LUG</td>
<td>1200</td>
<td>975</td>
</tr>
<tr>
<td>BAYHTR1568BRK, BAYHTR1508LUG</td>
<td>1350</td>
<td>975</td>
</tr>
<tr>
<td>BAYHTR1510BRK, BAYHTR1510LUG</td>
<td>1350</td>
<td>975</td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td>1365</td>
<td>975</td>
</tr>
<tr>
<td>BAYHTR3510LUG</td>
<td>1300</td>
<td>975</td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td>1365</td>
<td>1120</td>
</tr>
<tr>
<td>BAYHTR1523BRK</td>
<td>1365</td>
<td>1300</td>
</tr>
<tr>
<td>BAYHTR1525BRK</td>
<td>1810</td>
<td>1595</td>
</tr>
</tbody>
</table>

TEM6A0D48H41SB, TEM6A0D60H51SB

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Airflow CFM With Heat Pump</th>
<th>Minimum Airflow CFM Without Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHTR1564BRK, BAYHTR1504LUG</td>
<td>1150</td>
<td>975</td>
</tr>
<tr>
<td>BAYHTR1565BRK, BAYHTR1505LUG</td>
<td>1150</td>
<td>975</td>
</tr>
<tr>
<td>BAYHTR1568BRK, BAYHTR1508LUG</td>
<td>1150</td>
<td>975</td>
</tr>
<tr>
<td>BAYHTR1510BRK, BAYHTR1510LUG</td>
<td>1150</td>
<td>975</td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td>1300</td>
<td>1125</td>
</tr>
<tr>
<td>BAYHTR3510LUG</td>
<td>1150</td>
<td>975</td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td>1300</td>
<td>1125</td>
</tr>
<tr>
<td>BAYHTR1523BRK</td>
<td>1360</td>
<td>1125</td>
</tr>
<tr>
<td>BAYHTR1525BRK</td>
<td>1550</td>
<td>1345</td>
</tr>
</tbody>
</table>
TEM6A0B24H21SB, TEM6A0E30H21SB Airflow Performance with Auxiliary Heat

<table>
<thead>
<tr>
<th>Airflow Settings</th>
<th>Dip Switch Settings</th>
<th>Nominal Airflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Switch 7: ON, Switch 8: ON</td>
<td>601</td>
</tr>
<tr>
<td>Med-Lo</td>
<td>Switch 7: OFF, Switch 8: ON</td>
<td>661</td>
</tr>
<tr>
<td>Med-Hi</td>
<td>Switch 7: ON, Switch 8: OFF</td>
<td>781</td>
</tr>
<tr>
<td>High</td>
<td>Switch 7: OFF, Switch 8: OFF</td>
<td>973</td>
</tr>
</tbody>
</table>

See following tables for heater application:
- Pressure Drop for Electrical Heaters
- Minimum Heating Airflow Matrix (on unit nameplates)

TEM6A0C36H31SB, TEM6A0C42H41SB Airflow Performance with Auxiliary Heat

<table>
<thead>
<tr>
<th>Airflow Settings</th>
<th>Dip Switch Settings</th>
<th>Nominal Airflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Switch 7: ON, Switch 8: ON</td>
<td>696</td>
</tr>
<tr>
<td>Med-Lo</td>
<td>Switch 7: OFF, Switch 8: ON</td>
<td>825</td>
</tr>
<tr>
<td>Med-Hi</td>
<td>Switch 7: OFF, Switch 8: OFF</td>
<td>1130</td>
</tr>
<tr>
<td>High</td>
<td>Switch 7: OFF, Switch 8: OFF</td>
<td>1298</td>
</tr>
</tbody>
</table>

See following tables for heater application:
- Pressure Drop for Electrical Heaters
- Minimum Heating Airflow Matrix (on unit nameplates)

TEM6A0C48H41SB, TEM6A0C60H51SB Airflow Performance with Auxiliary Heat

<table>
<thead>
<tr>
<th>Airflow Settings</th>
<th>Dip Switch Settings</th>
<th>Nominal Airflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Switch 7: ON, Switch 8: ON</td>
<td>1000</td>
</tr>
<tr>
<td>Med-Lo</td>
<td>Switch 7: OFF, Switch 8: ON</td>
<td>1130</td>
</tr>
<tr>
<td>Med-Hi</td>
<td>Switch 7: ON, Switch 8: OFF</td>
<td>1354</td>
</tr>
<tr>
<td>High</td>
<td>Switch 7: OFF, Switch 8: OFF</td>
<td>1596</td>
</tr>
</tbody>
</table>

See following tables for heater application:
- Pressure Drop for Electrical Heaters
- Minimum Heating Airflow Matrix (on unit nameplates)

TEM6A0D48H41SB, TEM6A0D60H51SB Airflow Performance with Auxiliary Heat

<table>
<thead>
<tr>
<th>Airflow Settings</th>
<th>Dip Switch Settings</th>
<th>Nominal Airflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Switch 7: ON, Switch 8: ON</td>
<td>997</td>
</tr>
<tr>
<td>Med-Lo</td>
<td>Switch 7: OFF, Switch 8: ON</td>
<td>1129</td>
</tr>
<tr>
<td>Med-Hi</td>
<td>Switch 7: ON, Switch 8: OFF</td>
<td>1350</td>
</tr>
<tr>
<td>High</td>
<td>Switch 7: OFF, Switch 8: OFF</td>
<td>1597</td>
</tr>
</tbody>
</table>

See following tables for heater application:
- Pressure Drop for Electrical Heaters
- Minimum Heating Airflow Matrix (on unit nameplates)
Heater Pressure Drop Table

<table>
<thead>
<tr>
<th>Airflow CFM</th>
<th>Number of Racks</th>
<th>Heater Racks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Air Pressure Drop — Inches W.G.</td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>1700</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>1600</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>1500</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>1400</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>1300</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>1200</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>1100</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>1000</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>900</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>800</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>700</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>600</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

Subcooling Adjustment

<table>
<thead>
<tr>
<th>System Matched with:</th>
<th>Indoor Unit Model No.</th>
<th>Outdoor Model No.</th>
<th>Subcooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 SEER HP — 2 ton</td>
<td>TEM6A0C36H31</td>
<td>4TWK6024H1000A</td>
<td>13 Degrees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4TWK6024H1000A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4AW6024H1000A</td>
<td></td>
</tr>
<tr>
<td>15 SEER HP — 2 ton</td>
<td>TEM6A0C42H21</td>
<td>4TWK5036G1000A</td>
<td>14 Degrees</td>
</tr>
<tr>
<td></td>
<td>TEM6A0C30H21</td>
<td>4AW5036G1000A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 SEER HP — 3 ton</td>
<td>TEM6A0C36H31</td>
<td>4TWK5036G1000A</td>
<td>14 Degrees</td>
</tr>
<tr>
<td></td>
<td>TEM6A0C38H31</td>
<td>4AW5036G1000A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEM6A0C42H41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All other matches must be charged per the nameplate charging instructions.

Subcooling Adjustment for TEM6A0C48H41 & TEM6A0C60H51

<table>
<thead>
<tr>
<th>Sub-Cooling Charge Specification For AHRI Rated Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subflow</td>
</tr>
<tr>
<td>Up Flow / Horizontal</td>
</tr>
<tr>
<td>Down Flow</td>
</tr>
<tr>
<td>OD Equipment</td>
</tr>
<tr>
<td>AC UNIT</td>
</tr>
<tr>
<td>Up Flow / Horizontal</td>
</tr>
<tr>
<td>Down Flow</td>
</tr>
<tr>
<td>HP UNIT ≤ 3.5 Tons</td>
</tr>
<tr>
<td>OD Name Plate</td>
</tr>
<tr>
<td>OD Name Plate</td>
</tr>
<tr>
<td>OD Name Plate</td>
</tr>
<tr>
<td>+ 4 Degrees</td>
</tr>
<tr>
<td>HP UNIT = 4 and 5 Tons</td>
</tr>
<tr>
<td>OD Name Plate</td>
</tr>
<tr>
<td>OD Name Plate</td>
</tr>
</tbody>
</table>

Go To Model List
Figure 2. Dip Switches

DIP SWITCHES (TYPICAL SETTINGS)

If the airflow needs to be increased or decreased, see the Airflow Label on the air handler or Blower Performance Table.

Be sure to set the correct airflow for cooling and heating.

Switches 1–4 Cooling Airflow
Switches 5–6 Fan Off Delay Options
Switches 7–8 Auxiliary Heat

Indoor Blower Timing

Important: Leave dip switches 5 and 6 in the “as-shipped” positions during system start-up and check out. Afterwards, adjust as desired.

Table 3. Cooling Off — Delay Options

<table>
<thead>
<tr>
<th>SWITCH SETTINGS</th>
<th>SELECTION</th>
<th>NOMINAL AIRFLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 — OFF</td>
<td>6 — OFF</td>
<td>NONE</td>
</tr>
<tr>
<td>5 — ON</td>
<td>6 — OFF</td>
<td>1.5 MINUTES</td>
</tr>
<tr>
<td>5 — OFF</td>
<td>6 — ON</td>
<td>3 MINUTES</td>
</tr>
<tr>
<td>5 — ON</td>
<td>6 — ON</td>
<td>ENHANCED (b)</td>
</tr>
</tbody>
</table>

(a) Default setting
(b) This ENHANCED MODE selection provides a ramping up and ramping down of the blower speed to provide improved comfort, quietness, and potential energy savings. The graph shows the ramping process.
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: American Standard

Model: TEM8A

7. **Blower**

 This unit is supplied with a variable speed motor with a direct drive blower wheel which can obtain various air flows. The unit is shipped with factory set cooling and heating air flows. Performance tables are available for additional airflow settings. Disconnect all power to the unit before making any adjustments to the airflow settings. Be sure to check the air flow and the temperature drop across the evaporator coil to ensure sufficient airflow.

8. **Airflow Adjustment**

 Note: A CDA tool may be plugged into the TEM8 control board and used to configure or monitor the system

9. **Indoor Blower Timing**

 Table 3. Delay Options

 The blower delay profile is to be configured for heating and cooling modes of operation. There are 4 blower off delay options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Delay Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 1</td>
<td>90 seconds at 100% air flow</td>
</tr>
<tr>
<td>Option 2</td>
<td>No delay</td>
</tr>
<tr>
<td>Option 3</td>
<td>180 seconds at 50% air flow</td>
</tr>
<tr>
<td>Option 4</td>
<td>Enhanced Mode</td>
</tr>
</tbody>
</table>

Figure 1. Enhanced Mode

[Diagram showing Enhanced Mode with stages for dehumidify, warm air heating, fast coil cooling, fast coil heating, and efficiency.]

Go To Model List
Unit Test Mode

Unit Test Mode will exit if any demand is given to the unit.

To enter Unit Test Mode:

1. Set System Switch on comfort control to Off.
2. Scroll down to the Unit Test selection and push the "Enter" button.

Sequence of Unit Test Mode (OD unit is not energized during the Unit Test Mode)

1. AFC energizes the blower at 50% and then continues to ramp until it reaches 100% cooling airflow.
2. Humidifier contacts close when the blower starts.
3. AFC energizes the W relays in 10 second intervals. The blower remains at 100% air flow.
4. All relays de-energize and the blower shuts off five seconds after the last bank of heat is energized.

Note: If an error occurs during the Unit Test Mode, the Fault LED will flash a code and continue the test.
<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTING</th>
<th>AIRFLOW</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTING</th>
<th>AIRFLOW</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CFM</td>
<td>Watts</td>
<td>CFM</td>
<td>Watts</td>
<td>Watts</td>
</tr>
<tr>
<td>1.5 tons</td>
<td>250</td>
<td>430/530</td>
<td>35/39</td>
<td>430/415</td>
<td>95/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>60/65</td>
<td>50/54</td>
<td>520/590</td>
<td>120/15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>85/85</td>
<td>80/85</td>
<td>670/670</td>
<td>160/20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>590/688</td>
<td>65/67</td>
<td>590/690</td>
<td>155/16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>590/593</td>
<td>105/105</td>
<td>660/660</td>
<td>235/190</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>155/160</td>
<td>155/160</td>
<td>71/71</td>
<td>165/20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>670/736</td>
<td>75/76</td>
<td>660/660</td>
<td>235/190</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>75/76</td>
<td>125/125</td>
<td>71/71</td>
<td>165/20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>590/593</td>
<td>105/105</td>
<td>105/105</td>
<td>660/660</td>
<td>235/190</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>660/660</td>
<td>235/190</td>
<td>71/71</td>
<td>165/20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>71/71</td>
<td>165/20</td>
<td>71/71</td>
<td>165/20</td>
<td></td>
</tr>
<tr>
<td>2 tons</td>
<td>250</td>
<td>570/670</td>
<td>50/54</td>
<td>570/670</td>
<td>155/16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>60/63</td>
<td>70/76</td>
<td>600/600</td>
<td>260/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>120/107</td>
<td>120/107</td>
<td>690/690</td>
<td>250/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>690/788</td>
<td>75/76</td>
<td>690/690</td>
<td>250/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>75/76</td>
<td>125/125</td>
<td>690/690</td>
<td>250/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>120/107</td>
<td>120/107</td>
<td>690/690</td>
<td>250/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>890/964</td>
<td>80/80</td>
<td>800/800</td>
<td>300/115</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>890/899</td>
<td>80/80</td>
<td>800/800</td>
<td>300/115</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>800/800</td>
<td>80/80</td>
<td>800/800</td>
<td>300/115</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>800/800</td>
<td>80/80</td>
<td>800/800</td>
<td>300/115</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>800/800</td>
<td>80/80</td>
<td>800/800</td>
<td>300/115</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>800/800</td>
<td>80/80</td>
<td>800/800</td>
<td>300/115</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>800/800</td>
<td>80/80</td>
<td>800/800</td>
<td>300/115</td>
<td></td>
</tr>
<tr>
<td>2.5 tons †</td>
<td>250</td>
<td>720/820</td>
<td>90/90</td>
<td>720/790</td>
<td>270/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>105/104</td>
<td>120/120</td>
<td>720/790</td>
<td>270/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>120/107</td>
<td>170/120</td>
<td>720/790</td>
<td>270/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>870/980</td>
<td>105/105</td>
<td>870/980</td>
<td>270/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>105/105</td>
<td>170/105</td>
<td>870/980</td>
<td>270/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>120/107</td>
<td>170/105</td>
<td>870/980</td>
<td>270/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>950/1057</td>
<td>105/105</td>
<td>950/1057</td>
<td>270/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>105/105</td>
<td>170/105</td>
<td>950/1057</td>
<td>270/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>120/107</td>
<td>170/105</td>
<td>950/1057</td>
<td>270/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>120/107</td>
<td>170/105</td>
<td>950/1057</td>
<td>270/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>120/107</td>
<td>170/105</td>
<td>950/1057</td>
<td>270/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>120/107</td>
<td>170/105</td>
<td>950/1057</td>
<td>270/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>120/107</td>
<td>170/105</td>
<td>950/1057</td>
<td>270/10</td>
<td></td>
</tr>
</tbody>
</table>

- † Factory Setting
- Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.
- To prevent water blow-off, the max airflow demand allowable is 1000 CFM. If an outdoor multiplier and cooling airflow setting should result in a demand higher than 1000, the AFC will default the demand back to 1000.
- Torque mode will reduce airflow when static is above approximately 0.3” water column.
- All heating modes default to Constant CFM.
- In communicating mode, default CFM/Ton is 400.
- Cooling airflow values are with wet coil, no filter.
<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFM</td>
<td>Watts</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>1.5 tons</td>
<td>590</td>
<td>CFM Watts</td>
<td>430 / 530</td>
<td>430 / 515</td>
<td>430 / 264</td>
<td>430 / NA</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>CFM Watts</td>
<td>520 / 620</td>
<td>520 / 514</td>
<td>520 / 398</td>
<td>520 / NA</td>
</tr>
<tr>
<td>2 tons</td>
<td>250</td>
<td>CFM Watts</td>
<td>570 / 670</td>
<td>570 / 573</td>
<td>570 / 469</td>
<td>570 / NA</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>CFM Watts</td>
<td>890 / 971</td>
<td>890 / 881</td>
<td>890 / 671</td>
<td>880 / NA</td>
</tr>
<tr>
<td>2.5 tons</td>
<td>300</td>
<td>CFM Watts</td>
<td>770 / 873</td>
<td>770 / 781</td>
<td>770 / 593</td>
<td>770 / NA</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>CFM Watts</td>
<td>870 / 963</td>
<td>870 / 871</td>
<td>870 / 643</td>
<td>860 / NA</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>CFM Watts</td>
<td>969 / 1071</td>
<td>969 / 981</td>
<td>969 / 691</td>
<td>959 / NA</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>CFM Watts</td>
<td>1068 / 1114</td>
<td>1068 / 1035</td>
<td>1068 / 828</td>
<td>1058 / NA</td>
</tr>
<tr>
<td>3 tons</td>
<td>350</td>
<td>CFM Watts</td>
<td>1168 / 1216</td>
<td>1168 / 1085</td>
<td>1168 / 880</td>
<td>1158 / NA</td>
</tr>
</tbody>
</table>

- Factory Setting: Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.
- To prevent water blow-off, the max airflow demand allowable is 1000 CFM. If an outdoor multiplier and cooling airflow setting result in a demand higher than 1000, the AFC will default the demand back to 1000.
- Torque mode will reduce airflow when static is above approximately 0.3” water column.
- All heating modes default to Constant CFM.
- In communicating mode, default CFM/Ton is 400.
- Cooling airflow values are with wet coil, no filter.

Go To Model List
<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW (CFM/ton)</th>
<th>EXTERNAL STATIC PRESSURE</th>
<th>HEATING AIRFLOW (CFM/ton)</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.3</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>2.5 tons</td>
<td>290</td>
<td>728/387</td>
<td>69/90</td>
<td>700/500</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>868/372</td>
<td>84/49</td>
<td>884/686</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1004/364</td>
<td>1016/971</td>
<td>1033/784</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>1139/358</td>
<td>1176/1093</td>
<td>1197/885</td>
</tr>
<tr>
<td>3 tons</td>
<td>290</td>
<td>878/993</td>
<td>879/129</td>
<td>876/771</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>1059/133</td>
<td>1086/165</td>
<td>1106/988</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1229/119</td>
<td>1233/119</td>
<td>1235/1024</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>1364/147</td>
<td>1375/139</td>
<td>1393/1253</td>
</tr>
<tr>
<td>3.5 tons</td>
<td>290</td>
<td>1022/1123</td>
<td>1031/1021</td>
<td>1050/917</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>1238/1312</td>
<td>1249/1214</td>
<td>1247/1128</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1415/1491</td>
<td>1424/1322</td>
<td>1435/1256</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>1601/1618</td>
<td>1610/1536</td>
<td>1617/1462</td>
</tr>
<tr>
<td>4 tons T</td>
<td>290</td>
<td>1168/1276</td>
<td>1172/1175</td>
<td>1182/1087</td>
</tr>
<tr>
<td></td>
<td>350 T</td>
<td>1416/1492</td>
<td>1424/1404</td>
<td>1429/1325</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1622/1616</td>
<td>1614/1534</td>
<td>1624/1461</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>1714/1665</td>
<td>1666/1525</td>
<td>1650/1452</td>
</tr>
</tbody>
</table>

- † Factory Setting
- Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.
- In communicating mode, default CFM/Ton is 400.
- Torque mode will reduce airflow when static is above approximately 0.2" water column.
- All heating modes default to Constant CFM.
- Cooling airflow values are with wet coil, no filter.
<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTING</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTING</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 tons</td>
<td>CFM/Watts</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>250 CFM/ton</td>
<td>964/1015</td>
<td>856/903</td>
<td>851/772</td>
<td>850/676</td>
</tr>
<tr>
<td>400 CFM/ton</td>
<td>1164/1317</td>
<td>1077/1209</td>
<td>1073/1097</td>
<td>1070/994</td>
</tr>
<tr>
<td>450 CFM/ton</td>
<td>1334/1587</td>
<td>1256/1434</td>
<td>1252/1324</td>
<td>1249/1214</td>
</tr>
<tr>
<td>3.5 tons</td>
<td>CFM/Watts</td>
<td>1015/1147</td>
<td>1000/1025</td>
<td>1000/921</td>
</tr>
<tr>
<td>250 CFM/ton</td>
<td>1210/1381</td>
<td>1120/1231</td>
<td>1115/1126</td>
<td>1110/1021</td>
</tr>
<tr>
<td>350 CFM/ton</td>
<td>1599/1821</td>
<td>1509/1621</td>
<td>1504/1519</td>
<td>1499/1414</td>
</tr>
<tr>
<td>4 tons</td>
<td>CFM/Watts</td>
<td>1140/1374</td>
<td>1040/1204</td>
<td>1040/1009</td>
</tr>
<tr>
<td>400 CFM/ton</td>
<td>2249/321</td>
<td>2160/301</td>
<td>2155/291</td>
<td>2150/281</td>
</tr>
<tr>
<td>5 tons†</td>
<td>CFM/Watts</td>
<td>1740/2191</td>
<td>1650/1960</td>
<td>1645/1830</td>
</tr>
<tr>
<td>250 CFM/ton</td>
<td>1430/1751</td>
<td>1340/1621</td>
<td>1335/1491</td>
<td>1330/1361</td>
</tr>
<tr>
<td>400 CFM/ton</td>
<td>2028/2871</td>
<td>1940/2541</td>
<td>1935/2411</td>
<td>1930/2281</td>
</tr>
<tr>
<td>450 CFM/ton</td>
<td>2327/3451</td>
<td>2240/3121</td>
<td>2235/2991</td>
<td>2230/2861</td>
</tr>
</tbody>
</table>

* † Factory Setting
* Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.
* In communicating mode, default CFM/Ton is 400.
* Torque mode will reduce airflow when static is above approximately 0.3” water column.
* All heating modes default to Constant CFM.
* Cooling airflow values are with wet coil, no filter.
TEM8A0D48V14DB & TEM8A0D60V51DB AIRFLOW PERFORMANCE

<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTING</th>
<th>AIRFLOW</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTING</th>
<th>AIRFLOW</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFM/ton</td>
<td>Watts</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>3 tons</td>
<td>CFM</td>
<td>Watts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>1214/1310</td>
<td>150/172</td>
<td>1215/1202</td>
<td>194/172</td>
<td>1222/1107</td>
<td>299/224</td>
</tr>
<tr>
<td>3.5 tons</td>
<td>CFM</td>
<td>Watts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>1421/1495</td>
<td>211/242</td>
<td>1497/1398</td>
<td>268/267</td>
<td>1437/1311</td>
<td>454/311</td>
</tr>
<tr>
<td>4 tons</td>
<td>CFM</td>
<td>Watts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>1155/1297</td>
<td>334/367</td>
<td>1164/1108</td>
<td>394/367</td>
<td>1166/1092</td>
<td>457/393</td>
</tr>
<tr>
<td>400</td>
<td>1635/1700</td>
<td>502/549</td>
<td>1635/1614</td>
<td>518/549</td>
<td>1635/1614</td>
<td>547/535</td>
</tr>
<tr>
<td>450</td>
<td>1818/1866</td>
<td>458/487</td>
<td>1818/1866</td>
<td>527/511</td>
<td>1818/1866</td>
<td>675/546</td>
</tr>
<tr>
<td>5 tons †</td>
<td>CFM</td>
<td>Watts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>1453/1582</td>
<td>324/372</td>
<td>1456/1488</td>
<td>334/317</td>
<td>1463/1384</td>
<td>456/344</td>
</tr>
<tr>
<td>400</td>
<td>2043/2074</td>
<td>607/631</td>
<td>2043/2074</td>
<td>656/657</td>
<td>2043/2074</td>
<td>862/788</td>
</tr>
<tr>
<td>450</td>
<td>2141/2112</td>
<td>584/568</td>
<td>2141/2112</td>
<td>673/680</td>
<td>2141/2112</td>
<td>760/712</td>
</tr>
</tbody>
</table>

- † Factory Setting
- Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.
- In communicating mode, default CFM/ton is 400.

- Torque mode will reduce airflow when static is above approximately 0.3" water column.
- All heating modes default to Constant CFM.
- Cooling airflow values are wet coil, no filter.
Minimum Airflow CFM

TEM8A0B24V21DB, TEM8A0B30V31DB

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Heater Airflow CFM</th>
<th>With Heat Pump</th>
<th>Without Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHTR1504BRK, BAYHTR1504LUG</td>
<td></td>
<td>650</td>
<td>600</td>
</tr>
<tr>
<td>BAYHTR1505BRK, BAYHTR1505LUG</td>
<td></td>
<td>850</td>
<td>700</td>
</tr>
<tr>
<td>BAYHTR1510BRK, BAYHTR1510LUG</td>
<td></td>
<td>850</td>
<td>700</td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td></td>
<td>1000</td>
<td>850</td>
</tr>
<tr>
<td>BAYHTR3510LUG</td>
<td></td>
<td>850</td>
<td>700</td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td></td>
<td>1000</td>
<td>850</td>
</tr>
</tbody>
</table>

TEM8A0C36V31DB, TEM8A0C42V41DB

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Heater Airflow CFM</th>
<th>With Heat Pump</th>
<th>Without Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHTR1504BRK, BAYHTR1504LUG</td>
<td></td>
<td>675</td>
<td>675</td>
</tr>
<tr>
<td>BAYHTR1505BRK, BAYHTR1505LUG</td>
<td></td>
<td>950</td>
<td>900</td>
</tr>
<tr>
<td>BAYHTR1510BRK, BAYHTR1510LUG</td>
<td></td>
<td>950</td>
<td>900</td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td></td>
<td>950</td>
<td>900</td>
</tr>
<tr>
<td>BAYHTR3510LUG</td>
<td></td>
<td>950</td>
<td>900</td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td></td>
<td>1050</td>
<td>950</td>
</tr>
<tr>
<td>BAYHTR1523BRK</td>
<td></td>
<td>1500</td>
<td>1300</td>
</tr>
</tbody>
</table>

TEM8A0C48V41D, TEM8A0C60V51D

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Heater Airflow CFM</th>
<th>With Heat Pump</th>
<th>Without Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHTR1504BRK, BAYHTR1504LUG</td>
<td></td>
<td>900</td>
<td>800</td>
</tr>
<tr>
<td>BAYHTR1505BRK, BAYHTR1505LUG</td>
<td></td>
<td>1200</td>
<td>1000</td>
</tr>
<tr>
<td>BAYHTR1510BRK, BAYHTR1510LUG</td>
<td></td>
<td>1350</td>
<td>1000</td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td></td>
<td>1400</td>
<td>1100</td>
</tr>
<tr>
<td>BAYHTR3510LUG</td>
<td></td>
<td>1200</td>
<td>1000</td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td></td>
<td>1400</td>
<td>1100</td>
</tr>
<tr>
<td>BAYHTR1523BRK</td>
<td></td>
<td>1430</td>
<td>1300</td>
</tr>
<tr>
<td>BAYHTR1523BRK</td>
<td></td>
<td>1850</td>
<td>1600</td>
</tr>
</tbody>
</table>

TEM8A0D48V41DB, TEM8A0D60V51DB

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Heater Airflow CFM</th>
<th>With Heat Pump</th>
<th>Without Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHTR1504BRK, BAYHTR1504LUG</td>
<td></td>
<td>900</td>
<td>800</td>
</tr>
<tr>
<td>BAYHTR1505BRK, BAYHTR1505LUG</td>
<td></td>
<td>1200</td>
<td>1000</td>
</tr>
<tr>
<td>BAYHTR1510BRK, BAYHTR1510LUG</td>
<td></td>
<td>1200</td>
<td>1000</td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td></td>
<td>1400</td>
<td>1100</td>
</tr>
<tr>
<td>BAYHTR3510LUG</td>
<td></td>
<td>1200</td>
<td>1000</td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td></td>
<td>1400</td>
<td>1100</td>
</tr>
<tr>
<td>BAYHTR1523BRK</td>
<td></td>
<td>1400</td>
<td>1300</td>
</tr>
<tr>
<td>BAYHTR1523BRK</td>
<td></td>
<td>1600</td>
<td>1400</td>
</tr>
</tbody>
</table>
Heater Pressure Drop Table

<table>
<thead>
<tr>
<th>Airflow CFM</th>
<th>Number of Racks</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Air Pressure Drop — Inches W.G.</td>
</tr>
<tr>
<td>1800</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>0.01</td>
<td>0.04</td>
<td>0.05</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.01</td>
<td>0.03</td>
<td>0.04</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>0.01</td>
<td>0.03</td>
<td>0.04</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>0.01</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subcooling Adjustment

<table>
<thead>
<tr>
<th>System Matched with:</th>
<th>Indoor Unit Model No.</th>
<th>Outdoor Model No.</th>
<th>Subcooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 SEER HP — 2 ton</td>
<td>TEM8A0C36V31</td>
<td>4TWR6024H1000A</td>
<td>13 Degrees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4TWR6024H1000A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4A6H5024G1000A</td>
<td></td>
</tr>
<tr>
<td>15 SEER HP — 2 ton</td>
<td>TEM8A0B24V21</td>
<td>4TWR5024G1000A</td>
<td>14 Degrees</td>
</tr>
<tr>
<td></td>
<td>TEM8A0B30V31</td>
<td>4A6H5024G1000A</td>
<td></td>
</tr>
<tr>
<td>15 SEER HP — 3 ton</td>
<td>TEM8A0B30V31</td>
<td>4TWR5036G1000A</td>
<td>14 Degrees</td>
</tr>
<tr>
<td></td>
<td>TEM8A0C36V31</td>
<td>4A6H5036G1000A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEM8A0C42V41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All other matches must be charged per the nameplate charging instructions.

Subcooling Adjustment for TEM8A0C48V41 & TEM8A0C60V51

<table>
<thead>
<tr>
<th>Sub-Cooling Charge Specification For AHRI Rated Performance</th>
<th>OD Equipment</th>
<th>Up Flow / Horizontal</th>
<th>Down Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC UNIT</td>
<td>OD Name Plate</td>
<td>OD Name Plate</td>
<td>OD Name Plate</td>
</tr>
<tr>
<td>HP UNIT ≤ 3.5 Tons</td>
<td>OD Name Plate</td>
<td>OD Name Plate</td>
<td>OD Name Plate + 4 Degrees</td>
</tr>
<tr>
<td>HP UNIT = 4 and 5 Tons</td>
<td>OD Name Plate</td>
<td>OD Name Plate</td>
<td>OD Name Plate</td>
</tr>
</tbody>
</table>

Go To Model List
WIRELESS REMOTE CONTROLLER

1. A wireless remote controller is supplied for setting airflow. Please refer to the installation manual in HVAC Partners for setting airflow.

2. The Infrared receiver is located inside the control box of the indoor Air Handler and can be relocated if necessary.

![Wireless Remote Controller](image)

Fig. 5 — Wireless Remote Controller

<table>
<thead>
<tr>
<th>SYSTEM SIZE</th>
<th>24K (208/230V)</th>
<th>36K (208/230V)</th>
<th>48K (208/230V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airflow** (CFM)</td>
<td>High</td>
<td>882</td>
<td>1,176</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>785</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>588</td>
<td>824</td>
</tr>
</tbody>
</table>

Airflow values obtained at AHRI 210/240 rating conditions.
**Measured at rates static pressure:
24K: 0.1 in. WG (25pa)
36K: 0.15 in. WG (37pa)
48K: 0.2 in. WG (50pa)
SETTING STATIC PRESSURE AND AIRFLOW

The indoor fan coil units can be programmed to have different static pressures settings or airflows; the factory default setting is SP1. Follow the next steps to set the static pressure or Automatic Airflow using the Wireless Remote Controller according to the installation conditions.

- The external static pressure can be manually changed to the fan curves SP1, SP2, SP3, SP4.
- Choose the Automatic Airflow “AF” adjustment function to automatically identify the static pressure and regulate the airflow amount.

Follow these instructions to configure:

1. Ensure the test run is done with a dry coil. If the coil is not dry, run the unit for 2 hours in the FAN ONLY mode to dry the coil.
2. Check that both the power supply wiring and the duct installation have been completed. Check that the air vent is properly positioned. Check that the air filter is properly attached to the air return side passage of the unit.
3. If there is more than one air inlet and/or outlet, adjust the dampers so that the airflow rate of each air inlet and outlet conforms to the designed airflow rate. Ensure the unit is in FAN ONLY mode.

The wireless remote controller is required to setup the static pressure of the indoor air handler units.

NOTE: When a system is using the 24V interface built-in, the indoor unit’s fan speed defaults to AUTO with the indoor unit’s default logic.

The external static pressure should be selected using the wireless remote controller (RG1F3/B) BGEFU1), included with the indoor unit, by pointing it toward the indoor unit’s Infrared Receiver typically located inside the control box.

- a. Before using the service functions of the remote, turn OFF the indoor unit with the remote.
- b. Turn off the power to the indoor and outdoor units for 3 minutes.
- c. Turn the power back on.
- d. Remove the batteries from the RG57 wireless remote controller and wait for the remote screen to be clear or press any button and the screen clears.
- e. Reinstall the batteries.
- f. Within 30 seconds of replacing the batteries, simultaneously press MODE and TIMER ON for five (5) seconds. You are now in the SERVICE FUNCTION mode – and the remote display reads F1.
- g. Manual static pressure or Automatic Airflow adjustment selection:

1. For manual static pressure selection, press the DOWN arrow in the center of the remote (labeled TEMP) to display E9. Press MODE to set the external static pressure/airflow rate in the range of 1-4 (airflow increases quickly). Press TIMER ON to confirm. The values on the remote controller (1,3,4) correlates directly to the static pressure curves SP1, SP2, SP3, SP4 (see “FAN PERFORMANCE AT VARYING STATIC PRESSURES” on page 13).

2. If choosing the AUTOMATIC AIRFLOW ADJUSTMENT function, with F1 in the remote display, press the DOWN arrow once and 44 appears. Press TIMER ON to confirm. AF appears in the unit’s LED display. The system starts the fan for the airflow automatic adjustment. The ON indicator flashes when the fan runs during the AUTOMATIC AIRFLOW ADJUSTMENT. After 3 to 6 minutes, the system stops operating once the AUTOMATIC AIRFLOW ADJUSTMENT is complete.

h. Remove the remote controller battery, and then re-insert the battery after the remote controller screen goes blank. The remote controller exits the SERVICE FUNCTION mode.

Fig. 8 — Remote Controller
FAN PERFORMANCES AT VARYING STATIC PRESSURES

Table 10 — Static Pressure at the Rated Point and Static Pressure Range

<table>
<thead>
<tr>
<th>AHU</th>
<th>Model Number</th>
<th>Static Pressure</th>
<th>Speed</th>
<th>0 (m.w.c.)</th>
<th>0.1 (m.w.c.)</th>
<th>0.2 (m.w.c.)</th>
<th>0.3 (m.w.c.)</th>
<th>0.4 (m.w.c.)</th>
<th>0.5 (m.w.c.)</th>
<th>0.6 (m.w.c.)</th>
<th>0.7 (m.w.c.)</th>
<th>0.8 (m.w.c.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>SP1</td>
<td>High</td>
<td>1,076</td>
<td>975</td>
<td>853</td>
<td>787</td>
<td>702</td>
<td>620</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>797</td>
<td>648</td>
<td>437</td>
<td>100</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,250</td>
<td>1,175</td>
<td>1,075</td>
<td>965</td>
<td>815</td>
<td>650</td>
<td>475</td>
<td>200</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,185</td>
<td>1,065</td>
<td>996</td>
<td>855</td>
<td>665</td>
<td>512</td>
<td>291</td>
<td>201</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1,490</td>
<td>1,415</td>
<td>1,334</td>
<td>1,250</td>
<td>1,156</td>
<td>1,028</td>
<td>880</td>
<td>750</td>
<td>600</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,375</td>
<td>1,294</td>
<td>1,206</td>
<td>1,100</td>
<td>988</td>
<td>822</td>
<td>676</td>
<td>500</td>
<td>284</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,285</td>
<td>1,200</td>
<td>1,105</td>
<td>995</td>
<td>845</td>
<td>685</td>
<td>523</td>
<td>352</td>
<td>252</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1,825</td>
<td>1,756</td>
<td>1,670</td>
<td>1,562</td>
<td>1,515</td>
<td>1,450</td>
<td>1,380</td>
<td>1,250</td>
<td>1,120</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,630</td>
<td>1,556</td>
<td>1,480</td>
<td>1,400</td>
<td>1,310</td>
<td>1,215</td>
<td>1,105</td>
<td>950</td>
<td>825</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,525</td>
<td>1,450</td>
<td>1,372</td>
<td>1,280</td>
<td>1,180</td>
<td>1,074</td>
<td>935</td>
<td>855</td>
<td>650</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>36</td>
<td>SP1</td>
<td>High</td>
<td>1,335</td>
<td>1,270</td>
<td>1,185</td>
<td>1,062</td>
<td>950</td>
<td>810</td>
<td>685</td>
<td>450</td>
<td>240</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,185</td>
<td>1,100</td>
<td>960</td>
<td>845</td>
<td>665</td>
<td>520</td>
<td>335</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,205</td>
<td>1,115</td>
<td>1,011</td>
<td>870</td>
<td>715</td>
<td>655</td>
<td>350</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1,475</td>
<td>1,405</td>
<td>1,320</td>
<td>1,230</td>
<td>1,125</td>
<td>990</td>
<td>855</td>
<td>715</td>
<td>570</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,340</td>
<td>1,250</td>
<td>1,172</td>
<td>1,055</td>
<td>920</td>
<td>775</td>
<td>630</td>
<td>460</td>
<td>275</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,205</td>
<td>1,115</td>
<td>1,011</td>
<td>870</td>
<td>715</td>
<td>655</td>
<td>350</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>48</td>
<td>SP1</td>
<td>High</td>
<td>1,648</td>
<td>1,585</td>
<td>1,515</td>
<td>1,440</td>
<td>1,354</td>
<td>1,235</td>
<td>1,125</td>
<td>990</td>
<td>875</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,510</td>
<td>1,440</td>
<td>1,302</td>
<td>1,275</td>
<td>1,188</td>
<td>1,049</td>
<td>910</td>
<td>780</td>
<td>645</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,385</td>
<td>1,305</td>
<td>1,215</td>
<td>1,115</td>
<td>988</td>
<td>855</td>
<td>727</td>
<td>580</td>
<td>421</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1,815</td>
<td>1,733</td>
<td>1,663</td>
<td>1,605</td>
<td>1,528</td>
<td>1,438</td>
<td>1,346</td>
<td>1,238</td>
<td>1,130</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,655</td>
<td>1,590</td>
<td>1,530</td>
<td>1,460</td>
<td>1,380</td>
<td>1,273</td>
<td>1,175</td>
<td>955</td>
<td>844</td>
<td>631</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,558</td>
<td>1,481</td>
<td>1,406</td>
<td>1,350</td>
<td>1,219</td>
<td>1,100</td>
<td>876</td>
<td>875</td>
<td>748</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1,611</td>
<td>1,530</td>
<td>1,462</td>
<td>1,375</td>
<td>1,278</td>
<td>1,170</td>
<td>953</td>
<td>925</td>
<td>831</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,498</td>
<td>1,417</td>
<td>1,333</td>
<td>1,225</td>
<td>1,125</td>
<td>996</td>
<td>800</td>
<td>775</td>
<td>631</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,375</td>
<td>1,297</td>
<td>1,212</td>
<td>1,110</td>
<td>994</td>
<td>860</td>
<td>716</td>
<td>558</td>
<td>389</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1,774</td>
<td>1,731</td>
<td>1,642</td>
<td>1,570</td>
<td>1,504</td>
<td>1,420</td>
<td>1,313</td>
<td>1,202</td>
<td>1,081</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,662</td>
<td>1,595</td>
<td>1,531</td>
<td>1,460</td>
<td>1,366</td>
<td>1,275</td>
<td>1,181</td>
<td>1,046</td>
<td>915</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,868</td>
<td>1,805</td>
<td>1,738</td>
<td>1,675</td>
<td>1,604</td>
<td>1,532</td>
<td>1,433</td>
<td>1,330</td>
<td>1,211</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,781</td>
<td>1,739</td>
<td>1,649</td>
<td>1,582</td>
<td>1,511</td>
<td>1,420</td>
<td>1,308</td>
<td>1,208</td>
<td>1,081</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,662</td>
<td>1,595</td>
<td>1,531</td>
<td>1,460</td>
<td>1,366</td>
<td>1,275</td>
<td>1,181</td>
<td>1,046</td>
<td>915</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>2,024</td>
<td>1,974</td>
<td>1,919</td>
<td>1,850</td>
<td>1,795</td>
<td>1,728</td>
<td>1,652</td>
<td>1,560</td>
<td>1,466</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,825</td>
<td>1,771</td>
<td>1,708</td>
<td>1,648</td>
<td>1,578</td>
<td>1,492</td>
<td>1,400</td>
<td>1,295</td>
<td>1,180</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

NOTES:

1. Airflow based upon dry coil at 23°F without filter or electric heater.
2. To avoid potential for condensate blowing out of drain pan prior to making drain trap:
 - Return static pressure must be less than 0.40 in w.c.
 - Horizontal applications of 48 size must have supply static greater than 0.20 in w.c.
3. Airflow above 400 cfm/ton could result in condensate blowing off coil or splashing out of drain pan.

>390CFM | <450CFM
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Bryant
Model: CNPV

<table>
<thead>
<tr>
<th>COOLING CAPACITIES (MBH) - PURON REFRIGERANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
</tr>
<tr>
<td>Size</td>
</tr>
<tr>
<td>CFM</td>
</tr>
<tr>
<td>1814</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1917</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2417</td>
</tr>
<tr>
<td>3017</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3617</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3917</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Legend:
GPM – Cubic Ft. per Minute
EWB – Entering Wet Bulb
LWB – Leaving Wet Bulb
TC – Gross Cooling Capacity 1000 Btu/h
SHT – Gross Sensible Capacity 1000 Btu/h
DF – Drip Factor
MCH – 1000 Btu/h

See notes on next page.
COOLING CAPACITIES (MBH) - PURON REFRIGERANT

<table>
<thead>
<tr>
<th>CNPV SIZE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDOOR AIR</td>
<td>SATURATED TEMPERATURE LEAVING EVAPORATOR °F (°C)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CFM</td>
<td>EWB</td>
</tr>
<tr>
<td>4217</td>
<td>4221</td>
</tr>
<tr>
<td>1050</td>
<td>72 (22)</td>
</tr>
<tr>
<td>1400</td>
<td>72 (22)</td>
</tr>
<tr>
<td>1750</td>
<td>72 (22)</td>
</tr>
<tr>
<td>2000</td>
<td>72 (22)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4324</th>
<th>4324</th>
<th>T4324</th>
<th>T4321</th>
</tr>
</thead>
<tbody>
<tr>
<td>1050</td>
<td>72 (22)</td>
<td>76 (20)</td>
<td>77 (19)</td>
</tr>
<tr>
<td>1400</td>
<td>72 (22)</td>
<td>76 (20)</td>
<td>77 (19)</td>
</tr>
<tr>
<td>1750</td>
<td>72 (22)</td>
<td>76 (20)</td>
<td>77 (19)</td>
</tr>
<tr>
<td>2000</td>
<td>72 (22)</td>
<td>76 (20)</td>
<td>77 (19)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6024</th>
<th>T6024</th>
</tr>
</thead>
<tbody>
<tr>
<td>1050</td>
<td>72 (22)</td>
</tr>
<tr>
<td>1400</td>
<td>72 (22)</td>
</tr>
<tr>
<td>1750</td>
<td>72 (22)</td>
</tr>
<tr>
<td>2000</td>
<td>72 (22)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6124</th>
<th>T6124</th>
</tr>
</thead>
<tbody>
<tr>
<td>1050</td>
<td>72 (22)</td>
</tr>
<tr>
<td>1400</td>
<td>72 (22)</td>
</tr>
<tr>
<td>1750</td>
<td>72 (22)</td>
</tr>
<tr>
<td>2000</td>
<td>72 (22)</td>
</tr>
</tbody>
</table>

Legend
- CFM – Cubic Ft per Minute
- EWG – Entering Wet Bulb
- LWB – Leaving Wet Bulb
- TC – Gross Cooling Capacity 1000 Btu
- SHC – Gross Sensible Capacity 1000 Btu
- BF – Bypass Factor
- MBH – 1000 Btu

See notes on following page.
NOTES:
1. Contact manufacturer for cooling capacities at conditions other than shown in table.
2. Formulas:
 Leaving \(db = \) entering \(db \) - sensible heat cap. \(\frac{1.09 \times \text{CFM}}{6.5 \times \text{CFM}} \)
 Leaving \(wb = wb \) corresponding to enthalpy of air leaving coil (\(h_{w2} \))
 \(h_{w2} = h_{w1} - \frac{\text{total capacity (Rth)}}{1.09 \times \text{CFM}} \)
 Where \(h_{w1} = \) enthalpy of air entering coil.
3. SHC is based on 80°F (27°C) db temperature of air entering the evaporator coil.
 Below 80°F (27°C) db, subtract (Correction Factor x CFM) from SHC.
 Above 80°F (27°C) db, add (Correction Factor x CFM) to SHC.
4. Direct interpolation is permissible. Do not extrapolate.
5. Fan motor heat has not been deducted.
6. All data points are based on 10°F (-12°C) superheat leaving coil and use of thermostatic expansion valve (TXV) device.
7. All units have sweat suction-tube connection and a liquid-tube connection. For 1-1/8-in. system suction tube, 3/4 x 1-1/8-in. suction tube connection adapter is available as accessory.
8. The CNPVB, CNPVT and CNPVU coils can be used in any properly designed system using Puron refrigerant.
9. CNPVU coils can be used in any properly designed system using R-22 refrigerant.
10. Before using maximum cfm shown in table, check coil static pressure drop to ensure system blower can provide necessary static pressure needed for coil and duct systems.
11. Bypass Factor = 0 indicates no psychometric solution. Use bypass factor of next lower EWB for approximation.

<table>
<thead>
<tr>
<th>BYPASS FACTOR</th>
<th>ENTERING AIR DRY BULB TEMPERATURE °F (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>79 (26)</td>
</tr>
<tr>
<td>0.10</td>
<td>0.98</td>
</tr>
<tr>
<td>0.20</td>
<td>0.87</td>
</tr>
<tr>
<td>0.30</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Interpolation is permissible
Correction Factor = 1.09 x (1 - BF) x (db - 80)
<table>
<thead>
<tr>
<th>CFM</th>
<th>450</th>
<th>600</th>
<th>750</th>
<th>1000</th>
<th>1500</th>
<th>2000</th>
<th>2500</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC 21</td>
<td>21.5</td>
<td>22.0</td>
<td>22.5</td>
<td>23.0</td>
<td>23.5</td>
<td>24.0</td>
<td>24.5</td>
</tr>
<tr>
<td>SC 22</td>
<td>22.0</td>
<td>22.5</td>
<td>23.0</td>
<td>23.5</td>
<td>24.0</td>
<td>24.5</td>
<td>25.0</td>
</tr>
<tr>
<td>BF 23</td>
<td>23.0</td>
<td>23.5</td>
<td>24.0</td>
<td>24.5</td>
<td>25.0</td>
<td>25.5</td>
<td>26.0</td>
</tr>
</tbody>
</table>

Go To Model List
<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>Standard CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400</td>
</tr>
<tr>
<td>1814</td>
<td></td>
</tr>
<tr>
<td>1917</td>
<td></td>
</tr>
<tr>
<td>2414</td>
<td></td>
</tr>
<tr>
<td>2417</td>
<td></td>
</tr>
<tr>
<td>3014</td>
<td></td>
</tr>
<tr>
<td>3017</td>
<td></td>
</tr>
<tr>
<td>3117</td>
<td></td>
</tr>
<tr>
<td>3617</td>
<td></td>
</tr>
<tr>
<td>3621</td>
<td></td>
</tr>
<tr>
<td>3717</td>
<td></td>
</tr>
<tr>
<td>4217</td>
<td></td>
</tr>
<tr>
<td>4221</td>
<td></td>
</tr>
<tr>
<td>4324</td>
<td></td>
</tr>
<tr>
<td>4821</td>
<td></td>
</tr>
<tr>
<td>4824</td>
<td></td>
</tr>
<tr>
<td>6024</td>
<td></td>
</tr>
<tr>
<td>6124</td>
<td></td>
</tr>
</tbody>
</table>
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Bryant
Model: FB4CNF-P

<table>
<thead>
<tr>
<th>Model & Size</th>
<th>Blower Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>Tap 5</td>
<td>767</td>
</tr>
<tr>
<td>Tap 4</td>
<td>614</td>
</tr>
<tr>
<td>Tap 3</td>
<td>701</td>
</tr>
<tr>
<td>Tap 2</td>
<td>614</td>
</tr>
<tr>
<td>Tap 1</td>
<td>720</td>
</tr>
<tr>
<td>Tap 5</td>
<td>959</td>
</tr>
<tr>
<td>Tap 4</td>
<td>826</td>
</tr>
<tr>
<td>Tap 3</td>
<td>826</td>
</tr>
<tr>
<td>Tap 2</td>
<td>701</td>
</tr>
<tr>
<td>Tap 1</td>
<td>617</td>
</tr>
<tr>
<td>Tap 5</td>
<td>1108</td>
</tr>
<tr>
<td>Tap 4</td>
<td>1326</td>
</tr>
<tr>
<td>Tap 3</td>
<td>1226</td>
</tr>
<tr>
<td>Tap 2</td>
<td>606</td>
</tr>
<tr>
<td>Tap 1</td>
<td>625</td>
</tr>
<tr>
<td>Tap 5</td>
<td>1301</td>
</tr>
<tr>
<td>Tap 4</td>
<td>1227</td>
</tr>
<tr>
<td>Tap 3</td>
<td>1227</td>
</tr>
<tr>
<td>Tap 2</td>
<td>1087</td>
</tr>
<tr>
<td>Tap 1</td>
<td>1020</td>
</tr>
<tr>
<td>Tap 5</td>
<td>1580</td>
</tr>
<tr>
<td>Tap 4</td>
<td>1419</td>
</tr>
<tr>
<td>Tap 3</td>
<td>1419</td>
</tr>
<tr>
<td>Tap 2</td>
<td>1249</td>
</tr>
<tr>
<td>Tap 1</td>
<td>1242</td>
</tr>
<tr>
<td>Tap 5</td>
<td>1743</td>
</tr>
<tr>
<td>Tap 4</td>
<td>1660</td>
</tr>
<tr>
<td>Tap 3</td>
<td>1559</td>
</tr>
<tr>
<td>Tap 2</td>
<td>1452</td>
</tr>
<tr>
<td>Tap 1</td>
<td>1300</td>
</tr>
<tr>
<td>Tap 5</td>
<td>1597</td>
</tr>
<tr>
<td>Tap 4</td>
<td>1517</td>
</tr>
<tr>
<td>Tap 3</td>
<td>1817</td>
</tr>
<tr>
<td>Tap 2</td>
<td>1557</td>
</tr>
<tr>
<td>Tap 1</td>
<td>1443</td>
</tr>
<tr>
<td>Tap 5</td>
<td>2030</td>
</tr>
<tr>
<td>Tap 4</td>
<td>1811</td>
</tr>
<tr>
<td>Tap 3</td>
<td>1911</td>
</tr>
<tr>
<td>Tap 2</td>
<td>1665</td>
</tr>
<tr>
<td>Tap 1</td>
<td>1462</td>
</tr>
</tbody>
</table>

Notes:
1. Airflow based upon dry coil at 205v with factory-approved filter and electric heater (2 element heater sizes 011 through 016, 3 element heater sizes 042 through 043). For FB4C models, airflow at 208 volts is approximately the same as 230 volts because the multi-stage ECM motor is a constant torque motor. The torque doesn’t drop off at the speeds the motor operates.
2. To avoid potential for condensate blowing out of drain pan prior to making drain trap.
3. Return static pressure must be less than 0.40 in wc. Horizontal applications of 043 - 061 sizes must have supply static greater than 0.20 in wc.
4. Airflow above 400 cfm/ton on 048-061 sizes could result in condensate blowing off coil or splashing out of drain pan.
Gross Cooling Capacities (MBH) - PURON® Refrigerant

<table>
<thead>
<tr>
<th>FBAC Unit Size</th>
<th>Indoor Coil Air</th>
<th>35/2</th>
<th>40/4</th>
<th>45/7</th>
<th>50/10</th>
<th>55/13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TC</td>
<td>SHC</td>
<td>BF</td>
<td>TC</td>
<td>SHC</td>
<td>BF</td>
</tr>
<tr>
<td>525</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>675</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>036</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manufacturer reserves the right to change, at any time, specifications and designs without notice and without obligations.
<table>
<thead>
<tr>
<th>FB/C Unit Size</th>
<th>INDOOR COIL AIR</th>
<th>SATURATED TEMPERATURE LEAVING EVAPORATOR (°F / °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35 / 2</td>
<td>40 / 4</td>
</tr>
<tr>
<td>1400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>048</td>
<td>72/22</td>
<td>68/22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>67/16</td>
<td>62/17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>72/22</td>
<td>67/19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>67/19</td>
<td>62/17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>72/22</td>
<td>67/19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 / 4</td>
<td>45 / 7</td>
</tr>
<tr>
<td>060</td>
<td>1000</td>
<td>72/22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1750</td>
<td>72/22</td>
<td>67/19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>72/22</td>
<td>67/19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50 / 10</td>
<td>55 / 13</td>
</tr>
<tr>
<td>061</td>
<td>1000</td>
<td>72/22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1750</td>
<td>72/22</td>
<td>67/19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>72/22</td>
<td>67/19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CFM - Cubic Ft per min EWB - Entering Wet Bulb °F (°C) LWB - Leaving Wet Bulb °F (°C) TC - Gross Cooling Capacity 1000 Btuh SHC - Gross sensible Capacity 1000 Btuh BF - Bypass Factor MBH - 1000 Btuh

NOTES:
1. Contact manufacturer for cooling capacities at conditions other than shown in table.
2. Formulas:
 - Leaving db = entering db - sensible heat cap.
 \[db_{leaving} = db_{entering} - \text{Sensible Heat Cap} \]
 \[1.09 \times \text{CFM} \]
 - Leaving wb = wb corresponding to enthalpy of air leaving coil (\(h_{wb} \)).
 \[h_{wb} = h_{vac} - \text{total capacity (Btu/h)} \]
 \[4.5 \times \text{CFM} \]
 - where \(h_{vac} \) = enthalpy of air entering coil. Direct interpolation is permissible. Do not extrapolate.
3. SHC is based on 80°F (27°C) db temperature of air entering coil. Below 80°F (27°C) db, subtract (Correction Factor x CFM) from SHC. Above 80°F (27°C) db, add (Correction Factor x CFM) to SHC.
4. Bypass Factor = 0 indicates no psychometric solution. Use bypass factor of next lower EWB for approximation.

SHC CORRECTION FACTOR

<table>
<thead>
<tr>
<th>EWB ENTERING AIR DRY-BULB TEMPERATURE (°F)</th>
<th>BYPASS FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>0.10</td>
</tr>
<tr>
<td>71</td>
<td>0.20</td>
</tr>
<tr>
<td>72</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Interpolation is permissible.

Correction Factor = 1.09 \times (1 - BF) \times (db - 80)

Go To Model List
FB4C AIR DELIVERY PERFORMANCE CORRECTION COMPONENT PRESSURE DROP (in w)c

AT INDICATED AIRFLOW (DRY TO WET COIL)

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
<th>1700</th>
<th>1800</th>
<th>1900</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>018</td>
<td>0.034</td>
<td>0.049</td>
<td>0.063</td>
<td>—</td>
</tr>
<tr>
<td>024</td>
<td>0.034</td>
<td>0.049</td>
<td>0.063</td>
<td>0.076</td>
<td>0.088</td>
<td>—</td>
</tr>
<tr>
<td>025</td>
<td>0.015</td>
<td>0.023</td>
<td>0.033</td>
<td>0.049</td>
<td>0.058</td>
<td>—</td>
</tr>
<tr>
<td>030</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.049</td>
<td>0.056</td>
<td>0.070</td>
<td>0.078</td>
<td>0.080</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>036</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.070</td>
<td>0.080</td>
<td>0.090</td>
<td>0.099</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>042</td>
<td>—</td>
<td>0.049</td>
<td>0.054</td>
<td>0.059</td>
<td>0.065</td>
<td>0.070</td>
</tr>
<tr>
<td>048</td>
<td>—</td>
</tr>
<tr>
<td>054</td>
<td>—</td>
</tr>
<tr>
<td>074</td>
<td>—</td>
</tr>
</tbody>
</table>

ELECTRIC HEATER STATIC PRESSURE DROP (in wc)

<table>
<thead>
<tr>
<th>HEATER ELEMENTS</th>
<th>kW</th>
<th>EXTERNAL STATIC PRESSURE CORRECTION</th>
<th>HEATER ELEMENTS</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>018 - 034</td>
<td>0</td>
<td>0.034</td>
<td>018 - 034</td>
<td>0</td>
</tr>
<tr>
<td>036</td>
<td>3.5</td>
<td>0.01</td>
<td>042 - 061</td>
<td>8</td>
</tr>
<tr>
<td>048</td>
<td>8.10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>054</td>
<td>18.20</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The airflow performance data was developed using fan coils with 10-kW electric heaters (3 elements) in the 018 through 036 size units and 15-kW heaters (3 elements) in the 042 through 061 size unit. For fan coils with heaters of a different number of elements, the external available static at a given CFM from the curve may be corrected by adding or subtracting available external static pressure as indicated above.

MINIMUM CFM AND MOTOR SPEED SELECTION

<table>
<thead>
<tr>
<th>FB4C</th>
<th>HEATER kW</th>
<th>3</th>
<th>5</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>15</th>
<th>18</th>
<th>20</th>
<th>24</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>018</td>
<td>—</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>—</td>
<td>600</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>024 & 025</td>
<td>—</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>—</td>
<td>700</td>
<td>775</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>030</td>
<td>—</td>
<td>875</td>
<td>875</td>
<td>875</td>
<td>—</td>
<td>875</td>
<td>875</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>036</td>
<td>—</td>
<td>1050</td>
<td>1070</td>
<td>1070</td>
<td>—</td>
<td>1050</td>
<td>1070</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>042</td>
<td>—</td>
<td>—</td>
<td>1225</td>
<td>1225</td>
<td>1225</td>
<td>1225</td>
<td>1225</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>048</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>—</td>
</tr>
<tr>
<td>054 & 051</td>
<td>—</td>
<td>—</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>—</td>
</tr>
</tbody>
</table>

Speed 2# (white wire) is used for electric heat only. White wire must remain on top 4.
Bryant FE4A Fe Coil Airflow Delivery Chart (CFM) — Electric Heating Models

<table>
<thead>
<tr>
<th>MODEL FE4A</th>
<th>OUTDOOR UNIT CAPACITY BTUH</th>
<th>ELECTRIC HEATER KW RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>002 EMERGENCY</td>
<td>625 625 675 775 960 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>002 18,000</td>
<td>625 625 675 775 960 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>002 24,000</td>
<td>650 725 775 925 1125 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>002 30,000</td>
<td>800 875 975 1025 1125 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>002 36,000</td>
<td>975 975 975 1025 1125 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>003 EMERGENCY</td>
<td>675 700 775 850 1050 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>003 24,000</td>
<td>675 700 775 850 1050 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>003 30,000</td>
<td>800 875 975 1025 1125 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>003 36,000</td>
<td>975 975 975 1025 1125 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>003 42,000</td>
<td>1125 1125 1125 1125 1125 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>005 EMERGENCY</td>
<td>675 700 775 850 1050 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>005 30,000</td>
<td>800 875 975 1025 1125 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>005 36,000</td>
<td>975 975 975 1025 1125 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>005 42,000</td>
<td>1125 1125 1125 1125 1125 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>005 48,000</td>
<td>1300 1300 1300 1300 1300 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>005 60,000</td>
<td>1625 1625 1625 1625 1625 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>006 EMERGENCY</td>
<td>1090 1090 1090 1090 1090 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>006 36,000</td>
<td>1050 1050 1100 1150 1300 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>006 42,000</td>
<td>1125 1125 1150 1200 1350 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>006 48,000</td>
<td>1300 1300 1300 1300 1300 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>006 60,000</td>
<td>1625 1625 1625 1625 1625 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>004 EMERGENCY</td>
<td>675 775 775 900 1125 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>004 24,000</td>
<td>975 975 975 1050 1200 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>004 30,000</td>
<td>1050 1050 1100 1150 1300 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>004 36,000</td>
<td>1050 1050 1100 1150 1300 — — —</td>
<td>— — — — — — — — —</td>
</tr>
<tr>
<td>004 42,000</td>
<td>1125 1125 1150 1200 1350 — — —</td>
<td>— — — — — — — — —</td>
</tr>
</tbody>
</table>

Notes:
1. Emergency — Air conditioner with electric heater application, or emergency heat.
2. These airflow rates are minimum airflow as UL listed.
3. Dashed entry indicates that the heater/fan coil/outdoor unit combination is not approved. Do not apply.

Go To Model List
For satisfactory operation (specifically making dry secondary trap), subject fan coils must be installed with duct systems which fall within the 'Acceptable Range' illustrated above.

MINIMUM RPM TABLE

<table>
<thead>
<tr>
<th>MODEL</th>
<th>SYSTEM SIZES</th>
<th>CFM RANGE</th>
<th>MIN RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEAANF002</td>
<td>018, 024, 030, 036</td>
<td>150 – 1200</td>
<td>300</td>
</tr>
<tr>
<td>FEAAN(BJ)003</td>
<td>024, 030, 036, 042</td>
<td>200 – 1400</td>
<td>285</td>
</tr>
<tr>
<td>FEAAN(BJ)006</td>
<td>036, 036, 042, 048</td>
<td>250 – 1600</td>
<td>275</td>
</tr>
<tr>
<td>FEAAB006</td>
<td>042, 042, 048, 060</td>
<td>500 – 2000</td>
<td>275</td>
</tr>
<tr>
<td>FEAAB004</td>
<td>042, 042, 048, 042</td>
<td>500 – 1400</td>
<td>275</td>
</tr>
</tbody>
</table>

MAXIMUM STATIC TABLE

<table>
<thead>
<tr>
<th>MODEL</th>
<th>AIRFLOW DELIVERY</th>
<th>AVAILABLE STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEAANF002</td>
<td>525 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>700 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>875 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1050 CFM</td>
<td>0.80 in wc</td>
</tr>
<tr>
<td></td>
<td>1200 CFM</td>
<td>0.50 in wc</td>
</tr>
<tr>
<td>FEAAN(BJ)003</td>
<td>700 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>875 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1050 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1225 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1400 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td>FEAAN(BJ)006</td>
<td>875 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1050 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1225 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1400 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1600 CFM</td>
<td>0.50 in wc</td>
</tr>
<tr>
<td></td>
<td>1750 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>2000 CFM</td>
<td>0.60 in wc</td>
</tr>
<tr>
<td>FEAAB004</td>
<td>700 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>875 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1050 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1225 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1400 CFM</td>
<td>1.00 in wc</td>
</tr>
</tbody>
</table>
Gross Cooling Capacities (MBTUH)

<table>
<thead>
<tr>
<th>CFM</th>
<th>35/2</th>
<th>40/4</th>
<th>45/7</th>
<th>50/10</th>
<th>55/13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor Air</td>
<td>Outdoor Air</td>
<td>Indoor Air</td>
<td>Outdoor Air</td>
<td>Indoor Air</td>
<td>Outdoor Air</td>
</tr>
<tr>
<td>Indoor</td>
<td>Outdoor</td>
<td>Indoor</td>
<td>Outdoor</td>
<td>Indoor</td>
<td>Outdoor</td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>SHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SHC CORRECTION FACTOR

<table>
<thead>
<tr>
<th>ENTERING AIR DRY-BULB TEMPERATURE (°F)</th>
<th>BYPASS FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>0.10</td>
</tr>
<tr>
<td>78</td>
<td>0.15</td>
</tr>
<tr>
<td>77</td>
<td>0.20</td>
</tr>
<tr>
<td>76</td>
<td>0.25</td>
</tr>
<tr>
<td>75</td>
<td>0.30</td>
</tr>
<tr>
<td>Under 75</td>
<td></td>
</tr>
<tr>
<td>Correction Factor</td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>0.15</td>
</tr>
<tr>
<td>0.20</td>
<td>0.25</td>
</tr>
<tr>
<td>0.30</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Interpolation is permissible.

Correction Factor = 1.09 x (1 - db x (db - 80))

AIRFLOW PERFORMANCE CORRECTION FACTORS

<table>
<thead>
<tr>
<th>HEATER kW</th>
<th>ELEMENTS</th>
<th>STATIC PRESSURE CORRECTION (in wc)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sizes 002-005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Size 006</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.02</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>8, 10</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>9, 15</td>
<td>3</td>
<td>0.06</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>0.06</td>
</tr>
<tr>
<td>18, 24, 30</td>
<td>6</td>
<td>0.10</td>
</tr>
</tbody>
</table>

The airflow performance table was developed using fan coils with 10 kW electric heaters [2 elements] in the units. For fan coils with heaters made up of a different number of elements, the external available static at a given CFM from the table may be corrected by adding or subtracting pressure. Use table for this correction.

FACTORY-INSTALLED FILTER STATIC PRESSURE DROP (in wc)

<table>
<thead>
<tr>
<th>MODEL</th>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE4A</td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>0.020 0.044 0.048 0.072 0.100 — — — —</td>
</tr>
<tr>
<td>003</td>
<td>0.020 0.035 0.051 0.070 0.092 — — — —</td>
</tr>
<tr>
<td>005</td>
<td>— — 0.035 0.051 0.070 0.092 0.120 — —</td>
</tr>
<tr>
<td>006</td>
<td>— — — — 0.038 0.053 0.070 0.086 0.105 0.133</td>
</tr>
</tbody>
</table>

MODEL

<table>
<thead>
<tr>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FESA</td>
</tr>
<tr>
<td>004</td>
</tr>
</tbody>
</table>

AIR DELIVERY PERFORMANCE CORRECTION COMPONENT PRESSURE DROP (in wc) AT INDICATED AIRFLOW (DRY TO WET COIL)

<table>
<thead>
<tr>
<th>MODEL</th>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE4A</td>
<td>600</td>
</tr>
<tr>
<td>002</td>
<td>0.012 0.016 0.022 0.028 0.034 0.040 0.049 — — — —</td>
</tr>
<tr>
<td>003</td>
<td>— — 0.023 0.034 0.042 0.052 0.063 0.075 0.086 0.091 0.098 0.119</td>
</tr>
<tr>
<td>005</td>
<td>0.006 0.008 0.010 0.012 0.015 0.017 0.020 0.023 0.027 0.030</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
</tr>
<tr>
<td>006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FESA</td>
</tr>
<tr>
<td>004</td>
</tr>
</tbody>
</table>

NOTE: Subtract the above pressure drop corrections from unit airflow data when that component or condition is used. The remaining internal static pressure will be available for the duct system.
Manufacturer: Bryant
Model: FV4C

FV4C Advanced Fan Coil Airflow Delivery Chart (CFM)

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>OUTDOOR UNIT CAPACITY</th>
<th>OPERATING MODE</th>
<th>SINGLE—SPEED APPLICATION</th>
<th>TWO—SPEED APPLICATION</th>
<th>FAN ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nominal A/C Cooling</td>
<td>A/C Cooling Dehumidity</td>
<td>High Speed</td>
</tr>
<tr>
<td>002</td>
<td>018</td>
<td></td>
<td>525</td>
<td>420</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>024</td>
<td></td>
<td>700</td>
<td>560</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td></td>
<td>875</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td></td>
<td>1050</td>
<td>840</td>
<td>840</td>
</tr>
<tr>
<td>003</td>
<td>024</td>
<td></td>
<td>700</td>
<td>560</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td></td>
<td>875</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td></td>
<td>1050</td>
<td>840</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td></td>
<td>1225</td>
<td>980</td>
<td>1050</td>
</tr>
<tr>
<td>005</td>
<td>030</td>
<td></td>
<td>875</td>
<td>700</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td></td>
<td>1050</td>
<td>840</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td></td>
<td>1225</td>
<td>980</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td></td>
<td>1400</td>
<td>1120</td>
<td>1400</td>
</tr>
<tr>
<td>006</td>
<td>036</td>
<td></td>
<td>1050</td>
<td>840</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td></td>
<td>1225</td>
<td>980</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td></td>
<td>1400</td>
<td>1120</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>060</td>
<td></td>
<td>1750</td>
<td>1400</td>
<td>1750</td>
</tr>
</tbody>
</table>

NOTES:
1. The above airflow results with the AC, HP CFM ADJUST select jumper set on NOM.
2. Airflow can be adjusted +15% or –10% by selecting HI or LO respectively for all modes except fan only.
3. Dry coil at 230 volts and with 10kW heater and filter installed.
4. Airflows shown are at standard air conditions.

Consult ARI ratings before matching outdoor unit with FV4C fan coil.
FV4C Advanced Fan Coil Airflow Delivery Chart (CFM)

Operating Mode

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>OUTDOOR UNIT CAPACITY</th>
<th>SINGLE—SPEED APPLICATION</th>
<th>TWO—SPEED APPLICATION</th>
<th>FAN ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nominal A/C Cooling</td>
<td>A/C Cooling Dehumidity</td>
<td>High Speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nominal A/C Cooling</td>
<td>A/C Cooling Dehumidity</td>
<td>Nominal A/C Cooling</td>
</tr>
<tr>
<td>002</td>
<td>018</td>
<td>525</td>
<td>420</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>024</td>
<td>700</td>
<td>560</td>
<td>875</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>875</td>
<td>700</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>1050</td>
<td>840</td>
<td>1225</td>
</tr>
<tr>
<td>003</td>
<td>024</td>
<td>700</td>
<td>560</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>875</td>
<td>700</td>
<td>1225</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>1050</td>
<td>840</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1225</td>
<td>880</td>
<td>1400</td>
</tr>
<tr>
<td>005</td>
<td>030</td>
<td>875</td>
<td>700</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>1050</td>
<td>840</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1225</td>
<td>880</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td>1400</td>
<td>1120</td>
<td>1400</td>
</tr>
</tbody>
</table>

NOTES:
1. The above airflows result with the AC, HP CFM ADJUST select jumper set on NOM.
2. Air flow can be adjusted +15% or −10% by selecting Hi or LO respectively for all modes except fan only.
3. Dry coil at 230 volts and with 10kW heater and filter installed.
4. Airflows shown are at standard air conditions.

FV4C Advanced Fan Coil Airflow Delivery Chart (CFM)

Operating Mode

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>OUTDOOR UNIT CAPACITY</th>
<th>SINGLE—SPEED APPLICATION</th>
<th>TWO—SPEED APPLICATION</th>
<th>FAN ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Heat Pump Comfort</td>
<td>Heat Pump Efficiency</td>
<td>High Speed</td>
</tr>
<tr>
<td>002</td>
<td>018</td>
<td>470</td>
<td>525</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td>024</td>
<td>630</td>
<td>700</td>
<td>785</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>875</td>
<td>875</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>945</td>
<td>1050</td>
<td>1225</td>
</tr>
<tr>
<td>003</td>
<td>024</td>
<td>630</td>
<td>700</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>785</td>
<td>875</td>
<td>1225</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>945</td>
<td>1050</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1100</td>
<td>1225</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td>1260</td>
<td>1400</td>
<td>1400</td>
</tr>
<tr>
<td>005</td>
<td>030</td>
<td>785</td>
<td>875</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>945</td>
<td>1050</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1100</td>
<td>1225</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td>1260</td>
<td>1400</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>060</td>
<td>1575</td>
<td>1750</td>
<td>1400</td>
</tr>
</tbody>
</table>

NOTES:
1. The above airflows result with the AC, HP CFM ADJUST select jumper set on NOM.
2. Air flow can be adjusted +15% or −10% by selecting Hi or LO respectively for all modes except fan only.
3. Dry coil at 230 volts and with 10kW heater and filter installed.
4. Airflows shown are at standard air conditions.
AIRFLOW DELIVERY CHART (CFM) — ELECTRIC HEATING MODES

<table>
<thead>
<tr>
<th>FAN UNIT SIZE</th>
<th>OUTDOOR UNIT CAPACITY BTUH</th>
<th>ELECTRIC HEATER kW RANGE</th>
<th>0-5</th>
<th>0-10</th>
<th>0-15</th>
<th>0-20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0-10</td>
<td>0-15</td>
<td>0-20</td>
<td>0-30</td>
<td>0-10</td>
</tr>
<tr>
<td>002</td>
<td></td>
<td>Lo</td>
<td>Nom</td>
<td>High</td>
<td>Lo</td>
<td>Nom</td>
</tr>
<tr>
<td>18,000</td>
<td>625</td>
<td>625</td>
<td>625</td>
<td>625</td>
<td>675</td>
<td>675</td>
</tr>
<tr>
<td>24,000</td>
<td>650</td>
<td>725</td>
<td>835</td>
<td>905</td>
<td>875</td>
<td>875</td>
</tr>
<tr>
<td>30,000</td>
<td>815</td>
<td>905</td>
<td>1040</td>
<td>905</td>
<td>1040</td>
<td>1040</td>
</tr>
<tr>
<td>36,000</td>
<td>980</td>
<td>1085</td>
<td>1250</td>
<td>1085</td>
<td>1250</td>
<td>1250</td>
</tr>
</tbody>
</table>

003		Lo	Nom	High						
24,000	675	725	835	875	875	875	875	875	875	875
30,000	815	905	1040	905	1040	1040	1040	1100	1100	1100
36,000	980	1085	1250	1085	1250	1250	1250	1100	1100	1100
42,000	1140	1270	1460	1270	1460	1460	1460	1140	1270	1460

<table>
<thead>
<tr>
<th>FAN UNIT SIZE</th>
<th>OUTDOOR UNIT CAPACITY BTUH</th>
<th>ELECTRIC HEATER kW RANGE</th>
<th>0-10</th>
<th>0-15</th>
<th>0-20</th>
<th>0-30</th>
<th>0-10</th>
<th>0-15</th>
<th>0-20</th>
<th>0-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>005</td>
<td></td>
<td>Lo</td>
<td>Nom</td>
<td>High</td>
<td>Lo</td>
<td>Nom</td>
<td>High</td>
<td>Lo</td>
<td>Nom</td>
<td>High</td>
</tr>
<tr>
<td>30,000</td>
<td>975</td>
</tr>
<tr>
<td>36,000</td>
<td>980</td>
<td>1085</td>
<td>1250</td>
<td>1085</td>
<td>1250</td>
<td>1250</td>
<td>1250</td>
<td>1085</td>
<td>1250</td>
<td>1250</td>
</tr>
<tr>
<td>42,000</td>
<td>1140</td>
<td>1270</td>
<td>1460</td>
<td>1270</td>
<td>1460</td>
<td>1460</td>
<td>1460</td>
<td>1140</td>
<td>1270</td>
<td>1460</td>
</tr>
<tr>
<td>48,000</td>
<td>1305</td>
<td>1450</td>
<td>1665</td>
<td>1450</td>
<td>1665</td>
<td>1665</td>
<td>1665</td>
<td>1305</td>
<td>1450</td>
<td>1665</td>
</tr>
<tr>
<td>60,000</td>
<td>1630</td>
<td>1810</td>
<td>2085</td>
<td>1810</td>
<td>2085</td>
<td>2085</td>
<td>2085</td>
<td>1630</td>
<td>1810</td>
<td>2085</td>
</tr>
</tbody>
</table>

006		Lo	Nom	High						
36,000	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
42,000	1140	1270	1460	1270	1460	1460	1460	1140	1270	1460
48,000	1305	1450	1665	1450	1665	1665	1665	1305	1450	1665
60,000	1630	1810	2085	1810	2085	2085	2085	1630	1810	2085

NOTE: Lo, Nom, and Hi refer to AC HP CPM ADJUST selection. Airflow not recommended for heater/system size.

MINIMUM CFM FOR ELECTRIC HEATER APPLICATION

<table>
<thead>
<tr>
<th>FAN COIL UNIT</th>
<th>HEAT PUMP UNIT SIZE</th>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>002</td>
<td>Heater Only</td>
<td>625</td>
</tr>
<tr>
<td>018</td>
<td></td>
<td>625</td>
</tr>
<tr>
<td>024</td>
<td></td>
<td>650</td>
</tr>
<tr>
<td>030</td>
<td></td>
<td>800</td>
</tr>
<tr>
<td>036</td>
<td></td>
<td>970</td>
</tr>
<tr>
<td>003</td>
<td>Heater Only</td>
<td>675</td>
</tr>
<tr>
<td>024</td>
<td></td>
<td>675</td>
</tr>
<tr>
<td>030</td>
<td></td>
<td>675</td>
</tr>
<tr>
<td>036</td>
<td></td>
<td>975</td>
</tr>
<tr>
<td>042</td>
<td></td>
<td>1125</td>
</tr>
<tr>
<td>005</td>
<td>Heater Only</td>
<td>675</td>
</tr>
<tr>
<td>018</td>
<td></td>
<td>800</td>
</tr>
<tr>
<td>036</td>
<td></td>
<td>975</td>
</tr>
<tr>
<td>042</td>
<td></td>
<td>1125</td>
</tr>
<tr>
<td>048</td>
<td></td>
<td>1305</td>
</tr>
<tr>
<td>006</td>
<td>Heater Only</td>
<td>1050</td>
</tr>
<tr>
<td>018</td>
<td></td>
<td>1100</td>
</tr>
<tr>
<td>042</td>
<td></td>
<td>1125</td>
</tr>
<tr>
<td>048</td>
<td></td>
<td>1300</td>
</tr>
<tr>
<td>060</td>
<td></td>
<td>1625</td>
</tr>
</tbody>
</table>

NOTES:
1. Heater Only—Air conditioner with electric heater application.
2. These airflow values are minimum acceptable airflow for UL listed. Actual airflow delivered will be per airflow delivery chart for Electric Heating Modes.
ACCEPTABLE DUCT CONDITIONS

For satisfactory operation (specifically making dry secondary traps), subject fan coils must be installed with duct systems which fall within the “Acceptable Range” illustrated above.

The airflow performance charts for the FV4C fan coil depict nominal airflow delivery for heating and cooling mode operation versus duct system static pressure drop. Cooling mode operation is shown as solid vertical lines for all 4 system size selections. Heating mode operation for the 4 system size selections are shown as dashed vertical lines.

The dotted curved lines are static pressure drop characteristics for several fixed-duct systems. These lines can be used to predict the system static pressure drop at any airflow given the actual drop at 1 known point.

For example, a duct system is designed for 0.15 in. water column (in. w.c.) drop at 1200 CFM. The FV4CNF005 operating at nominal cooling airflow would deliver 1050 CFM with a duct system drop of 0.11 in. w.c. (See point 1.) On the same duct system, the FV4CNF005 operating at nominal heating airflow would deliver 945 CFM with a duct system drop of 0.09 in. w.c. (See point 2.)

This example is but one of many possible duct system designs. The FV4CNF005 will deliver the above airflow against much higher static pressures.
AIRFLOW PERFORMANCE

FV4CNF002

Nominal Cooling and Heat Pump Efficiency airflow for each size selection. Airflow can be adjusted +15% to –10%.
Nominal Heat Pump Comfort airflow for each size selection. Airflow can be adjusted +15% to –10%.
Maximum cooling airflow for largest size selection. Adjusted +15% from nominal.
Read Duct Systems (See description under Acceptable Duct Conditions.)
AIRFLOW PERFORMANCE

FV4CN(B,F)003

Nominal Cooling and Heat Pump Efficiency airflow for each size selection. Airflow can be adjusted +15% to –15%.
Nominal Heat Pump Comfort airflow for each size selection. Airflow can be adjusted +15% to –10%.
Maximum cooling airflow for largest size selection. Adjusted +15% from nominal.
Fixed Duct Systems (See description under Acceptable Duct Conditions.)
AIRFLOW PERFORMANCE

FV4CNB006

- Nominal Cooling and Heat Pump Efficiency airflow for each size selection. Airflow can be adjusted +15% to -10%.
- Nominal Heat Pump Comfort airflow for each size selection. Airflow can be adjusted +15% to -10%.
- Maximum cooling airflow for largest size selection. Adjusted +15% from nominal.
- Read Duct Systems (See description under Acceptable Duct Conditions.)
AIRFLOW PERFORMANCE CORRECTION FACTORS

<table>
<thead>
<tr>
<th>HEATER kW</th>
<th>ELEMENTS</th>
<th>STATIC PRESSURE CORRECTION (in. wc)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sizes 002-005</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>+.02</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>+.01</td>
</tr>
<tr>
<td>8, 10</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9, 15</td>
<td>3</td>
<td>-.02</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>-.04</td>
</tr>
<tr>
<td>18, 24, 30</td>
<td>6</td>
<td>-.06</td>
</tr>
</tbody>
</table>

The FV4C airflow performance table was developed using fan coils with 10 kW electric heaters (2 elements) in the units. For fan coils with heaters made up of a different number of elements, the external available static at a given CFM from the table may be corrected by adding or subtracting pressure. Use table for this correction.

FACTORY-INSTALLED FILTER STATIC PRESSURE DROP (in. wc)

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>CFM 400</th>
<th>CFM 600</th>
<th>CFM 800</th>
<th>CFM 1000</th>
<th>CFM 1200</th>
<th>CFM 1400</th>
<th>CFM 1600</th>
<th>CFM 1800</th>
<th>CFM 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>-0.020</td>
<td>0.044</td>
<td>0.048</td>
<td>0.072</td>
<td>0.100</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>003</td>
<td>—</td>
<td>0.020</td>
<td>0.035</td>
<td>0.061</td>
<td>0.070</td>
<td>0.092</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>005</td>
<td>—</td>
<td>—</td>
<td>0.035</td>
<td>0.061</td>
<td>0.070</td>
<td>0.092</td>
<td>0.120</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>006</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.038</td>
<td>0.063</td>
<td>0.070</td>
<td>0.086</td>
<td>0.105</td>
<td>0.133</td>
</tr>
</tbody>
</table>

AIR DELIVERY PERFORMANCE CORRECTION COMPONENT PRESSURE DROP (IN. WC)

AT INDICATED AIRFLOW (DRY TO WET COIL)

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>CFM 600</th>
<th>CFM 700</th>
<th>CFM 800</th>
<th>CFM 900</th>
<th>CFM 1000</th>
<th>CFM 1100</th>
<th>CFM 1200</th>
<th>CFM 1300</th>
<th>CFM 1400</th>
<th>CFM 1500</th>
<th>CFM 1600</th>
<th>CFM 1700</th>
<th>CFM 1800</th>
<th>CFM 1900</th>
<th>CFM 2000</th>
<th>CFM 2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>0.012</td>
<td>0.016</td>
<td>0.022</td>
<td>0.028</td>
<td>0.034</td>
<td>0.040</td>
<td>0.049</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>003</td>
<td>—</td>
<td>0.026</td>
<td>0.034</td>
<td>0.042</td>
<td>0.052</td>
<td>0.063</td>
<td>0.075</td>
<td>0.083</td>
<td>0.091</td>
<td>0.098</td>
<td>0.110</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>005</td>
<td>—</td>
<td>—</td>
<td>0.008</td>
<td>0.010</td>
<td>0.012</td>
<td>0.015</td>
<td>0.017</td>
<td>0.020</td>
<td>0.023</td>
<td>0.027</td>
<td>0.030</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>006</td>
<td>0.013</td>
<td>0.016</td>
<td>0.018</td>
<td>0.020</td>
<td>0.023</td>
<td>0.027</td>
<td>0.030</td>
<td>0.034</td>
<td>0.039</td>
<td>0.044</td>
<td>0.048</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Table 1 – AIRFLOW PERFORMANCE (CFM)

<table>
<thead>
<tr>
<th>Model & Size</th>
<th>Blower Speed</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>FX4D 019</td>
<td>Tap 5</td>
<td>576</td>
<td>546</td>
<td>596</td>
<td>600</td>
<td>609</td>
<td>572</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>683</td>
<td>644</td>
<td>589</td>
<td>548</td>
<td>484</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>683</td>
<td>644</td>
<td>589</td>
<td>548</td>
<td>494</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>631</td>
<td>563</td>
<td>500</td>
<td>443</td>
<td>409</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>631</td>
<td>563</td>
<td>500</td>
<td>443</td>
<td>409</td>
<td>361</td>
</tr>
<tr>
<td>FX4D 025</td>
<td>Tap 5</td>
<td>956</td>
<td>920</td>
<td>891</td>
<td>851</td>
<td>816</td>
<td>780</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>823</td>
<td>795</td>
<td>757</td>
<td>722</td>
<td>674</td>
<td>634</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>823</td>
<td>795</td>
<td>757</td>
<td>722</td>
<td>674</td>
<td>634</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>726</td>
<td>695</td>
<td>655</td>
<td>598</td>
<td>543</td>
<td>509</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>631</td>
<td>563</td>
<td>500</td>
<td>443</td>
<td>409</td>
<td>361</td>
</tr>
<tr>
<td>FX4D 031</td>
<td>Tap 5</td>
<td>1189</td>
<td>1151</td>
<td>1104</td>
<td>1050</td>
<td>1003</td>
<td>959</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1041</td>
<td>998</td>
<td>944</td>
<td>886</td>
<td>837</td>
<td>772</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1041</td>
<td>998</td>
<td>944</td>
<td>886</td>
<td>837</td>
<td>772</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>924</td>
<td>876</td>
<td>817</td>
<td>752</td>
<td>704</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>779</td>
<td>693</td>
<td>628</td>
<td>571</td>
<td>526</td>
<td>476</td>
</tr>
<tr>
<td>FX4D 037</td>
<td>Tap 5</td>
<td>1303</td>
<td>1332</td>
<td>1294</td>
<td>1253</td>
<td>1207</td>
<td>1157</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1237</td>
<td>1206</td>
<td>1180</td>
<td>1121</td>
<td>1070</td>
<td>1013</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1237</td>
<td>1206</td>
<td>1180</td>
<td>1121</td>
<td>1070</td>
<td>1013</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>1095</td>
<td>1058</td>
<td>1007</td>
<td>951</td>
<td>888</td>
<td>824</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>1014</td>
<td>885</td>
<td>773</td>
<td>673</td>
<td>609</td>
<td>549</td>
</tr>
<tr>
<td>FX4D 043</td>
<td>Tap 5</td>
<td>1510</td>
<td>1460</td>
<td>1414</td>
<td>1379</td>
<td>1332</td>
<td>1285</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1457</td>
<td>1403</td>
<td>1356</td>
<td>1313</td>
<td>1269</td>
<td>1225</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1437</td>
<td>1403</td>
<td>1356</td>
<td>1313</td>
<td>1269</td>
<td>1225</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>1257</td>
<td>1226</td>
<td>1191</td>
<td>1141</td>
<td>1090</td>
<td>1033</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>1257</td>
<td>1226</td>
<td>1191</td>
<td>1141</td>
<td>1090</td>
<td>1033</td>
</tr>
<tr>
<td>FX4D 040</td>
<td>Tap 5</td>
<td>1757</td>
<td>1725</td>
<td>1693</td>
<td>1653</td>
<td>1614</td>
<td>1576</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1664</td>
<td>1626</td>
<td>1593</td>
<td>1552</td>
<td>1517</td>
<td>1477</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1664</td>
<td>1626</td>
<td>1593</td>
<td>1552</td>
<td>1517</td>
<td>1477</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>1459</td>
<td>1420</td>
<td>1379</td>
<td>1336</td>
<td>1298</td>
<td>1259</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>1301</td>
<td>1241</td>
<td>1195</td>
<td>1150</td>
<td>1102</td>
<td>1059</td>
</tr>
<tr>
<td>FX4D 051</td>
<td>Tap 5</td>
<td>2050</td>
<td>1995</td>
<td>1941</td>
<td>1897</td>
<td>1843</td>
<td>1789</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1811</td>
<td>1775</td>
<td>1740</td>
<td>1703</td>
<td>1664</td>
<td>1613</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1811</td>
<td>1775</td>
<td>1740</td>
<td>1703</td>
<td>1664</td>
<td>1613</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>1685</td>
<td>1632</td>
<td>1593</td>
<td>1556</td>
<td>1507</td>
<td>1453</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>1402</td>
<td>1348</td>
<td>1317</td>
<td>1282</td>
<td>1248</td>
<td>1208</td>
</tr>
</tbody>
</table>

NOTES:
1. Airflow based upon dry coil at 230v with factory-approved filters and electric heater (1 element heater uses 018 through 037, 3 element heater uses 043 through 061).
2. Airflow at 208 volts is approximately the same as 230 volts because the multi-stage ECM motor is a constant torque motor. The torque doesn’t drop off at the speed; the motor operates.
3. To avoid potential for condensate blowing out of drain pan prior to making drain trap.
 - Return static pressures must be less than 0.40” w.c.
 - Horizontal applications of 043 – 061 sizes must have supply static greater than 0.20” w.c.
 - Airflow above 400 cfm airflow on 043-061 sizes could result in condensate blowing off coil or splashing out of drain pan.
Table 1 – INDOOR COIL AIR

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>CFM</th>
<th>EWB</th>
<th>TC</th>
<th>SHC</th>
<th>BF</th>
<th>35/2</th>
<th>40/4</th>
<th>45/7</th>
<th>50/10</th>
<th>55/13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>72/22</td>
<td>109</td>
<td>67</td>
<td>95</td>
<td>50.00</td>
<td>86</td>
<td>45</td>
<td>50.00</td>
<td>39</td>
<td>32</td>
</tr>
<tr>
<td>1750</td>
<td>72/22</td>
<td>117</td>
<td>67</td>
<td>95</td>
<td>50.00</td>
<td>52</td>
<td>45</td>
<td>50.00</td>
<td>39</td>
<td>32</td>
</tr>
<tr>
<td>2000</td>
<td>129</td>
<td>116</td>
<td>62.00</td>
<td>56.00</td>
<td>6.04</td>
<td>78</td>
<td>54</td>
<td>67</td>
<td>54</td>
<td>67</td>
</tr>
</tbody>
</table>

NOTES:
1. Contact manufacturer for cooling capacities at conditions other than those shown in table.
2. Formulas:
 - Leaving w_b = entering w_b - sensible heat gain
 - 1.09 x CFM
 - Leaving w_b = w_b corresponding to enthalpy of air leaving coil (h_{ent})
 - 4.5 x CFM
 - where h_{ent} = enthalpy of air entering coil. Direct interpolation is permissible. Do not extrapolate.
3. SHC is based on 80°F (27°C) db temperature of air entering coil. Below 80°F (27°C) db, subtract (Correction Factor x CFM) from SHC. Above 80°F (27°C) db, add (Correction Factor x CFM) to SHC.
4. Bypass Factor = 0 indicates no psychometric solution. Use bypass factor of next lower EWB for approximation.

Table 2 – SATURATED TEMPERATURE LEAVING EVAPORATOR (°F/°C)

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>CFM</th>
<th>EWB</th>
<th>TC</th>
<th>SHC</th>
<th>BF</th>
<th>35/2</th>
<th>40/4</th>
<th>45/7</th>
<th>50/10</th>
<th>55/13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>72/22</td>
<td>109</td>
<td>67</td>
<td>95</td>
<td>50.00</td>
<td>86</td>
<td>45</td>
<td>50.00</td>
<td>39</td>
<td>32</td>
</tr>
<tr>
<td>1750</td>
<td>72/22</td>
<td>117</td>
<td>67</td>
<td>95</td>
<td>50.00</td>
<td>52</td>
<td>45</td>
<td>50.00</td>
<td>39</td>
<td>32</td>
</tr>
<tr>
<td>2000</td>
<td>129</td>
<td>116</td>
<td>62.00</td>
<td>56.00</td>
<td>6.04</td>
<td>78</td>
<td>54</td>
<td>67</td>
<td>54</td>
<td>67</td>
</tr>
</tbody>
</table>

Table 3 – SHC CORRECTION FACTOR

<table>
<thead>
<tr>
<th>ENTERING-AIR DRY-BULB TEMPERATURE (°F)</th>
<th>BYPASS FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>0.10</td>
</tr>
<tr>
<td>78</td>
<td>0.08</td>
</tr>
<tr>
<td>77</td>
<td>1.96</td>
</tr>
<tr>
<td>76</td>
<td>2.94</td>
</tr>
<tr>
<td>75</td>
<td>3.92</td>
</tr>
<tr>
<td>81</td>
<td>0.20</td>
</tr>
<tr>
<td>82</td>
<td>0.76</td>
</tr>
<tr>
<td>83</td>
<td>1.53</td>
</tr>
<tr>
<td>84</td>
<td>2.29</td>
</tr>
<tr>
<td>85</td>
<td>3.05</td>
</tr>
<tr>
<td>86</td>
<td>3.82</td>
</tr>
</tbody>
</table>

Interpolation is permissible.

Correction Factor = 1.09 x (1 - BF) x (DB - 80)

Table 4 – MINIMUM CFM AND MOTOR SPEED SELECTION

<table>
<thead>
<tr>
<th>FAN COIL SIZES FX</th>
<th>HEATER KW</th>
</tr>
</thead>
<tbody>
<tr>
<td>019</td>
<td>30</td>
</tr>
<tr>
<td>025</td>
<td>20</td>
</tr>
<tr>
<td>031</td>
<td>10</td>
</tr>
<tr>
<td>037</td>
<td>5</td>
</tr>
<tr>
<td>043</td>
<td>3</td>
</tr>
<tr>
<td>049</td>
<td>2</td>
</tr>
<tr>
<td>061</td>
<td>1</td>
</tr>
</tbody>
</table>

Indicates medium speed (Blom). All other motor speeds at low tap.

Table 5 – AIR DELIVERY PERFORMANCE CORRECTION COMPONENT PRESSURE DROP (in wce)

<table>
<thead>
<tr>
<th>CPU SIZE</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
<th>1700</th>
<th>1800</th>
<th>1900</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>019</td>
<td>0.014</td>
<td>0.049</td>
<td>0.053</td>
<td>0.055</td>
<td>0.056</td>
</tr>
<tr>
<td>025</td>
<td>0.016</td>
<td>0.037</td>
<td>0.038</td>
<td>0.049</td>
<td>0.059</td>
</tr>
<tr>
<td>031</td>
<td>0.049</td>
<td>0.059</td>
<td>0.070</td>
<td>0.080</td>
<td>0.081</td>
</tr>
<tr>
<td>037</td>
<td>0.049</td>
<td>0.059</td>
<td>0.070</td>
<td>0.080</td>
<td>0.081</td>
</tr>
<tr>
<td>043</td>
<td>0.049</td>
<td>0.059</td>
<td>0.070</td>
<td>0.080</td>
<td>0.081</td>
</tr>
<tr>
<td>049</td>
<td>0.049</td>
<td>0.059</td>
<td>0.070</td>
<td>0.080</td>
<td>0.081</td>
</tr>
<tr>
<td>061</td>
<td>0.049</td>
<td>0.059</td>
<td>0.070</td>
<td>0.080</td>
<td>0.081</td>
</tr>
</tbody>
</table>
Table 6 – FACTORY-INSTALLED FILTER STATIC PRESSURE DROP (in wc)

<table>
<thead>
<tr>
<th>Unit Size FX40</th>
<th>CFM 400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
<th>1200</th>
<th>1400</th>
<th>1600</th>
<th>1800</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>019, 025</td>
<td>0.012</td>
<td>0.022</td>
<td>0.048</td>
<td>0.072</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>037, 043</td>
<td>—</td>
<td>—</td>
<td>0.036</td>
<td>0.051</td>
<td>0.07</td>
<td>0.092</td>
<td>0.12</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>045, 061</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.073</td>
<td>0.086</td>
<td>0.105</td>
<td>0.13</td>
<td></td>
</tr>
</tbody>
</table>

Table 7 – ELECTRIC HEATER STATIC PRESSURE DROP (in wc)

<table>
<thead>
<tr>
<th>HEATER ELEMENTS</th>
<th>019 - 037</th>
<th>045 - 061</th>
</tr>
</thead>
<tbody>
<tr>
<td>KW</td>
<td>EXTERNAL STATIC PRESSURE CORRECTION</td>
<td>KW</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3.5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>8.10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>9.15</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

The airflow performance data was developed using fan coils with 10-kW electric heaters (2 elements) in the 019 through 037 size units and 15-kW heaters (3 elements) in the 045 through 061 size units.

For fan coils with heaters of a different number of elements, the external available static at a given CFM from the curve may be corrected by adding or subtracting available external static pressure as indicated above.
Wireless Remote Controller

1. A wireless remote controller is supplied for setting airflow. Please refer to the installation manual in HVAC Partners for setting airflow.
2. The Infrared receiver is located inside the control box of the indoor Air Handler and can be relocated if necessary.

Fig. 5 — Wireless Remote Controller

Air Flow Data

<table>
<thead>
<tr>
<th>SYSTEM SIZE</th>
<th>24K (208/230V)</th>
<th>36K (208/230V)</th>
<th>48K (208/230V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airflow** (CFM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>882</td>
<td>1,176</td>
<td>1,412</td>
</tr>
<tr>
<td>Medium</td>
<td>765</td>
<td>1,000</td>
<td>1,294</td>
</tr>
<tr>
<td>Low</td>
<td>588</td>
<td>824</td>
<td>1,176</td>
</tr>
</tbody>
</table>

Airflow values obtained at AHRI 210/240 rating conditions.
**Measured at rates static pressure:
24K: 0.1 in. WG (25pa)
36K: 0.15 in. WG (37pa)
48K: 0.2 in. WG (50pa)

Manufacturer: Carrier
Model: 40MBAA
SETTING STATIC PRESSURE AND AIRFLOW

The indoor fin coil units can be programmed to have different static pressures settings or airflows; the factory default setting is SP1. Follow the next steps to set the static pressure or Automatic Airflow using the Wireless Remote Controller according to the installation conditions.

- The external static pressure can be manually changed to the fan curves SP1, SP2, SP3, SP4.
- Choose the Automatic Airflow “AF” adjustment function to automatically identify the static pressure and regulate the airflow amount.

Follow these instructions to configure:

1. Ensure the test run is done with a dry coil. If the coil is not dry, run the unit for 2 hours in the FAN ONLY mode to dry the coil.
2. Check that both the power supply wiring and the duct installation have been completed. Check that the air vent is properly positioned. Check that the air filter is properly attached to the air return side passage of the unit.
3. If there is more than one air inlet and/or outlet, adjust the dampers so that the airflow rate of each air inlet and outlet conforms to the designed airflow rate. Ensure the unit is in FAN ONLY mode.

The wireless remote controller is required to setup the static pressure of the indoor air handler units.

NOTE: When a system is using the 24V interface built-in, the indoor unit’s fan speed defaults to AUTO with the indoor unit’s default logic.

The external static pressure should be selected using the wireless remote controller (RG17F3/B-GEFU), included with the indoor unit, by pointing it toward the indoor unit’s Infrared Receiver typically located inside the control box:

a. Before using the service functions of the remote, turn OFF the indoor unit with the remote.
b. Turn OFF the power to the indoor and outdoor units for 3 minutes.
c. Turn the power back on.
d. Remove the batteries from the RG57 wireless remote controller and wait for the remote controller screen to clear or press any button and the screen clears.
e. Reinstall the batteries.
f. Within 30 seconds of replacing the batteries, simultaneously press MODE and TIMER ON for five (5) seconds. You are now in the SERVICE FUNCTION mode — and the remote display reads F1.
g. Manual static pressure or Automatic Airflow adjustment selection:

1. For manual static pressure selection, press the DOWN arrow in the center of the remote (labeled TEMP) to display E9. Press MODE to set the external static pressure/airflow rate in the range of 1-4 if (airflow increases quickly). Press TIMER ON to confirm. The values on the remote controller (1, 3, 3, 4) correlates directly to the static pressure curves SP1, SP2, SP3, SP4 (see “FAN PERFORMANCES AT VARYING STATIC PRESSURES” on page 13).
2. If choosing the AUTOMATIC AIRFLOW ADJUSTMENT function, with F1 in the remote display, press the DOWN arrow once and 44 appears. Press TIMER ON to confirm. AF appears in the unit’s LED display. The system starts the fan for the airflow automatic adjustment. The ON indicator flashes when the fan runs during the AUTOMATIC AIRFLOW ADJUSTMENT. After 3 to 6 minutes, the system stops operating once the AUTOMATIC AIRFLOW ADJUSTMENT is complete.

h. Remove the remote controller battery, and then re-insert the battery after the remote controller screen goes blank. The remote controller exits the SERVICE FUNCTION mode.
FAN PERFORMANCES AT VARYING STATIC PRESSURES

Table 10 — Static Pressure at the Rated Point and Static Pressure Range

<table>
<thead>
<tr>
<th>AHU Model Number</th>
<th>Static Pressure</th>
<th>Speed</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>SP1</td>
<td>High</td>
<td>1,076</td>
<td>075</td>
<td>953</td>
<td>871</td>
<td>602</td>
<td>200</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>942</td>
<td>822</td>
<td>658</td>
<td>465</td>
<td>184</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>797</td>
<td>648</td>
<td>437</td>
<td>100</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>SP2</td>
<td>High</td>
<td>1,250</td>
<td>1,175</td>
<td>1,075</td>
<td>965</td>
<td>815</td>
<td>650</td>
<td>475</td>
<td>200</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,185</td>
<td>1,095</td>
<td>996</td>
<td>855</td>
<td>685</td>
<td>512</td>
<td>291</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,100</td>
<td>1,005</td>
<td>922</td>
<td>712</td>
<td>558</td>
<td>322</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>SP3</td>
<td>High</td>
<td>1,490</td>
<td>1,415</td>
<td>1,334</td>
<td>1,250</td>
<td>1,155</td>
<td>1,028</td>
<td>880</td>
<td>750</td>
<td>600</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,375</td>
<td>1,294</td>
<td>1,206</td>
<td>1,120</td>
<td>988</td>
<td>822</td>
<td>676</td>
<td>500</td>
<td>284</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,285</td>
<td>1,200</td>
<td>1,105</td>
<td>995</td>
<td>845</td>
<td>685</td>
<td>525</td>
<td>252</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>SP4</td>
<td>High</td>
<td>1,825</td>
<td>1,756</td>
<td>1,670</td>
<td>1,562</td>
<td>1,515</td>
<td>1,450</td>
<td>1,380</td>
<td>1,250</td>
<td>1,120</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,830</td>
<td>1,556</td>
<td>1,480</td>
<td>1,400</td>
<td>1,310</td>
<td>1,215</td>
<td>1,105</td>
<td>950</td>
<td>825</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,525</td>
<td>1,450</td>
<td>1,372</td>
<td>1,280</td>
<td>1,190</td>
<td>1,074</td>
<td>935</td>
<td>785</td>
<td>650</td>
<td>/</td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>SP1</td>
<td>High</td>
<td>1,335</td>
<td>1,270</td>
<td>1,185</td>
<td>1,062</td>
<td>950</td>
<td>810</td>
<td>685</td>
<td>450</td>
<td>240</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,185</td>
<td>1,105</td>
<td>960</td>
<td>845</td>
<td>685</td>
<td>520</td>
<td>335</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,020</td>
<td>915</td>
<td>775</td>
<td>606</td>
<td>405</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>SP2</td>
<td>High</td>
<td>1,475</td>
<td>1,405</td>
<td>1,320</td>
<td>1,230</td>
<td>1,125</td>
<td>990</td>
<td>855</td>
<td>715</td>
<td>570</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,340</td>
<td>1,250</td>
<td>1,172</td>
<td>1,055</td>
<td>920</td>
<td>775</td>
<td>630</td>
<td>460</td>
<td>275</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,205</td>
<td>1,115</td>
<td>1,011</td>
<td>870</td>
<td>715</td>
<td>555</td>
<td>380</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>48</td>
<td></td>
</tr>
<tr>
<td>SP1</td>
<td>High</td>
<td>1,585</td>
<td>1,515</td>
<td>1,384</td>
<td>1,204</td>
<td>1,125</td>
<td>995</td>
<td>675</td>
<td>445</td>
<td>225</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,510</td>
<td>1,440</td>
<td>1,362</td>
<td>1,275</td>
<td>1,186</td>
<td>1,049</td>
<td>910</td>
<td>780</td>
<td>645</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,385</td>
<td>1,305</td>
<td>1,215</td>
<td>1,115</td>
<td>988</td>
<td>865</td>
<td>727</td>
<td>600</td>
<td>421</td>
<td>/</td>
</tr>
<tr>
<td>SP2</td>
<td>High</td>
<td>1,815</td>
<td>1,733</td>
<td>1,663</td>
<td>1,605</td>
<td>1,528</td>
<td>1,435</td>
<td>1,346</td>
<td>1,235</td>
<td>1,130</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,065</td>
<td>1,000</td>
<td>1,139</td>
<td>1,040</td>
<td>1,080</td>
<td>1,025</td>
<td>1,050</td>
<td>941</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,558</td>
<td>1,481</td>
<td>1,406</td>
<td>1,350</td>
<td>1,219</td>
<td>1,100</td>
<td>966</td>
<td>875</td>
<td>748</td>
<td>/</td>
</tr>
<tr>
<td>SP3</td>
<td>High</td>
<td>1,611</td>
<td>1,530</td>
<td>1,462</td>
<td>1,375</td>
<td>1,278</td>
<td>1,170</td>
<td>1,053</td>
<td>925</td>
<td>831</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,498</td>
<td>1,417</td>
<td>1,333</td>
<td>1,225</td>
<td>1,125</td>
<td>996</td>
<td>900</td>
<td>775</td>
<td>631</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,375</td>
<td>1,297</td>
<td>1,212</td>
<td>1,110</td>
<td>996</td>
<td>860</td>
<td>716</td>
<td>558</td>
<td>389</td>
<td>/</td>
</tr>
<tr>
<td>SP4</td>
<td>High</td>
<td>1,774</td>
<td>1,731</td>
<td>1,642</td>
<td>1,570</td>
<td>1,504</td>
<td>1,429</td>
<td>1,313</td>
<td>1,202</td>
<td>1,081</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,662</td>
<td>1,595</td>
<td>1,531</td>
<td>1,460</td>
<td>1,366</td>
<td>1,275</td>
<td>1,161</td>
<td>1,040</td>
<td>915</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,569</td>
<td>1,491</td>
<td>1,406</td>
<td>1,323</td>
<td>1,220</td>
<td>1,110</td>
<td>986</td>
<td>880</td>
<td>749</td>
<td>/</td>
</tr>
<tr>
<td>SP3</td>
<td>High</td>
<td>1,868</td>
<td>1,805</td>
<td>1,736</td>
<td>1,675</td>
<td>1,604</td>
<td>1,532</td>
<td>1,433</td>
<td>1,330</td>
<td>1,211</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,781</td>
<td>1,739</td>
<td>1,649</td>
<td>1,582</td>
<td>1,511</td>
<td>1,429</td>
<td>1,309</td>
<td>1,208</td>
<td>1,081</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,662</td>
<td>1,595</td>
<td>1,531</td>
<td>1,460</td>
<td>1,366</td>
<td>1,275</td>
<td>1,161</td>
<td>1,040</td>
<td>915</td>
<td>/</td>
</tr>
<tr>
<td>48</td>
<td></td>
</tr>
<tr>
<td>SP1</td>
<td>High</td>
<td>2,024</td>
<td>1,974</td>
<td>1,919</td>
<td>1,850</td>
<td>1,795</td>
<td>1,728</td>
<td>1,652</td>
<td>1,560</td>
<td>1,468</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,942</td>
<td>1,872</td>
<td>1,818</td>
<td>1,757</td>
<td>1,697</td>
<td>1,629</td>
<td>1,554</td>
<td>1,455</td>
<td>1,345</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,825</td>
<td>1,770</td>
<td>1,708</td>
<td>1,648</td>
<td>1,578</td>
<td>1,542</td>
<td>1,470</td>
<td>1,395</td>
<td>1,205</td>
<td>1,100</td>
</tr>
</tbody>
</table>

NOTES:

1. Airflow based upon dry coil at 23°C without filter or electric heater.
2. To avoid potential for condensate blowing out of drain pan prior to making drain trap: return static pressure must be less than 0.40 in wc. Horizontal applications of 48 size must have supply static greater than 0.20 in wc.
3. Airflow above 400 cfm/ton could result in condensate blowing off coil or splashing out of drain pan.
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Carrier

Model: CNPV

<table>
<thead>
<tr>
<th>CNPV UNIT SIZE</th>
<th>450 CFM</th>
<th>600 CFM</th>
<th>750 CFM</th>
<th>1000 CFM</th>
<th>1250 CFM</th>
<th>1500 CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1914</td>
<td>72 (L)</td>
<td>67 (L)</td>
<td>62 (L)</td>
<td>57 (L)</td>
<td>52 (L)</td>
<td>47 (L)</td>
</tr>
<tr>
<td>1917</td>
<td>60 (L)</td>
<td>55 (L)</td>
<td>50 (L)</td>
<td>45 (L)</td>
<td>40 (L)</td>
<td>35 (L)</td>
</tr>
<tr>
<td>2414</td>
<td>800 CFM</td>
<td>750 CFM</td>
<td>700 CFM</td>
<td>650 CFM</td>
<td>600 CFM</td>
<td>550 CFM</td>
</tr>
<tr>
<td>3014</td>
<td>1000 CFM</td>
<td>900 CFM</td>
<td>800 CFM</td>
<td>700 CFM</td>
<td>600 CFM</td>
<td>500 CFM</td>
</tr>
<tr>
<td>3517</td>
<td>1250 CFM</td>
<td>1125 CFM</td>
<td>1000 CFM</td>
<td>900 CFM</td>
<td>800 CFM</td>
<td>700 CFM</td>
</tr>
</tbody>
</table>

Legend:
- CPM – Cubic Ft. per Minute
- EWB – Entering Wet Bulb
- LWS – Leaving Wet Bulb
- TC – Cooling Capacity 1000 Buh
- SHC – Gross Sensible Capacity 1000 Buh
- BF – Bypass Factor
- MBH – 1000 Buh

See notes on next page.
COOLING CAPACITIES (MBH) - PURON REFRIGERANT

<table>
<thead>
<tr>
<th>CNPV</th>
<th>UNIT SIZE</th>
<th>INDOOR AIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWB</td>
<td>TC</td>
<td>SHC</td>
</tr>
<tr>
<td>CPM</td>
<td>30 (+1)</td>
<td>35 (2)</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>4217</td>
<td>4221</td>
<td>4224</td>
</tr>
<tr>
<td>1050</td>
<td>67 (19)</td>
<td>62 (17)</td>
</tr>
<tr>
<td>1400</td>
<td>72 (22)</td>
<td>72 (22)</td>
</tr>
<tr>
<td>1750</td>
<td>72 (22)</td>
<td>72 (22)</td>
</tr>
<tr>
<td>1500</td>
<td>72 (22)</td>
<td>72 (22)</td>
</tr>
<tr>
<td>1200</td>
<td>67 (19)</td>
<td>67 (19)</td>
</tr>
<tr>
<td>1000</td>
<td>67 (19)</td>
<td>67 (19)</td>
</tr>
<tr>
<td>800</td>
<td>67 (19)</td>
<td>67 (19)</td>
</tr>
<tr>
<td>600</td>
<td>67 (19)</td>
<td>67 (19)</td>
</tr>
<tr>
<td>400</td>
<td>67 (19)</td>
<td>67 (19)</td>
</tr>
<tr>
<td>200</td>
<td>67 (19)</td>
<td>67 (19)</td>
</tr>
</tbody>
</table>

Legend:
- CPM – Cubic Ft. per Minute
- EWB – Entering Wet Bulb
- LWB – Leaving Wet Bulb
- TC – Gross Cooling Capacity 1000 Btu/h
- SHC – Gross Sensible Capacity 1000 Btu/h
- BF – Bypass Factor
- MBH – 1000 Btu/h

See notes on following page.
NOTES:
1. Contact manufacturer for cooling capacities at conditions other than shown in table.
2. Formulas:
 \[\frac{\text{Leaving } db = \text{ entering } db - \text{sensible heat cap.}}{1.09 \times \text{CFM}} \]
 \[\frac{\text{Leaving } wb = \text{ wb corresponding to enthalpy of air leaving coil (lbw),}}{.45 \times \text{CFM}} \]
 Where \(\text{lbw} = \) enthalpy of air entering coil
3. SHC is based on 80°F (27°C) db temperature of air entering the evaporator coil.
 Below 80°F (27°C) db, subtract (Correction Factor x CFM) from SHC.
 Above 80°F (27°C) db, add (Correction Factor x CFM) to SHC.
4. Direct interpolation is permissible. Do not extrapolate.
5. Fan motor heat has not been deducted.
6. All data points are based on 10°F (-12°C) superheat leaving coil and use of thermostatic expansion valve (TXV) device.
7. All units have sweat suction-tube connection and a liquid-tube connection. For 1-1/8-in. system suction tube, 3/4 x 1-1/8-in. suction
tube connection adapters is available as accessory.
8. The CNPVB, CNPVT and CNPVU coils can be used in any properly designed system using Puron refrigerant.
9. CNRVU coils can be used in any properly designed system using R-22 refrigerant.
10. Before using maximum cfm shown in table, check coil static pressure drop to ensure system blower can provide necessary static pressure needed for coil and duct systems.
11. Bypass Factor = 0 indicates no psychrometric solution. Use bypass factor of next lower EWB for approximation.

<table>
<thead>
<tr>
<th>BYPASS FACTOR</th>
<th>ENTERING AIR DRY BULB TEMPERATURE °F (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>79 (26)</td>
</tr>
<tr>
<td>0.10</td>
<td>0.98</td>
</tr>
<tr>
<td>0.20</td>
<td>0.87</td>
</tr>
<tr>
<td>0.30</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Correction Factor = 1.09 x (1 - BF) x (db - 80)
<table>
<thead>
<tr>
<th>CFM</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67 (17)</td>
<td>23.20</td>
<td>14.82</td>
<td>0.01</td>
<td>21.20</td>
<td>13.70</td>
</tr>
<tr>
<td>62 (17)</td>
<td>20.20</td>
<td>15.50</td>
<td>0.01</td>
<td>18.00</td>
<td>14.30</td>
</tr>
</tbody>
</table>

COOLING CAPACITIES (MBH) - R-22 REFRIGERANT

Legend:
- CFM: Cubic Ft per Minute
- FWB: Entering Wet Bulb
- LWB: Leaving Wet Bulb
- TC: Total Cooling Capacity 1000 Btu/h
- SHC: Sensible Capacity 1000 Btu/h
- BF: Bypass Factor

See notes previous page.

Go To Model List
<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>Standard CFM</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
<th>1700</th>
<th>1800</th>
<th>1900</th>
<th>2000</th>
<th>2100</th>
<th>2200</th>
</tr>
</thead>
<tbody>
<tr>
<td>1814</td>
<td>Dry</td>
<td>0.076</td>
<td>0.114</td>
<td>0.156</td>
<td>0.198</td>
<td>0.233</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.056</td>
<td>0.138</td>
<td>0.183</td>
<td>0.213</td>
<td>0.277</td>
<td></td>
</tr>
<tr>
<td>1917</td>
<td>Dry</td>
<td>0.042</td>
<td>0.060</td>
<td>0.080</td>
<td>0.102</td>
<td>0.128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.055</td>
<td>0.076</td>
<td>0.104</td>
<td>0.127</td>
<td>0.158</td>
<td></td>
</tr>
<tr>
<td>2414</td>
<td>Dry</td>
<td>0.070</td>
<td>0.103</td>
<td>0.143</td>
<td>0.182</td>
<td>0.233</td>
<td>0.290</td>
<td>0.354</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.089</td>
<td>0.128</td>
<td>0.171</td>
<td>0.214</td>
<td>0.263</td>
<td>0.318</td>
<td>0.384</td>
<td>0.413</td>
<td></td>
</tr>
<tr>
<td>2417</td>
<td>Dry</td>
<td>0.048</td>
<td>0.068</td>
<td>0.090</td>
<td>0.112</td>
<td>0.140</td>
<td>0.170</td>
<td>0.203</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.064</td>
<td>0.091</td>
<td>0.122</td>
<td>0.150</td>
<td>0.188</td>
<td>0.224</td>
<td>0.263</td>
<td></td>
</tr>
<tr>
<td>3014</td>
<td>Dry</td>
<td>0.080</td>
<td>0.097</td>
<td>0.132</td>
<td>0.173</td>
<td>0.223</td>
<td>0.276</td>
<td>0.333</td>
<td>0.400</td>
<td>0.476</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.076</td>
<td>0.114</td>
<td>0.160</td>
<td>0.206</td>
<td>0.260</td>
<td>0.321</td>
<td>0.388</td>
<td>0.461</td>
<td>0.540</td>
<td></td>
</tr>
<tr>
<td>3017</td>
<td>Dry</td>
<td>0.042</td>
<td>0.060</td>
<td>0.080</td>
<td>0.102</td>
<td>0.128</td>
<td>0.157</td>
<td>0.188</td>
<td>0.222</td>
<td>0.259</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.055</td>
<td>0.076</td>
<td>0.104</td>
<td>0.127</td>
<td>0.158</td>
<td>0.190</td>
<td>0.223</td>
<td>0.266</td>
<td>0.309</td>
<td></td>
</tr>
<tr>
<td>3117</td>
<td>Dry</td>
<td>0.031</td>
<td>0.046</td>
<td>0.063</td>
<td>0.083</td>
<td>0.105</td>
<td>0.130</td>
<td>0.156</td>
<td>0.190</td>
<td>0.230</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.038</td>
<td>0.056</td>
<td>0.075</td>
<td>0.097</td>
<td>0.121</td>
<td>0.149</td>
<td>0.179</td>
<td>0.212</td>
<td>0.249</td>
<td></td>
</tr>
<tr>
<td>3617</td>
<td>Dry</td>
<td>0.049</td>
<td>0.061</td>
<td>0.092</td>
<td>0.103</td>
<td>0.129</td>
<td>0.157</td>
<td>0.189</td>
<td>0.221</td>
<td>0.259</td>
<td>0.299</td>
<td>0.341</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3611</td>
<td>Wet</td>
<td>0.056</td>
<td>0.079</td>
<td>0.107</td>
<td>0.133</td>
<td>0.166</td>
<td>0.200</td>
<td>0.236</td>
<td>0.276</td>
<td>0.315</td>
<td>0.361</td>
<td>0.413</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3621</td>
<td>Dry</td>
<td>0.033</td>
<td>0.048</td>
<td>0.062</td>
<td>0.076</td>
<td>0.093</td>
<td>0.111</td>
<td>0.132</td>
<td>0.153</td>
<td>0.177</td>
<td>0.201</td>
<td>0.223</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.044</td>
<td>0.068</td>
<td>0.085</td>
<td>0.100</td>
<td>0.122</td>
<td>0.144</td>
<td>0.167</td>
<td>0.192</td>
<td>0.217</td>
<td>0.245</td>
<td>0.276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3717</td>
<td>Dry</td>
<td>0.025</td>
<td>0.038</td>
<td>0.054</td>
<td>0.072</td>
<td>0.089</td>
<td>0.117</td>
<td>0.143</td>
<td>0.171</td>
<td>0.205</td>
<td>0.233</td>
<td>0.273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.030</td>
<td>0.044</td>
<td>0.061</td>
<td>0.079</td>
<td>0.103</td>
<td>0.125</td>
<td>0.154</td>
<td>0.182</td>
<td>0.216</td>
<td>0.251</td>
<td>0.288</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4217</td>
<td>Dry</td>
<td>0.030</td>
<td>0.041</td>
<td>0.054</td>
<td>0.068</td>
<td>0.082</td>
<td>0.099</td>
<td>0.118</td>
<td>0.137</td>
<td>0.158</td>
<td>0.180</td>
<td>0.205</td>
<td>0.231</td>
<td>0.259</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.044</td>
<td>0.059</td>
<td>0.076</td>
<td>0.101</td>
<td>0.126</td>
<td>0.152</td>
<td>0.181</td>
<td>0.210</td>
<td>0.242</td>
<td>0.280</td>
<td>0.288</td>
<td>0.315</td>
<td>0.354</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4324</td>
<td>Dry</td>
<td>0.053</td>
<td>0.062</td>
<td>0.073</td>
<td>0.084</td>
<td>0.097</td>
<td>0.111</td>
<td>0.126</td>
<td>0.138</td>
<td>0.154</td>
<td>0.172</td>
<td>0.190</td>
<td>0.210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.067</td>
<td>0.082</td>
<td>0.096</td>
<td>0.112</td>
<td>0.129</td>
<td>0.145</td>
<td>0.163</td>
<td>0.171</td>
<td>0.191</td>
<td>0.212</td>
<td>0.235</td>
<td>0.258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4821</td>
<td>Dry</td>
<td>0.047</td>
<td>0.060</td>
<td>0.075</td>
<td>0.092</td>
<td>0.110</td>
<td>0.130</td>
<td>0.152</td>
<td>0.176</td>
<td>0.204</td>
<td>0.230</td>
<td>0.256</td>
<td>0.284</td>
<td>0.318</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4821</td>
<td>Wet</td>
<td>0.053</td>
<td>0.067</td>
<td>0.085</td>
<td>0.104</td>
<td>0.125</td>
<td>0.147</td>
<td>0.172</td>
<td>0.200</td>
<td>0.228</td>
<td>0.259</td>
<td>0.292</td>
<td>0.327</td>
<td>0.365</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4824</td>
<td>Dry</td>
<td>0.015</td>
<td>0.036</td>
<td>0.045</td>
<td>0.058</td>
<td>0.084</td>
<td>0.100</td>
<td>0.118</td>
<td>0.142</td>
<td>0.170</td>
<td>0.195</td>
<td>0.214</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.022</td>
<td>0.046</td>
<td>0.066</td>
<td>0.081</td>
<td>0.097</td>
<td>0.114</td>
<td>0.131</td>
<td>0.150</td>
<td>0.169</td>
<td>0.190</td>
<td>0.211</td>
<td>0.233</td>
<td>0.257</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5024</td>
<td>Dry</td>
<td>0.052</td>
<td>0.073</td>
<td>0.084</td>
<td>0.097</td>
<td>0.111</td>
<td>0.126</td>
<td>0.138</td>
<td>0.154</td>
<td>0.172</td>
<td>0.190</td>
<td>0.210</td>
<td>0.228</td>
<td>0.251</td>
<td>0.273</td>
<td>0.293</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T5021</td>
<td>Wet</td>
<td>0.062</td>
<td>0.086</td>
<td>0.112</td>
<td>0.129</td>
<td>0.145</td>
<td>0.163</td>
<td>0.171</td>
<td>0.191</td>
<td>0.212</td>
<td>0.235</td>
<td>0.256</td>
<td>0.283</td>
<td>0.310</td>
<td>0.338</td>
<td>0.366</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5124</td>
<td>Dry</td>
<td>0.130</td>
<td>0.140</td>
<td>0.160</td>
<td>0.180</td>
<td>0.200</td>
<td>0.220</td>
<td>0.240</td>
<td>0.270</td>
<td>0.290</td>
<td></td>
</tr>
<tr>
<td>T5124</td>
<td>Wet</td>
<td>0.150</td>
<td>0.170</td>
<td>0.190</td>
<td>0.210</td>
<td>0.230</td>
<td>0.260</td>
<td>0.280</td>
<td>0.310</td>
<td>0.340</td>
<td></td>
</tr>
</tbody>
</table>
Manufacturer: Carrier

Model: FB4CNF-P

FB4 Airflow Performance (CFM)

<table>
<thead>
<tr>
<th>Model & Size</th>
<th>Blower Speed</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB4C 018</td>
<td>Tap 5</td>
<td>787</td>
<td>739</td>
<td>702</td>
<td>669</td>
<td>620</td>
<td>555</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>614</td>
<td>569</td>
<td>534</td>
<td>486</td>
<td>436</td>
<td>398</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>711</td>
<td>660</td>
<td>616</td>
<td>568</td>
<td>537</td>
<td>499</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>614</td>
<td>580</td>
<td>534</td>
<td>486</td>
<td>436</td>
<td>398</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>410</td>
<td>350</td>
<td>304</td>
<td>261</td>
<td>228</td>
<td>203</td>
</tr>
<tr>
<td>FE4C 324 & 025</td>
<td>Tap 5</td>
<td>659</td>
<td>608</td>
<td>562</td>
<td>525</td>
<td>496</td>
<td>468</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>586</td>
<td>537</td>
<td>492</td>
<td>454</td>
<td>416</td>
<td>388</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>624</td>
<td>575</td>
<td>529</td>
<td>481</td>
<td>443</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>701</td>
<td>652</td>
<td>604</td>
<td>556</td>
<td>518</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>617</td>
<td>568</td>
<td>520</td>
<td>473</td>
<td>435</td>
<td>407</td>
</tr>
<tr>
<td>FB4C 030</td>
<td>Tap 5</td>
<td>1108</td>
<td>1050</td>
<td>1003</td>
<td>956</td>
<td>910</td>
<td>874</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1025</td>
<td>978</td>
<td>931</td>
<td>884</td>
<td>838</td>
<td>805</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1025</td>
<td>978</td>
<td>931</td>
<td>884</td>
<td>838</td>
<td>805</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>599</td>
<td>552</td>
<td>505</td>
<td>458</td>
<td>412</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>625</td>
<td>576</td>
<td>529</td>
<td>481</td>
<td>443</td>
<td>405</td>
</tr>
<tr>
<td>FB4C 036</td>
<td>Tap 5</td>
<td>1301</td>
<td>1243</td>
<td>1185</td>
<td>1128</td>
<td>1071</td>
<td>1014</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1227</td>
<td>1169</td>
<td>1111</td>
<td>1054</td>
<td>1007</td>
<td>960</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1227</td>
<td>1169</td>
<td>1111</td>
<td>1054</td>
<td>1007</td>
<td>960</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>1097</td>
<td>1039</td>
<td>981</td>
<td>924</td>
<td>876</td>
<td>830</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>1020</td>
<td>962</td>
<td>904</td>
<td>846</td>
<td>798</td>
<td>752</td>
</tr>
<tr>
<td>FB4C 042</td>
<td>Tap 5</td>
<td>1580</td>
<td>1523</td>
<td>1466</td>
<td>1409</td>
<td>1352</td>
<td>1295</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1419</td>
<td>1362</td>
<td>1305</td>
<td>1248</td>
<td>1192</td>
<td>1135</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1419</td>
<td>1362</td>
<td>1305</td>
<td>1248</td>
<td>1192</td>
<td>1135</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>1249</td>
<td>1192</td>
<td>1135</td>
<td>1078</td>
<td>1021</td>
<td>974</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>1249</td>
<td>1192</td>
<td>1135</td>
<td>1078</td>
<td>1021</td>
<td>974</td>
</tr>
<tr>
<td>FB4C 048</td>
<td>Tap 5</td>
<td>1743</td>
<td>1686</td>
<td>1629</td>
<td>1572</td>
<td>1515</td>
<td>1458</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1680</td>
<td>1623</td>
<td>1566</td>
<td>1509</td>
<td>1452</td>
<td>1395</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1686</td>
<td>1629</td>
<td>1566</td>
<td>1509</td>
<td>1452</td>
<td>1395</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>1452</td>
<td>1395</td>
<td>1338</td>
<td>1281</td>
<td>1224</td>
<td>1167</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>1300</td>
<td>1243</td>
<td>1186</td>
<td>1129</td>
<td>1072</td>
<td>1015</td>
</tr>
<tr>
<td>FB4C 050</td>
<td>Tap 4</td>
<td>1517</td>
<td>1459</td>
<td>1402</td>
<td>1345</td>
<td>1288</td>
<td>1231</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1517</td>
<td>1459</td>
<td>1402</td>
<td>1345</td>
<td>1288</td>
<td>1231</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>1517</td>
<td>1459</td>
<td>1402</td>
<td>1345</td>
<td>1288</td>
<td>1231</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>1403</td>
<td>1346</td>
<td>1289</td>
<td>1232</td>
<td>1175</td>
<td>1118</td>
</tr>
<tr>
<td>FB4C 051</td>
<td>Tap 5</td>
<td>2303</td>
<td>2165</td>
<td>2027</td>
<td>1890</td>
<td>1753</td>
<td>1616</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>2111</td>
<td>1973</td>
<td>1835</td>
<td>1707</td>
<td>1570</td>
<td>1433</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>2111</td>
<td>1973</td>
<td>1835</td>
<td>1707</td>
<td>1570</td>
<td>1433</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>1865</td>
<td>1727</td>
<td>1590</td>
<td>1453</td>
<td>1316</td>
<td>1179</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>1865</td>
<td>1727</td>
<td>1590</td>
<td>1453</td>
<td>1316</td>
<td>1179</td>
</tr>
</tbody>
</table>

NOTE:

1. Airflow based on dry coil at 30° with factory-authorized filter and electric heater (2 element heater sizes .01 through .04, 4 element heater sizes .04 through .08). For FB4C models, airflow at 208 volts is approximately the same as 120 volts because the motor is a constant torque motor. The torque doesn’t drop off at the speeds, the motor operates.

2. To avoid potential for condensate blowing out of drain pan prior to making drain trap. Return static pressure must be less than 0.40 in. vac. Horizontal applications of 0.03 - 0.06 in. must have supply static greater than 0.20 in. vac.

3. Airflow above 400 cfm on 04-061 sizes could result in condensate blowing off coil or splashing out of drain pan.
<table>
<thead>
<tr>
<th>FBAC Unit Size</th>
<th>INDOOR COIL AIR</th>
<th>SATURATED TEMPERATURE LEAVING EVAPORATOR (°F/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35/2</td>
<td>TC</td>
</tr>
<tr>
<td>525</td>
<td>67/19</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>67/18</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>67/17</td>
<td>20</td>
</tr>
<tr>
<td>600</td>
<td>67/18</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>67/17</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>67/16</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>67/15</td>
<td>20</td>
</tr>
<tr>
<td>700</td>
<td>67/16</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>67/15</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>67/14</td>
<td>21</td>
</tr>
<tr>
<td>900</td>
<td>67/16</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>67/15</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>67/14</td>
<td>21</td>
</tr>
<tr>
<td>1000</td>
<td>67/16</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>67/15</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>67/14</td>
<td>21</td>
</tr>
<tr>
<td>1200</td>
<td>67/16</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>67/15</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>67/14</td>
<td>21</td>
</tr>
<tr>
<td>1400</td>
<td>67/16</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>67/15</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>67/14</td>
<td>21</td>
</tr>
</tbody>
</table>

Manufacturer reserves the right to change, at any time, specifications and designs without notice and without obligations.

Go To Model List
<table>
<thead>
<tr>
<th>FBAC Unit Size</th>
<th>INDOOR COIL AIR</th>
<th>35/2</th>
<th>40/4</th>
<th>45/7</th>
<th>50/10</th>
<th>55/13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400 045</td>
<td>72 / 17</td>
<td>88</td>
<td>40</td>
<td>8</td>
<td>37</td>
<td>0.03</td>
</tr>
<tr>
<td>1400 069</td>
<td>87 / 17</td>
<td>72</td>
<td>40</td>
<td>8</td>
<td>37</td>
<td>0.03</td>
</tr>
<tr>
<td>1500 069</td>
<td>87 / 17</td>
<td>72</td>
<td>60</td>
<td>8</td>
<td>37</td>
<td>0.03</td>
</tr>
<tr>
<td>1600 081</td>
<td>87 / 17</td>
<td>72</td>
<td>72</td>
<td>8</td>
<td>37</td>
<td>0.03</td>
</tr>
</tbody>
</table>

CFM - Cubic Feets per Minute
EWB - Entering Wet Bulb °F (°C)
LWB - Leaving Wet Bulb °F (°C)
TC - Gross Cooling Capacity 1000 Btu/h
SHC - Gross Sensible Capacity 1000 Btu/h
BF - Bypass Factor
MBH - 1000 Btu/h

NOTES:
1. Contact manufacturer for cooling capacities at conditions other than shown in table.
2. Formulas:
 - Entering air dry-bulb temperature = 3.99 x CPM
 - Entering /leaving air dry-bulb temperature = 4.5 x CPM
 - Sensible heat capacity = 0.03 x CPM
 - Bypass factor = 0.001 x CPM

3. SHC is based on 80°F (27°C) dry-bulb temperature of air entering coil. Below 80°F (27°C) dry-bulb temperature of air entering coil. Subtract (Correction Factor x CPM) from SHC. Above 80°F (27°C) dry-bulb temperature of air entering coil. Add (Correction Factor x CPM) to SHC.

4. Bypass Factor = 0 indicates no psychometric solution. Use bypass factor of next lower EWB for approximation.

<table>
<thead>
<tr>
<th>BYPASS FACTOR</th>
<th>ENTERING AIR DRY-BULB TEMPERATURE (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>78</td>
</tr>
<tr>
<td>0.20</td>
<td>77</td>
</tr>
<tr>
<td>0.30</td>
<td>76</td>
</tr>
</tbody>
</table>

Correction Factor: 1.09 x (1 - BF) x (EB - 85)

Interpolation is permissible.
FB4C Air Delivery Performance Correction Component Pressure Drop (in w.c.)

At Indicated Airflow (Dry to Wet Coil)

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
<th>1700</th>
<th>1800</th>
<th>1900</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>018</td>
<td>0.034</td>
<td>0.049</td>
<td>3.083</td>
<td></td>
</tr>
<tr>
<td>024</td>
<td>0.034</td>
<td>0.049</td>
<td>3.083</td>
<td>0.074</td>
<td>0.086</td>
<td></td>
</tr>
<tr>
<td>025</td>
<td>0.015</td>
<td>0.023</td>
<td>3.033</td>
<td>0.049</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>030</td>
<td></td>
<td></td>
<td>0.049</td>
<td>0.056</td>
<td>0.070</td>
<td>0.080</td>
<td></td>
</tr>
<tr>
<td>036</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.070</td>
<td>0.080</td>
<td>0.090</td>
<td>0.099</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>042</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.049</td>
<td>0.056</td>
<td>0.063</td>
<td>0.070</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>048</td>
<td></td>
</tr>
<tr>
<td>060</td>
<td></td>
</tr>
<tr>
<td>001</td>
<td></td>
</tr>
</tbody>
</table>

Electric Heater Static Pressure Drop (in w.c.)

<table>
<thead>
<tr>
<th>Heater</th>
<th>FB4C</th>
<th>External Static Pressure Correction</th>
<th>FB4C</th>
<th>External Static Pressure Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>018</td>
<td>0.034</td>
<td>026</td>
<td>0.049</td>
</tr>
<tr>
<td>Elements</td>
<td>0.056</td>
<td>0.070</td>
<td>0.080</td>
<td>0.090</td>
</tr>
<tr>
<td>kW</td>
<td>0.074</td>
<td>0.086</td>
<td>0.099</td>
<td>0.100</td>
</tr>
<tr>
<td>6</td>
<td>0.034</td>
<td>0.056</td>
<td>0.070</td>
<td>0.080</td>
</tr>
<tr>
<td>3.5</td>
<td>0.049</td>
<td>0.056</td>
<td>0.070</td>
<td>0.080</td>
</tr>
<tr>
<td>8.10</td>
<td>0.049</td>
<td>0.056</td>
<td>0.070</td>
<td>0.080</td>
</tr>
<tr>
<td>9.15</td>
<td>0.049</td>
<td>0.056</td>
<td>0.070</td>
<td>0.080</td>
</tr>
<tr>
<td>20</td>
<td>0.049</td>
<td>0.056</td>
<td>0.070</td>
<td>0.080</td>
</tr>
</tbody>
</table>

The airflow performance data was developed using fan coils with 10-kW electric heaters (5 elements) in the 018 through 036 size units and 15-kW heaters (7 elements) in the 042 through 060 size units. For fan coils with heaters of a different number of elements, the external available static at a given CFM from the curve may be corrected by adding or subtracting available external static pressure as indicated above.

Minimum CFM and Motor Speed Selection

<table>
<thead>
<tr>
<th>FB4C</th>
<th>3</th>
<th>5</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>20</th>
<th>24</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>018</td>
<td>525</td>
</tr>
<tr>
<td>024 & 025</td>
<td>700</td>
</tr>
<tr>
<td>030</td>
<td>875</td>
</tr>
<tr>
<td>036</td>
<td>1050</td>
</tr>
<tr>
<td>042</td>
<td>1225</td>
</tr>
<tr>
<td>048</td>
<td>1400</td>
</tr>
<tr>
<td>060 & 081</td>
<td>1750</td>
</tr>
</tbody>
</table>

Speed Step 4 (white wire) is used for electric heat only. White wire must remain on tap 4.
Manufacturer: Carrier

Model: FE4A

AIRFLOW DELIVERY — COOLING, HEATING, ELECTRIC HEATING MODES

The FE4 and FE5A fan coils will provide airflow at a rate that is requested by the Integrated System User Interface during air conditioning or heat pump heating (without electric heat) modes. The nominal airflow for both heating and cooling modes is 350 cfm/ton nominal size of the outdoor unit installed. The airflow actually requested by the User Interface is modified by its internal algorithms for zoning, comfort or efficiency concerns. Refer to the documentation for the User Interface for more information on how the User Interface controls the fan coil. Safe operation of electric heaters requires airflow delivery at or above the minimum CFM for electric heater application listed in the chart below. The fan coil will adjust its airflow delivery to maintain safe airflow as operating mode and staging conditions require.

FE4A/FE5A FAN COIL AIRFLOW DELIVERY CHART (CFM) — ELECTRIC HEATING MODELS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>OUTDOOR UNIT CAPACITY BTUH</th>
<th>ELECTRIC HEATER KW RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>002</td>
<td>EMERGENCY</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>18,000</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>24,000</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>30,000</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>36,000</td>
<td>975</td>
</tr>
<tr>
<td>003</td>
<td>EMERGENCY</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>24,000</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>30,000</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>36,000</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td>42,000</td>
<td>1125</td>
</tr>
<tr>
<td>005</td>
<td>EMERGENCY</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>36,000</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td>42,000</td>
<td>1125</td>
</tr>
<tr>
<td></td>
<td>48,000</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>1625</td>
</tr>
<tr>
<td>006</td>
<td>EMERGENCY</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>36,000</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>42,000</td>
<td>1125</td>
</tr>
<tr>
<td></td>
<td>48,000</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>1625</td>
</tr>
<tr>
<td>MODEL</td>
<td>OUTDOOR UNIT CAPACITY BTUH</td>
<td>ELECTRIC HEATER KW RANGE</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>004</td>
<td>EMERGENCY</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>24,000</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td>30,000</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>36,000</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>42,000</td>
<td>1125</td>
</tr>
</tbody>
</table>

Note 1: Emergency — Air conditioner with electric heater application, or emergency heat.
Note 2: These airflow rates are minimum airflow rates as UL listed.
Note 3: Dashed entry indicates that the heater/fan coil/outdoor unit combination is not approved. Do not apply.
For satisfactory operation (specifically making dry secondary trap), subject fan coils must be installed with duct systems which fall within the ‘Acceptable Range’ illustrated above.

MINIMUM RPM TABLE

<table>
<thead>
<tr>
<th>MODEL</th>
<th>SYSTEM SIZES</th>
<th>CFM RANGE</th>
<th>MIN RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC4ANF002</td>
<td>018, 034, 030, 036</td>
<td>150 – 1200</td>
<td>300</td>
</tr>
<tr>
<td>FC4AN(BF)003</td>
<td>024, 030, 036, 042</td>
<td>200 – 1400</td>
<td>285</td>
</tr>
<tr>
<td>FC4AN(BF)006</td>
<td>020, 036, 042, 048</td>
<td>250 – 1600</td>
<td>275</td>
</tr>
<tr>
<td>FC4ANB006</td>
<td>026, 042, 048, 060</td>
<td>500 – 2000</td>
<td>275</td>
</tr>
<tr>
<td>FC4ANB004</td>
<td>024, 030, 036, 042</td>
<td>500 – 1400</td>
<td>275</td>
</tr>
</tbody>
</table>

MAXIMUM STATIC TABLE

<table>
<thead>
<tr>
<th>MODEL</th>
<th>AIRFLOW DELIVERY</th>
<th>AVAILABLE STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC4ANF002</td>
<td>525 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>700 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>875 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1050 CFM</td>
<td>0.80 in wc</td>
</tr>
<tr>
<td></td>
<td>1200 CFM</td>
<td>0.60 in wc</td>
</tr>
<tr>
<td>FC4AN(BF)003</td>
<td>700 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>875 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1050 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1225 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1400 CFM</td>
<td>0.80 in wc</td>
</tr>
<tr>
<td>FC4AN(BF)006</td>
<td>875 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1050 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1225 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1400 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1600 CFM</td>
<td>0.80 in wc</td>
</tr>
<tr>
<td>FC4ANB006</td>
<td>1050 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1225 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1400 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1750 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>2000 CFM</td>
<td>0.60 in wc</td>
</tr>
<tr>
<td>FC4ANB004</td>
<td>700 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>875 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1050 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1225 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1400 CFM</td>
<td>1.00 in wc</td>
</tr>
</tbody>
</table>
SHC CORRECTION FACTOR

<table>
<thead>
<tr>
<th>ENTRING AIR DRY-BULB TEMPERATURE (°F)</th>
<th>BYPASS FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>81</td>
</tr>
<tr>
<td>0.10</td>
<td>0.08</td>
</tr>
<tr>
<td>0.20</td>
<td>0.17</td>
</tr>
<tr>
<td>0.30</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Use formula shown below

\[
\text{Interpolation is permissible.}
\]
\[
\text{Correction Factor} = 1.09 \times (1 - \theta_b) \times (\theta_e - 80)
\]

AIRFLOW PERFORMANCE CORRECTION FACTORS

<table>
<thead>
<tr>
<th>HEATER kW</th>
<th>ELEMENTS</th>
<th>STATIC PRESSURE CORRECTION (in wc)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sizes 002-005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Size 006</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>+.02</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>+.01</td>
</tr>
<tr>
<td>8, 10</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9, 15</td>
<td>3</td>
<td>-.02</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>-.04</td>
</tr>
<tr>
<td>18, 24, 30</td>
<td>6</td>
<td>-.06</td>
</tr>
</tbody>
</table>

The airflow performance table was developed using fan coils with 10W electric heaters (2 elements) in the units. For fan coils with heaters made up of a different number of elements, the external available static at a given CFM from the table may be corrected by adding or subtracting pressure. Use table for this correction.

FACTORY-INSTALLED FILTER STATIC PRESSURE DROP (in wc)

<table>
<thead>
<tr>
<th>MODEL</th>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEA4</td>
<td>002</td>
</tr>
<tr>
<td>400</td>
<td>0.020</td>
</tr>
<tr>
<td>600</td>
<td>0.044</td>
</tr>
<tr>
<td>800</td>
<td>0.048</td>
</tr>
<tr>
<td>1000</td>
<td>0.072</td>
</tr>
<tr>
<td>1200</td>
<td>0.100</td>
</tr>
<tr>
<td>1400</td>
<td>0.133</td>
</tr>
<tr>
<td>1600</td>
<td>0.166</td>
</tr>
<tr>
<td>1800</td>
<td>0.200</td>
</tr>
<tr>
<td>2000</td>
<td>0.233</td>
</tr>
<tr>
<td>003</td>
<td>0.020</td>
</tr>
<tr>
<td>0.046</td>
<td></td>
</tr>
<tr>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>0.051</td>
<td></td>
</tr>
<tr>
<td>0.070</td>
<td></td>
</tr>
<tr>
<td>0.092</td>
<td></td>
</tr>
<tr>
<td>0.100</td>
<td></td>
</tr>
<tr>
<td>0.120</td>
<td></td>
</tr>
<tr>
<td>0.133</td>
<td></td>
</tr>
<tr>
<td>0.166</td>
<td></td>
</tr>
<tr>
<td>0.200</td>
<td></td>
</tr>
<tr>
<td>0.233</td>
<td></td>
</tr>
<tr>
<td>0.266</td>
<td></td>
</tr>
<tr>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td>0.053</td>
<td></td>
</tr>
<tr>
<td>0.070</td>
<td></td>
</tr>
<tr>
<td>0.092</td>
<td></td>
</tr>
<tr>
<td>0.100</td>
<td></td>
</tr>
<tr>
<td>0.120</td>
<td></td>
</tr>
<tr>
<td>0.133</td>
<td></td>
</tr>
<tr>
<td>0.166</td>
<td></td>
</tr>
<tr>
<td>0.200</td>
<td></td>
</tr>
<tr>
<td>0.233</td>
<td></td>
</tr>
<tr>
<td>0.266</td>
<td></td>
</tr>
</tbody>
</table>

AIR DELIVERY PERFORMANCE CORRECTION COMPONENT PRESSURE DROP (in wc) AT INDICATED AIRFLOW (DRY TO WET COIL)

<table>
<thead>
<tr>
<th>MODEL</th>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEA4</td>
<td>002</td>
</tr>
<tr>
<td>600</td>
<td>0.001</td>
</tr>
<tr>
<td>700</td>
<td>0.002</td>
</tr>
<tr>
<td>800</td>
<td>0.003</td>
</tr>
<tr>
<td>900</td>
<td>0.004</td>
</tr>
<tr>
<td>1000</td>
<td>0.005</td>
</tr>
<tr>
<td>1100</td>
<td>0.006</td>
</tr>
<tr>
<td>1200</td>
<td>0.007</td>
</tr>
<tr>
<td>1300</td>
<td>0.008</td>
</tr>
<tr>
<td>1400</td>
<td>0.009</td>
</tr>
<tr>
<td>1500</td>
<td>0.010</td>
</tr>
<tr>
<td>1600</td>
<td>0.011</td>
</tr>
<tr>
<td>1700</td>
<td>0.012</td>
</tr>
<tr>
<td>1800</td>
<td>0.013</td>
</tr>
<tr>
<td>1900</td>
<td>0.014</td>
</tr>
<tr>
<td>2000</td>
<td>0.015</td>
</tr>
<tr>
<td>2100</td>
<td>0.016</td>
</tr>
<tr>
<td>003</td>
<td>0.002</td>
</tr>
<tr>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>0.027</td>
<td></td>
</tr>
<tr>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>0.032</td>
<td></td>
</tr>
<tr>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td>0.039</td>
<td></td>
</tr>
<tr>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>0.042</td>
<td></td>
</tr>
<tr>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>0.044</td>
<td></td>
</tr>
<tr>
<td>0.045</td>
<td></td>
</tr>
<tr>
<td>0.046</td>
<td></td>
</tr>
<tr>
<td>0.047</td>
<td></td>
</tr>
<tr>
<td>0.048</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEA4</td>
</tr>
<tr>
<td>004</td>
</tr>
<tr>
<td>600</td>
</tr>
<tr>
<td>0.001</td>
</tr>
<tr>
<td>700</td>
</tr>
<tr>
<td>0.002</td>
</tr>
<tr>
<td>800</td>
</tr>
<tr>
<td>0.003</td>
</tr>
<tr>
<td>900</td>
</tr>
<tr>
<td>0.004</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>0.005</td>
</tr>
<tr>
<td>1100</td>
</tr>
<tr>
<td>0.006</td>
</tr>
<tr>
<td>1200</td>
</tr>
<tr>
<td>0.007</td>
</tr>
<tr>
<td>1300</td>
</tr>
<tr>
<td>0.008</td>
</tr>
<tr>
<td>1400</td>
</tr>
<tr>
<td>0.009</td>
</tr>
<tr>
<td>1500</td>
</tr>
<tr>
<td>0.010</td>
</tr>
<tr>
<td>1600</td>
</tr>
<tr>
<td>0.011</td>
</tr>
<tr>
<td>1700</td>
</tr>
<tr>
<td>0.012</td>
</tr>
<tr>
<td>1800</td>
</tr>
<tr>
<td>0.013</td>
</tr>
<tr>
<td>1900</td>
</tr>
<tr>
<td>0.014</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>0.015</td>
</tr>
<tr>
<td>2100</td>
</tr>
</tbody>
</table>

NOTE: Subtract the above pressure drop corrections from unit airflow data when that component or condition is used. The remaining internal static pressure will be available for the duct system.
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Carrier

Model: FV4C

FV4C Advanced Fan Coil Airflow Delivery Chart (CFM)

Operating Mode

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>OUTDOOR UNIT CAPACITY</th>
<th>SINGLE—SPEED APPLICATION</th>
<th>TWO—SPEED APPLICATION</th>
<th>FAN ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Heat Pump Comfort</td>
<td>Heat Pump Efficiency</td>
<td>High Speed</td>
</tr>
<tr>
<td>002</td>
<td>018</td>
<td>470</td>
<td>525</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>024</td>
<td>630</td>
<td>700</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>785</td>
<td>875</td>
<td>945</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>945</td>
<td>1050</td>
<td>945</td>
</tr>
<tr>
<td>003</td>
<td>024</td>
<td>630</td>
<td>700</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>785</td>
<td>875</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>945</td>
<td>1050</td>
<td>945</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1100</td>
<td>1225</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td>1260</td>
<td>1400</td>
<td>1260</td>
</tr>
<tr>
<td>005</td>
<td>030</td>
<td>785</td>
<td>875</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>945</td>
<td>1050</td>
<td>945</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1100</td>
<td>1225</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td>1260</td>
<td>1400</td>
<td>1260</td>
</tr>
<tr>
<td></td>
<td>060</td>
<td>1575</td>
<td>1750</td>
<td>1575</td>
</tr>
</tbody>
</table>

Notes:
1. The above airflow results with the AC, HP CFM ADJUST select jumper set on NOM.
2. Air flow can be adjusted +15% or –10% by selecting Hi or Lo respectively for all modes except fan only.
3. Dry coil at 230 volts and with 10kW heater and filter installed.
4. Airflows shown at standard air conditions.

FV4C Advanced Fan Coil Airflow Delivery Chart (CFM)

Operating Mode

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>OUTDOOR UNIT CAPACITY</th>
<th>SINGLE—SPEED APPLICATION</th>
<th>TWO—SPEED APPLICATION</th>
<th>FAN ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nominal A/C Cooling</td>
<td>Nominal A/C Cooling</td>
<td>High Speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A/C Cooling Dehumidity</td>
<td>A/C Cooling Dehumidity</td>
<td>Nominal A/C Cooling</td>
</tr>
<tr>
<td>002</td>
<td>018</td>
<td>525</td>
<td>420</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>024</td>
<td>700</td>
<td>560</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>875</td>
<td>700</td>
<td>875</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>1050</td>
<td>840</td>
<td>1050</td>
</tr>
<tr>
<td>003</td>
<td>024</td>
<td>700</td>
<td>560</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>875</td>
<td>700</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>1050</td>
<td>840</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1225</td>
<td>980</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td>1400</td>
<td>1120</td>
<td>1400</td>
</tr>
<tr>
<td>005</td>
<td>030</td>
<td>875</td>
<td>700</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>1050</td>
<td>840</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1225</td>
<td>980</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td>1400</td>
<td>1120</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>060</td>
<td>1750</td>
<td>1400</td>
<td>1750</td>
</tr>
</tbody>
</table>

Notes:
1. The above airflow result with the AC, HP CFM ADJUST select jumper set on NOM.
2. Air flow can be adjusted +15% or –10% by selecting Hi or Lo respectively for all modes except fan only.
3. Dry coil at 230 volts and with 10kW heater and filter installed.
4. Airflows shown at standard air conditions.

*Consult ARI ratings before matching outdoor unit with FV4C fan coil.
FV4C Advanced Fan Coil Airflow Delivery Chart (CFM)

Operating Mode

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>Outdoor Unit Capacity</th>
<th>Single—Speed Application</th>
<th>Two—Speed Application</th>
<th>Fan Only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nominal A/C Cooling</td>
<td>A/C Cooling Dehumidity</td>
<td>High Speed</td>
</tr>
<tr>
<td>002</td>
<td>018</td>
<td>525</td>
<td>420</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>024</td>
<td>700</td>
<td>560</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>875</td>
<td>700</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>1050</td>
<td>840</td>
<td>1050</td>
</tr>
<tr>
<td>003</td>
<td>024</td>
<td>700</td>
<td>560</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>875</td>
<td>700</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>1050</td>
<td>840</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1225</td>
<td>980</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td>1225</td>
<td>980</td>
<td>1400</td>
</tr>
<tr>
<td>005</td>
<td>030</td>
<td>875</td>
<td>700</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>1050</td>
<td>840</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1225</td>
<td>980</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td>1400</td>
<td>1120</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>060</td>
<td>1750</td>
<td>1400</td>
<td>1750</td>
</tr>
</tbody>
</table>

Notes:
1. The above airflow results with the AC, HP CFM ADJUST select jumper set on NOM.
2. Airflow can be adjusted +15% or −10% by selecting HI or LO respectively for all modes except fan only.
3. Dry coil at 230 volts and with 10kW heater and filter installed.
4. Airflows shown are at standard air conditions.

Consult ARI ratings before matching outdoor unit with FV4C fan coil.

FV4C Advanced Fan Coil Airflow Delivery Chart (CFM)

Operating Mode

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>Outdoor Unit Capacity</th>
<th>Single—Speed Application</th>
<th>Two—Speed Application</th>
<th>Fan Only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Heat Pump Comfort</td>
<td>Heat Pump Efficiency</td>
<td>High Speed</td>
</tr>
<tr>
<td>002</td>
<td>018</td>
<td>470</td>
<td>525</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td>024</td>
<td>630</td>
<td>700</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>785</td>
<td>875</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>945</td>
<td>1050</td>
<td>945</td>
</tr>
<tr>
<td>003</td>
<td>024</td>
<td>630</td>
<td>700</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>785</td>
<td>875</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>945</td>
<td>1050</td>
<td>945</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1100</td>
<td>1225</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td>1200</td>
<td>1400</td>
<td>1200</td>
</tr>
<tr>
<td>005</td>
<td>030</td>
<td>785</td>
<td>875</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>945</td>
<td>1050</td>
<td>945</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1100</td>
<td>1225</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td>1200</td>
<td>1400</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>060</td>
<td>1575</td>
<td>1750</td>
<td>1575</td>
</tr>
</tbody>
</table>

Notes:
1. The above airflow results with the AC, HP CFM ADJUST select jumper set on NOM.
2. Airflow can be adjusted +15% or −10% by selecting HI or LO respectively for all modes except fan only.
3. Dry coil at 230 volts and with 10kW heater and filter installed.
4. Airflows shown are at standard air conditions.
AIRFLOW DELIVERY CHART (CFM) — ELECTRIC HEATING MODES

<table>
<thead>
<tr>
<th>FAN UNIT SIZE</th>
<th>OUTDOOR UNIT CAPACITY BTUH</th>
<th>ELECTRIC HEATER kW RANGE</th>
<th>0-5</th>
<th>0-10</th>
<th>0-15</th>
<th>0-20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lo</td>
<td>Nom</td>
<td>High</td>
<td>Lo</td>
<td>Nom</td>
<td>High</td>
</tr>
<tr>
<td>002</td>
<td>18,000</td>
<td>625</td>
<td>625</td>
<td>625</td>
<td>675</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>24,000</td>
<td>650</td>
<td>725</td>
<td>835</td>
<td>725</td>
<td>835</td>
</tr>
<tr>
<td></td>
<td>30,000</td>
<td>815</td>
<td>905</td>
<td>1040</td>
<td>905</td>
<td>1040</td>
</tr>
<tr>
<td></td>
<td>36,000</td>
<td>980</td>
<td>1085</td>
<td>1250</td>
<td>980</td>
<td>1085</td>
</tr>
<tr>
<td>003</td>
<td>24,000</td>
<td>675</td>
<td>725</td>
<td>835</td>
<td>875</td>
<td>875</td>
</tr>
<tr>
<td></td>
<td>30,000</td>
<td>815</td>
<td>905</td>
<td>1040</td>
<td>875</td>
<td>905</td>
</tr>
<tr>
<td></td>
<td>36,000</td>
<td>980</td>
<td>1085</td>
<td>1250</td>
<td>980</td>
<td>1085</td>
</tr>
<tr>
<td></td>
<td>42,000</td>
<td>1140</td>
<td>1270</td>
<td>1460</td>
<td>1140</td>
<td>1270</td>
</tr>
</tbody>
</table>

NOTE: Lo, Nom, and Hi refer to AC, HP, CFM ADJUST selection. Airflow not recommended for heater/system size.

MINIMUM CFM FOR ELECTRIC HEATER APPLICATION

<table>
<thead>
<tr>
<th>FAN COIL UNIT</th>
<th>HEAT PUMP UNIT SIZE</th>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>002</td>
<td>Heater Only</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>018</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>024</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>970</td>
</tr>
<tr>
<td>003</td>
<td>Heater Only</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>024</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1125</td>
</tr>
<tr>
<td>005</td>
<td>Heater Only</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>018</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1125</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td>1305</td>
</tr>
<tr>
<td>006</td>
<td>Heater Only</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>018</td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1125</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td>060</td>
<td>1625</td>
</tr>
</tbody>
</table>

NOTES:
1. Heater Only—Air conditioner with electric heater application.
2. These airflows are minimum acceptable airflows as UL listed. Actual airflow delivered will be per airflow delivery chart for Electric Heating Modes.
ACCEPTABLE DUCT CONDITIONS

For satisfactory operation (specifically making dry secondary trap), subject fan coils must be installed with duct systems which fall within the "Acceptable Range" illustrated above.

The airflow performance charts for the FV4C fan coil depict nominal airflow delivery for heating and cooling mode operation versus duct system static pressure drop. Cooling mode operation is shown as solid vertical lines for all 4 system size selections. Heating mode operation for the 4 system size selections are shown as dashed vertical lines.

The dotted curved lines are static pressure drop characteristics for several fixed-duct systems. These lines can be used to predict the system static pressure drop at any airflow given the actual drop at 1 known point.

For example, a duct system is designed for 0.15 in. water column (in. w.c.) drop at 1200 CFM. The FV4CNF005 operating at nominal cooling airflow would deliver 1050 CFM with a duct system drop of 0.11 in. w.c. (See point 1.) On the same duct system, the FV4CNF005 operating at nominal heating airflow would deliver 945 CFM with a duct system drop of 0.09 in. w.c. (See point 2.)

This example is but one of many possible duct system designs. The FV4CNF005 will deliver the above airflows against much higher static pressures.
AIRFLOW PERFORMANCE

SCFM

EXTERNAL STATIC PRESSURE (in. w.c.)

FV4CNF002

- Nominal Cooling and Heat Pump Efficiency airflow for each size selection. Airflow can be adjusted +15% to −10%.
- Nominal Heat Pump Comfort airflow for each size selection. Airflow can be adjusted +15% to −10%.
- Maximum cooling airflow for largest size selection. Adjusted +1% from nominal.
- Read Duct Systems (See description under Acceptable Duct Conditions.)
AIRFLOW PERFORMANCE

FV4CNB006

- Nominal Cooling and Heat Pump Efficiency airflow for each size selection. Airflow can be adjusted +15% to -10%.
- Nominal Heat Pump Comfort airflow for each size selection. Airflow can be adjusted +15% to -10%.
- Maximum cooling airflow for largest size selection. Adjusted +10% from nominal.
- Read Duct Systems (See description under Acceptable Duct Conditions.)
AIRFLOW PERFORMANCE CORRECTION FACTORS

<table>
<thead>
<tr>
<th>HEATER kW</th>
<th>ELEMENTS</th>
<th>STATIC PRESSURE CORRECTION (in. wc)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sizes 002-005</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>.02</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>.01</td>
</tr>
<tr>
<td>8, 10</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9, 15</td>
<td>3</td>
<td>.02</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>.04</td>
</tr>
<tr>
<td>18, 24, 30</td>
<td>6</td>
<td>.06</td>
</tr>
</tbody>
</table>

The FV-4C airflow performance table was developed using fan coils with 1-kW electric heaters (2 elements) in the units. For fan coils with heaters made up of a different number of elements, the external available static at a given CFM from the table may be corrected by adding or subtracting pressure. Use table for this correction.

FACTORY-INSTALLED FILTER STATIC PRESSURE DROP (in. wc)

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400</td>
</tr>
<tr>
<td>002</td>
<td>0.020</td>
</tr>
<tr>
<td>003</td>
<td>—</td>
</tr>
<tr>
<td>005</td>
<td>—</td>
</tr>
<tr>
<td>006</td>
<td>—</td>
</tr>
</tbody>
</table>

AIR DELIVERY PERFORMANCE CORRECTION COMPONENT PRESSURE DROP (IN. WC) AT INDICATED AIRFLOW (DRY TO WET COIL)

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>600</td>
</tr>
<tr>
<td>002</td>
<td>0.012</td>
</tr>
<tr>
<td>003</td>
<td>—</td>
</tr>
<tr>
<td>005</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CFM</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
<th>1700</th>
<th>1800</th>
<th>1900</th>
<th>2000</th>
<th>2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>006</td>
<td>0.013</td>
<td>0.016</td>
<td>0.018</td>
<td>0.020</td>
<td>0.023</td>
<td>0.027</td>
<td>0.030</td>
<td>0.034</td>
<td>0.039</td>
<td>0.044</td>
<td>0.048</td>
</tr>
</tbody>
</table>
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Carrier

Model: FX4D

Table 1 – Airflow Performance (CFM)

<table>
<thead>
<tr>
<th>Model & Size</th>
<th>Blower Speed</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>FX4D 019</td>
<td>Top 5</td>
<td>776</td>
<td>745</td>
<td>696</td>
<td>660</td>
<td>609</td>
<td>572</td>
</tr>
<tr>
<td></td>
<td>Top 4</td>
<td>683</td>
<td>644</td>
<td>589</td>
<td>548</td>
<td>494</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>Top 3</td>
<td>683</td>
<td>644</td>
<td>589</td>
<td>548</td>
<td>494</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>Top 2</td>
<td>631</td>
<td>563</td>
<td>500</td>
<td>443</td>
<td>409</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>Top 1</td>
<td>625</td>
<td>524</td>
<td>457</td>
<td>417</td>
<td>367</td>
<td>319</td>
</tr>
<tr>
<td>FX4D 025</td>
<td>Top 5</td>
<td>956</td>
<td>920</td>
<td>891</td>
<td>851</td>
<td>816</td>
<td>780</td>
</tr>
<tr>
<td></td>
<td>Top 4</td>
<td>825</td>
<td>795</td>
<td>757</td>
<td>722</td>
<td>674</td>
<td>634</td>
</tr>
<tr>
<td></td>
<td>Top 3</td>
<td>825</td>
<td>795</td>
<td>757</td>
<td>722</td>
<td>674</td>
<td>634</td>
</tr>
<tr>
<td></td>
<td>Top 2</td>
<td>726</td>
<td>695</td>
<td>655</td>
<td>598</td>
<td>543</td>
<td>509</td>
</tr>
<tr>
<td></td>
<td>Top 1</td>
<td>631</td>
<td>563</td>
<td>500</td>
<td>443</td>
<td>409</td>
<td>361</td>
</tr>
<tr>
<td>FX4D 031</td>
<td>Top 5</td>
<td>1189</td>
<td>1151</td>
<td>1104</td>
<td>1050</td>
<td>1003</td>
<td>959</td>
</tr>
<tr>
<td></td>
<td>Top 4</td>
<td>1041</td>
<td>998</td>
<td>944</td>
<td>888</td>
<td>837</td>
<td>772</td>
</tr>
<tr>
<td></td>
<td>Top 3</td>
<td>1041</td>
<td>998</td>
<td>944</td>
<td>886</td>
<td>837</td>
<td>772</td>
</tr>
<tr>
<td></td>
<td>Top 2</td>
<td>924</td>
<td>876</td>
<td>817</td>
<td>752</td>
<td>704</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>Top 1</td>
<td>779</td>
<td>693</td>
<td>628</td>
<td>571</td>
<td>526</td>
<td>476</td>
</tr>
<tr>
<td>FX4D 037</td>
<td>Top 5</td>
<td>1303</td>
<td>1294</td>
<td>1223</td>
<td>1207</td>
<td>1187</td>
<td>1157</td>
</tr>
<tr>
<td></td>
<td>Top 4</td>
<td>1237</td>
<td>1206</td>
<td>1180</td>
<td>1121</td>
<td>1070</td>
<td>1013</td>
</tr>
<tr>
<td></td>
<td>Top 3</td>
<td>1237</td>
<td>1206</td>
<td>1180</td>
<td>1121</td>
<td>1070</td>
<td>1013</td>
</tr>
<tr>
<td></td>
<td>Top 2</td>
<td>1095</td>
<td>1058</td>
<td>1007</td>
<td>951</td>
<td>888</td>
<td>824</td>
</tr>
<tr>
<td></td>
<td>Top 1</td>
<td>1014</td>
<td>885</td>
<td>773</td>
<td>673</td>
<td>609</td>
<td>549</td>
</tr>
<tr>
<td>FX4D 043</td>
<td>Top 5</td>
<td>1519</td>
<td>1490</td>
<td>1454</td>
<td>1419</td>
<td>1379</td>
<td>1332</td>
</tr>
<tr>
<td></td>
<td>Top 4</td>
<td>1437</td>
<td>1403</td>
<td>1360</td>
<td>1333</td>
<td>1294</td>
<td>1245</td>
</tr>
<tr>
<td></td>
<td>Top 3</td>
<td>1437</td>
<td>1403</td>
<td>1360</td>
<td>1333</td>
<td>1294</td>
<td>1245</td>
</tr>
<tr>
<td></td>
<td>Top 2</td>
<td>1257</td>
<td>1226</td>
<td>1191</td>
<td>1141</td>
<td>1090</td>
<td>1033</td>
</tr>
<tr>
<td></td>
<td>Top 1</td>
<td>1257</td>
<td>1226</td>
<td>1191</td>
<td>1141</td>
<td>1090</td>
<td>1033</td>
</tr>
<tr>
<td>FX4D 040</td>
<td>Top 5</td>
<td>1757</td>
<td>1725</td>
<td>1693</td>
<td>1653</td>
<td>1614</td>
<td>1576</td>
</tr>
<tr>
<td></td>
<td>Top 4</td>
<td>1664</td>
<td>1626</td>
<td>1593</td>
<td>1552</td>
<td>1517</td>
<td>1477</td>
</tr>
<tr>
<td></td>
<td>Top 3</td>
<td>1664</td>
<td>1626</td>
<td>1593</td>
<td>1552</td>
<td>1517</td>
<td>1477</td>
</tr>
<tr>
<td></td>
<td>Top 2</td>
<td>1459</td>
<td>1420</td>
<td>1379</td>
<td>1336</td>
<td>1298</td>
<td>1259</td>
</tr>
<tr>
<td></td>
<td>Top 1</td>
<td>1301</td>
<td>1241</td>
<td>1185</td>
<td>1150</td>
<td>1102</td>
<td>1050</td>
</tr>
<tr>
<td>FX4D 061</td>
<td>Top 5</td>
<td>2030</td>
<td>1995</td>
<td>1951</td>
<td>1897</td>
<td>1888</td>
<td>1842</td>
</tr>
<tr>
<td></td>
<td>Top 4</td>
<td>1811</td>
<td>1775</td>
<td>1740</td>
<td>1693</td>
<td>1664</td>
<td>1613</td>
</tr>
<tr>
<td></td>
<td>Top 3</td>
<td>1811</td>
<td>1775</td>
<td>1740</td>
<td>1693</td>
<td>1664</td>
<td>1613</td>
</tr>
<tr>
<td></td>
<td>Top 2</td>
<td>1685</td>
<td>1632</td>
<td>1583</td>
<td>1566</td>
<td>1547</td>
<td>1533</td>
</tr>
<tr>
<td></td>
<td>Top 1</td>
<td>1402</td>
<td>1348</td>
<td>1317</td>
<td>1278</td>
<td>1238</td>
<td>1220</td>
</tr>
</tbody>
</table>

Notes:
1. Airflow based upon dry coil at 250v with factory-approved filters and electric heater (2 element heater sizes 018 through 017, 3 element heater sizes 043 through 061).
2. Airflow at 204 volts is approximately the same as 230 volts because the units top ECM motor is a constant torque motor. The torcon doesn’t drop off at the speeds the motor operates.
3. To avoid potential for condensate blowing out of drain pan prior to making drain trap.
 - Return static pressure must be less than 0.85 in wc.
 - Horizontal applications of 041 - 061 sizes must have supply static greater than 0.20 in wc.
4. Airflow above 400 cfm/ton on 049 - 061 sizes could result in condensate blowing off coil or splashing out of drain pan.
<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>INDOOR COIL AIR</th>
<th>SATURATED TEMPERATURE LEAVING EVAPORATOR (°F / °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFM</td>
<td>EWB</td>
</tr>
<tr>
<td>1600</td>
<td>72.72</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>67.19</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>62.17</td>
<td>71</td>
</tr>
<tr>
<td>1750</td>
<td>72.72</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>67.19</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>62.17</td>
<td>76</td>
</tr>
<tr>
<td>2000</td>
<td>72.72</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>67.19</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>62.17</td>
<td>84</td>
</tr>
</tbody>
</table>

NOTES:
1. Contact manufacturer for cooling capacities at conditions other than shown in table.
2. Formula:
 - Leaving \(d_h \) = entering \(d_h \) - sensible heat gain
 - \(1.09 \times CFM \)
 - \(d_w = d_w \) corresponding to enthalpy of air leaving coil \((h_{\text{avg}}) \)
 - \(h_{\text{avg}} = h_{\text{avg}} - \text{total capacity (Bhsh)} \)
 - \(4.5 \times CFM \)

3. SHC is based on 80°F (27°C) db temperature of air entering coil. Below 80°F (27°C) db, subtract (Correction Factor x CFM) from SHC. Above 80°F (27°C) db, add (Correction Factor x CFM) to SHC.
4. Bypass Factor = 0 indicates no psychometric solution. Use bypass factor of next lower EWB for approximation.

Table 3 – SHC CORRECTION FACTOR

<table>
<thead>
<tr>
<th>ENTERING-AIR DRY-BULB TEMPERATURE (°F)</th>
<th>BYPASS FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>78</td>
</tr>
<tr>
<td>26</td>
<td>25</td>
</tr>
</tbody>
</table>

Correction Factor: Use formula shown below

Interpolation is permissible.

Interpolation = (1 - BF) x (DB - 80)

Table 4 – MINIMUM CFM AND MOTOR SPEED SELECTION

<table>
<thead>
<tr>
<th>FAN COIL SIZES</th>
<th>FX</th>
<th>3</th>
<th>5</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>15</th>
<th>18</th>
<th>20</th>
<th>24</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>019</td>
<td>523</td>
<td>525</td>
<td>525</td>
<td>--</td>
<td>600*</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>025</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>--</td>
<td>700</td>
<td>775*</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>031</td>
<td>--</td>
<td>875</td>
<td>875</td>
<td>--</td>
<td>875</td>
<td>875</td>
<td>--</td>
<td>1060*</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>037</td>
<td>--</td>
<td>1050</td>
<td>970</td>
<td>970</td>
<td>970</td>
<td>920</td>
<td>--</td>
<td>1040</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>043</td>
<td>--</td>
<td>--</td>
<td>1225</td>
<td>1225</td>
<td>1225</td>
<td>1225</td>
<td>1225</td>
<td>1225</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>049</td>
<td>--</td>
<td>--</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>061</td>
<td>--</td>
<td>--</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

* Indicates maximum speed (blue). All other motor speeds at low tap.

Table 5 – AIR DELIVERY PERFORMANCE CORRECTION COMPONENT PRESSURE DROP (in we at indicated airflow (dry-to-wet coil)

| FX | 500 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 | 1600 | 1700 | 1800 | 1900 | 2000 |
|----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|------|------|------|
| 019 | 0.004 | 0.014 | 0.065 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 025 | 0.016 | 0.037 | 0.033 | 0.049 | 0.059 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 031 | -- | -- | 0.049 | 0.059 | 0.070 | 0.080 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 037 | -- | -- | -- | 0.055 | 0.064 | 0.073 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 043 | -- | -- | -- | -- | 0.049 | 0.056 | 0.063 | 0.070 | -- | -- | -- | -- | -- | -- | -- |
| 049 | -- | -- | -- | -- | -- | 0.038 | 0.043 | 0.049 | 0.054 | 0.059 | -- | -- | -- | -- | -- | -- |
| 061 | -- | -- | -- | -- | -- | -- | 0.027 | 0.031 | 0.035 | 0.039 | 0.043 | -- | -- | -- | -- | -- |
Table 6 – FACTORY-INSTALLED FILTER STATIC PRESSURE DROP (in wc)

<table>
<thead>
<tr>
<th>Unit Size FX4D</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
<th>1200</th>
<th>1400</th>
<th>1600</th>
<th>1800</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>019, 025</td>
<td>0.012</td>
<td>0.022</td>
<td>0.048</td>
<td>0.072</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>031, 037, 043</td>
<td>—</td>
<td>—</td>
<td>0.036</td>
<td>0.051</td>
<td>0.07</td>
<td>0.092</td>
<td>0.12</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>040, 061</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.073</td>
<td>0.086</td>
<td>0.105</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Table 7 – ELECTRIC HEATER STATIC PRESSURE DROP (in wc)

<table>
<thead>
<tr>
<th>HEATER ELEMENTS</th>
<th>019 - 037</th>
<th>043 - 061</th>
</tr>
</thead>
<tbody>
<tr>
<td>kW</td>
<td>EXTERNAL STATIC PRESSURE CORRECTION</td>
<td>kW</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3.5</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>8.10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>9.15</td>
<td>0.02</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>0.04</td>
</tr>
</tbody>
</table>

The airflow performance data was developed using fan coils with 10-kW electric heaters (2 elements) in the 019 through 037 size units and 15-kW heaters (3 elements) in the 043 through 061 size units.

For fan coils with heaters of a different number of elements, the external available static at a given CFM from the curve may be corrected by adding or subtracting available external static pressure as indicated above.
SECTION XI: BLOWER SPEED CONNECTIONS

Adjust blower motor speed to provide airflow within the minimum and maximum limits approved for indoor coil, electric heat and outdoor unit. Make speed tap adjustments at the motor terminal block. Refer to airflow data listed in Table 11. Connect motor wires to motor speed tap receptacle for speed desired.

The standard ECM motor operates when a 24 VAC signal is sent to any of its 5-speed taps. If simultaneous 24 VAC inputs are present, the motor operates at the highest speed tap that is energized. The lowest speed is 1, and the highest speed is 5. The air handler comes factory wired with the electric heat kit connected to tap 5 for the heating speed, and the cooling/heat pump connected to tap 4 for the heating speed. The cooling / heat pump indicating speed is supplied by the thermostat “G” signal.

The electric heat kit wire for the heating speed should be moved from 5 to the appropriate speed tap according to Table 4. If electric heat requires speed tap 5, the highest speed tap available for cooling / heat pump heating is tap 4.

If a lower circulating speed is desired for fan only operation (lower than a heating or cooling fan speed), connect the factory “red” wire shipped on tap #4 into the lowest setting desired. Field install a wire from low voltage “YEL,” and connect it to the motor speed tap desired for cooling / heat pump heating fan speed.

FIGURE 17: Blower Speed Connections
<table>
<thead>
<tr>
<th>Models</th>
<th>Blower Motor Speed</th>
<th>External Static Pressure (in. wc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>18B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5 HI</td>
<td>1132</td>
<td>1107</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1025</td>
<td>994</td>
</tr>
<tr>
<td>#3 MED</td>
<td>821</td>
<td>798</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>661</td>
<td>632</td>
</tr>
<tr>
<td>#1 LO</td>
<td>510</td>
<td>435</td>
</tr>
<tr>
<td>24B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5 HI</td>
<td>1117</td>
<td>1078</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1032</td>
<td>1001</td>
</tr>
<tr>
<td>#3 MED</td>
<td>838</td>
<td>799</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>644</td>
<td>620</td>
</tr>
<tr>
<td>#1 LO</td>
<td>474</td>
<td>421</td>
</tr>
<tr>
<td>30B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5 HI</td>
<td>1113</td>
<td>1083</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1057</td>
<td>1021</td>
</tr>
<tr>
<td>#3 MED</td>
<td>857</td>
<td>821</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>675</td>
<td>641</td>
</tr>
<tr>
<td>#1 LO</td>
<td>489</td>
<td>457</td>
</tr>
<tr>
<td>36B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5 HI</td>
<td>1323</td>
<td>1287</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1256</td>
<td>1222</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1052</td>
<td>1025</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>885</td>
<td>823</td>
</tr>
<tr>
<td>#1 LO</td>
<td>653</td>
<td>622</td>
</tr>
<tr>
<td>36C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5 HI</td>
<td>1562</td>
<td>1531</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1277</td>
<td>1240</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1076</td>
<td>1043</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>681</td>
<td>636</td>
</tr>
<tr>
<td>#1 LO</td>
<td>707</td>
<td>677</td>
</tr>
<tr>
<td>42C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5 HI</td>
<td>1594</td>
<td>1564</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1442</td>
<td>1408</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1249</td>
<td>1215</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>1046</td>
<td>1008</td>
</tr>
<tr>
<td>#1 LO</td>
<td>881</td>
<td>833</td>
</tr>
</tbody>
</table>
TABLE 11: Air Flow Data (CFM)

<table>
<thead>
<tr>
<th>Models</th>
<th>Blower Motor Speed</th>
<th>External Static Pressure (in. wc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>48C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5 HI</td>
<td>1759</td>
<td>1719</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1684</td>
<td>1639</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1511</td>
<td>1460</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>1305</td>
<td>1260</td>
</tr>
<tr>
<td>#1 LO</td>
<td>1123</td>
<td>1066</td>
</tr>
<tr>
<td>48D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5 HI</td>
<td>1774</td>
<td>1726</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1709</td>
<td>1668</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1484</td>
<td>1436</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>1295</td>
<td>1254</td>
</tr>
<tr>
<td>#1 LO</td>
<td>1102</td>
<td>1051</td>
</tr>
<tr>
<td>60C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5 HI</td>
<td>1964</td>
<td>1930</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1889</td>
<td>1855</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1693</td>
<td>1652</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>1486</td>
<td>1450</td>
</tr>
<tr>
<td>#1 LO</td>
<td>1292</td>
<td>1247</td>
</tr>
<tr>
<td>60D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5 HI</td>
<td>1907</td>
<td>1871</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1851</td>
<td>1816</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1648</td>
<td>1608</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>1456</td>
<td>1416</td>
</tr>
<tr>
<td>#1 LO</td>
<td>1261</td>
<td>1221</td>
</tr>
</tbody>
</table>

1. Air handler units have been tested to ML D955 / CSA 22.2 standards up to 0.50" wc. external static pressure.
 For optimal performance, external static pressures of 0.2" to 0.5" are recommended. Applications above 0.5" are not recommended.
 Airflow data shown is from testing performed at 230V. AE units use a standard ECM constant torque motor, and there is a minimal variation of airflow at other distribution voltages. The above data can be used for airflow at other distribution voltages.

SECTION XIV: AIR SYSTEM ADJUSTMENT

To check the Cubic Feet per Minute (CFM), measure the external duct static using a manometer and static pressure tips. To prepare coil for static pressure measurements run the fan only to assure a dry coil.

NOTICE

Refer to Table 11 for coil Air Flow Data of Cubic Feet Per Minute (CFM).

Drill 2 holes, one 12” away from the air handler in the supply duct and on 12” away from the air handler in the return air duct (before any elbows in the duct work). Insert the pressure tips, and energize the blower motor. See Table 9 to determine the airflow, and make the necessary adjustments to keep the CFM within the airflow limitations of the coil.

EXTERNAL DUCT STATIC

Measure the supply air static pressure. Record this positive number. Measure the return air static pressure. Record this negative number. Treat the negative number as a positive, and add the two numbers together to determine the total external system static pressure. If a filter rack is installed on the return air end of the air handler or indoor coil section, make sure to measure the return air duct static between the filter and the indoor coil.

FIGURE 18: Duct Static Measurements

Go To Model List
Manufacturer: Coleman

Model: AP Series

<table>
<thead>
<tr>
<th>Models</th>
<th>Blower Motor Speed</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
<th>0.70</th>
</tr>
</thead>
<tbody>
<tr>
<td>18B</td>
<td>High</td>
<td>723</td>
<td>702</td>
<td>666</td>
<td>576</td>
<td>523</td>
<td>373</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>566</td>
<td>543</td>
<td>486</td>
<td>392</td>
<td>305</td>
<td>183</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>394</td>
<td>330</td>
<td>183</td>
<td>144</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>24B</td>
<td>High</td>
<td>990</td>
<td>973</td>
<td>953</td>
<td>924</td>
<td>885</td>
<td>797</td>
<td>713</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>736</td>
<td>723</td>
<td>703</td>
<td>644</td>
<td>606</td>
<td>540</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>579</td>
<td>562</td>
<td>513</td>
<td>463</td>
<td>395</td>
<td>287</td>
<td>202</td>
</tr>
<tr>
<td>30B</td>
<td>High</td>
<td>1228</td>
<td>1192</td>
<td>1134</td>
<td>1076</td>
<td>1023</td>
<td>951</td>
<td>843</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1023</td>
<td>996</td>
<td>958</td>
<td>915</td>
<td>859</td>
<td>741</td>
<td>677</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>796</td>
<td>745</td>
<td>701</td>
<td>632</td>
<td>577</td>
<td>495</td>
<td>433</td>
</tr>
<tr>
<td>36B</td>
<td>High</td>
<td>1522</td>
<td>1475</td>
<td>1416</td>
<td>1349</td>
<td>1276</td>
<td>1188</td>
<td>1108</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1251</td>
<td>1217</td>
<td>1180</td>
<td>1135</td>
<td>1085</td>
<td>1042</td>
<td>968</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>965</td>
<td>951</td>
<td>936</td>
<td>914</td>
<td>886</td>
<td>836</td>
<td>742</td>
</tr>
<tr>
<td>36C</td>
<td>High</td>
<td>1539</td>
<td>1489</td>
<td>1450</td>
<td>1400</td>
<td>1323</td>
<td>1201</td>
<td>1110</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1159</td>
<td>1147</td>
<td>1095</td>
<td>1042</td>
<td>994</td>
<td>943</td>
<td>877</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>966</td>
<td>933</td>
<td>892</td>
<td>850</td>
<td>812</td>
<td>769</td>
<td>679</td>
</tr>
<tr>
<td>37C</td>
<td>High</td>
<td>1508</td>
<td>1471</td>
<td>1436</td>
<td>1382</td>
<td>1217</td>
<td>1054</td>
<td>1031</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1151</td>
<td>1138</td>
<td>1117</td>
<td>1053</td>
<td>923</td>
<td>837</td>
<td>758</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>959</td>
<td>939</td>
<td>904</td>
<td>829</td>
<td>745</td>
<td>698</td>
<td>616</td>
</tr>
<tr>
<td>42C</td>
<td>High</td>
<td>1627</td>
<td>1599</td>
<td>1570</td>
<td>1524</td>
<td>1458</td>
<td>1375</td>
<td>1236</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1444</td>
<td>1423</td>
<td>1392</td>
<td>1346</td>
<td>1204</td>
<td>1118</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1136</td>
<td>1116</td>
<td>1083</td>
<td>1041</td>
<td>962</td>
<td>893</td>
<td>842</td>
</tr>
<tr>
<td>48C</td>
<td>High</td>
<td>1686</td>
<td>1643</td>
<td>1583</td>
<td>1507</td>
<td>1441</td>
<td>1358</td>
<td>1262</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1462</td>
<td>1439</td>
<td>1392</td>
<td>1340</td>
<td>1280</td>
<td>1200</td>
<td>971</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1252</td>
<td>1222</td>
<td>1185</td>
<td>1148</td>
<td>987</td>
<td>926</td>
<td>810</td>
</tr>
<tr>
<td>48D</td>
<td>High</td>
<td>1886</td>
<td>1831</td>
<td>1853</td>
<td>1775</td>
<td>1695</td>
<td>1606</td>
<td>1351</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1672</td>
<td>1636</td>
<td>1587</td>
<td>1522</td>
<td>1439</td>
<td>1302</td>
<td>1139</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1376</td>
<td>1348</td>
<td>1309</td>
<td>1249</td>
<td>1138</td>
<td>1038</td>
<td>973</td>
</tr>
<tr>
<td>60C</td>
<td>High</td>
<td>1651</td>
<td>1613</td>
<td>1575</td>
<td>1500</td>
<td>1410</td>
<td>1313</td>
<td>1262</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1718</td>
<td>1687</td>
<td>1631</td>
<td>1562</td>
<td>1499</td>
<td>1417</td>
<td>1185</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1560</td>
<td>1548</td>
<td>1505</td>
<td>1441</td>
<td>1333</td>
<td>1258</td>
<td>1144</td>
</tr>
<tr>
<td>60D</td>
<td>High</td>
<td>1971</td>
<td>1919</td>
<td>1844</td>
<td>1757</td>
<td>1664</td>
<td>1563</td>
<td>1199</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1812</td>
<td>1763</td>
<td>1698</td>
<td>1639</td>
<td>1561</td>
<td>1451</td>
<td>1142</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1403</td>
<td>1394</td>
<td>1364</td>
<td>1327</td>
<td>1153</td>
<td>1079</td>
<td>968</td>
</tr>
</tbody>
</table>
AIR FLOW DATA (CFM)

230 Volt

<table>
<thead>
<tr>
<th>Models</th>
<th>Blower Motor Speed</th>
<th>External Static Pressure (in. wc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>18B</td>
<td>High</td>
<td>806</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>461</td>
</tr>
<tr>
<td>24B</td>
<td>High</td>
<td>1142</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>854</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>684</td>
</tr>
<tr>
<td>30B</td>
<td>High</td>
<td>1261</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1117</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>864</td>
</tr>
<tr>
<td>36B</td>
<td>High</td>
<td>1601</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1385</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1117</td>
</tr>
<tr>
<td>30C</td>
<td>High</td>
<td>1671</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1326</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1125</td>
</tr>
<tr>
<td>37C</td>
<td>High</td>
<td>1681</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1308</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1109</td>
</tr>
<tr>
<td>42C</td>
<td>High</td>
<td>1924</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1629</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1323</td>
</tr>
<tr>
<td>48C</td>
<td>High</td>
<td>1775</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1581</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1392</td>
</tr>
<tr>
<td>46D</td>
<td>High</td>
<td>2150</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1878</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1583</td>
</tr>
<tr>
<td>60C</td>
<td>High</td>
<td>1901</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1645</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1726</td>
</tr>
<tr>
<td>60D</td>
<td>High</td>
<td>2050</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1949</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1600</td>
</tr>
</tbody>
</table>

1. Air handler units have been tested to UL 1995 / CSA 22.2 No. 236 standards up to 0.50" wc external static pressure.
 Dry coil conditions only, tested without flow.
 For optimal performance, external static pressures of 0.2" to 0.5" are recommended. Heating applications tested at 0.50" w.c. esp.

APPLICATION FACTORS - RATED CFM VS. ACTUAL CFM

<table>
<thead>
<tr>
<th>% Of Rated Airflow (CFM)</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
<th>110%</th>
<th>120%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Factor</td>
<td>0.96</td>
<td>0.98</td>
<td>1.00</td>
<td>1.02</td>
<td>1.03</td>
</tr>
</tbody>
</table>
BLOWER SPEED CONNECTIONS

PSC STANDARD MOTOR
FACTORY WIRED TO FAN MOTOR RELAY TERMINAL ON CONTROL BOARD

FACTORY WIRED TO TRANSFORMER

ALTERNATE CONNECTION
AP60, RFCX60, MP20

PSC STANDARD MOTOR
FACTORY WIRED TO TRANSFORMER

FACTORY WIRED TO FAN MOTOR RELAY TERMINAL ON CONTROL BOARD

230 VOLT BLOWER MOTOR

ALL OTHER AIR HANDLER

AP62-061
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Coleman
Model: AVC Series

<table>
<thead>
<tr>
<th>Heater Kit Models</th>
<th>Nom. kW @ 240V</th>
<th>18B</th>
<th>24B</th>
<th>30B</th>
<th>36B</th>
<th>36C</th>
<th>42C</th>
<th>48C</th>
<th>48D</th>
<th>49C</th>
<th>60C</th>
<th>60D</th>
</tr>
</thead>
<tbody>
<tr>
<td>6HK(0,1)6500206</td>
<td>2.4kW</td>
<td>Med Lo (D)</td>
</tr>
<tr>
<td>6HK(0,1)6500506</td>
<td>4.8kW</td>
<td>Med Lo (D)</td>
<td>Med (C)</td>
</tr>
<tr>
<td>6HK(0,1)6500806</td>
<td>7.7kW</td>
<td>Med Hi (B)</td>
</tr>
<tr>
<td>6HK(0,1)6501006</td>
<td>9.6kW</td>
<td>Med (C)</td>
<td>Med Hi (B)</td>
</tr>
<tr>
<td>6HK(0,1)6501306</td>
<td>12.5kW</td>
<td>Med Hi (B)</td>
<td>Med Hi (B)</td>
<td>Med (C)</td>
<td>Med Hi (B)</td>
</tr>
<tr>
<td>6HK(1,2)6501506</td>
<td>14.4kW</td>
<td>–</td>
<td>–</td>
<td>Med Hi (B)</td>
<td>Med Hi (B)</td>
<td>Med Hi (B)</td>
<td>Hi (A)</td>
<td>Med (C)</td>
<td>Med (C)</td>
<td>Med (C)</td>
<td>Med (C)</td>
<td>Med (C)</td>
</tr>
<tr>
<td>6HK(1,2)6501806</td>
<td>17.3kW</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Med Hi (B)</td>
<td>Med Hi (B)</td>
<td>Hi (A)</td>
<td>Med (C)</td>
<td>Med (C)</td>
<td>Med (C)</td>
<td>Med (C)</td>
<td>Med (C)</td>
</tr>
<tr>
<td>6HK(1,2)6502006</td>
<td>19.2kW</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Med Hi (B)</td>
<td>Hi (A)</td>
<td>Hi (A)</td>
<td>Med Hi (B)</td>
<td>Hi (A)</td>
<td>Med Hi (B)</td>
<td>Med Hi (B)</td>
<td>Med Hi (B)</td>
</tr>
<tr>
<td>6HK(1,2)6502506</td>
<td>24kW</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Hi (A)</td>
<td>–</td>
<td>–</td>
<td>Med Hi (B)</td>
<td></td>
</tr>
</tbody>
</table>

1. (0,1) - 0 = no service disconnect OR 1 = with service disconnect.
2. (1,2) - 1 = with service disconnect, no breaker jumper bar OR 2 = with service disconnect & breaker jumper bar.
3. 6HK3 = 3-Phase with terminal block connectors only, 6HK4 = 3-Phase with service disconnect.
Air Flow Data (CFM)

High/Low Speed Cooling and Heat Pump CFM

<table>
<thead>
<tr>
<th>Cool Tap</th>
<th>ADJ Tap</th>
<th>AVC18B</th>
<th>AVC24B</th>
<th>AVC30B</th>
<th>AVC36B</th>
<th>AVC36C</th>
<th>AVC42C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>810</td>
<td>527</td>
<td>1022</td>
<td>593</td>
<td>1960</td>
<td>731</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>675</td>
<td>439</td>
<td>795</td>
<td>437</td>
<td>1013</td>
<td>658</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>720</td>
<td>458</td>
<td>900</td>
<td>495</td>
<td>1000</td>
<td>650</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>900</td>
<td>390</td>
<td>700</td>
<td>385</td>
<td>900</td>
<td>585</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>630</td>
<td>410</td>
<td>733</td>
<td>431</td>
<td>875</td>
<td>569</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>534</td>
<td>347</td>
<td>796</td>
<td>421</td>
<td>844</td>
<td>546</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>525</td>
<td>341</td>
<td>909</td>
<td>335</td>
<td>788</td>
<td>512</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>450</td>
<td>293</td>
<td>558</td>
<td>312</td>
<td>703</td>
<td>457</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>475</td>
<td>309</td>
<td>675</td>
<td>371</td>
<td>750</td>
<td>488</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>600</td>
<td>290</td>
<td>500</td>
<td>275</td>
<td>625</td>
<td>406</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>516</td>
<td>270</td>
<td>557</td>
<td>323</td>
<td>656</td>
<td>427</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>350</td>
<td>228</td>
<td>435</td>
<td>239</td>
<td>547</td>
<td>355</td>
</tr>
</tbody>
</table>

High/Low Speed Heat CFM

<table>
<thead>
<tr>
<th>Heat Tap</th>
<th>AVC18B</th>
<th>AVC24B</th>
<th>AVC30B</th>
<th>AVC36B</th>
<th>AVC36C</th>
<th>AVC42C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>850</td>
<td>850</td>
<td>980</td>
<td>920</td>
<td>850</td>
<td>1125</td>
</tr>
<tr>
<td>B</td>
<td>750</td>
<td>750</td>
<td>900</td>
<td>900</td>
<td>775</td>
<td>1150</td>
</tr>
<tr>
<td>C</td>
<td>675</td>
<td>675</td>
<td>725</td>
<td>725</td>
<td>750</td>
<td>950</td>
</tr>
<tr>
<td>D</td>
<td>425</td>
<td>425</td>
<td>590</td>
<td>590</td>
<td>580</td>
<td>725</td>
</tr>
</tbody>
</table>

1. Air handler units have been tested to UL 1605 / CSA 22.2 No. 238 standards up to 0.50" w.c. external static pressure.
2. Dry coil conditions only, tested without filters.
3. For optimal performance, external static pressures of 0.2" to 0.5" are recommended. Heating applications tested at 0.50" w.c. exp. Above 0.5" CFM is reduced by 2% per 0.1" increase in static.
4. The ADJ tap does not affect the HEAT tap setting.
5. Low speed cooling used only with two stage outdoor units. Speed is preset to 65% of high speed.
6. Dehumidification speed is 85% of jumper selected COOL tap and ADJUST tap.
7. When operating in both heat pump and electric heat modes, the airflow (CFM) will be per HEAT tap CFM values only.
8. At some settings, LOW COOL and/or LOW HEAT airflow may be less than what is required to operate an airflow switch on certain models of electronic air cleaners. Consult the instructions for the electronic air cleaner for further details.
9. Airflow (CFM) indicator light (LED) flashes once for every 100 CFM (i.e. 12 flashes is 1200 CFM) - blinks are approximate +/- 10% of actual CFM.
Manufacturer: Coleman
Model: AVV Series

APPLICATION FACTORS - RATED CFM VS. ACTUAL CFM

<table>
<thead>
<tr>
<th>% Of Rated Airflow (CFM)</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
<th>110%</th>
<th>120%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Factor</td>
<td>0.96</td>
<td>0.96</td>
<td>1.00</td>
<td>1.02</td>
<td>1.03</td>
</tr>
</tbody>
</table>

ELECTRICAL HEAT - MINIMUM FAN SPEED

<table>
<thead>
<tr>
<th>Heater Kit Models</th>
<th>Nom. kW @ 240V</th>
<th>Air Handler Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>HK(0,1) 55000</td>
<td>2.4kW</td>
<td>AVV25B</td>
</tr>
<tr>
<td>HK(0,1) 55005</td>
<td>4.8kW</td>
<td>AVV27B, AVV37C</td>
</tr>
<tr>
<td>HK(0,1) 55009</td>
<td>7.7kW</td>
<td>AVV38C, AVV49C</td>
</tr>
<tr>
<td>HK(0,1) 55010</td>
<td>9.6kW</td>
<td>AVV50C, AVV61C</td>
</tr>
<tr>
<td>HK(0,1) 55013</td>
<td>12.5kW</td>
<td></td>
</tr>
<tr>
<td>HK(1,2) 55015</td>
<td>14.4kW</td>
<td></td>
</tr>
<tr>
<td>HK(1,2) 55019</td>
<td>17.3kW</td>
<td></td>
</tr>
<tr>
<td>HK(1,2) 55020</td>
<td>19.2kW</td>
<td></td>
</tr>
<tr>
<td>HK(1,2) 55025</td>
<td>24kW</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. (0,1) - 0 = no service disconnect OR 1 = with service disconnect.
2. (1,2) - 1 = with service disconnect, no breaker jumper bar OR 2 = with service disconnect & breaker jumper bar.

AIR FLOW DATA (CFM) (When operating with electric heat section.)

A

Heat Tap	AVV25B High/Low	AVV27B High/Low	AVV37C High/Low	AVV38C High/Low	AVV49C High/Low
A | 1225 1020 | 1225 1020 | 1425 1150 | 1430 1200 | 1650 1200 |
B | 1150 950 | 1150 950 | 1150 1050 | 1375 1150 | 1550 1150 |
C | 950 750 | 950 750 | 925 925 | 1150 1050 | 1375 1050 |
D | 725 725 | 725 725 | 675 675 | 900 900 | 1150 1000 |

Heat Tap	AVV49D High/Low	AVV50C High/Low	AVV50D High/Low	AVV61C High/Low	AVV61D High/Low
A | 1650 1150 | 1650 1200 | 1650 1150 | 1850 1250 | 1825 1150 |
B | 1600 1050 | 1550 1150 | 1600 1050 | 1775 1200 | 1775 1050 |
C | 1325 1000 | 1375 1050 | 1325 1000 | 1570 1150 | 1570 1000 |
D | 1125 780 | 1150 1000 | 1125 780 | 1370 1050 | 1375 950 |

NOTES:
1. Air handler units have been tested to UL 1995 / CSA 22.2 No. 236 standards up to 0.50" wc. external static pressure.
 Dry coil conditions only, tested without filters.
 For optimal performance, external static pressures of 0.2" to 0.5" are recommended. Heating applications tested at 0.50" wc. esp.
 Above 0.50" CFM is reduced by 2% per 0.1" increase in static.
2. The ADJ tap does not affect the HEAT tap setting.
 Airflow (CFM) indicator light (LED) flashes once for every 100 CFM (i.e. 12 flashes is 1200 CFM) - blinks are approximate +/- 10% of actual CFM
3. All CFM are shown at 0.5" w.c. external static pressure. These units have variable speed ECM motors that automatically adjust to provide constant CFM from 0.0" to 0.4" WC. external static pressure. From 0.4" to 0.8" external static pressure, CFM is reduced by 2% per 0.1" static pressure. Operation of these units on duct systems with external static pressure greater than 0.8" is not recommended.
4. Airflow may be lower than what is required to operate an airflow switch on certain models of electronic air cleaners. Consult the instructions for the electronic airflow cleaner for further details.
Manufacturer: Coleman

Model: ME Series

APPLICATION FACTORS - RATED CFM VS. ACTUAL CFM

<table>
<thead>
<tr>
<th>% Of Rated Airflow (CFM)</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
<th>110%</th>
<th>120%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Factor</td>
<td>0.96</td>
<td>0.98</td>
<td>1.00</td>
<td>1.02</td>
<td>1.03</td>
</tr>
</tbody>
</table>

ELECTRICAL HEAT - MINIMUM FAN SPEED

<table>
<thead>
<tr>
<th>Heater Kit Models¹ ² ³</th>
<th>Nom. kW @240V</th>
<th>ME08B</th>
<th>ME12B</th>
<th>ME12C</th>
<th>ME14D</th>
<th>ME16C</th>
<th>ME20D</th>
</tr>
</thead>
<tbody>
<tr>
<td>6HK(0,1)65000206</td>
<td>2.4kW</td>
<td>Med Lo (#2)</td>
</tr>
<tr>
<td>6HK(1,2)6501306</td>
<td>12.5kW</td>
<td>Hi (#5)</td>
<td>Med Hi (#4)</td>
<td>Med Hi (#4)</td>
<td>Med (#3)</td>
<td>Med Lo (#2)</td>
<td>Med Lo (#2)</td>
</tr>
<tr>
<td>6HK(1,2)6501506 6HK36501525</td>
<td>14.4kW</td>
<td>--</td>
<td>Hi (#5)</td>
<td>Med Hi (#4)</td>
<td>Med (#3)</td>
<td>Med Lo (#2)</td>
<td>Med Lo (#2)</td>
</tr>
<tr>
<td>6HK(1,2)6501806 6HK36501825</td>
<td>17.3kW</td>
<td>--</td>
<td>Hi (#5)</td>
<td>Med Hi (#4)</td>
<td>Med (#3)</td>
<td>Med (#3)</td>
<td>Med (#3)</td>
</tr>
<tr>
<td>6HK(1,2)6502056 6HK46502025</td>
<td>19.2kW</td>
<td>--</td>
<td>--</td>
<td>Hi (#5)</td>
<td>--</td>
<td>Med Hi (#4)</td>
<td>Med (#3)</td>
</tr>
<tr>
<td>6HK(1,2)6502506 6HK46502525</td>
<td>24kW</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Med (#3)</td>
</tr>
</tbody>
</table>

1. (0.1) - 0 = no service disconnect OR 1 = with service disconnect.
2. (1) = with service disconnect, no breaker jumper bar OR 2 = with service disconnect & breaker jumper bar.
3. 6HK3 = 3-Phase with terminal block connectors only, 6HK4 = 3-Phase with service disconnect.
<table>
<thead>
<tr>
<th>Models</th>
<th>CM Models</th>
<th>Blower Motor Speed</th>
<th>External Static Pressure (in. wc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>CM18B</td>
<td>#5 HI</td>
<td>939</td>
<td>893</td>
</tr>
<tr>
<td></td>
<td>#4 MED-HI</td>
<td>833</td>
<td>803</td>
</tr>
<tr>
<td></td>
<td>#3 MED</td>
<td>638</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td>#2 MED-LO</td>
<td>538</td>
<td>489</td>
</tr>
<tr>
<td></td>
<td>#1 LO</td>
<td>478</td>
<td>448</td>
</tr>
<tr>
<td>CM24B</td>
<td>#5 HI</td>
<td>923</td>
<td>892</td>
</tr>
<tr>
<td></td>
<td>#4 MED-HI</td>
<td>846</td>
<td>816</td>
</tr>
<tr>
<td></td>
<td>#3 MED</td>
<td>651</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td>#2 MED-LO</td>
<td>570</td>
<td>530</td>
</tr>
<tr>
<td></td>
<td>#1 LO</td>
<td>477</td>
<td>448</td>
</tr>
<tr>
<td>CM30B</td>
<td>#5 HI</td>
<td>937</td>
<td>905</td>
</tr>
<tr>
<td></td>
<td>#4 MED-HI</td>
<td>846</td>
<td>808</td>
</tr>
<tr>
<td></td>
<td>#3 MED</td>
<td>636</td>
<td>609</td>
</tr>
<tr>
<td></td>
<td>#2 MED-LO</td>
<td>560</td>
<td>484</td>
</tr>
<tr>
<td></td>
<td>#1 LO</td>
<td>461</td>
<td>448</td>
</tr>
<tr>
<td>CM18B</td>
<td>#5 HI</td>
<td>1355</td>
<td>1334</td>
</tr>
<tr>
<td></td>
<td>#4 MED-HI</td>
<td>1273</td>
<td>1244</td>
</tr>
<tr>
<td></td>
<td>#3 MED</td>
<td>1074</td>
<td>1041</td>
</tr>
<tr>
<td></td>
<td>#2 MED-LO</td>
<td>862</td>
<td>826</td>
</tr>
<tr>
<td></td>
<td>#1 LO</td>
<td>659</td>
<td>619</td>
</tr>
<tr>
<td>CM24B</td>
<td>#5 HI</td>
<td>1392</td>
<td>1331</td>
</tr>
<tr>
<td></td>
<td>#4 MED-HI</td>
<td>1272</td>
<td>1245</td>
</tr>
<tr>
<td></td>
<td>#3 MED</td>
<td>1072</td>
<td>1040</td>
</tr>
<tr>
<td></td>
<td>#2 MED-LO</td>
<td>857</td>
<td>821</td>
</tr>
<tr>
<td></td>
<td>#1 LO</td>
<td>654</td>
<td>605</td>
</tr>
<tr>
<td>CM30B</td>
<td>#5 HI</td>
<td>1354</td>
<td>1295</td>
</tr>
<tr>
<td></td>
<td>#4 MED-HI</td>
<td>1298</td>
<td>1236</td>
</tr>
<tr>
<td></td>
<td>#3 MED</td>
<td>1099</td>
<td>1036</td>
</tr>
<tr>
<td></td>
<td>#2 MED-LO</td>
<td>889</td>
<td>818</td>
</tr>
<tr>
<td></td>
<td>#1 LO</td>
<td>654</td>
<td>608</td>
</tr>
<tr>
<td>CM38B</td>
<td>#5 HI</td>
<td>1348</td>
<td>1317</td>
</tr>
<tr>
<td></td>
<td>#4 MED-HI</td>
<td>1258</td>
<td>1225</td>
</tr>
<tr>
<td></td>
<td>#3 MED</td>
<td>1082</td>
<td>1020</td>
</tr>
<tr>
<td></td>
<td>#2 MED-LO</td>
<td>860</td>
<td>822</td>
</tr>
<tr>
<td></td>
<td>#1 LO</td>
<td>642</td>
<td>599</td>
</tr>
<tr>
<td>CM30C</td>
<td>#5 HI</td>
<td>1390</td>
<td>1354</td>
</tr>
<tr>
<td></td>
<td>#4 MED-HI</td>
<td>1274</td>
<td>1242</td>
</tr>
<tr>
<td></td>
<td>#3 MED</td>
<td>1000</td>
<td>1022</td>
</tr>
<tr>
<td></td>
<td>#2 MED-LO</td>
<td>910</td>
<td>863</td>
</tr>
<tr>
<td></td>
<td>#1 LO</td>
<td>655</td>
<td>585</td>
</tr>
<tr>
<td>CM38D</td>
<td>#5 HI</td>
<td>1583</td>
<td>1546</td>
</tr>
<tr>
<td></td>
<td>#4 MED-HI</td>
<td>1420</td>
<td>1405</td>
</tr>
<tr>
<td></td>
<td>#3 MED</td>
<td>1295</td>
<td>1247</td>
</tr>
<tr>
<td></td>
<td>#2 MED-LO</td>
<td>1099</td>
<td>1075</td>
</tr>
<tr>
<td></td>
<td>#1 LO</td>
<td>906</td>
<td>875</td>
</tr>
<tr>
<td>CM42D</td>
<td>#5 HI</td>
<td>1804</td>
<td>1563</td>
</tr>
<tr>
<td></td>
<td>#4 MED-HI</td>
<td>1508</td>
<td>1404</td>
</tr>
<tr>
<td></td>
<td>#3 MED</td>
<td>1300</td>
<td>1260</td>
</tr>
<tr>
<td></td>
<td>#2 MED-LO</td>
<td>1102</td>
<td>1056</td>
</tr>
<tr>
<td></td>
<td>#1 LO</td>
<td>912</td>
<td>884</td>
</tr>
<tr>
<td></td>
<td>#5 HI</td>
<td>1544</td>
<td>1520</td>
</tr>
<tr>
<td></td>
<td>#4 MED-HI</td>
<td>1455</td>
<td>1426</td>
</tr>
<tr>
<td></td>
<td>#3 MED</td>
<td>1203</td>
<td>1238</td>
</tr>
<tr>
<td></td>
<td>#2 MED-LO</td>
<td>1074</td>
<td>1037</td>
</tr>
<tr>
<td></td>
<td>#1 LO</td>
<td>886</td>
<td>853</td>
</tr>
</tbody>
</table>
Manufacturer: Coleman

Model: MP Series

ELECTRICAL HEAT - MINIMUM FAN SPEED

<table>
<thead>
<tr>
<th>Heater Kit Models(^1)</th>
<th>Nom. kW @480V</th>
<th>MP08B</th>
<th>MP12B</th>
<th>MP14D</th>
<th>MP16C</th>
<th>MP20D</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHK06501046</td>
<td>9.6kW</td>
<td>Med</td>
<td>Low</td>
<td>Med</td>
<td>Low</td>
<td>Med</td>
</tr>
<tr>
<td>GHK06501546</td>
<td>14.4kW</td>
<td>–</td>
<td>Med</td>
<td>Med</td>
<td>Low</td>
<td>Med</td>
</tr>
<tr>
<td>GHK06501846</td>
<td>17.3kW</td>
<td>–</td>
<td>Med</td>
<td>Med</td>
<td>High</td>
<td>Med</td>
</tr>
<tr>
<td>GHK06502046</td>
<td>19.2kW</td>
<td>–</td>
<td>Med</td>
<td>High</td>
<td>High</td>
<td>Med</td>
</tr>
<tr>
<td>GHK06502546</td>
<td>24kW</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>High</td>
</tr>
</tbody>
</table>

\(^1\) All kits have no service disconnect. Terminal blocks only.

APPLICATION FACTORS - RATED CFM VS. ACTUAL CFM

<table>
<thead>
<tr>
<th>% Of Rated Airflow (CFM)</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
<th>110%</th>
<th>120%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Factor</td>
<td>0.96</td>
<td>0.98</td>
<td>1.00</td>
<td>1.02</td>
<td>1.03</td>
</tr>
</tbody>
</table>

BLOWER SPEED CONNECTIONS

[Diagram of blower speed connections]

Go To Model List
AIR FLOW DATA - CFM

<table>
<thead>
<tr>
<th>Models</th>
<th>CM Models</th>
<th>Motor Speed</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
<th>0.70</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>460 Volt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP08B</td>
<td>CM10B</td>
<td>High</td>
<td>1142</td>
<td>1120</td>
<td>1093</td>
<td>1059</td>
<td>1009</td>
<td>953</td>
<td>652</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>855</td>
<td>840</td>
<td>820</td>
<td>760</td>
<td>690</td>
<td>600</td>
<td>594</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>670</td>
<td>693</td>
<td>630</td>
<td>560</td>
<td>520</td>
<td>404</td>
<td>404</td>
</tr>
<tr>
<td></td>
<td>CM24B</td>
<td>High</td>
<td>1105</td>
<td>1066</td>
<td>1060</td>
<td>1032</td>
<td>967</td>
<td>946</td>
<td>659</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>825</td>
<td>815</td>
<td>802</td>
<td>790</td>
<td>752</td>
<td>676</td>
<td>591</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>655</td>
<td>638</td>
<td>618</td>
<td>589</td>
<td>504</td>
<td>467</td>
<td>348</td>
</tr>
<tr>
<td>MP12B</td>
<td>CM30B</td>
<td>High</td>
<td>1521</td>
<td>1471</td>
<td>1397</td>
<td>1322</td>
<td>1241</td>
<td>1181</td>
<td>1097</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>1369</td>
<td>1329</td>
<td>1261</td>
<td>1224</td>
<td>1168</td>
<td>1092</td>
<td>1015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>1130</td>
<td>1107</td>
<td>1071</td>
<td>1029</td>
<td>972</td>
<td>910</td>
<td>842</td>
</tr>
<tr>
<td></td>
<td>CM36B</td>
<td>High</td>
<td>1667</td>
<td>1607</td>
<td>1440</td>
<td>1363</td>
<td>1289</td>
<td>1185</td>
<td>1125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>1361</td>
<td>1321</td>
<td>1266</td>
<td>1207</td>
<td>1193</td>
<td>1078</td>
<td>1010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>1103</td>
<td>1083</td>
<td>1066</td>
<td>1024</td>
<td>976</td>
<td>928</td>
<td>861</td>
</tr>
<tr>
<td>MP14D</td>
<td>CM30D</td>
<td>High</td>
<td>1725</td>
<td>1697</td>
<td>1634</td>
<td>1596</td>
<td>1534</td>
<td>1454</td>
<td>1379</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>1374</td>
<td>1300</td>
<td>1239</td>
<td>1210</td>
<td>1150</td>
<td>1070</td>
<td>904</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>1099</td>
<td>1040</td>
<td>980</td>
<td>940</td>
<td>870</td>
<td>780</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td>CM36D</td>
<td>High</td>
<td>1725</td>
<td>1697</td>
<td>1634</td>
<td>1596</td>
<td>1534</td>
<td>1454</td>
<td>1379</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>1386</td>
<td>1372</td>
<td>1340</td>
<td>1306</td>
<td>1277</td>
<td>1190</td>
<td>1102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>1099</td>
<td>1040</td>
<td>980</td>
<td>940</td>
<td>870</td>
<td>780</td>
<td>630</td>
</tr>
<tr>
<td>MP18C</td>
<td>CM30C</td>
<td>High</td>
<td>2063</td>
<td>2033</td>
<td>1960</td>
<td>1894</td>
<td>1820</td>
<td>1720</td>
<td>1459</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>1690</td>
<td>1662</td>
<td>1623</td>
<td>1567</td>
<td>1534</td>
<td>1400</td>
<td>1233</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>1399</td>
<td>1350</td>
<td>1270</td>
<td>1236</td>
<td>1199</td>
<td>1159</td>
<td>1073</td>
</tr>
<tr>
<td></td>
<td>CM36C</td>
<td>High</td>
<td>1850</td>
<td>1765</td>
<td>1705</td>
<td>1625</td>
<td>1541</td>
<td>1473</td>
<td>1342</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>1663</td>
<td>1642</td>
<td>1674</td>
<td>1599</td>
<td>1538</td>
<td>1478</td>
<td>1415</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>1512</td>
<td>1465</td>
<td>1407</td>
<td>1324</td>
<td>1225</td>
<td>1101</td>
<td>1022</td>
</tr>
<tr>
<td>MP20D</td>
<td>CM42C</td>
<td>High</td>
<td>1816</td>
<td>1754</td>
<td>1680</td>
<td>1653</td>
<td>1472</td>
<td>1278</td>
<td>1206</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>1670</td>
<td>1613</td>
<td>1554</td>
<td>1473</td>
<td>1311</td>
<td>1210</td>
<td>1082</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>1488</td>
<td>1445</td>
<td>1376</td>
<td>1269</td>
<td>1181</td>
<td>1058</td>
<td>979</td>
</tr>
<tr>
<td></td>
<td>CM48C</td>
<td>High</td>
<td>1888</td>
<td>1818</td>
<td>1730</td>
<td>1646</td>
<td>1607</td>
<td>1348</td>
<td>1133</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>1742</td>
<td>1683</td>
<td>1622</td>
<td>1538</td>
<td>1461</td>
<td>1327</td>
<td>1121</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>1563</td>
<td>1512</td>
<td>1456</td>
<td>1390</td>
<td>1234</td>
<td>1080</td>
<td>1011</td>
</tr>
<tr>
<td></td>
<td>CM42D</td>
<td>High</td>
<td>2123</td>
<td>2076</td>
<td>2001</td>
<td>1926</td>
<td>1840</td>
<td>1744</td>
<td>1459</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>1909</td>
<td>1859</td>
<td>1800</td>
<td>1721</td>
<td>1644</td>
<td>1501</td>
<td>1347</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>1651</td>
<td>1619</td>
<td>1568</td>
<td>1498</td>
<td>1426</td>
<td>1354</td>
<td>1299</td>
</tr>
<tr>
<td></td>
<td>CM48D</td>
<td>High</td>
<td>2176</td>
<td>2107</td>
<td>2034</td>
<td>1953</td>
<td>1878</td>
<td>1773</td>
<td>1504</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>2014</td>
<td>1955</td>
<td>1890</td>
<td>1843</td>
<td>1761</td>
<td>1600</td>
<td>1351</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>1867</td>
<td>1832</td>
<td>1779</td>
<td>1727</td>
<td>1661</td>
<td>1544</td>
<td>1280</td>
</tr>
<tr>
<td></td>
<td>CM60D</td>
<td>High</td>
<td>2132</td>
<td>2052</td>
<td>1993</td>
<td>1909</td>
<td>1833</td>
<td>1733</td>
<td>1594</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>1965</td>
<td>1914</td>
<td>1872</td>
<td>1816</td>
<td>1729</td>
<td>1648</td>
<td>1507</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>1846</td>
<td>1810</td>
<td>1756</td>
<td>1695</td>
<td>1627</td>
<td>1568</td>
<td>1355</td>
</tr>
<tr>
<td></td>
<td>CM64D</td>
<td>High</td>
<td>2069</td>
<td>2011</td>
<td>1929</td>
<td>1848</td>
<td>1755</td>
<td>1651</td>
<td>1402</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>1962</td>
<td>1902</td>
<td>1832</td>
<td>1758</td>
<td>1675</td>
<td>1558</td>
<td>1335</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>1833</td>
<td>1787</td>
<td>1734</td>
<td>1667</td>
<td>1581</td>
<td>1382</td>
<td>1239</td>
</tr>
</tbody>
</table>

1. Air handler units have been tested to UL 1995 / CSA Z2.2 No. 236 standards up to 0.50" wc. external static pressure.
2. Dry coil conditions only, tested without filters.
3. For optimal performance, external static pressures of 0.2" to 0.5" are recommended. Heating applications tested at 0.50" w.c. esp.
Manufacturer: Coleman

Model: MVC Series

APPLICATION FACTORS - RATED CFM VS. ACTUAL CFM

<table>
<thead>
<tr>
<th>% Of Rated Airflow (CFM)</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
<th>110%</th>
<th>120%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Factor</td>
<td>0.96</td>
<td>0.98</td>
<td>1.00</td>
<td>1.02</td>
<td>1.03</td>
</tr>
</tbody>
</table>

ELECTRICAL HEAT - MINIMUM FAN SPEED

<table>
<thead>
<tr>
<th>Heater Kit Models<sup>1,2,3</sup></th>
<th>Nom. kW<sup>1,2</sup> (240V)</th>
<th>MVC08B</th>
<th>MVC12B</th>
<th>MVC12C</th>
<th>MVC14D</th>
<th>MVC16C</th>
<th>MVC20D</th>
</tr>
</thead>
<tbody>
<tr>
<td>6HK(0,1)6500206</td>
<td>2.4kW</td>
<td>Med Lo (D)</td>
</tr>
<tr>
<td>6HK(0,1)6500508</td>
<td>4.8kW</td>
<td>Med (C)</td>
<td>Med Lo (D)</td>
<td>Med (C)</td>
<td>Med Lo (D)</td>
<td>Med Lo (D)</td>
<td>Med Lo (D)</td>
</tr>
<tr>
<td>6HK(0,1)6500808</td>
<td>7.7kW</td>
<td>Med Hi (B)</td>
<td>Med Lo (D)</td>
<td>Med Hi (B)</td>
<td>Med (C)</td>
<td>Med Lo (D)</td>
<td>Med Lo (D)</td>
</tr>
<tr>
<td>6HK(0,1)650100B 6HK36501025</td>
<td>9.6kW</td>
<td>Med Hi (B)</td>
<td>Med Lo (D)</td>
<td>Med Hi (B)</td>
<td>Med (C)</td>
<td>Med Lo (D)</td>
<td>Med Lo (D)</td>
</tr>
<tr>
<td>6HK(1,2)6501306</td>
<td>12.5kW</td>
<td>Hi (A)</td>
<td>Med Hi (B)</td>
<td>Med (C)</td>
<td>Med Lo (D)</td>
<td>Med Lo (D)</td>
<td>Med Lo (D)</td>
</tr>
<tr>
<td>6HK(1,2)6501506 6HK36501525</td>
<td>14.4kW</td>
<td>–</td>
<td>Hi (A)</td>
<td>Med Hi (B)</td>
<td>Med (C)</td>
<td>Med Lo (D)</td>
<td>Med Lo (D)</td>
</tr>
<tr>
<td>6HK(1,2)6501806 6HK36501825</td>
<td>17.3kW</td>
<td>–</td>
<td>Hi (A)</td>
<td>Med Hi (B)</td>
<td>Med (C)</td>
<td>–</td>
<td>Med (C)</td>
</tr>
<tr>
<td>6HK(1,2)6502006 6HK46502025</td>
<td>19.2kW</td>
<td>–</td>
<td>Hi (A)</td>
<td>–</td>
<td>Med Hi (B)</td>
<td>Med (C)</td>
<td></td>
</tr>
<tr>
<td>6HK(1,2)6502506 6HK46502525</td>
<td>24kW</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Med (C)</td>
</tr>
</tbody>
</table>

1. (0,1) - 0 = no service disconnect OR 1 = with service disconnect.
2. (1,2) - 1 = with service disconnect, no breaker jumper bar OR 2 = with service disconnect & breaker jumper bar.
3. 6HK3 = 3-Phase with terminal block connectors only, 6HK4 = 3-Phase with service disconnect.
AIR FLOW DATA - CFM

<table>
<thead>
<tr>
<th>Cool Tap</th>
<th>ADJ Tap</th>
<th>MVC06B</th>
<th>MVC12B</th>
<th>MVC12C</th>
<th>MVC14D</th>
<th>MVC16C</th>
<th>MVC20D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B</td>
<td>1022</td>
<td>562</td>
<td>1350</td>
<td>878</td>
<td>1350</td>
<td>878</td>
<td>1425</td>
</tr>
<tr>
<td>A B</td>
<td>795</td>
<td>437</td>
<td>1238</td>
<td>804</td>
<td>1125</td>
<td>866</td>
<td>1425</td>
</tr>
<tr>
<td>A B</td>
<td>900</td>
<td>495</td>
<td>1200</td>
<td>780</td>
<td>1200</td>
<td>780</td>
<td>1425</td>
</tr>
<tr>
<td>A B</td>
<td>700</td>
<td>385</td>
<td>1100</td>
<td>716</td>
<td>1000</td>
<td>770</td>
<td>1250</td>
</tr>
<tr>
<td>A B</td>
<td>783</td>
<td>331</td>
<td>1050</td>
<td>683</td>
<td>1050</td>
<td>683</td>
<td>1288</td>
</tr>
<tr>
<td>A B</td>
<td>786</td>
<td>321</td>
<td>1125</td>
<td>731</td>
<td>1100</td>
<td>770</td>
<td>1344</td>
</tr>
<tr>
<td>A B</td>
<td>609</td>
<td>335</td>
<td>963</td>
<td>626</td>
<td>875</td>
<td>674</td>
<td>1113</td>
</tr>
<tr>
<td>A B</td>
<td>588</td>
<td>312</td>
<td>900</td>
<td>585</td>
<td>875</td>
<td>608</td>
<td>1120</td>
</tr>
<tr>
<td>A B</td>
<td>675</td>
<td>371</td>
<td>1000</td>
<td>856</td>
<td>875</td>
<td>762</td>
<td>1200</td>
</tr>
<tr>
<td>A B</td>
<td>500</td>
<td>275</td>
<td>800</td>
<td>520</td>
<td>800</td>
<td>480</td>
<td>1000</td>
</tr>
<tr>
<td>A B</td>
<td>587</td>
<td>322</td>
<td>875</td>
<td>580</td>
<td>788</td>
<td>665</td>
<td>1088</td>
</tr>
<tr>
<td>A B</td>
<td>435</td>
<td>230</td>
<td>700</td>
<td>455</td>
<td>525</td>
<td>394</td>
<td>590</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m3/min</th>
<th>MVC06B</th>
<th>MVC12B</th>
<th>MVC12C</th>
<th>MVC14D</th>
<th>MVC16C</th>
<th>MVC20D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B</td>
<td>28.0</td>
<td>15.0</td>
<td>38.2</td>
<td>24.8</td>
<td>38.2</td>
<td>24.0</td>
</tr>
<tr>
<td>A B</td>
<td>22.5</td>
<td>12.4</td>
<td>35.0</td>
<td>22.8</td>
<td>31.9</td>
<td>24.5</td>
</tr>
<tr>
<td>A B</td>
<td>22.0</td>
<td>13.3</td>
<td>20.9</td>
<td>16.2</td>
<td>29.7</td>
<td>19.3</td>
</tr>
<tr>
<td>A B</td>
<td>21.7</td>
<td>9.5</td>
<td>27.3</td>
<td>17.7</td>
<td>24.8</td>
<td>19.1</td>
</tr>
<tr>
<td>A B</td>
<td>17.2</td>
<td>8.8</td>
<td>25.5</td>
<td>16.6</td>
<td>19.1</td>
<td>14.3</td>
</tr>
<tr>
<td>A B</td>
<td>19.1</td>
<td>9.0</td>
<td>28.3</td>
<td>18.4</td>
<td>24.8</td>
<td>22.1</td>
</tr>
<tr>
<td>A B</td>
<td>14.2</td>
<td>7.8</td>
<td>22.7</td>
<td>14.7</td>
<td>17.0</td>
<td>12.7</td>
</tr>
<tr>
<td>A B</td>
<td>10.0</td>
<td>9.1</td>
<td>24.6</td>
<td>16.1</td>
<td>21.7</td>
<td>19.4</td>
</tr>
<tr>
<td>A B</td>
<td>12.3</td>
<td>6.8</td>
<td>19.8</td>
<td>12.9</td>
<td>14.9</td>
<td>11.2</td>
</tr>
</tbody>
</table>

High/Low Speed Heat CFM

<table>
<thead>
<tr>
<th>Heat Tap</th>
<th>MVC06B</th>
<th>MVC12B</th>
<th>MVC12C</th>
<th>MVC14D</th>
<th>MVC16C</th>
<th>MVC20D</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>A B</td>
<td>1025</td>
<td>980</td>
<td>1020</td>
<td>1425</td>
<td>1160</td>
<td>1425</td>
</tr>
<tr>
<td>B C</td>
<td>900</td>
<td>950</td>
<td>1150</td>
<td>1150</td>
<td>1000</td>
<td>1325</td>
</tr>
<tr>
<td>C D</td>
<td>725</td>
<td>725</td>
<td>725</td>
<td>725</td>
<td>675</td>
<td>725</td>
</tr>
<tr>
<td>D B</td>
<td>580</td>
<td>580</td>
<td>725</td>
<td>725</td>
<td>675</td>
<td>800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m3/min</th>
<th>MVC06B</th>
<th>MVC12B</th>
<th>MVC12C</th>
<th>MVC14D</th>
<th>MVC16C</th>
<th>MVC20D</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>A B</td>
<td>25.0</td>
<td>27.8</td>
<td>34.7</td>
<td>26.9</td>
<td>46.4</td>
<td>32.8</td>
</tr>
<tr>
<td>A B</td>
<td>27.2</td>
<td>27.2</td>
<td>32.0</td>
<td>26.9</td>
<td>32.0</td>
<td>25.3</td>
</tr>
<tr>
<td>A B</td>
<td>20.5</td>
<td>20.5</td>
<td>28.9</td>
<td>21.2</td>
<td>28.2</td>
<td>29.2</td>
</tr>
<tr>
<td>A B</td>
<td>16.4</td>
<td>16.4</td>
<td>20.5</td>
<td>19.1</td>
<td>19.1</td>
<td>25.5</td>
</tr>
</tbody>
</table>

1. Air handler units have been tested to UL 1995 / CSA 22.2 No.238 standards up to 0.50” WC, external static pressure. Dry coil conditions only, tested without filters. For optimal performance, external static pressures of 0.2” to 0.5” are recommended. Heating applications tested at 0.50” w.c. esp. Above 0.5” CFM is reduced by 2% per 0.1” increase in static.
2. Low speed cooling used only with two stage outdoor units. Low Speed is preset to 85% of high speed. The MVC12C uses 65% for Tap A, 77% for Tap B, 89% for Tap C, 75% for Tap D.
3. The ADJ tap does not affect the HEAT tap setting.

Additional Notes:
- Dehumidification speed is 95% of upper selected COOL tap and ADJUST tap.
- At same settings, LOW COOL and LOW HEAT airflow may be lower than what is required to operate an airflow switch on certain models of electronic air cleaners. Consult the instructions for the electronic air cleaner for further details.
- Airflow (CFM) indicator light (LED) flashes once for every 100 CFM (i.e.: 12 flashes is 1200 CFM). Blinks are approximate ±10% of actual CFM.
Manufacturer: Daikin
Model: ARUF

<table>
<thead>
<tr>
<th>Model</th>
<th>Motor Speed</th>
<th>Static Pressure (in w.c.)</th>
<th>Flow (CFM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>0.1</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>Med</td>
<td>0.2</td>
<td>885</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.3</td>
<td>1255</td>
</tr>
<tr>
<td>ARUF25B14</td>
<td>Low</td>
<td>0.4</td>
<td>595</td>
</tr>
<tr>
<td></td>
<td>Med</td>
<td>0.5</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.6</td>
<td>1130</td>
</tr>
<tr>
<td>ARUF29B14</td>
<td>Low</td>
<td>0.7</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td>Med</td>
<td>0.8</td>
<td>815</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.9</td>
<td>1090</td>
</tr>
<tr>
<td>ARUF31R14</td>
<td>Low</td>
<td>0.1</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>Med</td>
<td>0.2</td>
<td>930</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.3</td>
<td>1235</td>
</tr>
<tr>
<td>ARUF37C14</td>
<td>Low</td>
<td>0.4</td>
<td>560</td>
</tr>
<tr>
<td></td>
<td>Med</td>
<td>0.5</td>
<td>820</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.6</td>
<td>1060</td>
</tr>
<tr>
<td>ARUF43C14</td>
<td>Low</td>
<td>0.7</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Med</td>
<td>0.8</td>
<td>910</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.9</td>
<td>1285</td>
</tr>
<tr>
<td>ARUF49C14</td>
<td>Low</td>
<td>0.1</td>
<td>1120</td>
</tr>
<tr>
<td></td>
<td>Med</td>
<td>0.2</td>
<td>1425</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.3</td>
<td>1625</td>
</tr>
<tr>
<td>ARUF37D14</td>
<td>Low</td>
<td>0.4</td>
<td>1085</td>
</tr>
<tr>
<td></td>
<td>Med</td>
<td>0.5</td>
<td>1385</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.6</td>
<td>1575</td>
</tr>
<tr>
<td>ARUF43D14</td>
<td>Low</td>
<td>0.7</td>
<td>1225</td>
</tr>
<tr>
<td></td>
<td>Med</td>
<td>0.8</td>
<td>1555</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.9</td>
<td>1785</td>
</tr>
<tr>
<td>ARUF47D14</td>
<td>Low</td>
<td>0.1</td>
<td>1360</td>
</tr>
<tr>
<td></td>
<td>Med</td>
<td>0.2</td>
<td>1610</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.3</td>
<td>1900</td>
</tr>
<tr>
<td>ARUF49D14</td>
<td>Low</td>
<td>0.4</td>
<td>1290</td>
</tr>
<tr>
<td></td>
<td>Med</td>
<td>0.5</td>
<td>1540</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.6</td>
<td>1890</td>
</tr>
<tr>
<td>ARUF61D14</td>
<td>Low</td>
<td>0.7</td>
<td>1390</td>
</tr>
<tr>
<td></td>
<td>Med</td>
<td>0.8</td>
<td>1645</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.9</td>
<td>2170</td>
</tr>
</tbody>
</table>

Notes:
- Airflow data indicated is at 130V without air filter in place.
- The chart is for information only. For satisfactory operation, external static pressure must not exceed value shown on rating plate.
 The shaded area indicates ranges in excess of maximum design external static pressure.
- Use the CFM adjustment factors of 0.98 for horizontal left and 0.95 for horizontal right & downflow orientations.
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Daikin

Model: ASPT

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daikin</td>
<td>ASPT</td>
<td>600</td>
<td>705</td>
<td>815</td>
<td>700</td>
<td>670</td>
<td>645</td>
<td>595</td>
<td>565</td>
<td>510</td>
<td>460</td>
<td>410</td>
<td>360</td>
</tr>
<tr>
<td>Daikin</td>
<td>ASPT</td>
<td>640</td>
<td>765</td>
<td>875</td>
<td>760</td>
<td>740</td>
<td>700</td>
<td>670</td>
<td>625</td>
<td>580</td>
<td>540</td>
<td>490</td>
<td>440</td>
</tr>
<tr>
<td>Daikin</td>
<td>ASPT</td>
<td>685</td>
<td>825</td>
<td>925</td>
<td>815</td>
<td>785</td>
<td>755</td>
<td>725</td>
<td>685</td>
<td>640</td>
<td>595</td>
<td>550</td>
<td>500</td>
</tr>
<tr>
<td>Daikin</td>
<td>ASPT</td>
<td>1,015</td>
<td>1,155</td>
<td>1,255</td>
<td>1,125</td>
<td>1,065</td>
<td>1,005</td>
<td>955</td>
<td>905</td>
<td>855</td>
<td>805</td>
<td>755</td>
<td>705</td>
</tr>
<tr>
<td>Daikin</td>
<td>ASPT</td>
<td>1,335</td>
<td>1,495</td>
<td>1,645</td>
<td>1,505</td>
<td>1,405</td>
<td>1,305</td>
<td>1,205</td>
<td>1,105</td>
<td>1,005</td>
<td>905</td>
<td>805</td>
<td>705</td>
</tr>
<tr>
<td>Daikin</td>
<td>ASPT</td>
<td>1,655</td>
<td>1,855</td>
<td>2,015</td>
<td>1,875</td>
<td>1,755</td>
<td>1,655</td>
<td>1,555</td>
<td>1,455</td>
<td>1,355</td>
<td>1,255</td>
<td>1,155</td>
<td>1,055</td>
</tr>
<tr>
<td>Daikin</td>
<td>ASPT</td>
<td>1,975</td>
<td>2,175</td>
<td>2,355</td>
<td>2,175</td>
<td>2,055</td>
<td>1,955</td>
<td>1,855</td>
<td>1,755</td>
<td>1,655</td>
<td>1,555</td>
<td>1,455</td>
<td>1,355</td>
</tr>
<tr>
<td>Daikin</td>
<td>ASPT</td>
<td>1,420</td>
<td>1,540</td>
<td>1,660</td>
<td>1,540</td>
<td>1,460</td>
<td>1,380</td>
<td>1,300</td>
<td>1,220</td>
<td>1,140</td>
<td>1,060</td>
<td>980</td>
<td>900</td>
</tr>
<tr>
<td>Daikin</td>
<td>ASPT</td>
<td>1,740</td>
<td>1,860</td>
<td>1,980</td>
<td>1,860</td>
<td>1,780</td>
<td>1,700</td>
<td>1,620</td>
<td>1,540</td>
<td>1,460</td>
<td>1,380</td>
<td>1,300</td>
<td>1,220</td>
</tr>
</tbody>
</table>

Go To Model List

114
<table>
<thead>
<tr>
<th>Model</th>
<th>Speed Tap</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASFT 59C14AC</td>
<td>1</td>
<td>1.570</td>
<td>1.330</td>
<td>1.295</td>
<td>1.255</td>
<td>1.215</td>
<td>1.180</td>
<td>1.140</td>
<td>1.100</td>
<td>1.060</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.555</td>
<td>1.500</td>
<td>1.465</td>
<td>1.430</td>
<td>1.405</td>
<td>1.370</td>
<td>1.355</td>
<td>1.350</td>
<td>1.210</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.580</td>
<td>1.545</td>
<td>1.615</td>
<td>1.575</td>
<td>1.545</td>
<td>1.510</td>
<td>1.480</td>
<td>1.500</td>
<td>1.205</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.805</td>
<td>1.855</td>
<td>1.780</td>
<td>1.690</td>
<td>1.605</td>
<td>1.515</td>
<td>1.425</td>
<td>1.510</td>
<td>1.205</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.940</td>
<td>1.825</td>
<td>1.772</td>
<td>1.700</td>
<td>1.600</td>
<td>1.502</td>
<td>1.420</td>
<td>1.510</td>
<td>1.202</td>
<td></td>
</tr>
<tr>
<td>ASFT 61C14AC</td>
<td>1</td>
<td>1.445</td>
<td>1.495</td>
<td>1.440</td>
<td>1.390</td>
<td>1.355</td>
<td>1.260</td>
<td>1.180</td>
<td>1.080</td>
<td>1.050</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.745</td>
<td>1.695</td>
<td>1.625</td>
<td>1.575</td>
<td>1.525</td>
<td>1.475</td>
<td>1.400</td>
<td>1.360</td>
<td>1.275</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.905</td>
<td>1.955</td>
<td>1.815</td>
<td>1.770</td>
<td>1.725</td>
<td>1.670</td>
<td>1.635</td>
<td>1.575</td>
<td>1.500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.155</td>
<td>2.105</td>
<td>2.090</td>
<td>2.045</td>
<td>2.000</td>
<td>1.970</td>
<td>1.955</td>
<td>1.890</td>
<td>1.850</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.340</td>
<td>2.310</td>
<td>2.335</td>
<td>2.220</td>
<td>2.185</td>
<td>2.165</td>
<td>2.130</td>
<td>2.080</td>
<td>2.050</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- The chart is for information only. For satisfactory operation, external static pressure must not exceed value shown on rating plate.
- Use the CFM adjustment factors of .90 for horizontal left, .95 for horizontal right & .95 for downflow orientations.
- Assumes dry coil with filter in place.
- All models are shipped from the factory with the speed tap set on T4.
- Assumes dry coil, 0.05% correction for wet coil = 4%.
- All ASFT models are shipped from the factory with the speed tap set on T4.
Manufacturer: Daikin

Model: DVPEC

Rated Air Flow CFM

<table>
<thead>
<tr>
<th>Model</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>DV25PECB14A*</td>
<td>700</td>
<td>690</td>
<td>690</td>
<td>685</td>
<td>680</td>
<td>670</td>
<td>665</td>
<td>660</td>
<td>655</td>
</tr>
<tr>
<td>DV37PECC14A*</td>
<td>1190</td>
<td>1170</td>
<td>1165</td>
<td>1160</td>
<td>1145</td>
<td>1130</td>
<td>1120</td>
<td>1105</td>
<td>1100</td>
</tr>
<tr>
<td>DV59PECD14A*</td>
<td>1445</td>
<td>1440</td>
<td>1430</td>
<td>1415</td>
<td>1405</td>
<td>1390</td>
<td>1380</td>
<td>1375</td>
<td>1370</td>
</tr>
<tr>
<td>DV61PECD14A*</td>
<td>1645</td>
<td>1640</td>
<td>1640</td>
<td>1635</td>
<td>1630</td>
<td>1625</td>
<td>1620</td>
<td>1620</td>
<td>1615</td>
</tr>
</tbody>
</table>

Maximum Air Flow CFM

<table>
<thead>
<tr>
<th>Model</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>DV25PECB14A*</td>
<td>770</td>
<td>760</td>
<td>760</td>
<td>755</td>
<td>750</td>
<td>735</td>
<td>730</td>
<td>725</td>
<td>720</td>
</tr>
<tr>
<td>DV37PECC14A*</td>
<td>1310</td>
<td>1285</td>
<td>1280</td>
<td>1275</td>
<td>1260</td>
<td>1245</td>
<td>1230</td>
<td>1215</td>
<td>1210</td>
</tr>
<tr>
<td>DV59PECD14A*</td>
<td>1590</td>
<td>1585</td>
<td>1575</td>
<td>1560</td>
<td>1545</td>
<td>1530</td>
<td>1520</td>
<td>1515</td>
<td>1505</td>
</tr>
<tr>
<td>DV61PECD14A*</td>
<td>1810</td>
<td>1805</td>
<td>1805</td>
<td>1800</td>
<td>1790</td>
<td>1785</td>
<td>1780</td>
<td>1780</td>
<td>1775</td>
</tr>
</tbody>
</table>

Note:
- The chart is for information only. For satisfactory operation, external static pressure must not exceed value shown on rating plate.
- Use the CFM adjustment factors of .85 for horizontal left, .85 for horizontal right & .96 for downflow orientations.
- Airflow data indicated is at 230V without air filter in place.
Manufacturer: Daikin

Model: DVPTC

<table>
<thead>
<tr>
<th>MODEL</th>
<th>SPEED TAP</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVPTC117</td>
<td>Low</td>
<td>415</td>
<td>415</td>
<td>410</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>615</td>
<td>615</td>
<td>610</td>
<td>610</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>815</td>
<td>815</td>
<td>810</td>
<td>810</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVPTC117</td>
<td>Low</td>
<td>715</td>
<td>715</td>
<td>710</td>
<td>710</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>915</td>
<td>915</td>
<td>910</td>
<td>910</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1115</td>
<td>1115</td>
<td>1110</td>
<td>1110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: When applying a humidistat (normally closed), refer to the installation and operating instructions. The humidistat can adjust the cooling airflow to 85%.

Go To Model List
<table>
<thead>
<tr>
<th>Model</th>
<th>Speed Tap</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Low</td>
<td>515</td>
<td>505</td>
<td>500</td>
<td>485</td>
<td>465</td>
<td>460</td>
<td>450</td>
</tr>
<tr>
<td>B</td>
<td>Low</td>
<td>715</td>
<td>705</td>
<td>700</td>
<td>685</td>
<td>675</td>
<td>670</td>
<td>660</td>
</tr>
<tr>
<td>C</td>
<td>Low</td>
<td>550</td>
<td>535</td>
<td>530</td>
<td>515</td>
<td>505</td>
<td>500</td>
<td>495</td>
</tr>
<tr>
<td>D</td>
<td>Low</td>
<td>1135</td>
<td>1125</td>
<td>1120</td>
<td>1105</td>
<td>1090</td>
<td>1085</td>
<td>1075</td>
</tr>
<tr>
<td>A</td>
<td>High</td>
<td>740</td>
<td>730</td>
<td>725</td>
<td>710</td>
<td>695</td>
<td>690</td>
<td>680</td>
</tr>
<tr>
<td>B</td>
<td>High</td>
<td>1015</td>
<td>1005</td>
<td>1000</td>
<td>985</td>
<td>965</td>
<td>960</td>
<td>950</td>
</tr>
<tr>
<td>C</td>
<td>High</td>
<td>1345</td>
<td>1335</td>
<td>1330</td>
<td>1315</td>
<td>1300</td>
<td>1295</td>
<td>1290</td>
</tr>
<tr>
<td>D</td>
<td>High</td>
<td>1615</td>
<td>1605</td>
<td>1600</td>
<td>1585</td>
<td>1570</td>
<td>1565</td>
<td>1555</td>
</tr>
<tr>
<td>A</td>
<td>Low</td>
<td>606</td>
<td>606</td>
<td>600</td>
<td>576</td>
<td>560</td>
<td>546</td>
<td>535</td>
</tr>
<tr>
<td>B</td>
<td>Low</td>
<td>730</td>
<td>725</td>
<td>720</td>
<td>700</td>
<td>695</td>
<td>690</td>
<td>680</td>
</tr>
<tr>
<td>C</td>
<td>Low</td>
<td>520</td>
<td>520</td>
<td>520</td>
<td>500</td>
<td>485</td>
<td>480</td>
<td>475</td>
</tr>
<tr>
<td>D</td>
<td>Low</td>
<td>670</td>
<td>655</td>
<td>650</td>
<td>635</td>
<td>625</td>
<td>615</td>
<td>605</td>
</tr>
<tr>
<td>A</td>
<td>High</td>
<td>1100</td>
<td>1095</td>
<td>1090</td>
<td>1065</td>
<td>1060</td>
<td>1055</td>
<td>1045</td>
</tr>
<tr>
<td>B</td>
<td>High</td>
<td>1230</td>
<td>1225</td>
<td>1220</td>
<td>1205</td>
<td>1200</td>
<td>1195</td>
<td>1190</td>
</tr>
<tr>
<td>C</td>
<td>High</td>
<td>1405</td>
<td>1400</td>
<td>1395</td>
<td>1385</td>
<td>1380</td>
<td>1375</td>
<td>1370</td>
</tr>
<tr>
<td>A</td>
<td>Low</td>
<td>600</td>
<td>595</td>
<td>590</td>
<td>575</td>
<td>560</td>
<td>545</td>
<td>535</td>
</tr>
<tr>
<td>B</td>
<td>Low</td>
<td>795</td>
<td>790</td>
<td>785</td>
<td>775</td>
<td>765</td>
<td>750</td>
<td>740</td>
</tr>
<tr>
<td>C</td>
<td>Low</td>
<td>1025</td>
<td>1015</td>
<td>1010</td>
<td>995</td>
<td>985</td>
<td>970</td>
<td>960</td>
</tr>
<tr>
<td>D</td>
<td>Low</td>
<td>1250</td>
<td>1235</td>
<td>1225</td>
<td>1215</td>
<td>1205</td>
<td>1195</td>
<td>1185</td>
</tr>
<tr>
<td>A</td>
<td>High</td>
<td>1175</td>
<td>1170</td>
<td>1165</td>
<td>1155</td>
<td>1145</td>
<td>1135</td>
<td>1125</td>
</tr>
<tr>
<td>B</td>
<td>High</td>
<td>1445</td>
<td>1435</td>
<td>1425</td>
<td>1415</td>
<td>1405</td>
<td>1395</td>
<td>1385</td>
</tr>
<tr>
<td>C</td>
<td>High</td>
<td>1775</td>
<td>1765</td>
<td>1755</td>
<td>1745</td>
<td>1735</td>
<td>1725</td>
<td>1715</td>
</tr>
<tr>
<td>D</td>
<td>High</td>
<td>2100</td>
<td>2095</td>
<td>2090</td>
<td>2085</td>
<td>2080</td>
<td>2075</td>
<td>2070</td>
</tr>
<tr>
<td>A</td>
<td>Low</td>
<td>510</td>
<td>505</td>
<td>500</td>
<td>495</td>
<td>490</td>
<td>485</td>
<td>480</td>
</tr>
<tr>
<td>B</td>
<td>Low</td>
<td>710</td>
<td>705</td>
<td>700</td>
<td>690</td>
<td>680</td>
<td>670</td>
<td>660</td>
</tr>
<tr>
<td>C</td>
<td>Low</td>
<td>940</td>
<td>935</td>
<td>930</td>
<td>920</td>
<td>910</td>
<td>900</td>
<td>890</td>
</tr>
<tr>
<td>D</td>
<td>Low</td>
<td>1165</td>
<td>1160</td>
<td>1155</td>
<td>1150</td>
<td>1145</td>
<td>1140</td>
<td>1135</td>
</tr>
<tr>
<td>A</td>
<td>High</td>
<td>730</td>
<td>725</td>
<td>720</td>
<td>715</td>
<td>710</td>
<td>705</td>
<td>700</td>
</tr>
<tr>
<td>B</td>
<td>High</td>
<td>1010</td>
<td>1005</td>
<td>1000</td>
<td>995</td>
<td>990</td>
<td>985</td>
<td>980</td>
</tr>
<tr>
<td>C</td>
<td>High</td>
<td>1340</td>
<td>1335</td>
<td>1330</td>
<td>1325</td>
<td>1320</td>
<td>1315</td>
<td>1310</td>
</tr>
<tr>
<td>D</td>
<td>High</td>
<td>1675</td>
<td>1665</td>
<td>1660</td>
<td>1655</td>
<td>1650</td>
<td>1645</td>
<td>1640</td>
</tr>
<tr>
<td>A</td>
<td>Low</td>
<td>910</td>
<td>905</td>
<td>900</td>
<td>895</td>
<td>890</td>
<td>885</td>
<td>880</td>
</tr>
<tr>
<td>B</td>
<td>Low</td>
<td>1050</td>
<td>1045</td>
<td>1040</td>
<td>1035</td>
<td>1030</td>
<td>1025</td>
<td>1020</td>
</tr>
<tr>
<td>C</td>
<td>Low</td>
<td>1195</td>
<td>1190</td>
<td>1185</td>
<td>1180</td>
<td>1175</td>
<td>1170</td>
<td>1165</td>
</tr>
<tr>
<td>D</td>
<td>Low</td>
<td>1375</td>
<td>1370</td>
<td>1365</td>
<td>1360</td>
<td>1355</td>
<td>1350</td>
<td>1345</td>
</tr>
<tr>
<td>A</td>
<td>High</td>
<td>705</td>
<td>700</td>
<td>695</td>
<td>690</td>
<td>685</td>
<td>680</td>
<td>675</td>
</tr>
<tr>
<td>B</td>
<td>High</td>
<td>730</td>
<td>725</td>
<td>720</td>
<td>715</td>
<td>710</td>
<td>705</td>
<td>700</td>
</tr>
<tr>
<td>C</td>
<td>High</td>
<td>890</td>
<td>885</td>
<td>880</td>
<td>875</td>
<td>870</td>
<td>865</td>
<td>860</td>
</tr>
<tr>
<td>D</td>
<td>High</td>
<td>950</td>
<td>945</td>
<td>940</td>
<td>935</td>
<td>930</td>
<td>925</td>
<td>920</td>
</tr>
<tr>
<td>A</td>
<td>High</td>
<td>1030</td>
<td>1025</td>
<td>1020</td>
<td>1015</td>
<td>1010</td>
<td>1005</td>
<td>1000</td>
</tr>
<tr>
<td>B</td>
<td>High</td>
<td>1290</td>
<td>1285</td>
<td>1280</td>
<td>1275</td>
<td>1270</td>
<td>1265</td>
<td>1260</td>
</tr>
<tr>
<td>C</td>
<td>High</td>
<td>1425</td>
<td>1420</td>
<td>1415</td>
<td>1410</td>
<td>1405</td>
<td>1400</td>
<td>1395</td>
</tr>
</tbody>
</table>

Note: When applying a humidistat (normally closed), refer to the installation and operating instructions. The humidistat can adjust the cooling airflow to 15%.
<table>
<thead>
<tr>
<th>Model</th>
<th>Speed Tap</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Low</td>
<td>795</td>
<td>815</td>
<td>820</td>
<td>810</td>
<td>800</td>
<td>795</td>
<td>785</td>
<td>770</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Low</td>
<td>870</td>
<td>890</td>
<td>895</td>
<td>890</td>
<td>875</td>
<td>865</td>
<td>850</td>
<td>835</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Low</td>
<td>965</td>
<td>990</td>
<td>995</td>
<td>990</td>
<td>980</td>
<td>970</td>
<td>955</td>
<td>940</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Low</td>
<td>1040</td>
<td>1055</td>
<td>1055</td>
<td>1045</td>
<td>1035</td>
<td>1025</td>
<td>1020</td>
<td>1005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1155</td>
<td>1195</td>
<td>1195</td>
<td>1190</td>
<td>1185</td>
<td>1175</td>
<td>1165</td>
<td>1155</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1125</td>
<td>1120</td>
<td>1120</td>
<td>1115</td>
<td>1115</td>
<td>1110</td>
<td>1105</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1140</td>
<td>1160</td>
<td>1155</td>
<td>1150</td>
<td>1145</td>
<td>1140</td>
<td>1130</td>
<td>1120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1120</td>
<td>1130</td>
<td>1130</td>
<td>1125</td>
<td>1120</td>
<td>1115</td>
<td>1110</td>
<td>1105</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Low</td>
<td>655</td>
<td>670</td>
<td>670</td>
<td>665</td>
<td>660</td>
<td>660</td>
<td>660</td>
<td>665</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Low</td>
<td>780</td>
<td>800</td>
<td>800</td>
<td>795</td>
<td>785</td>
<td>785</td>
<td>780</td>
<td>780</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Low</td>
<td>930</td>
<td>940</td>
<td>940</td>
<td>935</td>
<td>930</td>
<td>925</td>
<td>925</td>
<td>920</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Low</td>
<td>1085</td>
<td>1105</td>
<td>1105</td>
<td>1100</td>
<td>1095</td>
<td>1090</td>
<td>1085</td>
<td>1080</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>870</td>
<td>880</td>
<td>880</td>
<td>875</td>
<td>870</td>
<td>865</td>
<td>860</td>
<td>860</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1130</td>
<td>1140</td>
<td>1140</td>
<td>1135</td>
<td>1130</td>
<td>1125</td>
<td>1120</td>
<td>1115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1140</td>
<td>1160</td>
<td>1155</td>
<td>1150</td>
<td>1145</td>
<td>1140</td>
<td>1130</td>
<td>1125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1160</td>
<td>1180</td>
<td>1175</td>
<td>1170</td>
<td>1165</td>
<td>1160</td>
<td>1155</td>
<td>1150</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Low</td>
<td>1030</td>
<td>1035</td>
<td>1040</td>
<td>1035</td>
<td>1025</td>
<td>1015</td>
<td>995</td>
<td>970</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Low</td>
<td>1130</td>
<td>1140</td>
<td>1145</td>
<td>1140</td>
<td>1135</td>
<td>1130</td>
<td>1120</td>
<td>1115</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Low</td>
<td>1130</td>
<td>1135</td>
<td>1135</td>
<td>1130</td>
<td>1125</td>
<td>1120</td>
<td>1115</td>
<td>1110</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Low</td>
<td>1185</td>
<td>1195</td>
<td>1200</td>
<td>1195</td>
<td>1185</td>
<td>1180</td>
<td>1175</td>
<td>1170</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1450</td>
<td>1465</td>
<td>1470</td>
<td>1465</td>
<td>1460</td>
<td>1455</td>
<td>1450</td>
<td>1445</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1795</td>
<td>1810</td>
<td>1815</td>
<td>1810</td>
<td>1805</td>
<td>1800</td>
<td>1795</td>
<td>1790</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1190</td>
<td>1210</td>
<td>1220</td>
<td>1215</td>
<td>1210</td>
<td>1205</td>
<td>1200</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Low</td>
<td>1105</td>
<td>1115</td>
<td>1120</td>
<td>1120</td>
<td>1115</td>
<td>1110</td>
<td>1105</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Low</td>
<td>1170</td>
<td>1180</td>
<td>1185</td>
<td>1180</td>
<td>1175</td>
<td>1170</td>
<td>1165</td>
<td>1160</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Low</td>
<td>1440</td>
<td>1450</td>
<td>1450</td>
<td>1445</td>
<td>1440</td>
<td>1435</td>
<td>1430</td>
<td>1425</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Low</td>
<td>1535</td>
<td>1550</td>
<td>1555</td>
<td>1550</td>
<td>1545</td>
<td>1540</td>
<td>1535</td>
<td>1530</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1615</td>
<td>1615</td>
<td>1620</td>
<td>1615</td>
<td>1610</td>
<td>1605</td>
<td>1600</td>
<td>1600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>2040</td>
<td>2050</td>
<td>2050</td>
<td>2045</td>
<td>2040</td>
<td>2035</td>
<td>2030</td>
<td>2030</td>
<td></td>
</tr>
</tbody>
</table>

Note: When applying a humidistat (normally closed), refer to the installation and operating instructions. The humidistat can adjust the cooling airflow to 15%.
HTR KW	S9	S10	S11	DV24 PTC14	DV25 PTC14	DV29 PTC14	DV30 PTC14	DV37 PTC14	DV33 PTC14	DV35 PTC16	DV37 PTC14	DV39 PTC14	DV42 PTC14	DV31 PTC14	
3	ON	ON	ON	730	550	550	730	NR	600	550	---	---	550	---	550
5	ON	ON	OFF	760	650	650	780	850	700	650	1140	850	1400	850	150
6	ON	OFF	ON	850	700	700	900	750	700	1140	900	1630	900	1630	1000
8	ON	OFF	OFF	950	800	800	1000	875	800	1140	1000	1630	1000	1630	1000
10	OFF	ON	ON	1025	850	875	1025	1170	950	875	1170	1170	1670	1170	1170
15	OFF	ON	OFF	---	675	875	---	1345	950	1050	1520	1345	1720	1345	1345
19*	OFF	OFF	ON	---	---	---	1345	---	---	1345	---	1345	---	1345	---
20	OFF	OFF	OFF	---	---	---	NR	---	---	---	1520	1800	NR	NR	NR
21	OFF	OFF	OFF	---	---	---	NR	---	---	---	---	1800	NR	NR	NR
25*	OFF	OFF	OFF	---	---	---	NR	---	---	---	---	---	1800	NR	NR

Note: Airflow data shown applies to the electric heat only in either legacy mode or communicating mode operation.
* Within thermostat user menu CTX® communicating thermostat will display 20kW for OFF- OFF- ON dip switch selection, 21kW for OFF-OFF-OFF dip switch selection.
** Not rated
* For match-up with a 2-ton outdoor unit; heater kit application shall not exceed 10 kW. Airflow for 5 kW up to 10 kW heater kits shall be set to 1500 CFM speed tap of ON-ON-ON.
** For match-up with a 3-ton outdoor unit; heater kit application shall not exceed 15 kW. Airflow for 5 kW up to 15 kW heater kits shall be set to 1400 CFM speed tap of ON-ON-ON.
*** For match-up with a 3.5-ton outdoor unit; heater kit application shall not exceed 20 kW. Airflow for 5 kW up to 20 kW heater kits shall be set to 1620 CFM speed tap of ON-OFF-OFF.
** 3 kW heater kit is not applicable for this indoor application.

HTR KW	S9	S10	S11	DV48 PTC14	DV48 PTC14	DV49 PTC14	DV49 PTC14	DV49 PTC14	DV59 PTC14	DV59 PTC14	DV59 PTC14	DV59 PTC14	DV61 PTC14	
3	ON	ON	ON	---	---	---	---	NR	---	---	---	---	---	---
5	ON	ON	OFF	850	1400	1170	1250	1170	1170	1240	1620	1250	---	---
6	ON	OFF	ON	900	1630	1170	1350	1300	1170	1240	1670	1300	---	---
8	ON	OFF	OFF	1000	1630	1170	1500	1170	1240	1720	1500	---	---	
10	OFF	ON	ON	1200	1670	1170	1550	1170	1240	1750	1550	---	---	
15	OFF	ON	OFF	1440	1720	1345	1720	1345	1520	1780	1780	---	---	
19*	OFF	OFF	ON	1500	---	1345	---	1345	---	1520	1850	1850	---	---
20	OFF	OFF	OFF	1500	1815	---	---	---	1520	1850	1850	---	---	
21	OFF	OFF	OFF	1500	1850	---	---	---	1520	1850	1850	---	---	
25*	OFF	OFF	OFF	1500	1850	---	---	---	1520	1850	1850	---	---	

Note: Airflow data shown applies to the electric heat only in either legacy mode or communicating mode operation.
* Within thermostat user menu CTX® communicating thermostat will display 20kW for OFF- OFF- ON dip switch selection, 21kW for OFF-OFF-OFF dip switch selection.
** Not rated
* For match-up with a 2-ton outdoor unit; heater kit application shall not exceed 10 kW. Airflow for 5 kW up to 10 kW heater kits shall be set to 1500 CFM speed tap of ON-ON-ON.
** For match-up with a 3-ton outdoor unit; heater kit application shall not exceed 15 kW. Airflow for 5 kW up to 15 kW heater kits shall be set to 1400 CFM speed tap of ON-ON-ON.
*** For match-up with a 3.5-ton outdoor unit; heater kit application shall not exceed 20 kW. Airflow for 5 kW up to 20 kW heater kits shall be set to 1620 CFM speed tap of ON-OFF-OFF.
** 3 kW heater kit is not applicable for this indoor application.
7. Airflow Auto Adjustment Characteristics

Notes:
1. If the airflow is less than 10% of the rated air volume, it is automatically adjusted to the rated volume.
2. The unit automatically adjusts external static pressure between 0.0 in.W.C. - 0.5 in.W.C (When fan speed is "H").
3. Airflow cannot operate at the rated value if it is outside the ESP range in the above graph.
4. This figure shows a fan characteristics at "H" speed and "L" speed.
5. Fan speed is changeable by using the remote controller.
6. ESP: external static pressure.
Notes:
1. If the airflow is less than 10% of the rated air volume, it is automatically adjusted to the rated volume.
2. The unit automatically adjusts external static pressure between 0.0 in.W.C. - 0.5 in.W.C (When fan speed is "H").
3. Airflow cannot operate at the rated value if it is outside the ESP range in the above graph.
4. This figure shows a fan characteristics at "H" speed and "L" speed.
5. Fan speed is changeable by using the remote controller.
6. ESP: external static pressure.
Manufacturer: Daikin

Model: FTQ-TA

Note:
1. If the airflow is less than 10% of the rated air volume, it is automatically adjusted to the rated air volume.
2. The unit automatically adjusts the external static pressure between 0.0 in. W.C. - 0.9 in. W.C.
3. Airflow cannot operate at the rated value if it is outside the ESP range in the above graph.
4. Fan speed is changeable by using the remote controller.
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Daikin
Model: MBR

<table>
<thead>
<tr>
<th>SPEED</th>
<th>Static</th>
<th>MBR1200**.* SCFM</th>
<th>MBR1600**.* SCFM</th>
<th>MBR2000**.* SCFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>0.1</td>
<td>1,500</td>
<td>1,800</td>
<td>2,160</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>1,460</td>
<td>1,740</td>
<td>2,080</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>1,360</td>
<td>1,680</td>
<td>1,990</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>1,280</td>
<td>1,610</td>
<td>1,890</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1,200</td>
<td>1,520</td>
<td>1,790</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>1,110</td>
<td>1,430</td>
<td>1,690</td>
</tr>
<tr>
<td>Medium</td>
<td>0.1</td>
<td>1,380</td>
<td>1,540</td>
<td>1,730</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>1,320</td>
<td>1,490</td>
<td>1,670</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>1,270</td>
<td>1,450</td>
<td>1,590</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>1,200</td>
<td>1,400</td>
<td>1,520</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1,140</td>
<td>1,350</td>
<td>1,420</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>1,040</td>
<td>1,280</td>
<td>1,320</td>
</tr>
<tr>
<td>Low</td>
<td>0.1</td>
<td>1,170</td>
<td>1,130</td>
<td>1,520</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>1,130</td>
<td>1,100</td>
<td>1,450</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>1,080</td>
<td>1,070</td>
<td>1,360</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>1,020</td>
<td>1,030</td>
<td>1,290</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>950</td>
<td>990</td>
<td>1,200</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>830</td>
<td>930</td>
<td>1,090</td>
</tr>
</tbody>
</table>

NOTES
- The chart is for information only. For satisfactory operation, external static pressure must not exceed value shown on rating plate.
- Use the CFM adjustment factors of .98 for horizontal left, .95 for horizontal right & .96 for downflow orientations.
Manufacturer: Daikin
Model: MBVC

Airflow Data

<table>
<thead>
<tr>
<th>Model</th>
<th>Speed</th>
<th>Tap</th>
<th>Speed</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBVC1200A*</td>
<td>A</td>
<td>Low</td>
<td>420</td>
<td>415</td>
<td>400</td>
<td>400</td>
<td>395</td>
<td>390</td>
<td>390</td>
<td>390</td>
<td>390</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Low</td>
<td>550</td>
<td>545</td>
<td>540</td>
<td>540</td>
<td>535</td>
<td>530</td>
<td>530</td>
<td>530</td>
<td>530</td>
<td>530</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Low</td>
<td>680</td>
<td>675</td>
<td>670</td>
<td>665</td>
<td>660</td>
<td>655</td>
<td>655</td>
<td>655</td>
<td>655</td>
<td>655</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Low</td>
<td>810</td>
<td>805</td>
<td>800</td>
<td>800</td>
<td>795</td>
<td>790</td>
<td>790</td>
<td>790</td>
<td>790</td>
<td>790</td>
</tr>
<tr>
<td>MBVC1600A*</td>
<td>A</td>
<td>High</td>
<td>615</td>
<td>605</td>
<td>600</td>
<td>595</td>
<td>590</td>
<td>580</td>
<td>580</td>
<td>580</td>
<td>580</td>
<td>580</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>High</td>
<td>805</td>
<td>805</td>
<td>800</td>
<td>800</td>
<td>795</td>
<td>790</td>
<td>790</td>
<td>790</td>
<td>790</td>
<td>790</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>High</td>
<td>1010</td>
<td>1005</td>
<td>1000</td>
<td>995</td>
<td>985</td>
<td>975</td>
<td>975</td>
<td>975</td>
<td>975</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>High</td>
<td>1210</td>
<td>1205</td>
<td>1200</td>
<td>1200</td>
<td>1195</td>
<td>1195</td>
<td>1195</td>
<td>1195</td>
<td>1195</td>
<td>1195</td>
</tr>
<tr>
<td>MBVC2000A*</td>
<td>A</td>
<td>High</td>
<td>1405</td>
<td>1395</td>
<td>1390</td>
<td>1385</td>
<td>1380</td>
<td>1375</td>
<td>1375</td>
<td>1375</td>
<td>1375</td>
<td>1375</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>High</td>
<td>1605</td>
<td>1600</td>
<td>1600</td>
<td>1595</td>
<td>1590</td>
<td>1585</td>
<td>1585</td>
<td>1585</td>
<td>1585</td>
<td>1585</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>High</td>
<td>1800</td>
<td>1805</td>
<td>1800</td>
<td>1785</td>
<td>1780</td>
<td>1775</td>
<td>1775</td>
<td>1775</td>
<td>1775</td>
<td>1775</td>
</tr>
</tbody>
</table>

Go To Model List
Cooling and Heat Pump Airflow

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>Speed Tap</th>
<th>MBVC1200 Airflow (SCFM)</th>
<th>MBVC1600 Airflow (SCFM)</th>
<th>MBVC2000 Airflow (SCFM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
<td>A</td>
<td>600</td>
<td>1000</td>
<td>1200</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>B</td>
<td>800</td>
<td>1200</td>
<td>1600</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>C</td>
<td>1000</td>
<td>1400</td>
<td>1800</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>D</td>
<td>1200</td>
<td>1600</td>
<td>2000</td>
</tr>
</tbody>
</table>

Heat Kit Airflow

<table>
<thead>
<tr>
<th>Cooling / HP / Aux Trim</th>
<th>Cooling Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>S4</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
</tr>
</tbody>
</table>

Notes

- The chart is for information only. For satisfactory operation, external static pressure must not exceed value shown on rating plate.
- Use the CFM adjustment factors of .98 for horizontal left, .95 for horizontal right & .96 for downflow orientations.
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Goodman

Model: ASPT

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Speed Tap</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodman</td>
<td>ASPT 25014AB</td>
<td>1</td>
<td>640</td>
<td>585</td>
<td>530</td>
<td>485</td>
<td>440</td>
<td>405</td>
<td>370</td>
<td>340</td>
<td>310</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>600</td>
<td>545</td>
<td>495</td>
<td>455</td>
<td>415</td>
<td>385</td>
<td>355</td>
<td>325</td>
<td>295</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>640</td>
<td>585</td>
<td>530</td>
<td>485</td>
<td>440</td>
<td>405</td>
<td>370</td>
<td>340</td>
<td>310</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>685</td>
<td>630</td>
<td>575</td>
<td>525</td>
<td>485</td>
<td>445</td>
<td>405</td>
<td>370</td>
<td>340</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>730</td>
<td>685</td>
<td>630</td>
<td>585</td>
<td>545</td>
<td>505</td>
<td>465</td>
<td>430</td>
<td>400</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>ASPT 29914AB</td>
<td>1</td>
<td>1020</td>
<td>970</td>
<td>920</td>
<td>870</td>
<td>820</td>
<td>770</td>
<td>720</td>
<td>670</td>
<td>620</td>
<td>570</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1060</td>
<td>1010</td>
<td>960</td>
<td>910</td>
<td>860</td>
<td>810</td>
<td>760</td>
<td>710</td>
<td>660</td>
<td>610</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1100</td>
<td>1050</td>
<td>1000</td>
<td>950</td>
<td>900</td>
<td>850</td>
<td>800</td>
<td>750</td>
<td>700</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1150</td>
<td>1100</td>
<td>1050</td>
<td>1000</td>
<td>950</td>
<td>900</td>
<td>850</td>
<td>800</td>
<td>750</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1200</td>
<td>1150</td>
<td>1100</td>
<td>1050</td>
<td>1000</td>
<td>950</td>
<td>900</td>
<td>850</td>
<td>800</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>ASPT 33014B</td>
<td>1</td>
<td>1560</td>
<td>1515</td>
<td>1475</td>
<td>1435</td>
<td>1395</td>
<td>1355</td>
<td>1315</td>
<td>1275</td>
<td>1235</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1600</td>
<td>1550</td>
<td>1500</td>
<td>1450</td>
<td>1400</td>
<td>1350</td>
<td>1300</td>
<td>1250</td>
<td>1200</td>
<td>1150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1650</td>
<td>1600</td>
<td>1550</td>
<td>1500</td>
<td>1450</td>
<td>1400</td>
<td>1350</td>
<td>1300</td>
<td>1250</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>ASPT 33014B</td>
<td>1</td>
<td>1850</td>
<td>1805</td>
<td>1765</td>
<td>1725</td>
<td>1685</td>
<td>1645</td>
<td>1605</td>
<td>1565</td>
<td>1525</td>
<td>1485</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1900</td>
<td>1855</td>
<td>1815</td>
<td>1775</td>
<td>1735</td>
<td>1695</td>
<td>1655</td>
<td>1615</td>
<td>1575</td>
<td>1535</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1950</td>
<td>1905</td>
<td>1865</td>
<td>1825</td>
<td>1785</td>
<td>1745</td>
<td>1705</td>
<td>1665</td>
<td>1625</td>
<td>1585</td>
</tr>
<tr>
<td></td>
<td>ASPT 33014B</td>
<td>1</td>
<td>2150</td>
<td>2105</td>
<td>2065</td>
<td>2025</td>
<td>1985</td>
<td>1945</td>
<td>1905</td>
<td>1865</td>
<td>1825</td>
<td>1785</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2200</td>
<td>2155</td>
<td>2115</td>
<td>2075</td>
<td>2035</td>
<td>1995</td>
<td>1955</td>
<td>1915</td>
<td>1875</td>
<td>1835</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2250</td>
<td>2205</td>
<td>2165</td>
<td>2125</td>
<td>2085</td>
<td>2045</td>
<td>2005</td>
<td>1965</td>
<td>1925</td>
<td>1885</td>
</tr>
</tbody>
</table>

Go To Model List
<table>
<thead>
<tr>
<th>Model</th>
<th>Speed</th>
<th>Static Pressure (in w.c)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>ASPT 59C14AC</td>
<td>1</td>
<td>1.370</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.535</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.680</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.905</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.960</td>
</tr>
<tr>
<td>ASPT 61D14AC</td>
<td>1</td>
<td>1.545</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.745</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.905</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.155</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.340</td>
</tr>
</tbody>
</table>

Notes:
* Airflow data indicated is at 230V without air filter in place.
* The chart is for information only. For satisfactory operation, external static pressure must not exceed value shown on rating plate. The shaded area indicates ranges in excess of maximum design external static pressure.
* Use the CFM adjustment factors of 0.98 for horizontal left and 0.96 for horizontal right & downflow orientations.
* When applying a humidistat (normally closed), refer to the installation and operating instructions. The humidistat can adjust the cooling airflow to 85%.

Go To Model List
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Goodman

Model: AVPTC

<table>
<thead>
<tr>
<th>AVPTC25B14B*, AVPTC33C14B*</th>
<th>AVPTC39C14B*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tons</td>
<td>High Stage CFM</td>
</tr>
<tr>
<td>1.5</td>
<td>600</td>
</tr>
<tr>
<td>2</td>
<td>800</td>
</tr>
<tr>
<td>2.5</td>
<td>1,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AVPTC29B14B*</th>
<th>AVPTC49C14B*, AVPTC49D14B*, AVPTC59C14B*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tons</td>
<td>High Stage CFM</td>
</tr>
<tr>
<td>3</td>
<td>1,200</td>
</tr>
<tr>
<td>3.5</td>
<td>1,400</td>
</tr>
<tr>
<td>4</td>
<td>1,600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AVPTC31C14B*, AVPTC35B14B*</th>
<th>AVPTC37B14B*, AVPTC37C14B*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tons</td>
<td>High Stage CFM</td>
</tr>
<tr>
<td>2</td>
<td>800</td>
</tr>
<tr>
<td>2.5</td>
<td>1,000</td>
</tr>
<tr>
<td>3</td>
<td>1,200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AVPTC37D14B*</th>
<th>AVPTC61D14B*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tons</td>
<td>High Stage CFM</td>
</tr>
<tr>
<td>3</td>
<td>1,200</td>
</tr>
<tr>
<td>4</td>
<td>1,600</td>
</tr>
<tr>
<td>4.5</td>
<td>1,800</td>
</tr>
<tr>
<td>5</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Notes:
1. For installations with a communicating outdoor unit, airflow is set automatically by the condenser or heat pump. No indoor airflow setting is needed for the install.
2. For installations with a non-communicating outdoor unit, target airflows are listed in the tables above.
3. Recommended external static pressures are 0.1–0.5 in. wc (0.5 in. wc and above not recommended).
4. Listed airflow values are targets only. Actual airflow may deviate from targets due to variations in individual installations and may be adjusted using trim values in the CoolCloud app or onboard push button menus.
5. For most installations, 400 SCFM per ton is desirable.
ELECTRIC HEAT AIRFLOW TABLE

<table>
<thead>
<tr>
<th>HORSEPOWER</th>
<th>AWPCZ5814</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>550</td>
<td>550</td>
<td>550</td>
<td>600</td>
<td>600</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>5</td>
<td>650</td>
<td>650</td>
<td>650</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>800</td>
<td>870</td>
<td>950</td>
<td>990</td>
<td>1060</td>
<td>1110</td>
</tr>
<tr>
<td>6</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>770</td>
<td>750</td>
<td>770</td>
<td>800</td>
<td>970</td>
<td>1060</td>
<td>1110</td>
<td>1150</td>
<td>1150</td>
</tr>
<tr>
<td>8</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>880</td>
<td>850</td>
<td>880</td>
<td>950</td>
<td>1060</td>
<td>1150</td>
<td>1200</td>
<td>1250</td>
<td>1250</td>
</tr>
<tr>
<td>10</td>
<td>850</td>
<td>850</td>
<td>850</td>
<td>970</td>
<td>920</td>
<td>970</td>
<td>1090</td>
<td>1120</td>
<td>1220</td>
<td>1240</td>
<td>1320</td>
<td>1320</td>
</tr>
<tr>
<td>15</td>
<td>875</td>
<td>875</td>
<td>875</td>
<td>1090</td>
<td>950</td>
<td>1090</td>
<td>1190</td>
<td>1220</td>
<td>1520</td>
<td>1570</td>
<td>1650</td>
<td>1650</td>
</tr>
<tr>
<td>19</td>
<td>NR</td>
<td>NR</td>
<td>1050</td>
<td>1280</td>
<td>NR</td>
<td>1280</td>
<td>1345</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>20</td>
<td>NR</td>
</tr>
<tr>
<td>21</td>
<td>NR</td>
</tr>
<tr>
<td>25</td>
<td>NR</td>
<td>1750</td>
</tr>
</tbody>
</table>

NR- Not Rated

++ For match up with a 3 ton outdoor unit: Airflow for 5kW up to 15kW heater kits shall be set to 1220 CFM by selecting 10 in the Electric Heating Wattage (EHM) menu.

+++ For match up with a 3.5 ton outdoor unit: Heater Kit application shall not exceed 20 kW. Airflow for 5kW up to 20kW heater kits shall be set to 1220 CFM by selecting 10 in the Electric Heating Wattage (EHM) menu.
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Goodman
Model: MBVC

<table>
<thead>
<tr>
<th>MODEL</th>
<th>SPEED TAP</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBVC1201A*</td>
<td>A Low</td>
<td>420</td>
<td>415</td>
<td>400</td>
<td>400</td>
<td>395</td>
<td>390</td>
<td>390</td>
<td>390</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>B Low</td>
<td>550</td>
<td>545</td>
<td>540</td>
<td>540</td>
<td>535</td>
<td>530</td>
<td>530</td>
<td>525</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>C Low</td>
<td>680</td>
<td>675</td>
<td>670</td>
<td>665</td>
<td>660</td>
<td>655</td>
<td>655</td>
<td>650</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>D Low</td>
<td>810</td>
<td>805</td>
<td>800</td>
<td>800</td>
<td>795</td>
<td>790</td>
<td>785</td>
<td>785</td>
<td>785</td>
</tr>
<tr>
<td>MBVC1601A*</td>
<td>A High</td>
<td>615</td>
<td>605</td>
<td>600</td>
<td>600</td>
<td>595</td>
<td>590</td>
<td>590</td>
<td>585</td>
<td>580</td>
</tr>
<tr>
<td></td>
<td>B High</td>
<td>805</td>
<td>805</td>
<td>800</td>
<td>800</td>
<td>795</td>
<td>790</td>
<td>785</td>
<td>785</td>
<td>780</td>
</tr>
<tr>
<td></td>
<td>C High</td>
<td>1010</td>
<td>1005</td>
<td>1000</td>
<td>1000</td>
<td>995</td>
<td>995</td>
<td>990</td>
<td>985</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td>D High</td>
<td>1210</td>
<td>1205</td>
<td>1200</td>
<td>1200</td>
<td>1195</td>
<td>1195</td>
<td>1190</td>
<td>1185</td>
<td>1180</td>
</tr>
<tr>
<td>MBVC2001A*</td>
<td>A High</td>
<td>650</td>
<td>640</td>
<td>630</td>
<td>625</td>
<td>620</td>
<td>615</td>
<td>615</td>
<td>610</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td>B High</td>
<td>850</td>
<td>840</td>
<td>830</td>
<td>825</td>
<td>820</td>
<td>815</td>
<td>815</td>
<td>810</td>
<td>805</td>
</tr>
<tr>
<td></td>
<td>C High</td>
<td>980</td>
<td>970</td>
<td>960</td>
<td>955</td>
<td>950</td>
<td>945</td>
<td>945</td>
<td>940</td>
<td>935</td>
</tr>
<tr>
<td></td>
<td>D High</td>
<td>1110</td>
<td>1095</td>
<td>1085</td>
<td>1080</td>
<td>1075</td>
<td>1070</td>
<td>1070</td>
<td>1065</td>
<td>1060</td>
</tr>
<tr>
<td>MBVC2401A*</td>
<td>A High</td>
<td>1045</td>
<td>1035</td>
<td>1025</td>
<td>1020</td>
<td>1015</td>
<td>1010</td>
<td>1010</td>
<td>1005</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>B High</td>
<td>1245</td>
<td>1235</td>
<td>1225</td>
<td>1220</td>
<td>1215</td>
<td>1210</td>
<td>1210</td>
<td>1205</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>C High</td>
<td>1415</td>
<td>1405</td>
<td>1395</td>
<td>1390</td>
<td>1385</td>
<td>1380</td>
<td>1380</td>
<td>1375</td>
<td>1370</td>
</tr>
<tr>
<td></td>
<td>D High</td>
<td>1605</td>
<td>1590</td>
<td>1580</td>
<td>1575</td>
<td>1570</td>
<td>1565</td>
<td>1565</td>
<td>1560</td>
<td>1555</td>
</tr>
</tbody>
</table>

Note: Speeds represent CFM values.
Cooling and Heat Pump Airflow

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>Speed Tap</th>
<th>MBVC1201 Airflow (SCFM)</th>
<th>MBVC1601 Airflow (SCFM)</th>
<th>MBVC2001 Airflow (SCFM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
<td>A</td>
<td>600</td>
<td>1000</td>
<td>1200</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>B</td>
<td>800</td>
<td>1200</td>
<td>1600</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>C</td>
<td>1000</td>
<td>1400</td>
<td>1800</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>D</td>
<td>1200</td>
<td>1600</td>
<td>2000</td>
</tr>
</tbody>
</table>

Heat Kit Airflow

<table>
<thead>
<tr>
<th>Cooling / HP / Aux Trim</th>
<th>Cooling Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------------------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>

Notes

- The chart is for information only. For satisfactory operation, external static pressure must not exceed value shown on rating plate.
- Use the CFM adjustment factors of .93 for horizontal left, .95 for horizontal right & .96 for downflow orientations.
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Lennox

Model: CBA25UH

Air Flow – Cooling Blower Speed

The cooling blower speed is factory configured to provide correct air flow for an outdoor unit that matches the cooling capacity rating of the air handler.

If the outdoor unit is smaller than the maximum cooling capacity rating for the air handler, the cooling blower speed may need to be changed. Refer to blower performance chart, table 2 on page 16.

WARNING

Electric shock hazard - Disconnect all power supplies before servicing.
Replace all parts and panels before operating.
Failure to do so can result in death or electrical shock.

CHANGE BLOWER SPEED

1 - Disconnect all power supplies.
2 - Remove the air handler access panel.
3 - Locate pin number 2 on the blower relay. Two black wires are connected to this terminal pin. One connects to pin number 5 on the blower relay, one connects to an in-line splice connecting to a blue wire.
4 - Select the required blower motor speed. Connect red-LO or black-HI and plug it into the 4-pin blower relay harness connector.

NOTE - Reuse the factory-installed wire nut on the unused wires.
5 - Replace all panels.
6 - Reconnect power.

NOTE - Refer to wiring diagram located on the unit access panel, this figure and blower performance (table 2).

- All air data measured external to unit with 1 inch non-pleated air filter in place.
- All factory settings are medium speed.
- All data given while air handler is operating with a dry DX coil.
- All downflow applications run on high speed when utilizing electric heat.

FIGURE 1. Changing Blower Speed
Blower Data

CBA25UH-018 PERFORMANCE

<table>
<thead>
<tr>
<th>External Static Pressure in. w.g.</th>
<th>Air Volume / Watts at Various Blower Speeds</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>cfm</td>
<td>Watts</td>
</tr>
<tr>
<td>0.10</td>
<td>920</td>
<td>264</td>
</tr>
<tr>
<td>0.20</td>
<td>880</td>
<td>251</td>
</tr>
<tr>
<td>0.30</td>
<td>855</td>
<td>238</td>
</tr>
<tr>
<td>0.40</td>
<td>790</td>
<td>224</td>
</tr>
<tr>
<td>0.50</td>
<td>710</td>
<td>210</td>
</tr>
</tbody>
</table>

NOTE - All air data measured external to unit with dry coil and 1 inch non-pleated air filter in place. Electric heaters have no appreciable air resistance.

CBA25UH-024 PERFORMANCE

<table>
<thead>
<tr>
<th>External Static Pressure in. w.g.</th>
<th>Air Volume / Watts at Various Blower Speeds</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>cfm</td>
<td>Watts</td>
</tr>
<tr>
<td>0.10</td>
<td>1105</td>
<td>342</td>
</tr>
<tr>
<td>0.20</td>
<td>1045</td>
<td>322</td>
</tr>
<tr>
<td>0.30</td>
<td>1000</td>
<td>307</td>
</tr>
<tr>
<td>0.40</td>
<td>915</td>
<td>284</td>
</tr>
<tr>
<td>0.50</td>
<td>855</td>
<td>268</td>
</tr>
</tbody>
</table>

NOTE - All air data measured external to unit with dry coil and 1 inch non-pleated air filter in place. Electric heaters have no appreciable air resistance.

CBA25UH-030 PERFORMANCE

<table>
<thead>
<tr>
<th>External Static Pressure in. w.g.</th>
<th>Air Volume / Watts at Various Blower Speeds</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>cfm</td>
<td>Watts</td>
</tr>
<tr>
<td>0.10</td>
<td>1310</td>
<td>496</td>
</tr>
<tr>
<td>0.20</td>
<td>1260</td>
<td>468</td>
</tr>
<tr>
<td>0.30</td>
<td>1215</td>
<td>449</td>
</tr>
<tr>
<td>0.40</td>
<td>1155</td>
<td>431</td>
</tr>
<tr>
<td>0.50</td>
<td>1085</td>
<td>408</td>
</tr>
</tbody>
</table>

NOTE - All air data measured external to unit with dry coil and 1 inch non-pleated air filter in place. Electric heaters have no appreciable air resistance.

CBA25UH-036 PERFORMANCE

<table>
<thead>
<tr>
<th>External Static Pressure in. w.g.</th>
<th>Air Volume / Watts at Various Blower Speeds</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>cfm</td>
<td>Watts</td>
</tr>
<tr>
<td>0.10</td>
<td>1560</td>
<td>532</td>
</tr>
<tr>
<td>0.20</td>
<td>1520</td>
<td>518</td>
</tr>
<tr>
<td>0.30</td>
<td>1445</td>
<td>502</td>
</tr>
<tr>
<td>0.40</td>
<td>1395</td>
<td>480</td>
</tr>
<tr>
<td>0.50</td>
<td>1325</td>
<td>460</td>
</tr>
</tbody>
</table>

NOTE - All air data measured external to unit with dry coil and 1 inch non-pleated air filter in place. Electric heaters have no appreciable air resistance.
Blower Data

CBA2SUH-042 PERFORMANCE

<table>
<thead>
<tr>
<th>External Static Pressure in. w.g.</th>
<th>Air Volume / Watts at Various Blower Speeds</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cfm</td>
<td>Watts</td>
<td>cfm</td>
<td>Watts</td>
<td>cfm</td>
</tr>
<tr>
<td>0.10</td>
<td>1815</td>
<td>674</td>
<td>1525</td>
<td>495</td>
<td>1300</td>
</tr>
<tr>
<td>0.20</td>
<td>1755</td>
<td>652</td>
<td>1495</td>
<td>486</td>
<td>1275</td>
</tr>
<tr>
<td>0.30</td>
<td>1695</td>
<td>634</td>
<td>1450</td>
<td>473</td>
<td>1250</td>
</tr>
<tr>
<td>0.40</td>
<td>1605</td>
<td>607</td>
<td>1390</td>
<td>455</td>
<td>1210</td>
</tr>
<tr>
<td>0.50</td>
<td>1530</td>
<td>582</td>
<td>1345</td>
<td>441</td>
<td>1155</td>
</tr>
</tbody>
</table>

NOTE: All air data measured external to unit with dry coil and 1 inch non-pleated air filter in place.

Electric heaters have no appreciable air resistance.

CBA2SUH-048 PERFORMANCE (Less Filter)

<table>
<thead>
<tr>
<th>External Static Pressure in. w.g.</th>
<th>Air Volume / Watts at Various Blower Speeds</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Medium-High</td>
<td>Medium</td>
<td>Medium-Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>cfm</td>
<td>Watts</td>
<td>cfm</td>
<td>Watts</td>
<td>cfm</td>
</tr>
<tr>
<td>0.10</td>
<td>1895</td>
<td>597</td>
<td>1770</td>
<td>493</td>
<td>1715</td>
</tr>
<tr>
<td>0.20</td>
<td>1860</td>
<td>629</td>
<td>1735</td>
<td>510</td>
<td>1670</td>
</tr>
<tr>
<td>0.30</td>
<td>1835</td>
<td>632</td>
<td>1700</td>
<td>529</td>
<td>1635</td>
</tr>
<tr>
<td>0.40</td>
<td>1795</td>
<td>656</td>
<td>1670</td>
<td>544</td>
<td>1615</td>
</tr>
<tr>
<td>0.50</td>
<td>1760</td>
<td>667</td>
<td>1650</td>
<td>552</td>
<td>1575</td>
</tr>
</tbody>
</table>

NOTE: All air data measured external to unit with dry coil and 1 inch non-pleated air filter in place.

Electric heaters have no appreciable air resistance.

CBA2SUH-060 PERFORMANCE (Less Filter)

<table>
<thead>
<tr>
<th>External Static Pressure in. w.g.</th>
<th>Air Volume / Watts at Various Blower Speeds</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Medium-High</td>
<td>Medium</td>
<td>Medium-Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>cfm</td>
<td>Watts</td>
<td>cfm</td>
<td>Watts</td>
<td>cfm</td>
</tr>
<tr>
<td>0.10</td>
<td>1980</td>
<td>624</td>
<td>1905</td>
<td>538</td>
<td>1815</td>
</tr>
<tr>
<td>0.20</td>
<td>1955</td>
<td>644</td>
<td>1870</td>
<td>563</td>
<td>1785</td>
</tr>
<tr>
<td>0.30</td>
<td>1925</td>
<td>643</td>
<td>1835</td>
<td>568</td>
<td>1760</td>
</tr>
<tr>
<td>0.40</td>
<td>1895</td>
<td>663</td>
<td>1810</td>
<td>585</td>
<td>1730</td>
</tr>
<tr>
<td>0.50</td>
<td>1860</td>
<td>673</td>
<td>1765</td>
<td>596</td>
<td>1685</td>
</tr>
</tbody>
</table>

NOTE: All air data measured external to unit with dry coil and 1 inch non-pleated air filter in place.

Electric heaters have no appreciable air resistance.
Manufacturer: Lennox

Model: CBA25UHE

Measuring Static Pressure

1. Measure tap locations as shown in figure 9.

![Static Pressure Diagram]

FIGURE 9. Static Pressure Test

2. Punch a 1/4" (6mm) diameter hole in supply and return air plenums. Insert manometer hose flush with inside edge of hole or insulation. Seal around the hose with permagum. Connect the zero end of the manometer to the discharge (supply) side of the system. On ducted systems, connect the other end of manometer to the return duct as above. For systems with non-ducted returns, leave the other end of the manometer open to the atmosphere.

3. With only the blower motor running and the evaporator coil dry, observe the manometer reading. Adjust blower motor speed to deliver the air desired according to the job requirements.

4. For best air performance external static pressure drop must not exceed 0.5" W.C. (1.2 kPa). Refer to blower data tables for CFM and external static.

5. Seal around the hole when the check is complete.

Adjusting Blower Speed

MOTOR SPEED TAPS

NOTE – Motor is programmed for a 45-second delayed OFF on all speed taps except TAP #1 (continuous fan speed).

Table 4 lists the recommended factory blower speed tap selections for CBA27UH series units.

TABLE 4. Recommended Blower Speed Tap Selection

<table>
<thead>
<tr>
<th>Operation</th>
<th>CBA27UHE</th>
<th>Outdoor Unit</th>
<th>Tap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling</td>
<td>ALL SIZES</td>
<td>Air conditioner</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat pump</td>
<td>3</td>
</tr>
<tr>
<td>Heating*</td>
<td>ALL SIZES</td>
<td>Air conditioner with electric heat only</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat pump with electric heat</td>
<td>4</td>
</tr>
</tbody>
</table>

*Minimum setting for heat
These settings are for nominal tonnage match-ups with the CBA27UHE units. When matched with other sizes, it is recommended that the CFM be adjusted to approximately 400 CFM per ton.

To change blower motor speed tap remove the speed tap from Y2 on the terminal strip and insert the desired speed tap. Use the Blower Data tables on pages 10 and 11 for the desired CFM setting.

IMPORTANT

The high-efficiency programmable motor features programmed electronic braking. The integral control brakes the motor near the end of the supply blower operation, allowing the motor to maintain a more controlled ramping shut-down.

TABLE 5. Motor Speed Taps

<table>
<thead>
<tr>
<th>Tap</th>
<th>Operation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Continuous or low-speed fan (for two-speed heat pumps or AC units)</td>
<td>Continuous fan speed is energized (24 volt input to G) when either G or Y1 has a 24 volt signal (24 volt input from Y1 passes through the room thermostat’s Fan Automatic contacts to the G terminal).</td>
</tr>
<tr>
<td>2</td>
<td>Low-speed operation on high-static system</td>
<td>CFM set at 1/2 ton less than nominal of unit (e.g. 3-ton set at 1000 CFM).</td>
</tr>
<tr>
<td>3</td>
<td>Cooling speed setting</td>
<td>CFM set at 400 cfm per nominal ton at ARI minimum static allowed, as follows: 1.5 to 2.0 ton - 0.10 2.5 to 3.5 ton - 0.15 4 to 5 ton - 0.20</td>
</tr>
<tr>
<td>4</td>
<td>Heat pump with electric heat</td>
<td>CFM set at 400 cfm per nominal ton at .4 static, Energized when electric heat element has a call for heat.</td>
</tr>
<tr>
<td>5</td>
<td>High-static applications</td>
<td>CFM set at 400 cfm per nominal ton at .8 static.</td>
</tr>
</tbody>
</table>
BLOWER DATA

CBA27UHE-018 BLOWER PERFORMANCE

<table>
<thead>
<tr>
<th>External Static Pressure in. w.g.</th>
<th>Tap 1</th>
<th>Tap 2</th>
<th>Tap 3</th>
<th>Tap 4</th>
<th>Tap 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cfm</td>
<td>Watts</td>
<td>cfm</td>
<td>Watts</td>
<td>cfm</td>
</tr>
<tr>
<td>.10</td>
<td>717</td>
<td>68</td>
<td>707</td>
<td>63</td>
<td>736</td>
</tr>
<tr>
<td>.20</td>
<td>566</td>
<td>58</td>
<td>570</td>
<td>54</td>
<td>836</td>
</tr>
<tr>
<td>.30</td>
<td>473</td>
<td>56</td>
<td>430</td>
<td>48</td>
<td>603</td>
</tr>
<tr>
<td>.40</td>
<td>402</td>
<td>61</td>
<td>335</td>
<td>54</td>
<td>540</td>
</tr>
<tr>
<td>.50</td>
<td>358</td>
<td>67</td>
<td>302</td>
<td>60</td>
<td>462</td>
</tr>
<tr>
<td>.60</td>
<td>295</td>
<td>74</td>
<td>248</td>
<td>93</td>
<td>434</td>
</tr>
<tr>
<td>.70</td>
<td>262</td>
<td>79</td>
<td>202</td>
<td>72</td>
<td>399</td>
</tr>
<tr>
<td>.80</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>348</td>
</tr>
</tbody>
</table>

CBA27UHE-024 BLOWER PERFORMANCE

<table>
<thead>
<tr>
<th>External Static Pressure in. w.g.</th>
<th>Tap 1</th>
<th>Tap 2</th>
<th>Tap 3</th>
<th>Tap 4</th>
<th>Tap 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cfm</td>
<td>Watts</td>
<td>cfm</td>
<td>Watts</td>
<td>cfm</td>
</tr>
<tr>
<td>.10</td>
<td>787</td>
<td>78</td>
<td>753</td>
<td>75</td>
<td>826</td>
</tr>
<tr>
<td>.20</td>
<td>682</td>
<td>68</td>
<td>648</td>
<td>66</td>
<td>751</td>
</tr>
<tr>
<td>.30</td>
<td>615</td>
<td>76</td>
<td>612</td>
<td>77</td>
<td>750</td>
</tr>
<tr>
<td>.40</td>
<td>561</td>
<td>83</td>
<td>539</td>
<td>83</td>
<td>711</td>
</tr>
<tr>
<td>.50</td>
<td>522</td>
<td>87</td>
<td>507</td>
<td>89</td>
<td>811</td>
</tr>
<tr>
<td>.60</td>
<td>450</td>
<td>96</td>
<td>438</td>
<td>93</td>
<td>828</td>
</tr>
<tr>
<td>.70</td>
<td>419</td>
<td>100</td>
<td>411</td>
<td>103</td>
<td>584</td>
</tr>
<tr>
<td>.80</td>
<td>365</td>
<td>110</td>
<td>358</td>
<td>108</td>
<td>521</td>
</tr>
</tbody>
</table>

CBA27UHE-030 BLOWER PERFORMANCE

<table>
<thead>
<tr>
<th>External Static Pressure in. w.g.</th>
<th>Tap 1</th>
<th>Tap 2</th>
<th>Tap 3</th>
<th>Tap 4</th>
<th>Tap 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cfm</td>
<td>Watts</td>
<td>cfm</td>
<td>Watts</td>
<td>cfm</td>
</tr>
<tr>
<td>.10</td>
<td>1061</td>
<td>115</td>
<td>1104</td>
<td>126</td>
<td>1169</td>
</tr>
<tr>
<td>.20</td>
<td>941</td>
<td>103</td>
<td>973</td>
<td>118</td>
<td>1070</td>
</tr>
<tr>
<td>.30</td>
<td>789</td>
<td>90</td>
<td>848</td>
<td>104</td>
<td>1019</td>
</tr>
<tr>
<td>.40</td>
<td>640</td>
<td>83</td>
<td>789</td>
<td>111</td>
<td>961</td>
</tr>
<tr>
<td>.50</td>
<td>525</td>
<td>93</td>
<td>728</td>
<td>118</td>
<td>946</td>
</tr>
<tr>
<td>.60</td>
<td>469</td>
<td>101</td>
<td>629</td>
<td>128</td>
<td>900</td>
</tr>
<tr>
<td>.70</td>
<td>434</td>
<td>104</td>
<td>581</td>
<td>139</td>
<td>851</td>
</tr>
<tr>
<td>.80</td>
<td>365</td>
<td>116</td>
<td>521</td>
<td>155</td>
<td>754</td>
</tr>
</tbody>
</table>

CBA27UHE-038 BLOWER PERFORMANCE

<table>
<thead>
<tr>
<th>External Static Pressure in. w.g.</th>
<th>Tap 1</th>
<th>Tap 2</th>
<th>Tap 3</th>
<th>Tap 4</th>
<th>Tap 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cfm</td>
<td>Watts</td>
<td>cfm</td>
<td>Watts</td>
<td>cfm</td>
</tr>
<tr>
<td>.10</td>
<td>1074</td>
<td>134</td>
<td>1099</td>
<td>147</td>
<td>1264</td>
</tr>
<tr>
<td>.20</td>
<td>982</td>
<td>121</td>
<td>1027</td>
<td>143</td>
<td>1222</td>
</tr>
<tr>
<td>.30</td>
<td>887</td>
<td>126</td>
<td>989</td>
<td>153</td>
<td>1192</td>
</tr>
<tr>
<td>.40</td>
<td>852</td>
<td>136</td>
<td>944</td>
<td>164</td>
<td>1144</td>
</tr>
<tr>
<td>.50</td>
<td>791</td>
<td>150</td>
<td>894</td>
<td>172</td>
<td>1111</td>
</tr>
<tr>
<td>.60</td>
<td>717</td>
<td>180</td>
<td>820</td>
<td>188</td>
<td>1067</td>
</tr>
<tr>
<td>.70</td>
<td>649</td>
<td>188</td>
<td>745</td>
<td>202</td>
<td>1037</td>
</tr>
<tr>
<td>.80</td>
<td>606</td>
<td>183</td>
<td>697</td>
<td>213</td>
<td>999</td>
</tr>
</tbody>
</table>

Go To Model List
BLOWER DATA

CBA27UHE-042 BLOWER PERFORMANCE

| External Static Pressure | Tap 1 | }
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Lennox

Model: CBA38MV

Air Handler Control Button, Display and Jumpers

Use figure 24 as a reference for jumper settings. If any of the referenced jumpers are missing, the Air Handler Control will display Error Code 130 as per table 10, and the Air Handler Control will automatically use the factory default setting shown in figure 24.

IMPORTANT

Before changing any clipper links or jumper settings, make sure the motor has completely stopped. Any changes will not take place while the motor is running.

PUSH BUTTON

An on-board push button is provided for the purpose of placing the Air Handler Control in different operation modes and can be used to recall stored error codes. When button is pushed and held, Air Handler Control will cycle through a menu of options depending on current operating mode. Every three seconds a new menu item will be displayed. If the button is released while that item is shown on the display, Air Handler Control will enter displayed operating mode, or execute defined operation sequence for that menu option. Once all items on menu have been displayed the menu resumes from the beginning (if button is still held).

1. Press the diagnostic push button and hold it to cycle through a menu of options. Every three seconds a new menu item will be displayed. Release the button when the desired mode is displayed.

2. When the solid “E” is displayed, the control enters the Error Code Recall mode. Error Code Recall mode menu options: Display will cycle through Error Codes and will automatically exit Error Code recall once the last error code has been reached, solid “E” exits Error Code Recall mode; and solid “c” clears the error history. Must press button while flashing “c” is displayed to clear error codes. Cycling power to AHC will clear stored error codes.

3. When the solid “Z” is displayed, the control enters the applicable mode. Field configuration mode menu options: “H” electric heat stages detected; the AHC automatically detects the electric heat when power is applied and does not require “manual electric heat detection” using the push button, “A” Blower Test Mode or “P” programming or configuring unit size code. Releasing the button when solid “Z” is displayed exits current active mode.

JUMPERS

Jumpers are used for non-communicating mode only.

1. **Humidification** – Controls the status of H terminal on the thermostat block. Configurations are as follows:
 - If jumper is installed in SMART Humidification position (Default), H terminal is active if heat demand is present and indoor blower is running.
 - If jumper is installed in AUTO Humidification position, H terminal is energized whenever indoor blower is running.

2. **EvenHeat** – Target Discharge Air Temperature selection is used to set discharge air temperatures for EvenHeat operation.

NOTE - Optional Discharge Air Temperature Sensor, Lennox Catalog # 88K38 is REQUIRED for EVENHEAT operation and must be ordered separately.

3. **Blower Only CFM** – Used to select Indoor blower CFM for continuous operation.

4. **Heat** – Used to select Indoor blower CFM for electrical heat by placing the jumper in proper position. Actual CFM values for different air handler sizes are shown in Targeted CFM tables starting on page 30.

5. **Cool** – Used to select cooling indoor blower CFM by placing the jumper in proper position. Actual CFM values for different air handler sizes are shown in Targeted CFM tables starting on page 30.

6. **Adjust** – Used to select the indoor blower CFM adjustment value by placing the jumper in appropriate position.
 - If NORM is selected, indoor blower runs at normal speeds.
 - If * is selected, indoor blower runs at approximately 10% higher speed than NORM setting.
 - If ~ is selected, indoor blower runs at approximately 10% lower speed than NORM setting.

If the jumper is missing, the Air Handler Control will activate the Configuration Jumper is Missing alarm and will automatically use the default factory setting in table 10. See figure 24 for jumper configurations. Actual CFM values for different air handler sizes are shown in Targeted CFM tables starting on page 26.

7. **Delay** – Indoor blower cooling profile, delay for cooling and heat pump operations.
 - For heat pump heating operation only delay profiles 1 and 2 are applicable. Profiles 3 or 4 have been selected, heat pump operation will use profile 1 only.
 - For heat pump cooling operation all 4 profiles are operational.

If the jumper is missing, the Air Handler Control will activate the Configuration Jumper is Missing alarm and will automatically use the default factory setting in table 10. See figure 24 for jumper configurations.

Delay Profile 1

A. When cool or heat demand is initiated, motor ramps up to 100% and runs at 100% until demand is satisfied.

B. Once demand is met, motor ramps down to stop.
Delay Profile 2
Cooling – Air Conditioner and Heat Pump

A - When cooling demand is initiated, motor ramps up to 100% and runs at 100% until demand is satisfied.
B - Once demand is met, motor runs at 100% for 45 seconds.
C - Motor ramps down to stop.

Delay Profile 3

A - When heat demand is initiated, 30 seconds motor on delay starts.
B - After the motor on delay expires, motor ramps up to 100% and runs at 100% until demand is satisfied.
C - Once demand is met, motor runs at 100% for 45 seconds.
D - Motor ramps down to stop.

Delay Profile 4

A - When cooling demand is initiated, motor ramps up to 50%.
B - Motor runs at 50% for 30 seconds and ramps up to 82%.
C - Motor runs at 82% for approximately 7.5 minutes and then ramps up to 100% (unless the demand has been satisfied) and motor runs at 100% until demand is satisfied.
D - Once demand is met, motor runs at 50% for 30 seconds.
E - Motor ramps down to stop.

DISPLAY
An on-board single character LED display (see figure 20 for LED display location) indicates general system status information such as mode of operation, indoor blower CFM and error codes. Multi-character strings are displayed with character ON for one second, OFF for 0.5 seconds and one second pause between the character groups.

<table>
<thead>
<tr>
<th>AHC Single Character Display</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter or Number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit Size Code displayed represents air handler model size and capacity. See Configuring Unit Size Codes in figure 22.</td>
</tr>
<tr>
<td></td>
<td>If three horizontal bars are displayed, AHC does not recognize air handler model size and capacity. See Configuring Unit Size Codes in Figure 22.</td>
</tr>
<tr>
<td></td>
<td>Idle mode (decimal point / no unit operation)</td>
</tr>
<tr>
<td></td>
<td>Cubic feet per minute (cfm) setting for indoor blower (1 second ON, 0.5 second OFF) / cfm setting for current mode displayed. Example: R 210</td>
</tr>
<tr>
<td></td>
<td>Cooling Compressor Capacity (1 second ON, 0.5 second OFF) / % of input rate displayed/Pause/dfm setting displayed/Pause/Repeat codes on systems with Comfort communicating outdoor unit. C1 or C2 displayed. Pause/cfm setting displayed/Pause/Repeat when installed with a non-communicating outdoor unit. Example: C70 or C100 with communicating outdoor unit or C1 or C2 with non-communicating outdoor units</td>
</tr>
<tr>
<td></td>
<td>Dehumidification mode (1 second ON) / 1 second OFF / cfm setting displayed / Pause/Repeat Codes</td>
</tr>
<tr>
<td></td>
<td>Defrost mode, (Y, W and Ocall)</td>
</tr>
<tr>
<td></td>
<td>Electric Heat Stage (1 second ON, 0.5 second OFF) / 1 or 2 displayed / Pause / cfm setting displayed / Pause / Repeat codes. Example: H0 or H1 or H2 or H3</td>
</tr>
<tr>
<td></td>
<td>Compressor Heating Capacity (1 second ON, 0.5 second OFF) / % of input rate displayed/Pause/cfm setting displayed/Pause/Repeat codes on systems with Comfort communicating outdoor unit. H1 or H2 displayed. Pause/cfm setting displayed/Pause/Repeat when installed with a non-communicating outdoor unit. Example: H0 or H1 with communicating outdoor unit or H1 or H2 with non-communicating outdoor units</td>
</tr>
<tr>
<td></td>
<td>Discharge air sensor temperature (indoor blower must be operating)</td>
</tr>
</tbody>
</table>

TABLE 10. AHC System Status Codes
TABLE 11. AHC Configuration, Test and Error Recall (Fault and Lockout) Function

NOTE — AHC MUST BE IN IDLE MODE

<table>
<thead>
<tr>
<th>Single Character LED Display</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>Push and hold button until solid appears, release button.</td>
</tr>
<tr>
<td>Solid</td>
<td>Press and hold Solid "-" until required symbol displays (H^R) or (P)</td>
</tr>
</tbody>
</table>

CONFIGURING ELECTRIC HEAT SECTIONS — AHC will automatically configure electric heat when 240V power is applied.

<table>
<thead>
<tr>
<th>Solid</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>Air Handler Control has been enhanced to automatically configure electric heat when the electric heat harness is connected to the air handler and 240 volt power is applied. The air handler will not energize the blower and heat stages during the automatic electric heat detection process. Releasing the push button when (H) is displayed will display the stages of electric heat that were automatically detected upon power up. Example (H_0, H_1, H_2, H_3, H_4, H_5). (H_2) indicates 2 stage of electric heat were detected.</td>
</tr>
</tbody>
</table>

INDOOR BLOWER TEST

<table>
<thead>
<tr>
<th>Solid</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)</td>
<td>Release push button - control cycles indoor blower on for ten seconds at 70% of maximum air for selected capacity size unit. Control will automatically exit current active mode.</td>
</tr>
</tbody>
</table>

CONFIGURING UNIT SIZE CODES

<table>
<thead>
<tr>
<th>Single Character LED Display</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>RELEASE push button - This mode allows the field to select a unit size code (number or letter) that matches the air handler model size and capacity. IMPORTANT — All field replacement controls may be manually configured to confirm air handler model size and capacity.</td>
</tr>
<tr>
<td>Blinking</td>
<td>(P)</td>
</tr>
<tr>
<td>1. When the correct Unit Size Code is displayed, RELEASE push button. Selected code will flash for 10 second period.</td>
<td></td>
</tr>
<tr>
<td>2. During ten second period, HOLD push button until code stops blinking (three seconds minimum).</td>
<td></td>
</tr>
<tr>
<td>3. Air Handler Control will store code in memory and exit current active mode. LED display will go blank and then the Unit Size Code will display for 2 to 5 seconds.</td>
<td></td>
</tr>
</tbody>
</table>

NOTE - If ten second period expires, or push button is held less than 3 seconds, control will automatically exit current active mode and go into IDLE Mode without storing unit size code. If this occurs, then Unit Size Code configuring procedure must be repeated.

ERROR CODE RECALL MODE (NOTE — CONTROL MUST BE IN IDLE MODE)

<table>
<thead>
<tr>
<th>Solid</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E)</td>
<td>To enter Error Code Recall Mode — PUSH and HOLD button until solid (E) appears, then RELEASE button. Control will display up to ten error codes stored in memory. If E000 is displayed, there are no stored error codes.</td>
</tr>
<tr>
<td>Solid</td>
<td>To exit Error Code Recall Mode — PUSH and HOLD button until solid three horizontal bars appear then RELEASE button. NOTE - Error codes are not cleared</td>
</tr>
<tr>
<td>Solid</td>
<td>To clear error codes stored in memory continue to HOLD push button while the three horizontal bars are displayed. Release push button when solid (c) is displayed. Error codes are automatically cleared when 240V power is cycled off and then back on.</td>
</tr>
<tr>
<td>Blinking</td>
<td>(c)</td>
</tr>
<tr>
<td>Push and hold for one (1) second, release button. Seven-segment will display 0000 and exit error recall mode.</td>
<td></td>
</tr>
</tbody>
</table>
Target CFM Tables

BLOWER DATA
CBA38MV-018/024 BLOWER PERFORMANCE
0 through 0.80 in. w.g. External Static Pressure Range

<table>
<thead>
<tr>
<th>"ADJUST" Jumper Setting</th>
<th>Jumper Speed Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 cfm</td>
</tr>
<tr>
<td>+</td>
<td>490</td>
</tr>
<tr>
<td>NORM</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td>585</td>
</tr>
</tbody>
</table>

NOTES - The effect of static pressure, filter and TI heater resistance is included in the air volumes listed.
- First stage cooling air volume is 70% of COOL speed setting. Continuous fan speed is approximately 26%, 38%, 70% and 100% (Jumper selectable) of the same second-stage COOL speed selected, minimum 250 cfm.
- Lennox Harmony® Zoning System applications - minimum blower speed is 250 cfm.

BLOWER DATA
CBA38MV-030 BLOWER PERFORMANCE
0 through 0.80 in. w.g. External Static Pressure Range

<table>
<thead>
<tr>
<th>"ADJUST" Jumper Setting</th>
<th>Jumper Speed Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 cfm</td>
</tr>
<tr>
<td>+</td>
<td>630</td>
</tr>
<tr>
<td>NORM</td>
<td>545</td>
</tr>
<tr>
<td></td>
<td>510</td>
</tr>
</tbody>
</table>

NOTES - The effect of static pressure, filter and TI heater resistance is included in the air volumes listed.
- First stage cooling air volume is 70% of COOL speed setting. Continuous fan speed is approximately 26%, 38%, 70% and 100% (Jumper selectable) of the same second-stage COOL speed selected, minimum 250 cfm.
- Lennox Harmony® Zoning System applications - minimum blower speed is 250 cfm.

BLOWER DATA
CBA38MV-036 BLOWER PERFORMANCE
0 through 0.80 in. w.g. External Static Pressure Range

<table>
<thead>
<tr>
<th>"ADJUST" Jumper Setting</th>
<th>Jumper Speed Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 cfm</td>
</tr>
<tr>
<td>+</td>
<td>920</td>
</tr>
<tr>
<td>NORM</td>
<td>815</td>
</tr>
<tr>
<td></td>
<td>720</td>
</tr>
</tbody>
</table>

NOTES - The effect of static pressure, filter and TI heater resistance is included in the air volumes listed.
- First stage cooling air volume is 70% of COOL speed setting. Continuous fan speed is approximately 26%, 38%, 70% and 100% (Jumper selectable) of the same second-stage COOL speed selected, minimum 250 cfm.
- Lennox Harmony® Zoning System applications - minimum blower speed is 250 cfm.
Target CFM Tables (cont'd)

BLOWER DATA
CBA38MV-042 BLOWER PERFORMANCE
0 through 0.30 in. w.g., External Static Pressure Range

<table>
<thead>
<tr>
<th>"ADJUST" Jumper Setting</th>
<th>"HEAT" Speed</th>
<th>Jumper Speed Positions</th>
<th>"COOL" Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 cfm</td>
<td>2 cfm</td>
<td>3 cfm</td>
</tr>
<tr>
<td>+</td>
<td>1100</td>
<td>1320</td>
<td>1540</td>
</tr>
<tr>
<td>NORM</td>
<td>1000</td>
<td>1200</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>1080</td>
<td>1260</td>
</tr>
</tbody>
</table>

NOTES: The effect of static pressure, filter and electric heater resistance is included in the air volumes listed.
First stage cooling air volume is 70% of COOL speed setting. Continuous fan speed is approximately 25%, 35%, 70% and 100% (Jumper selectable) of the same second-stage COOL speed selected, minimum 450 cfm.
Lennox Harmony® Zoning System applications - minimum blower speed is 450 cfm.

BLOWER DATA
CBA38MV-048 BLOWER PERFORMANCE
0 through 0.30 in. w.g., External Static Pressure Range

<table>
<thead>
<tr>
<th>"ADJUST" Jumper Setting</th>
<th>"HEAT" Speed</th>
<th>Jumper Speed Positions</th>
<th>"COOL" Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 cfm</td>
<td>2 cfm</td>
<td>3 cfm</td>
</tr>
<tr>
<td>+</td>
<td>1670</td>
<td>1670</td>
<td>1870</td>
</tr>
<tr>
<td>NORM</td>
<td>1460</td>
<td>1460</td>
<td>1670</td>
</tr>
<tr>
<td></td>
<td>1230</td>
<td>1410</td>
<td>1600</td>
</tr>
</tbody>
</table>

NOTES: The effect of static pressure, filter and electric heater resistance is included in the air volumes listed.
First stage cooling air volume is 70% of COOL speed setting. Continuous fan speed is approximately 25%, 35%, 70% and 100% (Jumper selectable) of the same second-stage COOL speed selected, minimum 450 cfm.
Lennox Harmony® Zoning System applications - minimum blower speed is 450 cfm.

BLOWER DATA
CBA38MV-060 BLOWER PERFORMANCE
0 through 0.30 in. w.g., External Static Pressure Range

<table>
<thead>
<tr>
<th>"ADJUST" Jumper Setting</th>
<th>"HEAT" Speed</th>
<th>Jumper Speed Positions</th>
<th>"COOL" Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 cfm</td>
<td>2 cfm</td>
<td>3 cfm</td>
</tr>
<tr>
<td>+</td>
<td>1695</td>
<td>1690</td>
<td>2140</td>
</tr>
<tr>
<td>NORM</td>
<td>1525</td>
<td>1680</td>
<td>1850</td>
</tr>
<tr>
<td></td>
<td>1300</td>
<td>1450</td>
<td>1630</td>
</tr>
</tbody>
</table>

NOTES: The effect of static pressure, filter and electric heater resistance is included in the air volumes listed.
First stage cooling air volume is 70% of COOL speed setting. Continuous fan speed is approximately 25%, 35%, 70% and 100% (Jumper selectable) of the same second-stage COOL speed selected, minimum 450 cfm.
Lennox Harmony® Zoning System applications - minimum blower speed is 450 cfm.
Manufacturer: Lennox
Model: CBX40UHV

Figure 16. Air Handler Configuration
Air Handler Control Button, Display and Jumper

Use figure 16 as reference for jumper settings. If any of the referenced jumpers are missing, the Air Handler Control will display Error Code 130 as per table 10, and the Air Handler Control will automatically use the factory default setting shown in figure 16.

⚠️ IMPORTANT

Before changing any disabling links or jumper settings, make sure the motor has completely stopped. Any changes will not take place while the motor is running.

PUSH BUTTON

An on-board push button is provided for the purpose of placing the Air Handler Control in different operating modes and can be used to recall stored error codes. When button is pushed and held, Air Handler Control will cycle through a menu of options depending on current operating mode. Every three seconds a new menu item will be displayed. If the button is released while that item is shown on the display, Air Handler Control will enter displayed operating mode, or execute defined operation sequence for that menu option. Once all items on menu have been displayed the menu resumes from the beginning (if button is still held).

JUMPERS

Jumpers are used for non-communicating mode only.

1. Humidification — Controls the status of H terminal on the thermostat block. Configurations are as follows:
 • If jumper is installed in SMART Humidification position (Default), H terminal is active if heat demand is present and indoor blower is running.
 • If jumper is installed in AUTO Humidification position, H terminal is energized whenever indoor blower is running.

2. EvenHeat — Target Discharge Air Temperature selection is used to set discharge air temperatures for EvenHeat operation.

NOTE: Optional Discharge Air Temperature Sensor, Lennox Catalog # 88K38 is REQUIRED for EVENHEAT operation and must be ordered separately.

3. Blower Only CFM — Used to select Indoor blower CFM for continuous operation.

4. Heat — Used to select Indoor blower CFM for electrical heat by placing the jumper in proper position. Actual CFM values for different air handler sizes are shown in the Targeted CFM Tables.

5. Cool — Used to select cooling indoor blower CFM by placing the jumper in proper position. Actual CFM values for different air handler sizes are shown in the Targeted CFM Tables.

6. Adjust — Used to select the indoor blower CFM adjustment value by placing the jumper in appropriate position.

- If NORM is selected, indoor blower runs at normal speeds.
- If + is selected, indoor blower runs at approximately 10% higher speed than NORM setting.
- If - is selected, indoor blower runs at approximately 10% lower speed than NORM setting.

If no jumper is missing, Air Handler Control will activate the Configuration Jumper is Missing alarm and will automatically use the default factory setting in table 10. See figure 16 for jumper configurations. Actual CFM values for different air handler sizes are shown in the Targeted CFM Tables.

7. Delay — Indoor blower cooling profile, delay for cooling and heat pump operations.
 • For heat pump heating operation only delay profiles 1 and 2 are applicable. If profiles 3 or 4 have been selected, heat pump operation will use profile 1 only.
 • For heat pump cooling operation all 4 profiles are operational.

If the jumper is missing, the air handler control will activate the Configuration Jumper is Missing alarm and will automatically use the default factory setting in table 10. See figure 16 for jumper configurations.

Delay Profile 1

A. When cool or heat demand is initiated, motor ramps up to 100% and runs at 100% until demand is satisfied.
B. Once demand is met, motor ramps down to stop.

![Delay Profile 1 Diagram]

Delay Profile 2

Cooling — Air Conditioner and Heat Pump:

A. When cool demand is initiated, motor ramps up to 100% and runs at 100% until demand is satisfied.
B. Once demand is met, motor runs at 100% for 45 seconds.
C. Motor ramps down to stop.

![Delay Profile 2 Diagram]
A. When heat demand is initiated, 30 seconds motor on delay starts
B. After the motor on delay expires, motor ramps up to 100% and runs at 100% until demand is satisfied.
C. Once demand is met, motor runs at 100% for 45 seconds.
D. Motor ramps down to stop.

Delay Profile 3

A. When cool demand is initiated, motor ramps up to 82%

Delay Profile 4

A. When cool demand is initiated, motor ramps up to 50%
B. Motor runs at 50% for 30 seconds and ramps up to 82%
C. Motor runs at 82% for approximately 7.5 minutes and then ramp up to 100% (unless the demand has been satisfied) and motor runs at 100% until demand is satisfied.
D. Once demand is met, motor runs at 50% for 30 seconds.
E. Motor ramps down to stop

AHC CHARACTER DISPLAY

An on-board single character LED display (see figure 16 for LED display location) indicates general system status information such as mode of operation, indoor blower CFM and error codes. Multi-character strings are displayed with character ON for one second, OFF for 0.5 seconds and one second pause between the character groups.

Table 11. AHC System Status Codes

<table>
<thead>
<tr>
<th>AHC Single Character Display</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter or Number</td>
<td>Action</td>
</tr>
<tr>
<td>-</td>
<td>Unit Size Code (number or letter) displayed represents air handler model size and capacity. See Configuring Unit Size Codes in figure 18.</td>
</tr>
<tr>
<td>⋆</td>
<td>If three horizontal bars are displayed, AHC does not recognize air handler model size and capacity. See Configuring Unit Size Codes in figure 18.</td>
</tr>
<tr>
<td>.</td>
<td>Idle mode (decimal point / no unit operation)</td>
</tr>
<tr>
<td>R</td>
<td>Delivered CFM. Example: R 200</td>
</tr>
<tr>
<td>C</td>
<td>Stage Cooling (Shows active cooling stages) C1 or C2</td>
</tr>
<tr>
<td>d</td>
<td>Dehumidification mode (Unit in dehumidification mode only)</td>
</tr>
<tr>
<td>d F</td>
<td>Shown only while in active defrost (Y, W and O call)</td>
</tr>
<tr>
<td>H</td>
<td>Stage heating (Shows number of active electric heat pilot relays) H1 or H2 or H3</td>
</tr>
<tr>
<td>h</td>
<td>Stage heat pump (shows active heat pump stages) h1 or h2</td>
</tr>
<tr>
<td>U</td>
<td>Discharge air sensor temperature (indoor blower must be operating) U 05</td>
</tr>
</tbody>
</table>
Table 12. AHC Configuration, Test and Error Recall (Fault and Lockout) Function

NOTE — AHC MUST BE IN IDLE MODE

<table>
<thead>
<tr>
<th>Single Character LED Display</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>-</td>
</tr>
<tr>
<td>Blinking</td>
<td>-</td>
</tr>
</tbody>
</table>

CONFIGURING ELECTRIC HEAT SECTIONS

| Solid | H | Release push button - control will cycle the indoor blower motor on and off to automatically detect number of electric heat sections. Control will store the number of electric heat sections. Control will automatically exit **current active mode**.

INDOOR BLOWER TEST

| Solid | R | Release push button - control cycles indoor blower on for ten seconds at 70% of maximum air for selected capacity unit. Control will automatically exit **current active mode**.

CONFIGURING UNIT SIZE CODES

<table>
<thead>
<tr>
<th>Single Character LED Display</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>P</td>
</tr>
</tbody>
</table>

RELEASE push button - This mode allows the field to select a unit size code (number or letter) that matches the air handler model size and capacity.

IMPORTANT — All field replacement controls may be manually configured to confirm air handler model size and capacity.

Blinking

| P | 1. When the correct Unit Sized Code is displayed, RELEASE push button. Selected code will flash for 10 second period.
| | 2. During ten second period, HOLD push button until code stops blinking (three seconds minimum).
| | 3. Air Handler Control will store code in memory and exit **current active mode**. LED display will go blank and then the Unit Size Code will display for 2 to 5 seconds.

NOTE - If ten second period expires, or push button is held less than 3 seconds, control will automatically exit **current active mode and go into IDLE Mode without storing unit size code. If this occurs, then Unit Size Code configuring procedure must be repeated.**

ERROR CODE RECALL MODE (NOTE — CONTROL MUST BE IN IDLE MODE)

<table>
<thead>
<tr>
<th>Solid</th>
<th>E</th>
<th>To enter Error Code Recall option — PUSH and HOLD button until solid E appears, then RELEASE button. Control will display up to ten error codes stored in memory. If E000 is displayed, there are no stored error codes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>-</td>
<td>To exit Error Code Recall option — PUSH and HOLD button until solid three horizontal bars appear, then RELEASE button. NOTE - Error codes are not cleared</td>
</tr>
<tr>
<td>Solid</td>
<td>c</td>
<td>To clear error codes stored in memory, continue to HOLD push button while the three horizontal bars are displayed. Release push button when solid c is displayed. Display will blink.</td>
</tr>
<tr>
<td>Blinking</td>
<td>c</td>
<td>Push and hold for one (1) second, release button. Seven-segment display will display 0000 and exit error recall mode.</td>
</tr>
</tbody>
</table>
Target CFM Tables

CBX40UHV-024 BLOWER PERFORMANCE

<table>
<thead>
<tr>
<th>Jumper Speed Positions</th>
<th>“HEAT” Speed</th>
<th>“COOL” Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 cfm</td>
<td>2 cfm</td>
</tr>
<tr>
<td>+ NORM</td>
<td>715 cfm</td>
<td>855 cfm</td>
</tr>
<tr>
<td>-</td>
<td>670 cfm</td>
<td>770 cfm</td>
</tr>
</tbody>
</table>

CBX40UHV-030 BLOWER PERFORMANCE

<table>
<thead>
<tr>
<th>Jumper Speed Positions</th>
<th>“HEAT” Speed</th>
<th>“COOL” Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 cfm</td>
<td>2 cfm</td>
</tr>
<tr>
<td>+ NORM</td>
<td>800 cfm</td>
<td>935 cfm</td>
</tr>
<tr>
<td>-</td>
<td>725 cfm</td>
<td>850 cfm</td>
</tr>
</tbody>
</table>

CBX40UHV-035 BLOWER PERFORMANCE

<table>
<thead>
<tr>
<th>Jumper Speed Positions</th>
<th>“HEAT” Speed</th>
<th>“COOL” Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 cfm</td>
<td>2 cfm</td>
</tr>
<tr>
<td>+ NORM</td>
<td>1230 cfm</td>
<td>1335 cfm</td>
</tr>
<tr>
<td>-</td>
<td>1120 cfm</td>
<td>1215 cfm</td>
</tr>
</tbody>
</table>

NOTES:

- The effect of static pressure, filter and electric heater resistance is included in the air volumes listed.
- First stage cooling air volume is 70% of COOL speed setting. Continuous fan speed is approximately 28%, 38%, 70% and 100% (Jumper selectable) of the same second-stage COOL speed selected, minimum 250 cfm.
- Lennox Harmony III Zone Control applications - minimum blower speed if 250 cfm.
CBX40UHV-042 BLOWER PERFORMANCE

0 through 0.80 in. W.g. External Static Pressure Range

<table>
<thead>
<tr>
<th>"AJUST" Jumper Setting</th>
<th>"HEAT" Speed</th>
<th>Jumper Speed Positions</th>
<th>"COOL" Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>cfm</td>
<td>cfm</td>
<td>cfm</td>
</tr>
<tr>
<td>+ NORM</td>
<td>1100</td>
<td>1220</td>
<td>1540</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1200</td>
<td>1400</td>
</tr>
<tr>
<td>-</td>
<td>900</td>
<td>1080</td>
<td>1260</td>
</tr>
</tbody>
</table>

NOTES:
- The effect of static pressure, filter and electric heater resistance is included in the air volumes listed.
- First stage cooling air volume is 70% of COOL speed settings. Continuous fan speed is approximately 28%, 38%, 70% and 100% (Jumper selectable) of the same second-stage COOL speed selected, minimum 450 cfm.
- Lennox Harmony III™ Zone Control applications - minimum blower speed if 450 cfm.

CBX40UHV-048 AND CBX40UHV-060 BLOWER PERFORMANCE

0 through 0.80 in. W.g. External Static Pressure Range

<table>
<thead>
<tr>
<th>"AJUST" Jumper Setting</th>
<th>"HEAT" Speed</th>
<th>Jumper Speed Positions</th>
<th>"COOL" Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>cfm</td>
<td>cfm</td>
<td>cfm</td>
</tr>
<tr>
<td>+ NORM</td>
<td>1650</td>
<td>1560</td>
<td>2090</td>
</tr>
<tr>
<td></td>
<td>1705</td>
<td>1800</td>
<td>1900</td>
</tr>
<tr>
<td>-</td>
<td>1560</td>
<td>1625</td>
<td>1720</td>
</tr>
</tbody>
</table>

NOTES:
- The effect of static pressure, filter and electric heater resistance is included in the air volumes listed.
- First stage cooling air volume is 70% of COOL speed settings. Continuous fan speed is approximately 28%, 38%, 70% and 100% (Jumper selectable) of the same second-stage COOL speed selected, minimum 450 cfm.
- Lennox Harmony III™ Zone Control applications - minimum blower speed if 450 cfm.
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Mitsubishi

Model: PVA

13.4. Changing blower external static pressure

The air handler is equipped with an adjustable static pressure setting. The available settings are shown in the table below.

<table>
<thead>
<tr>
<th>Model</th>
<th>Available ESP [in. WG]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVA-A12</td>
<td>0.30, 0.50, 0.80</td>
</tr>
<tr>
<td>PVA-A18</td>
<td>0.30, 0.50, 0.80</td>
</tr>
<tr>
<td>PVA-A24</td>
<td>0.30, 0.50, 0.80</td>
</tr>
<tr>
<td>PVA-A30</td>
<td>0.30, 0.50, 0.80</td>
</tr>
<tr>
<td>PVA-A36</td>
<td>0.30, 0.50, 0.80</td>
</tr>
<tr>
<td>PVA-A42</td>
<td>0.30, 0.50, 0.80*</td>
</tr>
</tbody>
</table>

*PVA-A42 in Downflow External Static pressure: 0.70

The air handler will be set to 0.50 ESP from the factory.

The air handler’s static pressure can be changed through the mode/function settings in the controller. Please refer to the installation manual for the controller on how to change this option. Depending on the controller used, the mode/function will be either 08 for mode (PAR-31 & Simple MA) or 108 for function (MHK1). Please notice there are different settings when installing the air handler in the downflow position.

Vertical, Horizontal Left, Horizontal Right External Static Pressure Setting

<table>
<thead>
<tr>
<th>External Static Pressure</th>
<th>Setting No. of Mode/Function 08/108</th>
<th>Setting No. of Mode/Function 10/110 (Factory Setting)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 in. WG [75Pa]</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.5 in. WG [125Pa]</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0.8 in. WG [200Pa]</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Downflow External Static Pressure Setting

<table>
<thead>
<tr>
<th>External Static Pressure</th>
<th>Setting No. of Mode/Function 08/108</th>
<th>Setting No. of Mode/Function 10/110</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 in. WG [75Pa]</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0.5 in. WG [125Pa]</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.8 in. WG [200Pa]*</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

*PVA-A42 in Downflow External Static pressure: 0.70
Manufacturer: Mitsubishi

Model: SVZ-KP 12,18

13.4. Changing blower external static pressure

The air handler is equipped with an adjustable static pressure setting. The available settings are shown in the table below.

<table>
<thead>
<tr>
<th>Model</th>
<th>Available ESP [in. WG]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVZ-KP12</td>
<td>0.30</td>
</tr>
<tr>
<td>SVZ-KP18</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>0.60</td>
</tr>
</tbody>
</table>

The air handler will be set to 0.50 ESP from the factory.

The air handler’s static pressure can be changed through the mode/function settings in the controller. Please refer to the installation manual for the controller on how to change this option. Depending on the controller used, the mode/function will be either 08 for mode (PAR-31 & Simple MA) or 108 for function (MHK1).

Vertical, Horizontal Left, Horizontal Right External Static Pressure Setting

<table>
<thead>
<tr>
<th>External Static Pressure</th>
<th>Setting No. of Mode/Function 08/108</th>
<th>Setting No. of Mode/Function 10/110 (Factory Setting)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 in. WG [75Pa]</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.5 in. WG [125Pa]</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(Factory Setting)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6 in. WG [200Pa]</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Manufacturer: Mitsubishi

Model: SVZ-KP 12, 36, 24, 30, 36

13.4. Changing blower external static pressure

The air handler is equipped with an adjustable static pressure setting. The available settings are shown in the table below.

<table>
<thead>
<tr>
<th>Model</th>
<th>Available ESP [in. WG]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVZ-KP12</td>
<td>0.30</td>
</tr>
<tr>
<td>SVZ-KP18</td>
<td>0.50</td>
</tr>
<tr>
<td>SVZ-KP24</td>
<td>0.80</td>
</tr>
<tr>
<td>SVZ-KP30</td>
<td></td>
</tr>
<tr>
<td>SVZ-KP36</td>
<td></td>
</tr>
</tbody>
</table>

The air handler will be set to 0.50 ESP from the factory.

The air handler’s static pressure can be changed through the mode/function settings in the controller. Please refer to the installation manual for the controller on how to change this option. Depending on the controller used, the mode/function will be either 08 for mode (PAR-31 & Simple MA) or 108 for function (MHK1).

Vertical, Horizontal Left, Horizontal Right External Static Pressure Setting

<table>
<thead>
<tr>
<th>External Static Pressure</th>
<th>Setting No. of Mode/Function 08/108</th>
<th>Setting No. of Mode/Function 10/110 (Factory Setting)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 in. WG (75Pa)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.5 in. WG (125Pa)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0.8 in. WG (200Pa)</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
WIRELESS REMOTE CONTROLLER

1. A wireless remote controller is supplied for setting airflow. Please refer to the installation manual in HVAC Partners for setting airflow.

2. The Infrared receiver is located inside the control box of the indoor Air Handler and can be relocated if necessary.

![Wireless Remote Controller](image)

Fig. 5 — Wireless Remote Controller

AIR FLOW DATA

<table>
<thead>
<tr>
<th>SYSTEM SIZE</th>
<th>24K (208/230V)</th>
<th>36K (208/230V)</th>
<th>48K (208/230V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airflow** (CFM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>682</td>
<td>1,176</td>
<td>1,412</td>
</tr>
<tr>
<td>Medium</td>
<td>785</td>
<td>1,000</td>
<td>1,294</td>
</tr>
<tr>
<td>Low</td>
<td>588</td>
<td>824</td>
<td>1,176</td>
</tr>
</tbody>
</table>

Airflow values obtained at AHRI 210/240 rating conditions.

**Measured at rates static pressure:

- 24K: 0.1 in. WG (25pa)
- 36K: 0.15 in. WG (37pa)
- 48K: 0.2 in. WG (50pa)
SETTING STATIC PRESSURE AND AIRFLOW

The indoor fin coil units can be programmed to have different static pressures settings or airflows; the factory default setting is SP1. Follow the next steps to set the static pressure or Automatic Airflow using the Wireless Remote Controller according to the installation conditions.

- The external static pressure can be manually changed to the fan curves SP1, SP2, SP3, SP4.
- Choose the Automatic Airflow “AF” adjustment function to automatically identify the static pressure and regulate the airflow amount.

Follow these instructions to configure.

1. Ensure the test run is done with a dry coil. If the coil is not dry, run the unit for 2 hours in the FAN ONLY mode to dry the coil.
2. Check that both the power supply wiring and the duct installation have been completed. Check that the air vent is properly positioned. Check that the air filter is properly attached to the air return side passage of the unit.
3. If there is more than one air inlet and/or outlet, adjust the dampers so that the airflow rate of each air inlet and outlet conforms to the designed airflow rate. Ensure the unit is in FAN ONLY mode.

The wireless remote controller is required to setup the static pressure of the indoor air handler units.

NOTE: When a system is using the 24V interface built-in, the indoor unit’s fan speed defaults to AUTO with the indoor unit’s default logic.

The external static pressure should be selected using the wireless remote controller (RG-17F5(B)BGEFU), included with the indoor unit, by pointing it toward the indoor unit’s Infrared Receiver typically located inside the control box.

a. Before using the service functions of the remote, turn OFF the indoor unit with the remote.
b. Turn off the power to the indoor and outdoor units for 3 minutes.
c. Turn the power back on.
d. Remove the batteries from the RG57 wireless remote controller and wait for the remote screen to clear or press any button and the screen clears.
e. Reinstall the batteries.
f. Within 30 seconds of replacing the batteries, simultaneously press MODE and TIMER ON for five (5) seconds. You are now in the SERVICE FUNCTION mode — and the remote display reads F1.

f. Manual static pressure or Automatic Airflow adjustment selection:

1. For manual static pressure selection, press the DOWN arrow in the center of the remote (labeled TEMP) to display E9. Press MODE to set the external static pressure/airflow rate in the range of 1-4 (airflow increases quickly). Press TIMER ON to confirm. The values on the remote controller (1, 2, 3, 4) correlate directly to the static pressure curves SP1, SP2, SP3, SP4 (see “FAN PERFORMANCES AT VARYING STATIC PRESSURES” on page 13).
2. If choosing the AUTOMATIC AIRFLOW ADJUSTMENT function, with F1 in the remote display, press the DOWN arrow once and 44 appears. Press TIMER ON to confirm. AF appears in the unit’s LED display. The system starts the fan for the airflow automatic adjustment. The ON indicator flashes when the fan runs during the AUTOMATIC AIRFLOW ADJUSTMENT. After 3 to 6 minutes, the system stops operating once the AUTOMATIC AIRFLOW ADJUSTMENT is complete.

h. Remove the remote controller battery, and then re-insert the battery after the remote controller screen goes blank. The remote controller exits the SERVICE FUNCTION mode.

Fig. 8 — Remote Controller
FAN PERFORMANCES AT VARYING STATIC PRESSURES

Table 10 — Static Pressure at the Rated Point and Static Pressure Range

<table>
<thead>
<tr>
<th>AHU Model Number</th>
<th>Static Pressure</th>
<th>Speed</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>SP1 24</td>
<td>High</td>
<td>1,076</td>
<td>1,075</td>
<td>953</td>
<td>871</td>
<td>702</td>
<td>200</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>942</td>
<td>822</td>
<td>658</td>
<td>465</td>
<td>164</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>797</td>
<td>648</td>
<td>437</td>
<td>100</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>SP2 24</td>
<td>High</td>
<td>1,250</td>
<td>1,175</td>
<td>1,075</td>
<td>965</td>
<td>815</td>
<td>650</td>
<td>475</td>
<td>200</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,185</td>
<td>1,095</td>
<td>996</td>
<td>855</td>
<td>685</td>
<td>512</td>
<td>291</td>
<td>291</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,100</td>
<td>1,005</td>
<td>922</td>
<td>712</td>
<td>558</td>
<td>322</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>SP3 24</td>
<td>High</td>
<td>1,490</td>
<td>1,415</td>
<td>1,334</td>
<td>1,250</td>
<td>1,156</td>
<td>1,028</td>
<td>850</td>
<td>750</td>
<td>600</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,375</td>
<td>1,294</td>
<td>1,206</td>
<td>1,100</td>
<td>988</td>
<td>822</td>
<td>676</td>
<td>500</td>
<td>284</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,285</td>
<td>1,200</td>
<td>1,105</td>
<td>995</td>
<td>845</td>
<td>685</td>
<td>525</td>
<td>252</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>SP4 24</td>
<td>High</td>
<td>1,825</td>
<td>1,756</td>
<td>1,670</td>
<td>1,562</td>
<td>1,451</td>
<td>1,450</td>
<td>1,360</td>
<td>1,250</td>
<td>1,120</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,630</td>
<td>1,556</td>
<td>1,480</td>
<td>1,400</td>
<td>1,310</td>
<td>1,215</td>
<td>1,105</td>
<td>950</td>
<td>825</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,525</td>
<td>1,450</td>
<td>1,372</td>
<td>1,200</td>
<td>1,190</td>
<td>1,074</td>
<td>935</td>
<td>765</td>
<td>650</td>
<td>/</td>
</tr>
<tr>
<td>SP1 36</td>
<td>High</td>
<td>1,335</td>
<td>1,270</td>
<td>1,165</td>
<td>1,062</td>
<td>950</td>
<td>816</td>
<td>606</td>
<td>450</td>
<td>340</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,185</td>
<td>1,100</td>
<td>990</td>
<td>845</td>
<td>685</td>
<td>520</td>
<td>335</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,020</td>
<td>916</td>
<td>775</td>
<td>606</td>
<td>405</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>SP2 36</td>
<td>High</td>
<td>1,475</td>
<td>1,405</td>
<td>1,320</td>
<td>1,230</td>
<td>1,125</td>
<td>990</td>
<td>855</td>
<td>715</td>
<td>570</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,340</td>
<td>1,250</td>
<td>1,172</td>
<td>1,055</td>
<td>920</td>
<td>775</td>
<td>630</td>
<td>460</td>
<td>275</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,205</td>
<td>1,115</td>
<td>1,011</td>
<td>870</td>
<td>715</td>
<td>565</td>
<td>380</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>SP3 36</td>
<td>High</td>
<td>1,648</td>
<td>1,585</td>
<td>1,515</td>
<td>1,440</td>
<td>1,354</td>
<td>1,235</td>
<td>1,125</td>
<td>990</td>
<td>875</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,510</td>
<td>1,440</td>
<td>1,362</td>
<td>1,275</td>
<td>1,186</td>
<td>1,046</td>
<td>910</td>
<td>780</td>
<td>645</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,385</td>
<td>1,305</td>
<td>1,215</td>
<td>1,115</td>
<td>998</td>
<td>865</td>
<td>727</td>
<td>580</td>
<td>421</td>
<td>/</td>
</tr>
<tr>
<td>SP4 36</td>
<td>High</td>
<td>1,815</td>
<td>1,733</td>
<td>1,663</td>
<td>1,585</td>
<td>1,528</td>
<td>1,435</td>
<td>1,346</td>
<td>1,236</td>
<td>1,130</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,605</td>
<td>1,500</td>
<td>1,426</td>
<td>1,360</td>
<td>1,289</td>
<td>1,215</td>
<td>1,175</td>
<td>1,050</td>
<td>941</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,558</td>
<td>1,481</td>
<td>1,406</td>
<td>1,350</td>
<td>1,219</td>
<td>1,100</td>
<td>986</td>
<td>875</td>
<td>748</td>
<td>/</td>
</tr>
<tr>
<td>SP1 48</td>
<td>High</td>
<td>1,611</td>
<td>1,530</td>
<td>1,462</td>
<td>1,375</td>
<td>1,276</td>
<td>1,170</td>
<td>1,053</td>
<td>925</td>
<td>831</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,498</td>
<td>1,417</td>
<td>1,333</td>
<td>1,225</td>
<td>1,125</td>
<td>996</td>
<td>890</td>
<td>775</td>
<td>631</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,375</td>
<td>1,297</td>
<td>1,212</td>
<td>1,110</td>
<td>994</td>
<td>860</td>
<td>716</td>
<td>558</td>
<td>389</td>
<td>/</td>
</tr>
<tr>
<td>SP2 48</td>
<td>High</td>
<td>1,774</td>
<td>1,731</td>
<td>1,642</td>
<td>1,570</td>
<td>1,504</td>
<td>1,420</td>
<td>1,313</td>
<td>1,202</td>
<td>1,081</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,662</td>
<td>1,595</td>
<td>1,531</td>
<td>1,460</td>
<td>1,366</td>
<td>1,275</td>
<td>1,181</td>
<td>1,040</td>
<td>915</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,560</td>
<td>1,491</td>
<td>1,406</td>
<td>1,323</td>
<td>1,220</td>
<td>1,110</td>
<td>986</td>
<td>880</td>
<td>749</td>
<td>/</td>
</tr>
<tr>
<td>SP3 48</td>
<td>High</td>
<td>1,868</td>
<td>1,805</td>
<td>1,736</td>
<td>1,675</td>
<td>1,604</td>
<td>1,532</td>
<td>1,433</td>
<td>1,330</td>
<td>1,211</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,781</td>
<td>1,729</td>
<td>1,649</td>
<td>1,582</td>
<td>1,511</td>
<td>1,429</td>
<td>1,328</td>
<td>1,208</td>
<td>1,081</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,662</td>
<td>1,595</td>
<td>1,531</td>
<td>1,460</td>
<td>1,366</td>
<td>1,275</td>
<td>1,181</td>
<td>1,040</td>
<td>915</td>
<td>/</td>
</tr>
<tr>
<td>SP4 48</td>
<td>High</td>
<td>2,024</td>
<td>1,974</td>
<td>1,919</td>
<td>1,850</td>
<td>1,795</td>
<td>1,728</td>
<td>1,652</td>
<td>1,560</td>
<td>1,456</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1,942</td>
<td>1,872</td>
<td>1,818</td>
<td>1,760</td>
<td>1,697</td>
<td>1,620</td>
<td>1,534</td>
<td>1,455</td>
<td>1,345</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1,825</td>
<td>1,770</td>
<td>1,708</td>
<td>1,648</td>
<td>1,578</td>
<td>1,492</td>
<td>1,400</td>
<td>1,295</td>
<td>1,180</td>
<td>/</td>
</tr>
</tbody>
</table>

NOTES:

1. Airflow based upon dry coil at 23°C without filter or electric heater.
2. To avoid potential for condensate blowing out of drain pan prior to making drain trap:
 Return static pressure must be less than 0.40 in wc.
 Horizontal applications of 48 size must have supply static greater than 0.20 in wc.
3. Airflow above 400 cfm/ton could result in condensate blowing off coil or splashing out of drain pan.
FB4C AERIAL PERFORMANCE (CFM)

<table>
<thead>
<tr>
<th>Model & Size</th>
<th>Blower Speed</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB4C 018</td>
<td>Tap 5</td>
<td>787</td>
<td>739</td>
<td>702</td>
<td>669</td>
<td>620</td>
<td>555</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>614</td>
<td>569</td>
<td>534</td>
<td>486</td>
<td>436</td>
<td>398</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>410</td>
<td>360</td>
<td>316</td>
<td>283</td>
<td>253</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>410</td>
<td>360</td>
<td>316</td>
<td>283</td>
<td>253</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>617</td>
<td>567</td>
<td>533</td>
<td>486</td>
<td>436</td>
<td>398</td>
</tr>
<tr>
<td>FB4C 024 & 025</td>
<td>Tap 5</td>
<td>959</td>
<td>936</td>
<td>892</td>
<td>835</td>
<td>763</td>
<td>678</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>828</td>
<td>795</td>
<td>766</td>
<td>743</td>
<td>706</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>828</td>
<td>795</td>
<td>766</td>
<td>743</td>
<td>706</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>701</td>
<td>662</td>
<td>626</td>
<td>581</td>
<td>537</td>
<td>499</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>617</td>
<td>567</td>
<td>533</td>
<td>486</td>
<td>436</td>
<td>398</td>
</tr>
<tr>
<td>FB4C 030</td>
<td>Tap 5</td>
<td>1108</td>
<td>1090</td>
<td>1065</td>
<td>1038</td>
<td>1000</td>
<td>974</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1028</td>
<td>1000</td>
<td>959</td>
<td>933</td>
<td>899</td>
<td>865</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1028</td>
<td>1000</td>
<td>959</td>
<td>933</td>
<td>899</td>
<td>865</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>909</td>
<td>873</td>
<td>842</td>
<td>809</td>
<td>760</td>
<td>722</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>625</td>
<td>765</td>
<td>775</td>
<td>782</td>
<td>724</td>
<td></td>
</tr>
<tr>
<td>FB4C 036</td>
<td>Tap 5</td>
<td>1305</td>
<td>1276</td>
<td>1245</td>
<td>1216</td>
<td>1176</td>
<td>1121</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1227</td>
<td>1191</td>
<td>1169</td>
<td>1143</td>
<td>1105</td>
<td>1074</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1227</td>
<td>1191</td>
<td>1169</td>
<td>1143</td>
<td>1105</td>
<td>1074</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>1087</td>
<td>1052</td>
<td>1020</td>
<td>988</td>
<td>956</td>
<td>920</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>1020</td>
<td>1000</td>
<td>959</td>
<td>933</td>
<td>899</td>
<td>865</td>
</tr>
<tr>
<td>FB4C 042</td>
<td>Tap 5</td>
<td>1560</td>
<td>1543</td>
<td>1527</td>
<td>1507</td>
<td>1484</td>
<td>1424</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1419</td>
<td>1379</td>
<td>1358</td>
<td>1336</td>
<td>1322</td>
<td>1283</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1419</td>
<td>1379</td>
<td>1358</td>
<td>1336</td>
<td>1322</td>
<td>1283</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>1249</td>
<td>1220</td>
<td>1184</td>
<td>1142</td>
<td>1093</td>
<td>1052</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>1242</td>
<td>1205</td>
<td>1158</td>
<td>1110</td>
<td>1069</td>
<td>1028</td>
</tr>
<tr>
<td>FB4C 048</td>
<td>Tap 5</td>
<td>1743</td>
<td>1712</td>
<td>1679</td>
<td>1642</td>
<td>1610</td>
<td>1574</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1690</td>
<td>1654</td>
<td>1620</td>
<td>1584</td>
<td>1531</td>
<td>1480</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1690</td>
<td>1654</td>
<td>1620</td>
<td>1584</td>
<td>1531</td>
<td>1480</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>1552</td>
<td>1513</td>
<td>1477</td>
<td>1440</td>
<td>1398</td>
<td>1333</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>1590</td>
<td>1550</td>
<td>1519</td>
<td>1484</td>
<td>1437</td>
<td>1401</td>
</tr>
<tr>
<td>FB4C 060</td>
<td>Tap 5</td>
<td>1817</td>
<td>1786</td>
<td>1757</td>
<td>1724</td>
<td>1693</td>
<td>1655</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1817</td>
<td>1786</td>
<td>1757</td>
<td>1724</td>
<td>1693</td>
<td>1655</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1817</td>
<td>1786</td>
<td>1757</td>
<td>1724</td>
<td>1693</td>
<td>1655</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>1557</td>
<td>1521</td>
<td>1486</td>
<td>1457</td>
<td>1418</td>
<td>1373</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>1443</td>
<td>1412</td>
<td>1377</td>
<td>1332</td>
<td>1288</td>
<td>1243</td>
</tr>
<tr>
<td>FB4C 081</td>
<td>Tap 5</td>
<td>2303</td>
<td>2205</td>
<td>2106</td>
<td>1997</td>
<td>1888</td>
<td>1742</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>2111</td>
<td>2015</td>
<td>1917</td>
<td>1819</td>
<td>1711</td>
<td>1593</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>2111</td>
<td>2015</td>
<td>1917</td>
<td>1819</td>
<td>1711</td>
<td>1593</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>1665</td>
<td>1533</td>
<td>1400</td>
<td>1266</td>
<td>1164</td>
<td>1088</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>1482</td>
<td>1418</td>
<td>1351</td>
<td>1287</td>
<td>1227</td>
<td>1173</td>
</tr>
</tbody>
</table>

- Airflow above 450 cfm/to.

NOTE:
1. Airflow based upon dry coil at 20Fv with factory-approved filter and electric heater (2 element heater sizes 01 through 016, 3 element heater sizes 042 through 045). For FB4C models, airflow at 208 volts is approximately the same as 230 volts because the motor is a constant torque motor. The torque doesn’t drop off as the speed the motor operates.
2. To avoid potential for condensate blowing out of drain pan, prior to making drain trap.
3. Return static pressure must be less than 0-40 in. wc. Horizontal applications of 043 - 061 units must have supply static greater than 0.20 in. wc.
<table>
<thead>
<tr>
<th>FBAC Unit Size</th>
<th>INDOOR COIL AIR</th>
<th>SATURATED TEMPERATURE LEAVING EVAPORATOR (°F/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>35 / 2</td>
</tr>
<tr>
<td>525</td>
<td></td>
<td>TC</td>
</tr>
<tr>
<td>525</td>
<td></td>
<td>SC</td>
</tr>
<tr>
<td>525</td>
<td></td>
<td>BF</td>
</tr>
<tr>
<td>675</td>
<td></td>
<td>TC</td>
</tr>
<tr>
<td>675</td>
<td></td>
<td>SC</td>
</tr>
<tr>
<td>675</td>
<td></td>
<td>BF</td>
</tr>
<tr>
<td>675</td>
<td></td>
<td>TC</td>
</tr>
<tr>
<td>675</td>
<td></td>
<td>SC</td>
</tr>
<tr>
<td>675</td>
<td></td>
<td>BF</td>
</tr>
<tr>
<td>600</td>
<td></td>
<td>TC</td>
</tr>
<tr>
<td>600</td>
<td></td>
<td>SC</td>
</tr>
<tr>
<td>600</td>
<td></td>
<td>BF</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>TC</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>SC</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>BF</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>TC</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>SC</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>BF</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>TC</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>SC</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>BF</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>TC</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>SC</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>BF</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>TC</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>SC</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>BF</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>TC</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>SC</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>BF</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>TC</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>SC</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>BF</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>TC</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>SC</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>BF</td>
</tr>
</tbody>
</table>

Manufacturer reserves the right to change, at any time, specifications and designs without notice and without obligations.
<table>
<thead>
<tr>
<th>FBAC Unit Size</th>
<th>INDOOR COIL AIR</th>
<th>SATURATED TEMPERATURE LEAVING EVAPORATOR (°F / °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TC</td>
<td>SHC</td>
</tr>
<tr>
<td>048</td>
<td>72 / 22</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>67 / 16</td>
<td>72</td>
</tr>
<tr>
<td>1000</td>
<td>72 / 22</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>67 / 19</td>
<td>79</td>
</tr>
<tr>
<td>1800</td>
<td>72 / 22</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>67 / 19</td>
<td>86</td>
</tr>
</tbody>
</table>

CFM - Cubic Feet per Minute
EWB - Entering Wet Bulb °F (°C)
LWB - Leaving Wet Bulb °F (°C)
TC - Gross Cooling Capacity 1000 Btu/h
SHC - Gross Sensible Capacity 1000 Btu/h
BF - Bypass Factor
MBH - 1000 Btu/h

NOTES:

1. Contact manufacturer for cooling capacities at conditions other than shown in table.
2. Formulas:
 - Leaving db = entering db - sensible heat cap.
 - Leaving wb = wb corresponding to enthalpy of air leaving coil (h_{wb})
 - h_{wb} = enthalpy of air entering coil. Direct interpolation is permissible. Do not extrapolate.
3. SHC is based on 80°F (27°C) db temperature of air entering coil. Below 80°F (27°C) db, subtract (Correction Factor x CFM) from SHC. Above 80°F (27°C) db, add (Correction Factor x CFM) to SHC.
4. Bypass Factor = 0 indicates no psychometric solution. Use bypass factor of next lower EWB for approximation.
FBAC AIR DELIVERY PERFORMANCE CORRECTION COMPONENT PRESSURE DROP (in wc)
AT INDICATED AIRFLOW (DRY TO WET COIL)

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
<th>1700</th>
<th>1800</th>
<th>1900</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>018</td>
<td>0.004</td>
<td>0.049</td>
<td>0.083</td>
<td>—</td>
</tr>
<tr>
<td>024</td>
<td>0.004</td>
<td>0.049</td>
<td>0.083</td>
<td>0.076</td>
<td>0.089</td>
<td>—</td>
</tr>
<tr>
<td>025</td>
<td>0.015</td>
<td>0.053</td>
<td>0.083</td>
<td>0.049</td>
<td>0.056</td>
<td>—</td>
</tr>
<tr>
<td>030</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.049</td>
<td>0.056</td>
<td>0.070</td>
<td>0.080</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>036</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.070</td>
<td>0.080</td>
<td>0.090</td>
<td>0.099</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>042</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.049</td>
<td>0.054</td>
<td>0.059</td>
<td>0.065</td>
<td>0.070</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>048</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.027</td>
<td>0.031</td>
<td>0.035</td>
<td>0.039</td>
<td>0.043</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>050</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.027</td>
<td>0.031</td>
<td>0.035</td>
<td>0.039</td>
<td>0.043</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

ELECTRIC HEATER STATIC PRESSURE DROP (in wc)

<table>
<thead>
<tr>
<th>HEATER ELEMENTS</th>
<th>kW</th>
<th>EXTERNAL STATIC PRESSURE CORRECTION</th>
<th>HEATER ELEMENTS</th>
<th>kW</th>
<th>EXTERNAL STATIC PRESSURE CORRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>+0.07</td>
<td>0</td>
<td>8</td>
<td>+0.04</td>
</tr>
<tr>
<td>1</td>
<td>3.5</td>
<td>+0.1</td>
<td>2</td>
<td>8.10</td>
<td>+0.2</td>
</tr>
<tr>
<td>2</td>
<td>8.10</td>
<td>0</td>
<td>3</td>
<td>8.15</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>9.15</td>
<td>-0.02</td>
<td>4</td>
<td>20</td>
<td>-0.02</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>-0.04</td>
<td>6</td>
<td>18.24</td>
<td>0.16</td>
</tr>
</tbody>
</table>

The airflow performance data was developed using fan coils with 10-kW electric heaters (2 elements) in the 018 through 036 size units and 15-kW heaters (3 elements) in the 042 through 050 size units. For fan coils with heaters of a different number of elements, the external available static at a given CFM from the curve may be corrected by adding or subtracting available external static pressure as indicated above.

MINIMUM CFM AND MOTOR SPEED SELECTION

<table>
<thead>
<tr>
<th>FBAC</th>
<th>3</th>
<th>5</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>15</th>
<th>18</th>
<th>20</th>
<th>24</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>018</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>—</td>
<td>600</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>024 & 025</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>—</td>
<td>700</td>
<td>775</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>030</td>
<td>—</td>
<td>875</td>
<td>875</td>
<td>—</td>
<td>875</td>
<td>875</td>
<td>—</td>
<td>1080</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>036</td>
<td>—</td>
<td>1050</td>
<td>970</td>
<td>—</td>
<td>970</td>
<td>970</td>
<td>—</td>
<td>1040</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>042</td>
<td>—</td>
<td>1225</td>
<td>1225</td>
<td>—</td>
<td>1225</td>
<td>1225</td>
<td>—</td>
<td>1225</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>048</td>
<td>—</td>
<td>1400</td>
<td>1400</td>
<td>—</td>
<td>1400</td>
<td>1400</td>
<td>—</td>
<td>1400</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>050 & 051</td>
<td>—</td>
<td>1750</td>
<td>1750</td>
<td>—</td>
<td>1750</td>
<td>1750</td>
<td>—</td>
<td>1750</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Note: Speed 5 is used for electric heat only. White wire must remain on top 4.
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Payne

Model: FE4A

AIRFLOW DELIVERY — COOLING, HEATING, ELECTRIC HEATING MODES

The FE4 and FE5A fan coils will provide airflow at a rate that is requested by the Integrated System User Interface during air conditioning or heat pump heating (without electric heat) modes. The nominal airflow for both heating and cooling modes is 350 cfm/ton nominal size of the outdoor unit installed. The airflow actually requested by the User Interface is modified by its internal algorithms for zoning, comfort or efficiency concerns. Refer to the documentation for the User Interface for more information on how the User Interface controls the fan coil. Safe operation of electric heaters requires airflow delivery at or above the minimum CFM for electric heater application listed in the chart below. The fan coil will adjust its airflow delivery to maintain safe airflow as operating mode and staging conditions require.

FE4A/FE5A FAN COIL AIRFLOW DELIVERY CHART (CFM) — ELECTRIC HEATING MODELS

<table>
<thead>
<tr>
<th>MODEL FE4A</th>
<th>OUTDOOR UNIT CAPACITY BTUH</th>
<th>ELECTRIC HEATER KW RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>002</td>
<td>EMERGENCY</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>16,000</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>24,000</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>30,000</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>36,000</td>
<td>975</td>
</tr>
<tr>
<td>003</td>
<td>EMERGENCY</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>24,000</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>30,000</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>36,000</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td>42,000</td>
<td>1125</td>
</tr>
<tr>
<td>005</td>
<td>EMERGENCY</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>30,000</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>36,000</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td>42,000</td>
<td>1125</td>
</tr>
<tr>
<td></td>
<td>45,000</td>
<td>1305</td>
</tr>
<tr>
<td>006</td>
<td>EMERGENCY</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>36,000</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>42,000</td>
<td>1125</td>
</tr>
<tr>
<td></td>
<td>48,000</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>1625</td>
</tr>
<tr>
<td>MODEL FE5A</td>
<td>OUTDOOR UNIT CAPACITY BTUH</td>
<td>ELECTRIC HEATER KW RANGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>004</td>
<td>EMERGENCY</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>24,000</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td>30,000</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>36,000</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>42,000</td>
<td>1125</td>
</tr>
</tbody>
</table>
Acceptable Duct Conditions

![Graph showing acceptable duct conditions](image)

For satisfactory operation (specifically making dry secondary trap), subject fan coils must be installed with duct systems which fall within the 'Acceptable Range' illustrated above.

Minimum RPM Table

<table>
<thead>
<tr>
<th>MODEL</th>
<th>SYSTEM SIZES</th>
<th>CFM RANGE</th>
<th>MIN RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>F64ANF002</td>
<td>019, 034, 030, 036</td>
<td>150 – 1200</td>
<td>300</td>
</tr>
<tr>
<td>F64ANL503</td>
<td>029, 030, 036, 042</td>
<td>200 – 1400</td>
<td>285</td>
</tr>
<tr>
<td>F64ANL505</td>
<td>030, 036, 042, 048</td>
<td>250 – 1600</td>
<td>275</td>
</tr>
<tr>
<td>F64ANB006</td>
<td>048, 042, 048, 060</td>
<td>500 – 2000</td>
<td>275</td>
</tr>
<tr>
<td>F64ANB004</td>
<td>048, 036, 060, 042</td>
<td>500 – 1400</td>
<td>275</td>
</tr>
</tbody>
</table>

Maximum Static Table

<table>
<thead>
<tr>
<th>MODEL</th>
<th>AIRFLOW DELIVERY</th>
<th>AVAILABLE STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F64ANF002</td>
<td>525 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>750 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>875 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1050 CFM</td>
<td>0.80 in wc</td>
</tr>
<tr>
<td></td>
<td>1200 CFM</td>
<td>0.60 in wc</td>
</tr>
<tr>
<td></td>
<td>700 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>875 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1050 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1225 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1400 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1600 CFM</td>
<td>0.80 in wc</td>
</tr>
<tr>
<td></td>
<td>1875 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>2000 CFM</td>
<td>0.60 in wc</td>
</tr>
<tr>
<td></td>
<td>750 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>875 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1050 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1225 CFM</td>
<td>1.00 in wc</td>
</tr>
<tr>
<td></td>
<td>1400 CFM</td>
<td>1.00 in wc</td>
</tr>
</tbody>
</table>

Go To Model List
Gross Cooling Capacities (MBTUH)

<table>
<thead>
<tr>
<th>CFM</th>
<th>35/2</th>
<th>TC</th>
<th>0.00</th>
<th>36.0</th>
<th>36.0</th>
<th>36.0</th>
<th>36.0</th>
<th>36.0</th>
<th>36.0</th>
<th>36.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>600</td>
<td>72/22</td>
<td>40.1</td>
<td>19.6</td>
<td>0.00</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>67/19</td>
<td>39.3</td>
<td>19.2</td>
<td>0.01</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
</tr>
<tr>
<td>800</td>
<td>72/22</td>
<td>40.1</td>
<td>19.6</td>
<td>0.00</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>67/19</td>
<td>39.3</td>
<td>19.2</td>
<td>0.01</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
</tr>
<tr>
<td>1200</td>
<td>72/22</td>
<td>40.1</td>
<td>19.6</td>
<td>0.00</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>67/19</td>
<td>39.3</td>
<td>19.2</td>
<td>0.01</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
</tr>
<tr>
<td>1600</td>
<td>72/22</td>
<td>40.1</td>
<td>19.6</td>
<td>0.00</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>67/19</td>
<td>39.3</td>
<td>19.2</td>
<td>0.01</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
</tr>
<tr>
<td>2000</td>
<td>72/22</td>
<td>40.1</td>
<td>19.6</td>
<td>0.00</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>67/19</td>
<td>39.3</td>
<td>19.2</td>
<td>0.01</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
</tr>
<tr>
<td>2400</td>
<td>72/22</td>
<td>40.1</td>
<td>19.6</td>
<td>0.00</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>67/19</td>
<td>39.3</td>
<td>19.2</td>
<td>0.01</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
</tr>
<tr>
<td>2800</td>
<td>72/22</td>
<td>40.1</td>
<td>19.6</td>
<td>0.00</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>67/19</td>
<td>39.3</td>
<td>19.2</td>
<td>0.01</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
</tr>
<tr>
<td>3200</td>
<td>72/22</td>
<td>40.1</td>
<td>19.6</td>
<td>0.00</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>67/19</td>
<td>39.3</td>
<td>19.2</td>
<td>0.01</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
<td>36.0</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Feather:

- **Indoor Coil:** Air
- **Indoor Coil:** SAT.
- **Indoor Coil:** Lea.
- **Indoor Coil:** Evap.
CFM – Cubic Ft per Minute
EWB – Entering Wet Bulb (F / °C)
SHC – Gross Sensible Capacity 1000 Btu/h
BF – Bypass Factor

NOTES:
1. Contact manufacturer for cooling capacities at conditions other than shown in table.
2. Formulas:
 - Leaving db = entering db – sensible heat gain
 - 1.09 x CFM
 - Leaving wb = wb corresponding to enthalpy of air leaving coil (h_wb)
 - \(h_{wb} = h_{db} - \text{cooling coil capacity} \times 4.5 \times \text{CFM} \)
 where \(h_{db} \) = enthalpy of air entering coil. Direct interpolation is permissible. Do not extrapolate.
3. SHC is based on 80°F db temperature of air entering coil below 80°F db, subtract (Correction Factor x CFM) from SHC. Above 80°F db, add (Correction Factor x CFM) to SHC.
4. Bypass Factor = 0 indicates no psychometric solution. Use bypass factor of next lower EWB for approximation.

AIRFLOW PERFORMANCE CORRECTION FACTORS

<table>
<thead>
<tr>
<th>HEATER kW</th>
<th>ELEMENTS</th>
<th>STATIC PRESSURE CORRECTION (in wc)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sizes 002-005</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>+.02</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>+.01</td>
</tr>
<tr>
<td>8, 10</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9, 15</td>
<td>3</td>
<td>-0.02</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>-0.04</td>
</tr>
<tr>
<td>18, 24, 30</td>
<td>6</td>
<td>-0.06</td>
</tr>
</tbody>
</table>

The airflow performance table was developed using fan coils with 10 kW electric heaters (2 elements) in the units. For fan coils with heaters made up of a different number of elements, the external static at a given CFM from the table may be corrected by adding or subtracting pressure. Use table for this correction.

FACTORY-INSTALLED FILTER STATIC PRESSURE DROP (in wc)

<table>
<thead>
<tr>
<th>MODEL</th>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE4A</td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>0.020 0.044 0.048 0.072 0.100 -- -- --</td>
</tr>
<tr>
<td>003</td>
<td>0.020 0.035 0.051 0.070 0.092 -- -- --</td>
</tr>
<tr>
<td>005</td>
<td>-- -- 0.035 0.070 0.092 0.120 -- -- --</td>
</tr>
<tr>
<td>006</td>
<td>-- -- -- 0.038 0.053 0.070 0.086 0.105 0.133</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FE5A</td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>-- 0.015 0.026 0.038 0.053 0.070 -- -- --</td>
</tr>
</tbody>
</table>

AIR DELIVERY PERFORMANCE CORRECTION COMPONENT PRESSURE DROP (in wc) AT INDICATED AIRFLOW (DRY TO WET COIL)

<table>
<thead>
<tr>
<th>MODEL</th>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE4A</td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>0.012 0.016 0.022 0.028 0.034 0.040 0.049 -- -- --</td>
</tr>
<tr>
<td>003</td>
<td>-- -- 0.035 0.042 0.052 0.063 0.075 0.083 0.091 0.098 0.110</td>
</tr>
<tr>
<td>005</td>
<td>-- -- 0.016 0.028 0.040 0.051 0.063 0.075 0.083 0.091 0.098 0.110</td>
</tr>
<tr>
<td>006</td>
<td>-- 0.013 0.016 0.018 0.020 0.023 0.027 0.030 0.034 0.042 0.044 0.056</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FE5A</td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>0.004 0.007 0.009 0.011 0.013 0.016 0.018 0.020 0.023 -- -- --</td>
</tr>
</tbody>
</table>

NOTE: Subtract the above pressure drop corrections from unit airflow data when that component or condition is used. The remaining external static pressure will be available for use in the duct system.
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Payne

Model: FV4C

PERFORMANCE DATA

FV4C ADVANCED FAN COIL AIRFLOW DELIVERY CHART (CFM)

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>OUTDOOR UNIT CAPACITY</th>
<th>NOMINAL A/C Cooling</th>
<th>A/C Cooling Dehumidification</th>
<th>TWO-SPEED APPLICATION</th>
<th>A/C Cooling Dehumidification</th>
<th>FAN ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nominal A/C Cooling</td>
<td>A/Speed High</td>
<td>Nominal A/C Cooling</td>
<td>A/Speed Low</td>
<td>Lo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Med</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High</td>
</tr>
<tr>
<td>032</td>
<td>018</td>
<td>525</td>
<td>420</td>
<td>700</td>
<td>590</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>024</td>
<td>700</td>
<td>590</td>
<td>590</td>
<td>450</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>875</td>
<td>700</td>
<td>1050</td>
<td>840</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>1050</td>
<td>840</td>
<td>1050</td>
<td>840</td>
<td>840</td>
</tr>
<tr>
<td>033</td>
<td>024</td>
<td>700</td>
<td>590</td>
<td>700</td>
<td>590</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>875</td>
<td>700</td>
<td>700</td>
<td>590</td>
<td>590</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>1050</td>
<td>840</td>
<td>1050</td>
<td>840</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1225</td>
<td>980</td>
<td>1225</td>
<td>980</td>
<td>1225</td>
</tr>
<tr>
<td>035</td>
<td>030</td>
<td>875</td>
<td>700</td>
<td>1400</td>
<td>1120</td>
<td>890</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>1050</td>
<td>840</td>
<td>1400</td>
<td>1120</td>
<td>890</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1225</td>
<td>980</td>
<td>1400</td>
<td>1120</td>
<td>890</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td>1400</td>
<td>1120</td>
<td>1400</td>
<td>1120</td>
<td>890</td>
</tr>
<tr>
<td>036</td>
<td>036</td>
<td>1050</td>
<td>840</td>
<td>1750</td>
<td>1400</td>
<td>1120</td>
</tr>
</tbody>
</table>

*Consult Air ratings before matching outdoor unit with FV4C fan coil.

NOTES:

1. The above airflows result with the AC, HP CFM ADJUST select jumper set on NOM.
2. Air flow can be adjusted +15% or –10% by selecting HI or LD respectively for all modes except fan only.
3. Dry coil at 220 volts and with 10KW heater and filter installed.
4. Airflows shown are at standard air conditions.

FV4C ADVANCED FAN COIL AIRFLOW DELIVERY CHART (CFM)

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>OUTDOOR UNIT CAPACITY</th>
<th>HEAT PUMP COMFORT</th>
<th>HEAT PUMP EFFICIENCY</th>
<th>TWO-SPEED APPLICATION</th>
<th>HEAT PUMP COMFORT</th>
<th>HEAT PUMP EFFICIENCY</th>
<th>FAN ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Heat Pump Comfort</td>
<td>Heat Pump Efficiency</td>
<td>High Speed</td>
<td>Heat Pump Comfort</td>
<td>Heat Pump Efficiency</td>
<td>Lo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low Speed</td>
<td></td>
<td></td>
<td>Med</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High</td>
</tr>
<tr>
<td>032</td>
<td>018</td>
<td>470</td>
<td>525</td>
<td>630</td>
<td>700</td>
<td>590</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>024</td>
<td>630</td>
<td>700</td>
<td>1050</td>
<td>840</td>
<td>840</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>785</td>
<td>875</td>
<td>945</td>
<td>1050</td>
<td>755</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>945</td>
<td>1050</td>
<td>945</td>
<td>1050</td>
<td>755</td>
<td>840</td>
</tr>
<tr>
<td>033</td>
<td>024</td>
<td>630</td>
<td>700</td>
<td>630</td>
<td>700</td>
<td>590</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>785</td>
<td>875</td>
<td>945</td>
<td>1050</td>
<td>755</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>945</td>
<td>1050</td>
<td>945</td>
<td>1050</td>
<td>755</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1100</td>
<td>1225</td>
<td>1260</td>
<td>1400</td>
<td>1010</td>
<td>1120</td>
</tr>
<tr>
<td>035</td>
<td>030</td>
<td>785</td>
<td>875</td>
<td>945</td>
<td>1050</td>
<td>755</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>945</td>
<td>1050</td>
<td>945</td>
<td>1050</td>
<td>755</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1100</td>
<td>1225</td>
<td>1260</td>
<td>1400</td>
<td>1010</td>
<td>1120</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td>1200</td>
<td>1400</td>
<td>1260</td>
<td>1400</td>
<td>1010</td>
<td>1120</td>
</tr>
<tr>
<td>036</td>
<td>036</td>
<td>1050</td>
<td>840</td>
<td>1750</td>
<td>1400</td>
<td>1120</td>
<td>890</td>
</tr>
</tbody>
</table>

*Consult Air ratings before matching outdoor unit with FV4C fan coil.

NOTES:

1. The above airflows result with the AC, HP CFM ADJUST select jumper set on NOM.
2. Air flow can be adjusted +15% or –10% by selecting HI or LD respectively for all modes except fan only.
3. Dry coil at 220 volts and with 10KW heater and filter installed.
4. Airflows shown are at standard air conditions.
PERFORMANCE DATA (cont)

AIRFLOW DELIVERY CHART (CFM) — ELECTRIC HEATING MODES

<table>
<thead>
<tr>
<th>FAN UNIT SIZE</th>
<th>OUTDOOR UNIT CAPACITY BTUH</th>
<th>ELECTRIC HEATER KW RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0—5</td>
</tr>
<tr>
<td>002</td>
<td></td>
<td>625</td>
</tr>
<tr>
<td></td>
<td></td>
<td>650</td>
</tr>
<tr>
<td></td>
<td></td>
<td>815</td>
</tr>
<tr>
<td>003</td>
<td></td>
<td>980</td>
</tr>
<tr>
<td>005</td>
<td></td>
<td>675</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42,000</td>
</tr>
<tr>
<td>006</td>
<td></td>
<td>36,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48,000</td>
</tr>
</tbody>
</table>

NOTE: Lo, Nom, and Hi refer to AC HP CFM ADJUST selection.
- Airflow not recommended for heater/system size.

MINIMUM CFM FOR ELECTRIC HEATER APPLICATION

<table>
<thead>
<tr>
<th>FAN COIL UNIT</th>
<th>HEAT PUMP UNIT SIZE</th>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>002</td>
<td>Heater Only</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>018</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>024</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>970</td>
</tr>
<tr>
<td>003</td>
<td>Heater Only</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>024</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>030</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1125</td>
</tr>
<tr>
<td>005</td>
<td>Heater Only</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>018</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>036</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1125</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td>1305</td>
</tr>
<tr>
<td>006</td>
<td>Heater Only</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>018</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>1125</td>
</tr>
<tr>
<td></td>
<td>048</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td>060</td>
<td>1625</td>
</tr>
</tbody>
</table>

NOTES:
1. Heater Only—Air conditioner with electric heater application.
2. These airflow are minimum acceptable airflow as UL listed. Actual airflow delivered will be per airflow delivery chart for Electric Heating Modes.
ACCEPTABLE DUCT CONDITIONS

For satisfactory operation (specifically making dry secondary water), subject fan coils must be installed with duct systems which fall within the "Acceptable Range" illustrated above.

The airflow performance charts for the FV4C fan coil depict nominal airflow delivery for heating and cooling mode operation versus duct system static pressure drop. Cooling mode operation is shown as solid vertical lines for all 4 system size selections. Heating mode operation for the 4 system size selections are shown as dashed vertical lines.

The dotted curved lines are static pressure drop characteristics for several fixed-duct systems. These lines can be used to predict the system static pressure drop at any airflow given the actual drop at 1 known point.

For example, a duct system is designed for 0.15 in. water column (in. w.c.) drop at 1200 CFM. The FV4CNF005 operating at nominal cooling airflow would deliver 1050 CFM with a duct system drop of 0.11 in. w.c. (See point 1.) On the same duct system, the FV4CNF005 operating at nominal heating airflow would deliver 045 CFM with a duct system drop of 0.09 in. w.c (See point 2.)

This example is but one of many possible duct system designs. The FV4CNF005 will deliver the above airflows against much higher static pressures.
AIRFLOW PERFORMANCE

FV4CNF002

- Nominal Cooling and Heat Pump Efficiency airflow for each size selection. Airflow can be adjusted +15% to -10%.
- Nominal Heat Pump Comrot airflow for each size selection. Airflow can be adjusted +15% to -10%.
- Maximum cooling airflow for largest selection. Adjusted +15% from nominal.
- Fixed Duct Systems (See description under Acceptable Duct Conditions.)
AIRFLOW PERFORMANCE

- Nominal Cooling and Heat Pump Efficiency airflow for each size selection. Airflow can be adjusted +15% to −10%.
- Nominal Heat Pump Comfort airflow for each size selection. Airflow can be adjusted +15% to −10%.
- Maximum cooling airflow for largest size selection. Adjusted +15% from nominal.
- Fixed Duct Systems (See description under Acceptable Duct Conditions.)
AIRFLOW PERFORMANCE

EXTERNAL STATIC PRESSURE (in.w.c.)

SCFM

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

0.0
0.36
0.42
0.48
0.60
Hi Cooling

FV4CNB005

- Nominal Cooling and Heat Pump Efficiency airflow for each size selection. Airflow can be adjusted +15% to -10%.
- Nominal Heat Pump Comfort airflow for each size selection. Airflow can be adjusted +16% to -10%.
- Maximum cooling airflow for largest size selection. Adjusted +15% from nominal.
- Fixed Duct Systems (See description under Acceptable Duct Conditions.)
AIRFLOW PERFORMANCE CORRECTION FACTORS

<table>
<thead>
<tr>
<th>HEATER kW</th>
<th>ELEMENTS</th>
<th>STATIC PRESSURE CORRECTION (in. wc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>+.02</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>+.01</td>
</tr>
<tr>
<td>8, 10</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9, 15</td>
<td>3</td>
<td>-.02</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>-.04</td>
</tr>
<tr>
<td>13, 24, 30</td>
<td>6</td>
<td>-.05</td>
</tr>
</tbody>
</table>

The FV4C airflow performance table was developed using fan coils with 10-kW electric heaters (2 elements) in the units. For fan coils with heaters made up of a different number of elements, the external available static at a given CFM from the table may be corrected by adding or subtracting pressure. Use table for this correction.

FACTORY-INSTALLED FILTER STATIC PRESSURE DROP (in. wc)

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>CFM 400</th>
<th>CFM 600</th>
<th>CFM 800</th>
<th>CFM 1000</th>
<th>CFM 1200</th>
<th>CFM 1400</th>
<th>CFM 1600</th>
<th>CFM 1800</th>
<th>CFM 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>0.020</td>
<td>0.044</td>
<td>0.048</td>
<td>0.072</td>
<td>0.100</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>003</td>
<td>—</td>
<td>0.020</td>
<td>0.035</td>
<td>0.051</td>
<td>0.070</td>
<td>0.092</td>
<td>0.120</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>005</td>
<td>—</td>
<td>—</td>
<td>0.035</td>
<td>0.051</td>
<td>0.070</td>
<td>0.092</td>
<td>0.120</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>006</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.038</td>
<td>0.053</td>
<td>0.070</td>
<td>0.096</td>
<td>0.106</td>
<td>0.133</td>
</tr>
</tbody>
</table>

AIR DELIVERY PERFORMANCE CORRECTION COMPONENT PRESSURE DROP (IN. WC) AT INDICATED AIRFLOW (DRY TO WET COIL)

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>CFM 600</th>
<th>CFM 700</th>
<th>CFM 800</th>
<th>CFM 900</th>
<th>CFM 1000</th>
<th>CFM 1100</th>
<th>CFM 1200</th>
<th>CFM 1300</th>
<th>CFM 1400</th>
<th>CFM 1500</th>
<th>CFM 1600</th>
<th>CFM 1700</th>
<th>CFM 1800</th>
<th>CFM 1900</th>
<th>CFM 2000</th>
<th>CFM 2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>0.012</td>
<td>0.016</td>
<td>0.022</td>
<td>0.028</td>
<td>0.034</td>
<td>0.040</td>
<td>0.049</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>—</td>
<td>0.026</td>
<td>0.034</td>
<td>0.042</td>
<td>0.052</td>
<td>0.063</td>
<td>0.075</td>
<td>0.083</td>
<td>0.091</td>
<td>0.098</td>
<td>0.110</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>—</td>
<td>0.006</td>
<td>0.008</td>
<td>0.010</td>
<td>0.012</td>
<td>0.016</td>
<td>0.017</td>
<td>0.020</td>
<td>0.023</td>
<td>0.027</td>
<td>0.030</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

UNITS WITHOUT ELECTRICAL HEAT

UNIT SIZE	VOLTS–PHASE	FLA	MIN CKT AMPS	BRANCH CIRCUIT	
002	208/230–1	4.3	5.4	14	15
003	208/230–1	4.3	5.4	14	15
006	208/230–1	4.3	5.4	14	15
002	208/230–1	8.8	8.5	14	15

* Use copper wire only to connect unit. If other than uncoated (non–plated) 70°C copper wire (solid wire for 10 AWG and smaller, stranded wire for larger than 10 AWG) is used consult applicable tables of the National Electric Code (ANSI/NFPA 70).

NOTE: A branch circuit wire length exceeds 100 ft, consult NEC 210–19a to determine maximum wire length. Use 2% voltage drop.

FLA — Full Load Amps.
Performance Data

<table>
<thead>
<tr>
<th>Model & Size</th>
<th>Blower Speed</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF4MN8019</td>
<td>Tab 5</td>
<td>7.76</td>
<td>7.45</td>
<td>6.86</td>
<td>6.60</td>
<td>6.50</td>
<td>5.77</td>
</tr>
<tr>
<td></td>
<td>Tab 4</td>
<td>6.33</td>
<td>6.44</td>
<td>5.89</td>
<td>5.48</td>
<td>4.94</td>
<td>4.51</td>
</tr>
<tr>
<td></td>
<td>Tab 3</td>
<td>6.33</td>
<td>6.44</td>
<td>5.89</td>
<td>5.48</td>
<td>4.94</td>
<td>4.51</td>
</tr>
<tr>
<td></td>
<td>Tab 2</td>
<td>6.32</td>
<td>5.83</td>
<td>5.50</td>
<td>4.43</td>
<td>4.09</td>
<td>3.61</td>
</tr>
<tr>
<td></td>
<td>Tab 1</td>
<td>6.25</td>
<td>5.24</td>
<td>4.57</td>
<td>4.17</td>
<td>3.67</td>
<td>3.19</td>
</tr>
<tr>
<td>PF4MN8025</td>
<td>Tab 5</td>
<td>9.69</td>
<td>9.20</td>
<td>8.91</td>
<td>8.51</td>
<td>3.16</td>
<td>7.80</td>
</tr>
<tr>
<td></td>
<td>Tab 4</td>
<td>8.25</td>
<td>7.95</td>
<td>7.57</td>
<td>7.22</td>
<td>6.74</td>
<td>5.54</td>
</tr>
<tr>
<td></td>
<td>Tab 3</td>
<td>8.25</td>
<td>7.95</td>
<td>7.57</td>
<td>7.22</td>
<td>6.74</td>
<td>5.54</td>
</tr>
<tr>
<td></td>
<td>Tab 2</td>
<td>7.26</td>
<td>6.95</td>
<td>6.35</td>
<td>5.98</td>
<td>5.43</td>
<td>5.03</td>
</tr>
<tr>
<td></td>
<td>Tab 1</td>
<td>6.31</td>
<td>5.83</td>
<td>5.50</td>
<td>4.43</td>
<td>4.09</td>
<td>3.61</td>
</tr>
<tr>
<td>PF4MN8031</td>
<td>Tab 5</td>
<td>11.86</td>
<td>11.51</td>
<td>11.04</td>
<td>10.50</td>
<td>10.03</td>
<td>9.59</td>
</tr>
<tr>
<td></td>
<td>Tab 4</td>
<td>10.41</td>
<td>9.98</td>
<td>9.44</td>
<td>8.86</td>
<td>8.37</td>
<td>7.72</td>
</tr>
<tr>
<td></td>
<td>Tab 3</td>
<td>10.41</td>
<td>9.98</td>
<td>9.44</td>
<td>8.86</td>
<td>8.37</td>
<td>7.72</td>
</tr>
<tr>
<td></td>
<td>Tab 2</td>
<td>9.24</td>
<td>8.76</td>
<td>8.17</td>
<td>7.62</td>
<td>7.04</td>
<td>6.60</td>
</tr>
<tr>
<td></td>
<td>Tab 1</td>
<td>7.79</td>
<td>6.93</td>
<td>6.28</td>
<td>5.71</td>
<td>5.26</td>
<td>4.76</td>
</tr>
<tr>
<td>PF4MN8037</td>
<td>Tab 5</td>
<td>13.85</td>
<td>13.32</td>
<td>12.94</td>
<td>12.53</td>
<td>12.07</td>
<td>11.57</td>
</tr>
<tr>
<td></td>
<td>Tab 4</td>
<td>12.37</td>
<td>12.06</td>
<td>11.60</td>
<td>11.21</td>
<td>10.70</td>
<td>10.13</td>
</tr>
<tr>
<td></td>
<td>Tab 3</td>
<td>12.37</td>
<td>12.06</td>
<td>11.60</td>
<td>11.21</td>
<td>10.70</td>
<td>10.13</td>
</tr>
<tr>
<td></td>
<td>Tab 2</td>
<td>10.95</td>
<td>10.58</td>
<td>10.07</td>
<td>9.51</td>
<td>8.88</td>
<td>8.24</td>
</tr>
<tr>
<td></td>
<td>Tab 1</td>
<td>10.14</td>
<td>8.35</td>
<td>7.73</td>
<td>7.13</td>
<td>6.56</td>
<td>5.49</td>
</tr>
<tr>
<td>PF4MN8043</td>
<td>Tab 5</td>
<td>15.19</td>
<td>14.60</td>
<td>14.06</td>
<td>13.48</td>
<td>12.54</td>
<td>11.84</td>
</tr>
<tr>
<td></td>
<td>Tab 4</td>
<td>14.37</td>
<td>14.03</td>
<td>13.56</td>
<td>13.09</td>
<td>12.54</td>
<td>12.04</td>
</tr>
<tr>
<td></td>
<td>Tab 3</td>
<td>14.37</td>
<td>14.03</td>
<td>13.56</td>
<td>13.09</td>
<td>12.54</td>
<td>12.04</td>
</tr>
<tr>
<td></td>
<td>Tab 2</td>
<td>12.57</td>
<td>12.28</td>
<td>11.92</td>
<td>11.41</td>
<td>10.90</td>
<td>10.33</td>
</tr>
<tr>
<td></td>
<td>Tab 1</td>
<td>12.57</td>
<td>12.28</td>
<td>11.92</td>
<td>11.41</td>
<td>10.90</td>
<td>10.33</td>
</tr>
<tr>
<td>PF4MN8049</td>
<td>Tab 5</td>
<td>16.84</td>
<td>16.28</td>
<td>15.93</td>
<td>15.52</td>
<td>15.17</td>
<td>14.77</td>
</tr>
<tr>
<td></td>
<td>Tab 4</td>
<td>16.64</td>
<td>16.28</td>
<td>15.93</td>
<td>15.52</td>
<td>15.17</td>
<td>14.77</td>
</tr>
<tr>
<td></td>
<td>Tab 3</td>
<td>16.64</td>
<td>16.28</td>
<td>15.93</td>
<td>15.52</td>
<td>15.17</td>
<td>14.77</td>
</tr>
<tr>
<td></td>
<td>Tab 1</td>
<td>13.31</td>
<td>12.41</td>
<td>11.96</td>
<td>11.50</td>
<td>11.02</td>
<td>10.39</td>
</tr>
<tr>
<td>PF4MN8061</td>
<td>Tab 5</td>
<td>20.30</td>
<td>19.95</td>
<td>19.61</td>
<td>19.27</td>
<td>18.93</td>
<td>18.42</td>
</tr>
<tr>
<td></td>
<td>Tab 4</td>
<td>18.11</td>
<td>17.78</td>
<td>17.40</td>
<td>17.03</td>
<td>16.64</td>
<td>16.13</td>
</tr>
<tr>
<td></td>
<td>Tab 3</td>
<td>18.11</td>
<td>17.78</td>
<td>17.40</td>
<td>17.03</td>
<td>16.64</td>
<td>16.13</td>
</tr>
<tr>
<td></td>
<td>Tab 2</td>
<td>16.86</td>
<td>16.52</td>
<td>16.06</td>
<td>15.58</td>
<td>15.10</td>
<td>14.63</td>
</tr>
<tr>
<td></td>
<td>Tab 1</td>
<td>14.92</td>
<td>14.18</td>
<td>13.71</td>
<td>13.27</td>
<td>12.78</td>
<td>12.25</td>
</tr>
</tbody>
</table>

- **Airflow above 450 cfm/ton.**

Notes:
1. Airflow based upon dry coil at 230°F with factory-approved filter and electric heater (2 element heater sizes 018 through 037, 3 element heater sizes 043 through 061).
2. Airflow at 208 volts is approximately the same as 230 volts because the multi-tip ECM motor is a constant torque motor. The torque doesn’t drop off as the speeds the motor operates.
3. To avoid potential for condensate blowing out of drain pan prior to making drain trap: Retention static pressure must be less than 0.40 in wc. Horizontal applications of 043 - 061 sizes must have supply static greater than 0.20 in wc.
4. Airflow above 400 cfm/ton on 049-061 size could result in condensate blowing off coil or splashing out of drain pan.
Table 4 – Minimum CFM and Motor Speed Selection

<table>
<thead>
<tr>
<th>Fan Coil Sizes</th>
<th>HEATER kW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>019</td>
<td>525</td>
</tr>
<tr>
<td>025</td>
<td>700</td>
</tr>
<tr>
<td>031</td>
<td>—</td>
</tr>
<tr>
<td>037</td>
<td>—</td>
</tr>
<tr>
<td>043</td>
<td>—</td>
</tr>
<tr>
<td>049</td>
<td>—</td>
</tr>
<tr>
<td>061</td>
<td>—</td>
</tr>
</tbody>
</table>

* Indicates medium speed (blue). All other motor speeds at low top.

Table 5 – Air Delivery Performance Correction Component Pressure Drop (in wc) at Indicated Airflow (Dry-to-Wet Coil)

<table>
<thead>
<tr>
<th>Size</th>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500</td>
</tr>
<tr>
<td>019</td>
<td>0.034</td>
</tr>
<tr>
<td>025</td>
<td>0.016</td>
</tr>
<tr>
<td>031</td>
<td>—</td>
</tr>
<tr>
<td>037</td>
<td>—</td>
</tr>
<tr>
<td>043</td>
<td>—</td>
</tr>
<tr>
<td>049</td>
<td>—</td>
</tr>
<tr>
<td>061</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 6 – Factory-Installed Filter Static Pressure Drop (in wc)

<table>
<thead>
<tr>
<th>Unit Size PF4MNBD</th>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400</td>
</tr>
<tr>
<td>019, 025</td>
<td>0.012</td>
</tr>
<tr>
<td>031, 037, 043</td>
<td>—</td>
</tr>
<tr>
<td>045, 061</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 7 – Electric Heater Static Pressure Drop (in wc)

<table>
<thead>
<tr>
<th>HEATER ELEMENTS</th>
<th>kW</th>
<th>EXTERNAL STATIC PRESSURE CORRECTION</th>
<th>HEATER ELEMENTS</th>
<th>kW</th>
<th>EXTERNAL STATIC PRESSURE CORRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>019 – 031</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3, 5</td>
<td>2</td>
<td>8, 10</td>
<td>+0.04</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8, 10</td>
<td>3</td>
<td>9, 15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9, 15</td>
<td>4</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>20</td>
<td>6</td>
<td>18, 24, 30</td>
<td>0.02</td>
</tr>
</tbody>
</table>

The airflow performance data was developed using fan coils with 10-kW electric heaters (2 elements) in the 019 through 037 size units and 15-kW heaters (3 elements) in the 045 through 060 size units. For fan coils with heaters of a different number of elements, the external available static at a given CFM from the curve may be corrected by adding or subtracting available external static pressure as indicated above.
Performance Data

Table 1 – PF4MNPN Airflow Performance (CFM)

<table>
<thead>
<tr>
<th>Model & Size</th>
<th>Blower Speed</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF4MNPN 018</td>
<td>Tap 5</td>
<td>767</td>
<td>739</td>
<td>702</td>
<td>669</td>
<td>620</td>
<td>565</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>614</td>
<td>569</td>
<td>534</td>
<td>496</td>
<td>469</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>701</td>
<td>660</td>
<td>617</td>
<td>581</td>
<td>537</td>
<td>499</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>614</td>
<td>569</td>
<td>534</td>
<td>498</td>
<td>468</td>
<td>438</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>410</td>
<td>356</td>
<td>304</td>
<td>261</td>
<td>228</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Tap 5</td>
<td>968</td>
<td>920</td>
<td>870</td>
<td>823</td>
<td>780</td>
<td>740</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>820</td>
<td>783</td>
<td>740</td>
<td>690</td>
<td>630</td>
<td>575</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>820</td>
<td>783</td>
<td>740</td>
<td>650</td>
<td>600</td>
<td>575</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>720</td>
<td>695</td>
<td>650</td>
<td>555</td>
<td>505</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>716</td>
<td>690</td>
<td>650</td>
<td>540</td>
<td>495</td>
<td>430</td>
</tr>
<tr>
<td>PF4MNPN 025</td>
<td>Tap 5</td>
<td>1103</td>
<td>1062</td>
<td>1023</td>
<td>984</td>
<td>945</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1028</td>
<td>1000</td>
<td>962</td>
<td>928</td>
<td>890</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1028</td>
<td>1000</td>
<td>962</td>
<td>928</td>
<td>890</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>909</td>
<td>873</td>
<td>842</td>
<td>799</td>
<td>762</td>
<td>724</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>825</td>
<td>795</td>
<td>757</td>
<td>722</td>
<td>674</td>
<td>634</td>
</tr>
<tr>
<td>PF4MNPN 032</td>
<td>Tap 5</td>
<td>1301</td>
<td>1278</td>
<td>1245</td>
<td>1218</td>
<td>1176</td>
<td>1121</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1227</td>
<td>1191</td>
<td>1160</td>
<td>1129</td>
<td>1085</td>
<td>1047</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1227</td>
<td>1191</td>
<td>1160</td>
<td>1129</td>
<td>1085</td>
<td>1047</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>1087</td>
<td>1052</td>
<td>1027</td>
<td>1001</td>
<td>960</td>
<td>930</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>1026</td>
<td>1000</td>
<td>999</td>
<td>938</td>
<td>899</td>
<td>865</td>
</tr>
<tr>
<td>PF4MNPN 036</td>
<td>Tap 5</td>
<td>1565</td>
<td>1544</td>
<td>1527</td>
<td>1494</td>
<td>1424</td>
<td>1386</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1416</td>
<td>1387</td>
<td>1358</td>
<td>1320</td>
<td>1279</td>
<td>1239</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1416</td>
<td>1387</td>
<td>1358</td>
<td>1320</td>
<td>1279</td>
<td>1239</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>1249</td>
<td>1220</td>
<td>1195</td>
<td>1158</td>
<td>1110</td>
<td>1069</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>1242</td>
<td>1205</td>
<td>1158</td>
<td>1110</td>
<td>1069</td>
<td>1029</td>
</tr>
<tr>
<td>PF4MNPN 042</td>
<td>Tap 5</td>
<td>1743</td>
<td>1712</td>
<td>1679</td>
<td>1642</td>
<td>1610</td>
<td>1574</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1605</td>
<td>1594</td>
<td>1594</td>
<td>1538</td>
<td>1531</td>
<td>1499</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1605</td>
<td>1594</td>
<td>1594</td>
<td>1538</td>
<td>1531</td>
<td>1499</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>1452</td>
<td>1413</td>
<td>1377</td>
<td>1330</td>
<td>1306</td>
<td>1271</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>1300</td>
<td>1256</td>
<td>1221</td>
<td>1182</td>
<td>1142</td>
<td>1101</td>
</tr>
<tr>
<td>PF4MNPN 048</td>
<td>Tap 5</td>
<td>1897</td>
<td>1867</td>
<td>1836</td>
<td>1808</td>
<td>1774</td>
<td>1738</td>
</tr>
<tr>
<td></td>
<td>Tap 4</td>
<td>1817</td>
<td>1775</td>
<td>1756</td>
<td>1724</td>
<td>1693</td>
<td>1665</td>
</tr>
<tr>
<td></td>
<td>Tap 3</td>
<td>1817</td>
<td>1775</td>
<td>1756</td>
<td>1724</td>
<td>1693</td>
<td>1665</td>
</tr>
<tr>
<td></td>
<td>Tap 2</td>
<td>1657</td>
<td>1621</td>
<td>1589</td>
<td>1557</td>
<td>1516</td>
<td>1474</td>
</tr>
<tr>
<td></td>
<td>Tap 1</td>
<td>1443</td>
<td>1412</td>
<td>1377</td>
<td>1332</td>
<td>1286</td>
<td>1243</td>
</tr>
</tbody>
</table>

Notes:
1. Airflow based upon dry coil at 200V with factory-approved filter and electric heater (2 element heater sizes 01 through 036, 3 element heater sizes 042 through 099). For PF4MNPN models, airflow at 208 volts is approximately the same as 230 volts because the multi-tip ECM motor is a constant speed motor. The torque doesn’t drop off at the speeds the motor operates.
2. To avoid potential for condensate blowing out of drain pan prior to making drain trap. Return static pressure must be less than 0.40 in. wc. Horizontal applications of 042 - 099 sizes must have supply static greater than 0.20 in. wc.
3. Airflow above 400 cfm/ton on 045-060 sizes could result in condensate blowing off coil or splashing out of drain pan.
Table 4 – PF4MNP Air Delivery Performance Correction Component Pressure Drop (in wc) at Indicated Airflow (Dry to Wet Coil)

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>CFM 500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
<th>1700</th>
<th>1800</th>
<th>1900</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>018</td>
<td>0.034</td>
<td>0.049</td>
<td>0.063</td>
<td>--</td>
</tr>
<tr>
<td>025</td>
<td>0.015</td>
<td>0.026</td>
<td>0.036</td>
<td>0.049</td>
<td>0.059</td>
<td>--</td>
</tr>
<tr>
<td>030</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.040</td>
<td>0.050</td>
<td>0.070</td>
<td>0.080</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>036</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.070</td>
<td>0.080</td>
<td>0.090</td>
<td>0.099</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>042</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.049</td>
<td>0.056</td>
<td>0.063</td>
<td>0.070</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>048</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.063</td>
<td>0.070</td>
<td>0.078</td>
<td>0.086</td>
<td>0.090</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>060</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.049</td>
<td>0.054</td>
<td>0.059</td>
<td>0.065</td>
<td>0.070</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Table 5 – Electric Heater Static Pressure Drop (in wc)

<table>
<thead>
<tr>
<th>HEATER ELEMENTS</th>
<th>kW</th>
<th>EXTERNAL STATIC PRESSURE CORRECTION</th>
<th>HEATER ELEMENTS</th>
<th>kW</th>
<th>EXTERNAL STATIC PRESSURE CORRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>+0.02</td>
<td>0</td>
<td>0</td>
<td>+0.04</td>
</tr>
<tr>
<td>1</td>
<td>3.5</td>
<td>+0.01</td>
<td>2</td>
<td>6.15</td>
<td>+0.03</td>
</tr>
<tr>
<td>2</td>
<td>8.10</td>
<td>0</td>
<td>3</td>
<td>9.15</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>9.15</td>
<td>−0.02</td>
<td>4</td>
<td>20</td>
<td>−0.02</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>−0.04</td>
<td>6</td>
<td>18, 24, 33</td>
<td>−10</td>
</tr>
</tbody>
</table>

The airflow performance data was developed using fans with 10-kW electric heaters (1 element) in the 018 through 036 size units and 15-kW heaters (1 element) in the 042 through 060 size units. For fans with heaters of a different number of elements, the external static pressure at a given CFM from the curve may be corrected by adding or subtracting available external static pressure as indicated above.

Table 6 – Minimum CFM and Motor Speed Selection

<table>
<thead>
<tr>
<th>PF4MNP</th>
<th>HEATER KW</th>
<th>3</th>
<th>5</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>15</th>
<th>18</th>
<th>20</th>
<th>24</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>018</td>
<td>625</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>600</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>025</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>--</td>
<td>700</td>
<td>775</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>030</td>
<td>875</td>
<td>--</td>
<td>875</td>
<td>875</td>
<td>--</td>
<td>875</td>
<td>875</td>
<td>1000</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>036</td>
<td>1050</td>
<td>--</td>
<td>1050</td>
<td>1050</td>
<td>1050</td>
<td>1050</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>042</td>
<td>1225</td>
<td>--</td>
<td>1225</td>
<td>1225</td>
<td>1225</td>
<td>1225</td>
<td>1225</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>048</td>
<td>1400</td>
<td>--</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>--</td>
</tr>
<tr>
<td>060</td>
<td>1750</td>
<td>--</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
</tr>
</tbody>
</table>

Speed 74 (white wire) is used for electric heat only. White wire must remain on top 4.
Manufacturer: Rheem

Model: RH1T

5.0 AIRFLOW PERFORMANCE

Airflow performance data is based on cooling performance with a coil and no filter in place. Select performance table for appropriate unit size, voltage and number of electric heaters to be used. Make sure external static applied to unit allows operation within the minimum and maximum limits shown in table below for both cooling and electric heat operation. For optimum blower performance, operate the unit in the .3 to .7 in W.C. external static range. Units with coils should be applied with a minimum of .1 in W.C. external static.

5.1 AIRFLOW OPERATING LIMITS

<table>
<thead>
<tr>
<th>Cabinet Width</th>
<th>17</th>
<th>17/21</th>
<th>21</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling BTUH x 1,000</td>
<td>18</td>
<td>24</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>Cooling Tons Nominal</td>
<td>1.5</td>
<td>2</td>
<td>2.5</td>
<td>3</td>
</tr>
<tr>
<td>Heat Pump or Air Conditioning Maximum Heat/Cool CFM [L/s] (37.5 CFM [16 L/s]/1,000 BTUH)</td>
<td>675</td>
<td>900</td>
<td>1125</td>
<td>1350</td>
</tr>
<tr>
<td>Heat Pump or Air Conditioning Nominal Heat/Cool CFM [L/s] (33.3 CFM [16 L/s]/1,000 BTUH)</td>
<td>600</td>
<td>800</td>
<td>1000</td>
<td>1200</td>
</tr>
<tr>
<td>Heat Pump or Air Conditioning Minimum Heat/Cool CFM [L/s] (30.0 CFM [14 L/s]/1,000 BTUH)</td>
<td>540</td>
<td>720</td>
<td>900</td>
<td>1080</td>
</tr>
<tr>
<td>Maximum kW Electric Heating & Minimum Electric Heat CFM [L/s]</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>
5.2 115/208/240/480V AIRFLOW PERFORMANCE DATA – (+)H1T (CONSTANT TORQUE MOTOR)

<table>
<thead>
<tr>
<th>Model Number (-H1T)</th>
<th>Tonnage Application</th>
<th>Motor Speed From Factory</th>
<th>Manufacturer Recommended Air Flow Range (Min / Max) CFM</th>
<th>Shown @ 1/2 [148] F# of Speeds</th>
<th>Motor Speed</th>
<th>CFM</th>
<th>RPM</th>
<th>Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2417ST No Heat</td>
<td>1.5</td>
<td>5</td>
<td>683/485</td>
<td>1/0</td>
<td>2/0 [148] 5 Speed</td>
<td>2</td>
<td>837</td>
<td>713</td>
</tr>
<tr>
<td>2417ST with 16kw Heater</td>
<td>1.5</td>
<td>5</td>
<td>683/485</td>
<td>1/0</td>
<td>2/0 [148] 5 Speed</td>
<td>2</td>
<td>837</td>
<td>713</td>
</tr>
<tr>
<td>2417ST No Heat</td>
<td>2</td>
<td>5</td>
<td>883/697</td>
<td>1/0</td>
<td>2/0 [148] 5 Speed</td>
<td>4</td>
<td>902</td>
<td>846</td>
</tr>
<tr>
<td>2417ST with 16kw Heater</td>
<td>2</td>
<td>5</td>
<td>683/485</td>
<td>1/0</td>
<td>2/0 [148] 5 Speed</td>
<td>4</td>
<td>902</td>
<td>846</td>
</tr>
</tbody>
</table>

Go To Model List
5.2 115/208/240/480V AIRFLOW PERFORMANCE DATA – (-)H1T (CONSTANT TORQUE MOTOR) - continued

<table>
<thead>
<tr>
<th>Model Number/</th>
<th>Tonnage Application</th>
<th>Motor Speed from Factory</th>
<th>Manufacturer Recommended Airflow Range (Min/Max) CFM</th>
<th>Blower Size/ Motor N.P. # of Speeds</th>
<th>Motor Speed</th>
<th>CFM Delivery/RPM/Watts</th>
<th>X-10 CFM Delivery/RPM/Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>361/ST with 18kw heater</td>
<td>3.0</td>
<td>5</td>
<td>110/250/690 CFM [52/127/330 L/s]</td>
<td>10x8</td>
<td>5</td>
<td>RPM: 115, 850, 855, 902, 118</td>
<td>1106 [182]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RPM: 320</td>
<td>369</td>
<td>369</td>
</tr>
<tr>
<td>360/MT No Heater</td>
<td>2.5</td>
<td>5</td>
<td>854/1103 CFM [409/511 L/s]</td>
<td>10x10</td>
<td>5</td>
<td>RPM: 157, 956, 313, 164</td>
<td>1226 [188]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RPM: 313</td>
<td>374</td>
<td>374</td>
</tr>
<tr>
<td>361/MT with 15kw heater</td>
<td>2.5</td>
<td>5</td>
<td>829/1016 CFM [409/511 L/s]</td>
<td>10x10</td>
<td>5</td>
<td>RPM: 144, 988, 956, 480</td>
<td>1000 [192]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RPM: 500</td>
<td>665</td>
<td>665</td>
</tr>
<tr>
<td>360/MT No Heater</td>
<td>3 & 3.5</td>
<td>5</td>
<td>997/1288 CFM [498/608 L/s]</td>
<td>10x10</td>
<td>5</td>
<td>RPM: 123, 1149, 1084</td>
<td>1012 [194]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RPM: 800</td>
<td>915</td>
<td>915</td>
</tr>
<tr>
<td>361/MT with 15kw heater</td>
<td>3 & 3.5</td>
<td>5</td>
<td>1042/1257 CFM [498/608 L/s]</td>
<td>10x10</td>
<td>5</td>
<td>RPM: 1472 [248]</td>
<td>1447 [248]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RPM: 198</td>
<td>938</td>
<td>938</td>
</tr>
<tr>
<td>482/ST No heater</td>
<td>3.5</td>
<td>5</td>
<td>133/147 CFM [65/69 L/s]</td>
<td>10x10</td>
<td>5</td>
<td>RPM: 275, 33, 270</td>
<td>315 [52]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RPM: 168</td>
<td>465</td>
<td>465</td>
</tr>
<tr>
<td>482/ST with 25kw heater</td>
<td>3.5</td>
<td>5</td>
<td>127/333 CFM [65/127 L/s]</td>
<td>10x10</td>
<td>5</td>
<td>RPM: 1401 [248]</td>
<td>1403 [248]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RPM: 135</td>
<td>1050</td>
<td>1050</td>
</tr>
<tr>
<td>482/ST No heater</td>
<td>4.0</td>
<td>5</td>
<td>144/1654 CFM [75/84 L/s]</td>
<td>10x10</td>
<td>5</td>
<td>RPM: 167, 934, 956</td>
<td>1046 [194]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RPM: 135</td>
<td>1050</td>
<td>1050</td>
</tr>
<tr>
<td>482/ST with 25kw heater</td>
<td>4.0</td>
<td>5</td>
<td>149/1614 CFM [75/84 L/s]</td>
<td>10x10</td>
<td>5</td>
<td>RPM: 146 [248]</td>
<td>146 [248]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RPM: 135</td>
<td>1050</td>
<td>1050</td>
</tr>
</tbody>
</table>
5.2 115/208/240/480V Airflow Performance Data – (-)H1T (Constant Torque Motor) - continued

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Tonnage</th>
<th>Motor Speed From Factory</th>
<th>Manufacturer Recommended Airflow Range (Min/Max CFM)</th>
<th>Blower Size / Motor N.P. & of Speeds</th>
<th>Motor Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>4824ST No heater</td>
<td>4.0</td>
<td>3</td>
<td>1545/1722 CFM [726/817 L/s]</td>
<td>1/11 3/11 3 Speed</td>
<td>RPM 660 659 734 732 795</td>
</tr>
<tr>
<td>Watts</td>
<td>297</td>
<td>311</td>
<td>326</td>
<td>340</td>
<td>353</td>
</tr>
<tr>
<td>CFM</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RPM</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Watts</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4824ST with 20kw heater</td>
<td>4.0</td>
<td>3</td>
<td>1505/1612 CFM [710/798 L/s]</td>
<td>1/11 3/11 3 Speed</td>
<td>RPM 600 718 760 760 800</td>
</tr>
<tr>
<td>Watts</td>
<td>305</td>
<td>331</td>
<td>341</td>
<td>358</td>
<td>361</td>
</tr>
<tr>
<td>CFM</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RPM</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Watts</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5024ST No heater</td>
<td>5.0</td>
<td>5</td>
<td>1739/1906 CFM [821/899 L/s]</td>
<td>1/11 3/11 5 Speed</td>
<td>RPM 712 743 787 819 856</td>
</tr>
<tr>
<td>Watts</td>
<td>389</td>
<td>419</td>
<td>419</td>
<td>432</td>
<td>458</td>
</tr>
<tr>
<td>CFM</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RPM</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Watts</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5024ST with 30kw heater</td>
<td>5.0</td>
<td>5</td>
<td>1699/1885 CFM [802/980 L/s]</td>
<td>1/11 3/11 5 Speed</td>
<td>RPM 750 799 810 820 880</td>
</tr>
<tr>
<td>Watts</td>
<td>410</td>
<td>420</td>
<td>430</td>
<td>456</td>
<td>479</td>
</tr>
<tr>
<td>CFM</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RPM</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Watts</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5024ST No heater</td>
<td>4 & 5</td>
<td>5</td>
<td>1517/1669 CFM [716/891 L/s]</td>
<td>1/11 3/11 5 Speed</td>
<td>RPM 701 741 782 819</td>
</tr>
<tr>
<td>Watts</td>
<td>565</td>
<td>597</td>
<td>597</td>
<td>510</td>
<td></td>
</tr>
<tr>
<td>CFM</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RPM</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Watts</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5024ST with 30kw heater</td>
<td>4 & 5</td>
<td>5</td>
<td>1482/1661 CFM [705/894 L/s]</td>
<td>1/11 3/11 5 Speed</td>
<td>RPM 686 719 760 816 884</td>
</tr>
<tr>
<td>Watts</td>
<td>306</td>
<td>317</td>
<td>329</td>
<td>361</td>
<td>373</td>
</tr>
<tr>
<td>CFM</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RPM</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Watts</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

NOTE:

Constant torque motor speed changes

All constant torque motors have 5 speed tabs. Speed tab 1 is for continuous fan. Speed tab 2 (low static) and Speed tab 3 (high static) are for lower tonnes. Speed tab 4 (low static) and Speed tab 5 (high static) are for higher tonnes.

Constant torque air handlers are always shipped from factory at speed tab 5, except for 4824, which is set at speed tab 3.

The low static Speed tab 2 (lower tonnes) and 4 (higher tonnes) are used for external static below 0.5" WC. The high static Speed tab 3 (lower tonnes) and 5 (higher tonnes) are used for external static exceeding 0.5" WC. Move the blue wire to the appropriate speed tab as required by the application needs.

- The airflow for continuous fan (Speed tab 1) is always set at 50% of the Speed tab 4.
- The above airflow table lists the airflow information for air handlers without heater and air handler with maximum heater allowed for each model.
- The following formula can be used to calculate the approximate airflow if a smaller (N kw) than the maximum heater kit is installed.

 Approximate Airflow = Airflow without heater - (Airflow without heater - Airflow with maximum heater) X (N kw/maximum heater kw)
5.3 240V AIRFLOW PERFORMANCE DATA – (-)H2T (CONSTANT TORQUE MOTOR)

<table>
<thead>
<tr>
<th>Model Number (-)H2T</th>
<th>Nominal Cooling Capacity Tons</th>
<th>Motor Speed Factory</th>
<th>Manufacturer Recommended Airflow Range (No. / Max) CFM</th>
<th>Blower Size Motor HP</th>
<th># of Speeds</th>
<th>Y1, Y2 Speed</th>
<th>Motor Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2421MT No Heater</td>
<td>2.0</td>
<td>Y1 tap 4 Y2 tap 5</td>
<td>Y1: 210/9 [17 CFM], Y2: 44/9 [5 CFM]</td>
<td>10X8 1/8 hp Speeds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y1 Low Static Tap 2: RPM 642 Watts 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y2 Low Static Tap 3: RPM 728 Watts 54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y1 High Static Tap 4: RPM 91 Watts 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y2 High Static Tap 5: RPM 91 Watts 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2421MT With 13 kW Heater</td>
<td>2.0</td>
<td>Y1 tap 4 Y2 tap 5</td>
<td>Y1: 200/7 [17 CFM], Y2: 42/9 [5 CFM]</td>
<td>10X8 1/8 hp Speeds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y1 Low Static Tap 2: RPM 642 Watts 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y2 Low Static Tap 3: RPM 728 Watts 54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y1 High Static Tap 4: RPM 91 Watts 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y2 High Static Tap 5: RPM 91 Watts 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3621MT No Heater</td>
<td>3.0</td>
<td>Y1 tap 4 Y2 tap 6</td>
<td>Y1: 434/9 [5 CFM], Y2: 308/9 [5 CFM]</td>
<td>10X10 3/4 hp Speeds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y1 Low Static Tap 2: RPM 642 Watts 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y2 Low Static Tap 3: RPM 728 Watts 54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y1 High Static Tap 4: RPM 91 Watts 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y2 High Static Tap 5: RPM 91 Watts 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3621MT With 18 kW Heater</td>
<td>3.0</td>
<td>Y1 tap 4 Y2 tap 6</td>
<td>Y1: 484/9 [5 CFM], Y2: 308/9 [5 CFM]</td>
<td>10X10 3/4 hp Speeds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y1 Low Static Tap 2: RPM 642 Watts 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y2 Low Static Tap 3: RPM 728 Watts 54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y1 High Static Tap 4: RPM 91 Watts 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y2 High Static Tap 5: RPM 91 Watts 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X-12 Wet Coil no filter CFM Air Delivery RPM/Watts

<table>
<thead>
<tr>
<th>External Static Pressure Inches W.C.</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
<th>0.70</th>
<th>0.80</th>
<th>0.90</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPM</td>
<td>642</td>
</tr>
<tr>
<td>Watts</td>
<td>49</td>
</tr>
<tr>
<td>RPM</td>
<td>728</td>
</tr>
<tr>
<td>Watts</td>
<td>54</td>
</tr>
<tr>
<td>RPM</td>
<td>91</td>
</tr>
<tr>
<td>Watts</td>
<td>84</td>
</tr>
<tr>
<td>RPM</td>
<td>91</td>
</tr>
<tr>
<td>Watts</td>
<td>84</td>
</tr>
</tbody>
</table>

Go To Model List
5.3 240V AIRFLOW PERFORMANCE DATA – (-)H2T (CONSTANT TORQUE MOTOR) - continued

<table>
<thead>
<tr>
<th>Model Number (-)H2T</th>
<th>Nominal Cooling Capacity Tons</th>
<th>Motor Speed From Factory</th>
<th>Manufacturer Recommended Airflow Range (Max/Min) [CFM]</th>
<th>Blower Size Motor HP # of Speeds</th>
<th>Y1, Y2</th>
<th>Motor Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>4824 MT No Heater</td>
<td>4.0</td>
<td>Y1 tap 4 Y2 tap 5</td>
<td>Y1-75/1 211 CFM [35/39] [50]</td>
<td>11x1 3/4 hp 6 speed</td>
<td>Tab 2</td>
<td>RPM: 1487 1441 1375 1317 1257 1217 1155 1104 1053 1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y2-382/241 CFM [45/49] [52]</td>
<td></td>
<td></td>
<td>RPM: 185 185 185 185 185 185 185 185 185 185</td>
</tr>
<tr>
<td>4824 MT With 25 kW Heater</td>
<td>4.0</td>
<td>Y1 tap 4 Y2 tap 5</td>
<td>Y1-75/1 211 CFM [35/39] [50]</td>
<td>11x1 3/4 hp 6 speed</td>
<td>Tab 2</td>
<td>RPM: 1487 1441 1375 1317 1257 1217 1155 1104 1053 1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y2-382/241 CFM [45/49] [52]</td>
<td></td>
<td></td>
<td>RPM: 185 185 185 185 185 185 185 185 185 185</td>
</tr>
<tr>
<td>6024 ST No Heater</td>
<td>5.0</td>
<td>Y1 tap 4 Y2 tap 5</td>
<td>Y1-75/1 211 CFM [35/39] [50]</td>
<td>11x1 3/4 hp 6 speed</td>
<td>Tab 2</td>
<td>RPM: 1487 1441 1375 1317 1257 1217 1155 1104 1053 1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y2-382/241 CFM [45/49] [52]</td>
<td></td>
<td></td>
<td>RPM: 185 185 185 185 185 185 185 185 185 185</td>
</tr>
<tr>
<td>6024 ST With 18 kW Heater</td>
<td>5.0</td>
<td>Y1 tap 4 Y2 tap 5</td>
<td>Y1-75/1 211 CFM [35/39] [50]</td>
<td>11x1 3/4 hp 6 speed</td>
<td>Tab 2</td>
<td>RPM: 1487 1441 1375 1317 1257 1217 1155 1104 1053 1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y2-382/241 CFM [45/49] [52]</td>
<td></td>
<td></td>
<td>RPM: 185 185 185 185 185 185 185 185 185 185</td>
</tr>
</tbody>
</table>

NOTE:

Constant torque motor speed changes

All constant torque motors have 5 speed tabs. Speed tab 1 is for continuous fan. Speed tab 2 (low static) and Speed tab 3 (high static) are for lower tonnage. Speed tab 4 (low static) and Speed tab 5 (high static) are for higher tonnage.

Constant torque air handlers are always shipped from factory at speed tab 6, except for .4824, which is set at speed tab 3.

The low static Speed tab 2 (lower tonnage) and 4 (higher tonnage) are used for external static below 0.5 W.C. The high static Speed tab 3 (lower tonnage) and 5 (higher tonnage) are used for external static exceeding 0.5 W.C. Move the blue wire to the appropriate speed tab as required by the application needs.

- The airflow for continuous fan (Speed tab 1) is always set at 50% of the Speed tab 4.
- The above airflow table lists the airflow information for air handlers without heater and air handler with maximum heater allowed for each model.
- The following formula can be used to calculate the approximate airflow, if a smaller (N kW) than the maximum heater kit is installed.

\[
\text{Approximate Airflow} = \text{Airflow without heater - (Airflow without heater - Airflow with maximum heater) X (N kW maximum heater kW)}
\]

Go To Model List
Manufacturer: Trane
Model: GAM5B

GAM5B0A18 AIRFLOW PERFORMANCE TABLE

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g)</th>
<th>SPEED TAPS - 230 VOLTS</th>
<th>SPEED TAPS - 208 VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>4 †</td>
</tr>
<tr>
<td>0</td>
<td>1081</td>
<td>977</td>
</tr>
<tr>
<td>0.1</td>
<td>1044</td>
<td>922</td>
</tr>
<tr>
<td>0.2</td>
<td>995</td>
<td>880</td>
</tr>
<tr>
<td>0.3</td>
<td>956</td>
<td>830</td>
</tr>
<tr>
<td>0.4</td>
<td>914</td>
<td>788</td>
</tr>
<tr>
<td>0.5</td>
<td>872</td>
<td>749</td>
</tr>
<tr>
<td>0.6</td>
<td>838</td>
<td>707</td>
</tr>
<tr>
<td>0.7</td>
<td>802</td>
<td>650</td>
</tr>
<tr>
<td>0.8</td>
<td>755</td>
<td>598</td>
</tr>
<tr>
<td>0.9</td>
<td>708</td>
<td>539</td>
</tr>
</tbody>
</table>

NOTES:
1. Values are with wet coil and without filters.
2. Contact your particular filter manufacturer for pressure drop data.
3. Electric heater pressure drop is negligible and is included within the airflow data.
4. Tap 1 is an continuous fan speed tap for single stage systems. Airflow adjustment is required for 2 stage systems. See Airflow adjustment section.
5. † Factory Setting

GAM5B0A18M11SB, GAM5B0A18M11EA MINIMUM HEATER AIRFLOW CFM

<table>
<thead>
<tr>
<th>Heaters</th>
<th>Without Heat Pump</th>
<th>With Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYEAC04BK1A</td>
<td>Tap 3</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAC04LG1AA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAYEAC05BK1A</td>
<td>Tap 3</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAC05LG1AA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAYEAC08BK1A</td>
<td>Tap 3</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAC08LG1AA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAYEAC10BK1A</td>
<td>Tap 3 ①</td>
<td>Tap 5 ①</td>
</tr>
<tr>
<td>BAYEAC10LG1AA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAYEAC10LG3AA</td>
<td>Tap 5</td>
<td>Tap 5 ②</td>
</tr>
<tr>
<td>BAYEABC15BK1AA</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BAYEABC20BK1AA</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

① Heater not qualified for downflow installations
② Approved for 240 V only

Note: Heating and cooling speeds are the same, factory set at Speed Tap #4.

Note: A “G” only signal from the comfort control will run the blower at a lower speed, factory set at Speed Tap #1. See the Sequence of Operation for additional information.

Note: Speed Tap 1 is NOT used for two stage systems. Two stage systems will require an airflow adjustment.
GAM5B0A24 AIRFLOW PERFORMANCE TABLE

AIRFLOW PERFORMANCE

GAM5B0A24M21SB, GAM5B0A24M21EA

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g)</th>
<th>AIRFLOW (CFM)</th>
<th>Speed Taps - 230 VOLTS</th>
<th>Speed Taps - 208 VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1081</td>
<td>977</td>
<td>937</td>
</tr>
<tr>
<td>0.1</td>
<td>1044</td>
<td>922</td>
<td>868</td>
</tr>
<tr>
<td>0.2</td>
<td>995</td>
<td>880</td>
<td>817</td>
</tr>
<tr>
<td>0.3</td>
<td>956</td>
<td>830</td>
<td>767</td>
</tr>
<tr>
<td>0.4</td>
<td>914</td>
<td>788</td>
<td>719</td>
</tr>
<tr>
<td>0.5</td>
<td>872</td>
<td>749</td>
<td>680</td>
</tr>
<tr>
<td>0.6</td>
<td>838</td>
<td>707</td>
<td>628</td>
</tr>
<tr>
<td>0.7</td>
<td>802</td>
<td>650</td>
<td>566</td>
</tr>
<tr>
<td>0.8</td>
<td>755</td>
<td>598</td>
<td>511</td>
</tr>
<tr>
<td>0.9</td>
<td>708</td>
<td>539</td>
<td>460</td>
</tr>
</tbody>
</table>

NOTES:
1. Values are with wet coil and without filters.
2. Contact your particular filter manufacturer for pressure drop data.
3. Electric heater pressure drop is negligible and is included within the airflow data.
4. Tap 1 is an continuous fan speed tap for single stage systems. Airflow adjustment is required for 2 stage systems. See Airflow adjustment section.
5. † Factory Setting

<table>
<thead>
<tr>
<th>GAM5B0A24M21SB, GAM5B0A24M21EA MINIMUM HEATER AIRFLOW CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater</td>
</tr>
<tr>
<td>BAYEAA04BK1AA</td>
</tr>
<tr>
<td>BAYEAA04LG1AA</td>
</tr>
<tr>
<td>BAYEAA05BK1AA</td>
</tr>
<tr>
<td>BAYEAA05LG1AA</td>
</tr>
<tr>
<td>BAYEAA08BK1AA</td>
</tr>
<tr>
<td>BAYEAA08LG1AA</td>
</tr>
<tr>
<td>BAYEAA10BK1AA</td>
</tr>
<tr>
<td>BAYEAA10LG1AA</td>
</tr>
<tr>
<td>BAYEAA10LG3AA</td>
</tr>
<tr>
<td>BAYEABC15BK1AA</td>
</tr>
<tr>
<td>BAYEABC20BK1AA</td>
</tr>
</tbody>
</table>

Note: Heating and cooling speeds are the same, factory set at Speed Tap #4.

Note: A “G” only signal from the comfort control will run the blower at a lower speed; factory set at Speed Tap #1. See the Sequence of Operation for additional information.

Note: Speed Tap 1 is NOT used for two stage systems. Two stage systems will require an airflow adjustment.

① Heater not qualified for downflow installations
② Approved for 240 V only

Go To Model List
GAM5B0B30 AIRFLOW PERFORMANCE TABLE

EXTERNAL STATIC (in w.g.)

<table>
<thead>
<tr>
<th></th>
<th>Speed Taps - 230 VOLTS</th>
<th>Speed Taps - 208 VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>4 †</td>
</tr>
<tr>
<td>0</td>
<td>1282</td>
<td>1150</td>
</tr>
<tr>
<td>0.1</td>
<td>1238</td>
<td>1094</td>
</tr>
<tr>
<td>0.2</td>
<td>1186</td>
<td>1047</td>
</tr>
<tr>
<td>0.3</td>
<td>1141</td>
<td>986</td>
</tr>
<tr>
<td>0.4</td>
<td>1091</td>
<td>935</td>
</tr>
<tr>
<td>0.5</td>
<td>1033</td>
<td>866</td>
</tr>
<tr>
<td>0.6</td>
<td>977</td>
<td>799</td>
</tr>
<tr>
<td>0.7</td>
<td>914</td>
<td>732</td>
</tr>
<tr>
<td>0.8</td>
<td>846</td>
<td>646</td>
</tr>
<tr>
<td>0.9</td>
<td>771</td>
<td>587</td>
</tr>
</tbody>
</table>

NOTES:
1. Values are with wet coil and without filters.
2. Contact your particular filter manufacturer for pressure drop data.
3. Electric heater pressure drop is negligible and is included within the airflow data.
4. Tap 1 is an continuous fan speed tap for single stage systems. Airflow adjustment is required for 2 stage systems. See Airflow adjustment section.
5. † Factory Setting

GAM5B0B30M21SB, GAM5B0B30M21EA MINIMUM HEATER AIRFLOW CFM

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Air Speed Tap</th>
<th>Without HP</th>
<th>With HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYEAA04BK1AA</td>
<td>Tap 2</td>
<td></td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAA04LG1AA</td>
<td>Tap 2</td>
<td></td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAA05BK1AA</td>
<td>Tap 2</td>
<td></td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAA05LG1AA</td>
<td>Tap 3</td>
<td></td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAA08BK1AA</td>
<td>Tap 3</td>
<td></td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAA08LG1AA</td>
<td>Tap 3</td>
<td></td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAA10BK1AA</td>
<td>Tap 3</td>
<td></td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAA10LG1AA</td>
<td>Tap 3</td>
<td></td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAA10LG3AA</td>
<td>Tap 3 †</td>
<td></td>
<td>Tap 4 †</td>
</tr>
<tr>
<td>BAYEAB15BK1AA</td>
<td>Tap 4</td>
<td></td>
<td>Tap 5</td>
</tr>
<tr>
<td>BAYEAB15LG3AA</td>
<td>Tap 4</td>
<td></td>
<td>Tap 5</td>
</tr>
<tr>
<td>BAYEAB20BK1AA</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>BAYEACC25BK1AA</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Note: Heating and cooling speeds are the same, factory set at Speed Tap #4.

Note: A “G” only signal from the comfort control will run the blower at a lower speed, factory set at Speed Tap #1. See the Sequence of Operation for additional information.

Note: Speed Tap 1 is NOT used for two stage systems. Two stage systems will require an airflow adjustment.

- † 208 V not approved for upflow installations
GAM5B0B36 AIRFLOW PERFORMANCE TABLE

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g.)</th>
<th>AIRFLOW (CFM)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>4†</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>4†</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>1438</td>
<td>1387</td>
<td>1197</td>
<td>1013</td>
<td>732</td>
<td>1435</td>
<td>1383</td>
<td>1194</td>
<td>1009</td>
<td>729</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>1394</td>
<td>1340</td>
<td>1143</td>
<td>945</td>
<td>552</td>
<td>1388</td>
<td>1334</td>
<td>1137</td>
<td>939</td>
<td>546</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>1350</td>
<td>1299</td>
<td>1090</td>
<td>892</td>
<td>413</td>
<td>1341</td>
<td>1291</td>
<td>1082</td>
<td>884</td>
<td>404</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>1301</td>
<td>1245</td>
<td>1031</td>
<td>817</td>
<td>305</td>
<td>1289</td>
<td>1233</td>
<td>1019</td>
<td>806</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>1253</td>
<td>1197</td>
<td>975</td>
<td>751</td>
<td>209</td>
<td>1239</td>
<td>1183</td>
<td>960</td>
<td>737</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>1205</td>
<td>1151</td>
<td>917</td>
<td>651</td>
<td>-</td>
<td>1188</td>
<td>1134</td>
<td>900</td>
<td>634</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>1155</td>
<td>1094</td>
<td>837</td>
<td>578</td>
<td>-</td>
<td>1136</td>
<td>1075</td>
<td>817</td>
<td>559</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>1099</td>
<td>1032</td>
<td>766</td>
<td>499</td>
<td>-</td>
<td>1077</td>
<td>1010</td>
<td>744</td>
<td>476</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>1039</td>
<td>972</td>
<td>691</td>
<td>453</td>
<td>-</td>
<td>1014</td>
<td>946</td>
<td>666</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>964</td>
<td>889</td>
<td>633</td>
<td>409</td>
<td>-</td>
<td>936</td>
<td>861</td>
<td>605</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Values are with wet coil and without filters.
2. Contact your particular filter manufacturer for pressure drop data.
3. Electric heater pressure drop is negligible and is included within the airflow data.
4. Tap 1 is an continuous fan speed tap for single stage systems. Airflow adjustment is required for 2 stage systems. See Airflow adjustment section.
5. † Factory Setting

GAM5B0B36M31SB, GAM5B0B36M31EA MINIMUM HEATER AIRFLOW CFM

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Air Speed Tap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without HP</td>
<td>With HP</td>
</tr>
<tr>
<td>BAYEAA04BK1AA</td>
<td>Tap 2</td>
</tr>
<tr>
<td>BAYEAA05LG1AA</td>
<td>Tap 2</td>
</tr>
<tr>
<td>BAYEAA05DLG1AA</td>
<td>Tap 2</td>
</tr>
<tr>
<td>BAYEAA08LG1AA</td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAAC10BK1AA</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAAC10LG1AA</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEAA10LG3AA</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEABC15BK1AA</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEABC15LG3AA</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEABC20BK1AA</td>
<td>-</td>
</tr>
<tr>
<td>BAYEACC25BK1AA</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: Heating and cooling speeds are the same, factory set at Speed Tap #4.

Note: A “G” only signal from the comfort control will run the blower at a lower speed, factory set at Speed Tap #1. See the Sequence of Operation for additional information.

Note: Speed Tap 1 is NOT used for two stage systems. Two stage systems will require an airflow adjustment.
GAM5B0C42 AIRFLOW PERFORMANCE TABLE

AIRFLOW PERFORMANCE

GAM5B0C42M31SB, GAM5B0C42M31EA

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g)</th>
<th>AIRFLOW (CFM)</th>
<th>Speed Taps - 230 VOLTS</th>
<th>Speed Taps - 208 VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>4↑</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1644</td>
<td>1575</td>
<td>1401</td>
</tr>
<tr>
<td>0.1</td>
<td>1596</td>
<td>1525</td>
<td>1346</td>
</tr>
<tr>
<td>0.2</td>
<td>1550</td>
<td>1480</td>
<td>1300</td>
</tr>
<tr>
<td>0.3</td>
<td>1509</td>
<td>1437</td>
<td>1252</td>
</tr>
<tr>
<td>0.4</td>
<td>1463</td>
<td>1391</td>
<td>1205</td>
</tr>
<tr>
<td>0.5</td>
<td>1420</td>
<td>1345</td>
<td>1151</td>
</tr>
<tr>
<td>0.6</td>
<td>1376</td>
<td>1301</td>
<td>1085</td>
</tr>
<tr>
<td>0.7</td>
<td>1332</td>
<td>1251</td>
<td>1020</td>
</tr>
<tr>
<td>0.8</td>
<td>1271</td>
<td>1179</td>
<td>969</td>
</tr>
<tr>
<td>0.9</td>
<td>1199</td>
<td>1119</td>
<td>924</td>
</tr>
</tbody>
</table>

NOTES:
1. Values are with wet coil and without filters.
2. Contact your particular filter manufacturer for pressure drop data.
3. Electric heater pressure drop is negligible and is included within the airflow data.
4. Tap 1 is an continuous fan speed tap for single stage systems. Airflow adjustment is required for 2 stage systems. See Airflow adjustment section.
5. ↑ Factory Setting

GAM5B0C42M31SB, GAM5B0C42M31EA MINIMUM HEATER AIRFLOW CFM

<table>
<thead>
<tr>
<th>Heater</th>
<th>Without HP</th>
<th>With HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYEAAC04BK1AA</td>
<td>Tap 2</td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAAC04LG1AA</td>
<td>Tap 2</td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAAC05BK1AA</td>
<td>Tap 2</td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAAC05LG1AA</td>
<td>Tap 2</td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAAC08BK1AA</td>
<td>Tap 2</td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAAC08LG1AA</td>
<td>Tap 2</td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAAC10BK1AA</td>
<td>Tap 2</td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAAC10LG1AA</td>
<td>Tap 2</td>
<td>Tap 3</td>
</tr>
<tr>
<td>BAYEAAC10LG3AA</td>
<td>Tap 3</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEABC15BK1AA</td>
<td>Tap 3</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEABC15LG3AA</td>
<td>Tap 3</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEABC20BK1AA</td>
<td>Tap 3</td>
<td>Tap 4</td>
</tr>
<tr>
<td>BAYEACC25BK1AA</td>
<td>Tap 3</td>
<td>Tap 4</td>
</tr>
</tbody>
</table>

Note: Heating and cooling speeds are the same, factory set at Speed Tap #4.

Note: A “G” only signal from the comfort control will run the blower at a lower speed, factory set at Speed Tap #1. See the Sequence of Operation for additional information.

Note: Speed Tap 1 is NOT used for two stage systems. Two stage systems will require an airflow adjustment.
GAM5B0C48 AIRFLOW PERFORMANCE TABLE

AIRFLOW PERFORMANCE

GAM5B0C48M41SB, GAM5B0C48M41EA

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g)</th>
<th>AIRFLOW (CFM)</th>
<th>Speed Taps - 230 VOLTS</th>
<th>Speed Taps - 208 VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>4 †</td>
<td>3</td>
</tr>
<tr>
<td>0.0</td>
<td>1913</td>
<td>1770</td>
<td>1694</td>
</tr>
<tr>
<td>0.1</td>
<td>1874</td>
<td>1730</td>
<td>1653</td>
</tr>
<tr>
<td>0.2</td>
<td>1834</td>
<td>1690</td>
<td>1611</td>
</tr>
<tr>
<td>0.3</td>
<td>1791</td>
<td>1646</td>
<td>1567</td>
</tr>
<tr>
<td>0.4</td>
<td>1748</td>
<td>1600</td>
<td>1521</td>
</tr>
<tr>
<td>0.5</td>
<td>1708</td>
<td>1556</td>
<td>1476</td>
</tr>
<tr>
<td>0.6</td>
<td>1668</td>
<td>1516</td>
<td>1436</td>
</tr>
<tr>
<td>0.7</td>
<td>1629</td>
<td>1475</td>
<td>1394</td>
</tr>
<tr>
<td>0.8</td>
<td>1588</td>
<td>1435</td>
<td>1352</td>
</tr>
<tr>
<td>0.9</td>
<td>1541</td>
<td>1390</td>
<td>1304</td>
</tr>
</tbody>
</table>

NOTES:
1. Values are with wet coil and without filters.
2. Contact your particular filter manufacturer for pressure drop data.
3. Electric heater pressure drop is negligible and is included within the airflow data.
4. Tap 1 is an continuous fan speed tap for single stage systems. Airflow adjustment is required for 2 stage systems. See Airflow adjustment section.
5. † Factory Setting

20.2 Adjustments for 2-Stage outdoor HP models

<table>
<thead>
<tr>
<th>OD MODEL</th>
<th>ID MODEL</th>
<th>SPEED TAP</th>
<th>SYSTEM STAGE</th>
<th>CFM</th>
<th>ESP</th>
</tr>
</thead>
<tbody>
<tr>
<td>4TWR6024A* 4</td>
<td>GAM5B0A24M21*</td>
<td>4</td>
<td></td>
<td>800</td>
<td>0.333</td>
</tr>
<tr>
<td>4TWX6024G* 4</td>
<td>GAM5B0A24M21*</td>
<td>3</td>
<td>H</td>
<td>750</td>
<td>0.293</td>
</tr>
<tr>
<td>4A6H6024G* 4</td>
<td>GAM5B0B30M21*</td>
<td>2</td>
<td>L</td>
<td>665</td>
<td>0.301</td>
</tr>
<tr>
<td>4TWR6036A* 4</td>
<td>GAM5B0B36M31*</td>
<td>3</td>
<td>H</td>
<td>1150</td>
<td>0.500</td>
</tr>
<tr>
<td>4TWX6036E* 4</td>
<td>GAM5B0B36M31*</td>
<td>3</td>
<td>L</td>
<td>1005</td>
<td>0.382</td>
</tr>
<tr>
<td>4A6H6036E* 4</td>
<td>GAM5B0B36M31*</td>
<td>3</td>
<td>L</td>
<td>1235</td>
<td>0.378</td>
</tr>
<tr>
<td>4TWR6048A* 4</td>
<td>GAM5B0C42M31*</td>
<td>4</td>
<td>H</td>
<td>1375</td>
<td>0.468</td>
</tr>
<tr>
<td>4TWX6048G* 4</td>
<td>GAM5B0C42M31*</td>
<td>3</td>
<td>L</td>
<td>1235</td>
<td>0.378</td>
</tr>
<tr>
<td>4A6H6048G* 4</td>
<td>GAM5B0C42M31*</td>
<td>3</td>
<td>L</td>
<td>1235</td>
<td>0.378</td>
</tr>
<tr>
<td>4TWR6048A* 4</td>
<td>GAM5B0C48M41*</td>
<td>4</td>
<td>H</td>
<td>1575</td>
<td>0.400</td>
</tr>
<tr>
<td>4TWX6048G* 4</td>
<td>GAM5B0C48M41*</td>
<td>2</td>
<td>L</td>
<td>1420</td>
<td>0.325</td>
</tr>
<tr>
<td>4A6H6048G* 4</td>
<td>GAM5B0C48M41*</td>
<td>2</td>
<td>L</td>
<td>1420</td>
<td>0.325</td>
</tr>
<tr>
<td>4TWR6060A* 4</td>
<td>GAM5B0C60M51*</td>
<td>3</td>
<td>H</td>
<td>1700</td>
<td>0.390</td>
</tr>
<tr>
<td>4TWX6060E* 4</td>
<td>GAM5B0C60M51*</td>
<td>2</td>
<td>L</td>
<td>1645</td>
<td>0.365</td>
</tr>
<tr>
<td>OD MODEL</td>
<td>ID MODEL</td>
<td>SPEED TAP</td>
<td>SYSTEM STAGE</td>
<td>CFM</td>
<td>ESP</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>-----------</td>
<td>--------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>4TWR7024A*</td>
<td>GAM5B0A24M21*</td>
<td>4</td>
<td>H</td>
<td>800</td>
<td>0.333</td>
</tr>
<tr>
<td>4TWR7024A*</td>
<td>GAM5B0B30M21*</td>
<td>3</td>
<td>L</td>
<td>750</td>
<td>0.293</td>
</tr>
<tr>
<td>4A6H7024A*</td>
<td>4TWR7024A*</td>
<td>4</td>
<td>H</td>
<td>800</td>
<td>0.333</td>
</tr>
<tr>
<td>4TWR7024A*</td>
<td>GAM5B0B36M31*</td>
<td>3</td>
<td>L</td>
<td>1005</td>
<td>0.382</td>
</tr>
<tr>
<td>4A6H7036A*</td>
<td>4TWR7048A*</td>
<td>4</td>
<td>H</td>
<td>1575</td>
<td>0.400</td>
</tr>
<tr>
<td>4TWR7048A*</td>
<td>GAM5B0C48M41*</td>
<td>2</td>
<td>L</td>
<td>1420</td>
<td>0.325</td>
</tr>
<tr>
<td>4A6H7060A*</td>
<td>4TWR7060A*</td>
<td>3</td>
<td>H</td>
<td>1700</td>
<td>0.390</td>
</tr>
<tr>
<td>4TWR7060A*</td>
<td>GAM5B0C60M51*</td>
<td>2</td>
<td>L</td>
<td>1645</td>
<td>0.365</td>
</tr>
</tbody>
</table>
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Trane
Model: TAM9A

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trane</td>
<td>TAM9A</td>
</tr>
</tbody>
</table>

TAM9A0A24 AIRFLOW PERFORMANCE

<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTINGS</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Watts</td>
<td>Constant CFM / Constant Torque</td>
<td>Watts</td>
<td></td>
<td>Constant CFM / Constant Torque</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>290 CFM / ton</td>
<td>Watts</td>
<td>407</td>
<td>544</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>350 CFM / ton</td>
<td>Watts</td>
<td>536</td>
<td>627</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400 CFM / ton</td>
<td>Watts</td>
<td>617</td>
<td>704</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>450 CFM / ton</td>
<td>Watts</td>
<td>729</td>
<td>827</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 tons</td>
<td>Watts</td>
<td>590</td>
<td>687</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.5 tons</td>
<td>Watts</td>
<td>807</td>
<td>912</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 tons</td>
<td>Watts</td>
<td>795</td>
<td>903</td>
</tr>
</tbody>
</table>

TAM9A0A24 Minimum Heating Airflow Settings

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>BAYEAC048K1</th>
<th>BAYEAC048GL1</th>
<th>BAYEAC050K1</th>
<th>BAYEAC050GL1</th>
<th>BAYEAC10LG1</th>
<th>BAYEAC15LG1</th>
<th>BAYEAC15LGJ</th>
<th>BAYEAC15SG1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAM9A024</td>
<td>628/713</td>
<td>626/700</td>
<td>675/900</td>
<td>600/713</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

- *Factory Setting*
- Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.
- Torque mode will reduce airflow when static is above approximately 0.3” water column.
- All heating modes default to Constant CFM.
- Cooling airflow values are with wet coil, no filter.
<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 tons</td>
<td>290 CFM/Watts</td>
<td>492/581</td>
<td>442/337</td>
<td>408/NA</td>
<td>333/NA</td>
<td>221/NA</td>
</tr>
<tr>
<td></td>
<td>330 CFM/Watts</td>
<td>390/490</td>
<td>437/337</td>
<td>437/NA</td>
<td>337/NA</td>
<td>227/NA</td>
</tr>
<tr>
<td></td>
<td>400 CFM/Watts</td>
<td>365/490</td>
<td>437/337</td>
<td>437/NA</td>
<td>337/NA</td>
<td>227/NA</td>
</tr>
</tbody>
</table>

2 tons	290 CFM/Watts	576/664	533/515	527/NA	432/NA	328/NA
	330 CFM/Watts	390/490	437/337	437/NA	337/NA	227/NA
	400 CFM/Watts	365/490	437/337	437/NA	337/NA	227/NA

2.5 tons	290 CFM/Watts	715/864	691/510	689/NA	596/NA	496/NA
	330 CFM/Watts	519/684	437/337	437/NA	337/NA	227/NA
	400 CFM/Watts	484/664	437/337	437/NA	337/NA	227/NA

3 tons	290 CFM/Watts	715/864	691/510	689/NA	596/NA	496/NA
	330 CFM/Watts	519/684	437/337	437/NA	337/NA	227/NA
	400 CFM/Watts	484/664	437/337	437/NA	337/NA	227/NA

| 400 CFM/Watts | 484/664 | 437/337 | 437/NA | 337/NA | 227/NA | |

1. Factory setting
2. Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.
3. Torque mode will reduce airflow when static is above approximately 0.35" water column.
4. All heating modes default to constant CFM.
5. Cooling airflow values are with wet coil, no filter.
6. Without heat pump / with HP — see air handler nameplate.
<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
</table>
| | | | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | 0.1 | 0.3 | 0.5 | 0.7 | 0.9
| | Watts | 31/40 | 59/50 | 60/62 | 120/135 | 123/137 | 153/155 | 119/152 | 119/152 | 119/152 | 119/152 | 119/152 | 119/152 | 119/152 | 119/152 | 119/152 |
| | Watts | 95/109 | 85/85 | 121/133 | 160/157 | 197/174 | 197/177 | 197/179 | 197/179 | 197/179 | 197/179 | 197/179 | 197/179 | 197/179 | 197/179 | 197/179 |
| 4.5 tons† | CFM/ton | 900/1011 | 808/983 | 902/764 | 905/636 | 906/642 | 906/646 | 906/646 | 906/646 | 906/646 | 906/646 | 906/646 | 906/646 | 906/646 | 906/646 | 906/646 |
| | Watts | 75/89 | 118/117 | 162/129 | 207/136 | 231/140 | 231/140 | 231/140 | 231/140 | 231/140 | 231/140 | 231/140 | 231/140 | 231/140 | 231/140 | 231/140 |

- **FACTORY SETTING**
- Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.
- **TAM9A0C36 Minimum Heating Airflow Settings**

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>BAYEAAAC04BK1</th>
<th>BAYEAAAC04LG1</th>
<th>BAYEAAAC06BK1</th>
<th>BAYEAAAC06LG1</th>
<th>BAYEAAAC10B1K1</th>
<th>BAYEAAAC10LG1</th>
<th>BAYEAAAC10LG2</th>
<th>BAYEABBC15B1K1</th>
<th>BAYEABBC15LG1</th>
<th>BAYEABBC15LG3</th>
<th>BAYEABBC20B1K1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAM9A0C36</td>
<td>076/979</td>
<td>076/1236</td>
<td>927/1236</td>
<td>924/975</td>
<td>927/1200</td>
<td>1030/1339</td>
<td>1326/1442</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WITHOUT HEAT PUMP / WITH HP — SEE AIR HANDLER NAMEPLATE

- Torque mode will reduce airflow when static is above approximately 0.35” water column.
- All heating modes default to Constant CFM.
- Cooling airflow values with wet coil, no filter.
<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 tons</td>
<td>250 CFM/Watts</td>
<td>747/905</td>
<td>127/102</td>
<td>250 CFM/Watts</td>
<td>741/904</td>
<td>127/102</td>
</tr>
<tr>
<td></td>
<td>370 CFM/Watts</td>
<td>937/1018</td>
<td>179/151</td>
<td>350 CFM/Watts</td>
<td>859/922</td>
<td>123/155</td>
</tr>
<tr>
<td></td>
<td>450 CFM/Watts</td>
<td>1123/1247</td>
<td>265/216</td>
<td>450 CFM/Watts</td>
<td>1124/1256</td>
<td>136/255</td>
</tr>
<tr>
<td>3 tons</td>
<td>290 CFM/Watts</td>
<td>853/1026</td>
<td>165/136</td>
<td>290 CFM/Watts</td>
<td>854/1027</td>
<td>75/160</td>
</tr>
<tr>
<td></td>
<td>370 CFM/Watts</td>
<td>1108/1233</td>
<td>259/210</td>
<td>350 CFM/Watts</td>
<td>1053/1062</td>
<td>1120/214</td>
</tr>
<tr>
<td></td>
<td>450 CFM/Watts</td>
<td>1343/1463</td>
<td>327/255</td>
<td>450 CFM/Watts</td>
<td>1347/1363</td>
<td>160/225</td>
</tr>
<tr>
<td>3.5 tons</td>
<td>290 CFM/Watts</td>
<td>1020/1149</td>
<td>250/210</td>
<td>290 CFM/Watts</td>
<td>1020/1028</td>
<td>160/225</td>
</tr>
<tr>
<td></td>
<td>370 CFM/Watts</td>
<td>1239/1408</td>
<td>320/255</td>
<td>370 CFM/Watts</td>
<td>1239/1324</td>
<td>160/225</td>
</tr>
<tr>
<td></td>
<td>450 CFM/Watts</td>
<td>1584/1657</td>
<td>475/477</td>
<td>450 CFM/Watts</td>
<td>1584/1592</td>
<td>160/225</td>
</tr>
<tr>
<td>4 tons</td>
<td>290 CFM/Watts</td>
<td>1156/1302</td>
<td>309/255</td>
<td>290 CFM/Watts</td>
<td>1156/1129</td>
<td>160/225</td>
</tr>
<tr>
<td></td>
<td>370 CFM/Watts</td>
<td>1407/1610</td>
<td>470/475</td>
<td>370 CFM/Watts</td>
<td>1407/1319</td>
<td>160/225</td>
</tr>
<tr>
<td></td>
<td>450 CFM/Watts</td>
<td>1616/1728</td>
<td>545/545</td>
<td>450 CFM/Watts</td>
<td>1616/1516</td>
<td>160/225</td>
</tr>
</tbody>
</table>

- **Factory Setting**: Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.
- **Torque mode will reduce airflow when static is above approximately 0.35" water column.**
- **All heating modes default to Constant CFM.**
- **Cooling airflow values are with coil, no filter.**

TAM9A0C42 Minimum Heating Airflow Settings

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>BAYEAA04EBK1</th>
<th>BAYEAA04LGL1</th>
<th>BAYEAA04SRL1</th>
<th>BAYEAA10BK1</th>
<th>BAYEAA10LGL1</th>
<th>BAYEAA10LGL3</th>
<th>BAYEAB15BK1</th>
<th>BAYEAB15LGL3</th>
<th>BAYEAB20BK1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAM9A0C42</td>
<td>970/1093</td>
<td>970/1130</td>
<td>1035/1300</td>
<td>920/1093</td>
<td>1035/1430</td>
<td>1150/1495</td>
<td>1300/1610</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WITHOUT HEAT PUMP / WITH HP — SEE AIR HANDLER NAMEPLATE.
<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTINGS</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTINGS</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>290</td>
<td>CFM</td>
<td>1067 / 1100</td>
<td>1063 / 1100</td>
<td>CFM</td>
<td>1067 / 1100</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>CFM</td>
<td>1213 / 1222</td>
<td>1213 / 1222</td>
<td>CFM</td>
<td>1213 / 1222</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>CFM</td>
<td>1359 / 1359</td>
<td>1359 / 1359</td>
<td>CFM</td>
<td>1359 / 1359</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>CFM</td>
<td>1505 / 1505</td>
<td>1505 / 1505</td>
<td>CFM</td>
<td>1505 / 1505</td>
</tr>
</tbody>
</table>

3 tons

290	CFM	1067 / 1100	CONSTANT CFM MODE / CONSTANT TORQUE MODE
350	CFM	1213 / 1222	
400	CFM	1359 / 1359	
450	CFM	1505 / 1505	

3.5 tons

290	CFM	1067 / 1100	CONSTANT CFM MODE / CONSTANT TORQUE MODE
350	CFM	1213 / 1222	
400	CFM	1359 / 1359	
450	CFM	1505 / 1505	

4 tons†

290	CFM	1067 / 1100	CONSTANT CFM MODE / CONSTANT TORQUE MODE
350	CFM	1213 / 1222	
400	CFM	1359 / 1359	
450	CFM	1505 / 1505	

4.5 tons**

290	CFM	1067 / 1100	CONSTANT CFM MODE / CONSTANT TORQUE MODE
350	CFM	1213 / 1222	
400	CFM	1359 / 1359	
450	CFM	1505 / 1505	

** Factory Setting

** Not an actual O.D. size

Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.

Torque mode will reduce airflow when static is above approximately 0.4” water column.

** TAM9A0C48 Minimum Heating Airflow Settings **

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>BAYEAC048B1K</th>
<th>BAYEAC048LG1</th>
<th>BAYEAC088B1K</th>
<th>BAYEAC088LG1</th>
<th>BAYEAC108K1</th>
<th>BAYEAC108LG1</th>
<th>BAYEAC108LG3</th>
<th>BAYEAC158K1</th>
<th>BAYEAC158LG3</th>
<th>BAYEAC208K1</th>
<th>BAYEACC258K1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAM9A0C40</td>
<td>1063 / 1100</td>
<td>1063 / 1500</td>
<td>1125 / 1500</td>
<td>1000 / 1100</td>
<td>1125 / 1563</td>
<td>1250 / 1625</td>
<td>1500 / 1750</td>
<td>1625 / 1013</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Without heat pump with HP — see air handler nameplate.
<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 tons</td>
<td></td>
<td></td>
<td>195</td>
<td></td>
<td></td>
<td>195</td>
</tr>
<tr>
<td>370 Watts</td>
<td>1117/1233</td>
<td></td>
<td>1203/336</td>
<td>1204/702</td>
<td>1101</td>
<td>1218/1210</td>
</tr>
<tr>
<td>450 Watts</td>
<td>1565/1650</td>
<td></td>
<td>1657/932</td>
<td>1658/1242</td>
<td>1564</td>
<td>1670/1552</td>
</tr>
<tr>
<td>267/184</td>
<td>297/234</td>
<td></td>
<td>297/234</td>
<td></td>
<td></td>
<td>297/234</td>
</tr>
<tr>
<td>349/250</td>
<td>393/231</td>
<td></td>
<td>393/231</td>
<td></td>
<td></td>
<td>393/231</td>
</tr>
<tr>
<td>425/282</td>
<td>440/235</td>
<td></td>
<td>440/235</td>
<td></td>
<td></td>
<td>440/235</td>
</tr>
<tr>
<td>5 tons **</td>
<td></td>
<td></td>
<td>195</td>
<td></td>
<td></td>
<td>195</td>
</tr>
<tr>
<td>370 Watts</td>
<td>1117/1233</td>
<td></td>
<td>1203/336</td>
<td>1204/702</td>
<td>1101</td>
<td>1218/1210</td>
</tr>
<tr>
<td>450 Watts</td>
<td>1565/1650</td>
<td></td>
<td>1657/932</td>
<td>1658/1242</td>
<td>1564</td>
<td>1670/1552</td>
</tr>
<tr>
<td>267/184</td>
<td>297/234</td>
<td></td>
<td>297/234</td>
<td></td>
<td></td>
<td>297/234</td>
</tr>
<tr>
<td>349/250</td>
<td>393/231</td>
<td></td>
<td>393/231</td>
<td></td>
<td></td>
<td>393/231</td>
</tr>
<tr>
<td>425/282</td>
<td>440/235</td>
<td></td>
<td>440/235</td>
<td></td>
<td></td>
<td>440/235</td>
</tr>
<tr>
<td>**5 tons **</td>
<td></td>
<td></td>
<td>195</td>
<td></td>
<td></td>
<td>195</td>
</tr>
<tr>
<td>370 Watts</td>
<td>1117/1233</td>
<td></td>
<td>1203/336</td>
<td>1204/702</td>
<td>1101</td>
<td>1218/1210</td>
</tr>
<tr>
<td>450 Watts</td>
<td>1565/1650</td>
<td></td>
<td>1657/932</td>
<td>1658/1242</td>
<td>1564</td>
<td>1670/1552</td>
</tr>
<tr>
<td>267/184</td>
<td>297/234</td>
<td></td>
<td>297/234</td>
<td></td>
<td></td>
<td>297/234</td>
</tr>
<tr>
<td>349/250</td>
<td>393/231</td>
<td></td>
<td>393/231</td>
<td></td>
<td></td>
<td>393/231</td>
</tr>
<tr>
<td>425/282</td>
<td>440/235</td>
<td></td>
<td>440/235</td>
<td></td>
<td></td>
<td>440/235</td>
</tr>
</tbody>
</table>

- † Factory Setting
- ** Not an actual OD size
- Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.
- Torque mode will reduce airflow when static is above approximately 0.4” water column.
- † The air handler is applied in downflow or horizontal configurations, the airflow should not exceed 2000 CFM. Airflow above 2000 CFM could result in water blow-off.
- All heating modes default to Constant CFM.
- Cooling airflow values are with wet cell, no filter.

TAM5A0C60 MINIMUM HEATING AIRFLOW CHART

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>1063</th>
<th>1063</th>
<th>1063</th>
<th>1063</th>
<th>1063</th>
<th>1063</th>
<th>1063</th>
<th>1063</th>
<th>1063</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYEAC04R1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAYEAC04LG1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAYEAC04SK1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAYEAC04SLG1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TAM5A0C60 WITHOUT HEAT PUMP / WITH HP — SEE AIR HANDLER NAMEPLATE

Go To Model List
Minimum Airflow CFM

TEM4A0B18S21SB, TEM4A0B24S21SB

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Heat Speed Tap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With Heat Pump</td>
</tr>
<tr>
<td>BAYHTR1504BRK, BAYHTR1504LUG, BAYHTR1505BRK, BAYHTR1505LUG</td>
<td>Med</td>
</tr>
<tr>
<td>BAYHTR1506BRK, BAYHTR1506LUG, BAYHTR1510BRK, BAYHTR1510LUG, BAYHTR3510LUG</td>
<td>Med</td>
</tr>
</tbody>
</table>

TEM4A0B19M21SA

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Heat Speed Tap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With Heat Pump</td>
</tr>
<tr>
<td>BAYHTR1504BRK, BAYHTR1504LUG, BAYHTR1505BRK, BAYHTR1505LUG</td>
<td>Low</td>
</tr>
<tr>
<td>BAYHTR1506BRK, BAYHTR1506LUG, BAYHTR1510BRK, BAYHTR1510LUG, BAYHTR3510LUG</td>
<td>High</td>
</tr>
</tbody>
</table>

TEM4A0B30S31SB, TEM4A0B36S31SB

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Heat Speed Tap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With Heat Pump</td>
</tr>
<tr>
<td>BAYHTR1504BRK, BAYHTR1504LUG, BAYHTR1505BRK, BAYHTR1505LUG</td>
<td>Low</td>
</tr>
<tr>
<td>BAYHTR1506BRK, BAYHTR1506LUG, BAYHTR1510BRK, BAYHTR1510LUG, BAYHTR3510LUG</td>
<td>Low</td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td>Med</td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td>High</td>
</tr>
</tbody>
</table>

TEM4A0B31M31SA

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Heat Speed Tap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With Heat Pump</td>
</tr>
<tr>
<td>BAYHTR1504BRK, BAYHTR1504LUG, BAYHTR1505BRK, BAYHTR1505LUG</td>
<td>Low</td>
</tr>
<tr>
<td>BAYHTR1506BRK, BAYHTR1506LUG, BAYHTR1510BRK, BAYHTR1510LUG, BAYHTR3510LUG</td>
<td>Low</td>
</tr>
<tr>
<td>BAYHTR1517BRK, BAYHTR3517LUG, BAYHTR3510LUG</td>
<td>Med-High</td>
</tr>
</tbody>
</table>

TEM4A0C37S31SB

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Heat Speed Tap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With Heat Pump</td>
</tr>
<tr>
<td>BAYHTR1504BRK, BAYHTR1504LUG, BAYHTR1505BRK, BAYHTR1505LUG</td>
<td>Low</td>
</tr>
<tr>
<td>BAYHTR1506BRK, BAYHTR1506LUG, BAYHTR1510BRK, BAYHTR1510LUG, BAYHTR3510LUG</td>
<td>Low</td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td>Low</td>
</tr>
<tr>
<td>BAYHTR1523BRK</td>
<td>High</td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td>Low</td>
</tr>
</tbody>
</table>
Minimum Airflow CFM

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Heat Speed Tap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With Heat Pump</td>
</tr>
<tr>
<td>TEM4A0C42S41SB</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1504BRK, BAYHTR1504LUG, BAYHTR1505BRK, BAYHTR1505LUG</td>
<td>Low</td>
</tr>
<tr>
<td>BAYHTR1508BRK, BAYHTR1508LUG, BAYHTR1510BRK, BAYHTR1510LUG, BAYHTR3510LUG</td>
<td>Low</td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td>Low</td>
</tr>
<tr>
<td>BAYHTR1523BRK</td>
<td>Med</td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td>Low</td>
</tr>
</tbody>
</table>

| **TEM4A0C43M41SA** |
BAYHTR1504BRK, BAYHTR1504LUG, BAYHTR1505BRK, BAYHTR1505LUG	Low	Low
BAYHTR1508BRK, BAYHTR1508LUG, BAYHTR1510BRK, BAYHTR1510LUG, BAYHTR3510LUG	Med-High	Med-Low
BAYHTR1523BRK	Med-High	Med
BAYHTR1517BRK, BAYHTR3517LUG, BAYHTR3510LUG	High	Med

| **TEM4A0C48S41SB, TEM4A0C60S51SB** |
BAYHTR1504BRK, BAYHTR1504LUG, BAYHTR1505BRK, BAYHTR1505LUG	Low	Low
BAYHTR1508BRK, BAYHTR1508LUG, BAYHTR1510BRK, BAYHTR1510LUG, BAYHTR3510LUG	Low	Low
BAYHTR1517BRK	Low	Low
BAYHTR1523BRK	Low	Low
BAYHTR3517LUG	Low	Low

| **TEM4A0C49M41SA, TEM4A0C61M51SA** |
BAYHTR1504BRK, BAYHTR1504LUG, BAYHTR1505BRK, BAYHTR1505LUG, BAYHTR1508BRK, BAYHTR1508LUG, BAYHTR1510BRK, BAYHTR1510LUG, BAYHTR3510LUG	Med-Low	Med-Low
BAYHTR1517BRK, BAYHTR3517LUG	Med	Med
BAYHTR1523BRK, BAYHTR1525BRK	Med-High	Med
Air Handler and Heater Matrix
Allowable Combinations

Table 1. TEM4 Minimum Heater Airflow CFM — Heater Matrix

<table>
<thead>
<tr>
<th>Model No.</th>
<th>BAYHTR1550PDC *</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM4A0B18521SB *</td>
<td>L / M</td>
<td>L / M</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TEM4A0B19ME1SA *</td>
<td>L / L</td>
<td>M / H</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TEM4A0B24621SB *</td>
<td>L / M</td>
<td>L / M</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TEM4A0B30631SB *</td>
<td>L / L</td>
<td>L / L</td>
<td>L / M</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TEM4A0B31ME1SA *</td>
<td>L / L</td>
<td>L / L</td>
<td>M / H</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>L / H</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TEM4A0B35631SB *</td>
<td>L / L</td>
<td>L / L</td>
<td>L / M</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TEM4A0C37515SB *</td>
<td>L / L</td>
<td>L / L</td>
<td>L / L</td>
<td>H / H</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TEM4A0C42515SB *</td>
<td>L / L</td>
<td>L / L</td>
<td>L / M</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TEM4A0C43ME1SA *</td>
<td>L / L</td>
<td>L / L</td>
<td>L / L</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TEM4A0C49515SB *</td>
<td>L / L</td>
<td>L / L</td>
<td>L / L</td>
<td>M / M</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TEM4A0C60515SB *</td>
<td>L / L</td>
<td>L / L</td>
<td>M - L / M - L</td>
<td>M / L</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TEM4A0C61515SA *</td>
<td>L / L</td>
<td>L / L</td>
<td>M - L / M - L</td>
<td>M / M</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

1. Cooling / HP Airflow
2. * = Followed by two digits

Table 2. Air Flow Performance

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g)</th>
<th>AIRFLOW Speed Taps — 230 VOLTS</th>
<th>AIRFLOW Speed Taps — 208 VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Med</td>
</tr>
<tr>
<td>0.1</td>
<td>1094</td>
<td>927</td>
</tr>
<tr>
<td>0.2</td>
<td>1032</td>
<td>880</td>
</tr>
<tr>
<td>0.3</td>
<td>955</td>
<td>818</td>
</tr>
<tr>
<td>0.4</td>
<td>864</td>
<td>739</td>
</tr>
<tr>
<td>0.5</td>
<td>759</td>
<td>645</td>
</tr>
<tr>
<td>0.6</td>
<td>639</td>
<td>534</td>
</tr>
<tr>
<td>0.7</td>
<td>505</td>
<td>408</td>
</tr>
</tbody>
</table>

1. Values are with wet coil, no filter; and no heaters
2. CFM Correction for dry coil = Add 3%
3. † = Factory setting

(a) For the TEM4A0B18521SB, the recommended speed tap is medium at 0.4” external static pressure.
Table 4. Air Flow Performance

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g)</th>
<th>TEM4A0B19M21SA</th>
<th>AIRFLOW Speed Taps — 208 - 230 VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Med-High</td>
</tr>
<tr>
<td>0.1</td>
<td>860</td>
<td>773</td>
</tr>
<tr>
<td>0.2</td>
<td>817</td>
<td>732</td>
</tr>
<tr>
<td>0.3</td>
<td>767</td>
<td>679</td>
</tr>
<tr>
<td>0.4</td>
<td>709</td>
<td>612</td>
</tr>
<tr>
<td>0.5</td>
<td>644</td>
<td>533</td>
</tr>
<tr>
<td>0.6</td>
<td>571</td>
<td>441</td>
</tr>
<tr>
<td>0.7</td>
<td>491</td>
<td>336</td>
</tr>
</tbody>
</table>

1. Values are with wet coil, no filter, and no heaters
2. CFM Correction for dry coil = Add 3%
3. † = Factory Setting
4. Low = Taps 1,-2, Med = Tap 3, Med-High = Tap 4, High = Tap 5

Table 6. Air Flow Performance

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g)</th>
<th>TEM4A0B30S31SB, TEM4A0B36S31SB</th>
<th>AIRFLOW Speed Taps — 230 VOLTS</th>
<th>AIRFLOW Speed Taps — 208 VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Med</td>
<td>Low †</td>
</tr>
<tr>
<td>0.1</td>
<td>1391</td>
<td>1305</td>
<td>1059</td>
</tr>
<tr>
<td>0.2</td>
<td>1305</td>
<td>1231</td>
<td>1029</td>
</tr>
<tr>
<td>0.3</td>
<td>1203</td>
<td>1138</td>
<td>970</td>
</tr>
<tr>
<td>0.4</td>
<td>1083</td>
<td>1027</td>
<td>884</td>
</tr>
<tr>
<td>0.5</td>
<td>948</td>
<td>899</td>
<td>769</td>
</tr>
<tr>
<td>0.6</td>
<td>795</td>
<td>752</td>
<td>626</td>
</tr>
<tr>
<td>0.7</td>
<td>626</td>
<td>587</td>
<td></td>
</tr>
</tbody>
</table>

1. Values are with wet coil, no filter, and no heaters
2. CFM Correction for dry coil = Add 3%
3. † = Factory Setting
4. In downflow applications, airflow must not exceed 1200 cfm due to condensate blowoff.

Table 8. Air Flow Performance

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g)</th>
<th>TEM4A0B31M31SA</th>
<th>AIRFLOW Speed Taps — 208 - 230 VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Med-High</td>
</tr>
<tr>
<td>0.1</td>
<td>1072</td>
<td>985</td>
</tr>
<tr>
<td>0.2</td>
<td>1028</td>
<td>940</td>
</tr>
<tr>
<td>0.3</td>
<td>983</td>
<td>893</td>
</tr>
<tr>
<td>0.4</td>
<td>938</td>
<td>845</td>
</tr>
<tr>
<td>0.5</td>
<td>891</td>
<td>795</td>
</tr>
<tr>
<td>0.6</td>
<td>844</td>
<td>744</td>
</tr>
<tr>
<td>0.7</td>
<td>796</td>
<td>691</td>
</tr>
</tbody>
</table>

1. Values are with wet coil, no filter, and no heaters
2. CFM Correction for dry coil = Add 3%
3. † = Factory Setting
4. In downflow applications, airflow must not exceed 1200 cfm due to condensate blowoff.
5. Low = Tap 1, Med-Low = Tap 2, Med = Tap 3, Med-High = Tap 4, High = Tap 5
Table 10. Air Flow Performance

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g)</th>
<th>AIRFLOW</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Med</td>
<td>Low †</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Speed Taps — 230 VOLTS</td>
<td>Speed Taps — 200 VOLTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>1723</td>
<td>1356</td>
<td>1254</td>
<td>1651</td>
</tr>
<tr>
<td>0.2</td>
<td>1602</td>
<td>1340</td>
<td>1259</td>
<td>1631</td>
</tr>
<tr>
<td>0.3</td>
<td>1595</td>
<td>1291</td>
<td>1228</td>
<td>1572</td>
</tr>
<tr>
<td>0.4</td>
<td>1492</td>
<td>1211</td>
<td>1162</td>
<td>1474</td>
</tr>
<tr>
<td>0.5</td>
<td>1343</td>
<td>1100</td>
<td>1059</td>
<td>1336</td>
</tr>
<tr>
<td>0.6</td>
<td>1158</td>
<td>957</td>
<td>919</td>
<td>1159</td>
</tr>
<tr>
<td>0.7</td>
<td>990</td>
<td>782</td>
<td></td>
<td>942</td>
</tr>
</tbody>
</table>

1. Values are with wet coil, no filter, and no heaters
2. CFM Correction for dry coil = Add 3%
3. † = Factory setting
4. The recommended speed tap is low at 0.5" external static pressure.
5. In downflow applications, airflow must not exceed 1600 cfm due to condensate blowoff.

Table 12. Air Flow Performance

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g)</th>
<th>AIRFLOW</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Med</td>
</tr>
<tr>
<td></td>
<td>Speed Taps — 200–230 VOLTS</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>1623</td>
<td>1509</td>
</tr>
<tr>
<td>0.2</td>
<td>1583</td>
<td>1465</td>
</tr>
<tr>
<td>0.3</td>
<td>1539</td>
<td>1420</td>
</tr>
<tr>
<td>0.4</td>
<td>1494</td>
<td>1373</td>
</tr>
<tr>
<td>0.5</td>
<td>1450</td>
<td>1328</td>
</tr>
<tr>
<td>0.6</td>
<td>1399</td>
<td>1276</td>
</tr>
<tr>
<td>0.7</td>
<td>1353</td>
<td>1223</td>
</tr>
</tbody>
</table>

1. Values are with wet coil, no filter, and no heaters
2. CFM Correction for dry coil = Add 3%
3. † = Factory setting
4. Low = Tops 1–3; Med = Top 4; High = Top 5
5. In downflow applications, airflow must not exceed 1600 cfm due to condensate blowoff.
Table 14. Air Flow Performance

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g.)</th>
<th>TEM4A0C43M41SA</th>
<th>AIRFLOW</th>
<th>Speed Taps — 208 – 230 VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Med-High</td>
<td>Med †</td>
</tr>
<tr>
<td>0.1</td>
<td>1491.6</td>
<td>1418.1</td>
<td>1302.5</td>
</tr>
<tr>
<td>0.2</td>
<td>1459.7</td>
<td>1384.7</td>
<td>1286.3</td>
</tr>
<tr>
<td>0.3</td>
<td>1425.8</td>
<td>1349.2</td>
<td>1227.8</td>
</tr>
<tr>
<td>0.4</td>
<td>1389.8</td>
<td>1311.3</td>
<td>1187.0</td>
</tr>
<tr>
<td>0.5</td>
<td>1351.6</td>
<td>1271.3</td>
<td>1144.0</td>
</tr>
<tr>
<td>0.6</td>
<td>1311.4</td>
<td>1229.0</td>
<td>1098.7</td>
</tr>
<tr>
<td>0.7</td>
<td>1269.1</td>
<td>1184.4</td>
<td>1051.1</td>
</tr>
</tbody>
</table>

1. Values are with wet coil, no filters, and no heaters
2. CFM Correction for dry coil = Add 3%
3. † = Factory Setting
4. In downflow applications, airflow must not exceed 1600 cfm due to condensate blowoff.
5. Low = Tap 1, Med-Low = Tap 2, Med = Tap 3, Med-High = Tap 4, High = Tap 5

Table 16. Air Flow Performance

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g.)</th>
<th>TEM4A0C48S41SB</th>
<th>AIRFLOW</th>
<th>Speed Taps — 208–230 VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Med</td>
<td>Low †</td>
</tr>
<tr>
<td>0.1</td>
<td>1784</td>
<td>1698</td>
<td>1634</td>
</tr>
<tr>
<td>0.2</td>
<td>1748</td>
<td>1662</td>
<td>1595</td>
</tr>
<tr>
<td>0.3</td>
<td>1715</td>
<td>1627</td>
<td>1559</td>
</tr>
<tr>
<td>0.4</td>
<td>1662</td>
<td>1591</td>
<td>1521</td>
</tr>
<tr>
<td>0.5</td>
<td>1650</td>
<td>1558</td>
<td>1488</td>
</tr>
<tr>
<td>0.6</td>
<td>1618</td>
<td>1525</td>
<td>1455</td>
</tr>
<tr>
<td>0.7</td>
<td>1499</td>
<td>1484</td>
<td>1422</td>
</tr>
</tbody>
</table>

1. Values are with wet coil, no filters, and no heaters
2. CFM Correction for dry coil = Add 3%
3. † = Factory Setting
4. Low = Taps 1–3, Med = Tap 4, High = Tap 5
5. In downflow applications, airflow must not exceed 1600 cfm due to condensate blowoff.
Table 18. Air Flow Performance

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g)</th>
<th>AIRFLOW</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Med-High</td>
<td>Med †</td>
<td>Med-Low</td>
<td>Low</td>
</tr>
<tr>
<td>0.1</td>
<td>1954.3</td>
<td>1790.6</td>
<td>1578.2</td>
<td>1546.0</td>
<td>1296.6</td>
</tr>
<tr>
<td>0.2</td>
<td>1908.4</td>
<td>1733.6</td>
<td>1520.4</td>
<td>1487.4</td>
<td>1223.5</td>
</tr>
<tr>
<td>0.3</td>
<td>1860.4</td>
<td>1678.3</td>
<td>1481.2</td>
<td>1427.0</td>
<td>1150.5</td>
</tr>
<tr>
<td>0.4</td>
<td>1810.3</td>
<td>1618.9</td>
<td>1400.5</td>
<td>1364.8</td>
<td>1077.4</td>
</tr>
<tr>
<td>0.5</td>
<td>1758.1</td>
<td>1561.2</td>
<td>1338.5</td>
<td>1306.6</td>
<td>1064.3</td>
</tr>
<tr>
<td>0.6</td>
<td>1703.8</td>
<td>1503.2</td>
<td>1275.1</td>
<td>1234.5</td>
<td>931.3</td>
</tr>
<tr>
<td>0.7</td>
<td>1647.4</td>
<td>1445.1</td>
<td>1210.2</td>
<td>1166.6</td>
<td>858.2</td>
</tr>
</tbody>
</table>

1. Values are with wet coil, no filters, and no heaters
2. CFM Correction for dry coil = Add 3%
3. † = Factory Setting
4. In downflow applications, airflow must not exceed 1600 cfm due to condensate blowoff.
5. Low = Tap 1, Med-Low = Tap 2, Med = Tap 3, Med-High = Tap 4, High = Tap 5

Table 20. Air Flow Performance

<table>
<thead>
<tr>
<th>EXTERNAL STATIC (in w.g)</th>
<th>AIRFLOW</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Med †</td>
<td>Low</td>
</tr>
<tr>
<td>0.1</td>
<td>1836</td>
<td>1744</td>
<td>1665</td>
</tr>
<tr>
<td>0.2</td>
<td>1790</td>
<td>1698</td>
<td>1612</td>
</tr>
<tr>
<td>0.3</td>
<td>1743</td>
<td>1650</td>
<td>1560</td>
</tr>
<tr>
<td>0.4</td>
<td>1694</td>
<td>1601</td>
<td>1509</td>
</tr>
<tr>
<td>0.5</td>
<td>1644</td>
<td>1550</td>
<td>1457</td>
</tr>
<tr>
<td>0.6</td>
<td>1593</td>
<td>1499</td>
<td>1406</td>
</tr>
<tr>
<td>0.7</td>
<td>1540</td>
<td>1447</td>
<td>1355</td>
</tr>
</tbody>
</table>

1. Values are with wet coil, no filter, and no heaters
2. CFM Correction for dry coil = Add 3%
3. † = Factory Setting
4. Low = Tap 1-5, Med = Tap 4, High = Tap 5
5. BAYTEMDFKT1A must be used for downflow applications and airflow must not exceed 1800 cfm.
7. **Blower**
 This unit is supplied with a variable speed motor with a direct drive blower wheel which can obtain various air flows. The unit is shipped with factory set cooling and heating air flows. Performance tables are available for additional airflow settings. Disconnect all power to the unit before making any adjustments to the airflow settings. Be sure to check the air flow and the temperature drop across the evaporator coil to ensure sufficient air flow.

8. **Airflow Adjustment**

 ⚠ **CAUTION**

 EQUIPMENT DAMAGE!
 Failure to follow this procedure may result in equipment damage.
 Disconnect power to the air handler before changing dip switch positions.

 Blower speed changes are made on the ECM Fan Control. The ECM Fan Control controls the variable speed motor.

 There is a bank of 8 dip switches. The dip switches work in pairs to match the airflow for the outdoor unit size (tons), cooling airflow adjustment, Fan off-delay options, and heating airflow adjustment. The switches appear as shown in Figure 2, p. 7

![ECM Fan Control Diagram]

Figure 1. ECM Fan Control

Go To Model List
Table 5. Air Flow Performance

<table>
<thead>
<tr>
<th>OUTDOOR UNIT SIZE (TONS)</th>
<th>SPEED SETTING</th>
<th>AIRFLOW SETTING</th>
<th>CUP SWITCH SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SW1 SW2 SW3 SW4</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>1.5</td>
<td>LOW</td>
<td>353 CFM/ton</td>
<td>ON ON OFF ON</td>
<td>533</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>401 CFM/ton</td>
<td>ON ON OFF OFF</td>
<td>611</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>451 CFM/ton</td>
<td>ON ON ON OFF</td>
<td>684</td>
<td>81</td>
</tr>
<tr>
<td>2</td>
<td>LOW</td>
<td>343 CFM/ton</td>
<td>OFF OFF OFF ON</td>
<td>687</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>390 CFM/ton</td>
<td>OFF ON OFF ON</td>
<td>789</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>439 CFM/ton</td>
<td>OFF ON ON OFF</td>
<td>884</td>
<td>135</td>
</tr>
<tr>
<td>2.5</td>
<td>LOW</td>
<td>300 CFM/ton</td>
<td>ON OFF OFF ON</td>
<td>752</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>340 CFM/ton</td>
<td>OFF OFF OFF ON</td>
<td>859</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>383 CFM/ton</td>
<td>ON OFF ON OFF</td>
<td>963</td>
<td>172</td>
</tr>
</tbody>
</table>

* Factory Default Setting
TEM6A0B30H21SB COOLING AIRFLOW PERFORMANCE, WET COIL, NO FILTER, NO HEATER

<table>
<thead>
<tr>
<th>OUTDOOR UNIT SIZE (TONS)</th>
<th>SPEED SETTING</th>
<th>AIRFLOW SETTING</th>
<th>DIP SWITCH SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SW1</td>
<td>SW2</td>
<td>SW3</td>
</tr>
<tr>
<td>1.5</td>
<td>LOW</td>
<td>353 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>401 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>451 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>2</td>
<td>LOW</td>
<td>343 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>390 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>439 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>2.5</td>
<td>LOW</td>
<td>300 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>340 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>383 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>LOW</td>
<td>310 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL (a)</td>
<td>330 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

(a) Factory Default Setting

Table 7. Air Flow Performance

<table>
<thead>
<tr>
<th>OUTDOOR UNIT SIZE (TONS)</th>
<th>SPEED SETTING</th>
<th>AIRFLOW SETTING</th>
<th>DIP SWITCH SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SW1</td>
<td>SW2</td>
<td>SW3</td>
</tr>
<tr>
<td>1.5</td>
<td>LOW</td>
<td>394 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>448 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>493 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>2</td>
<td>LOW</td>
<td>393 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>446 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>491 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>2.5</td>
<td>LOW</td>
<td>350 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>398 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>437 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>LOW</td>
<td>325 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL (a)</td>
<td>346 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>OUTDOOR UNIT SIZE (TONS)</td>
<td>SPEED SETTING</td>
<td>AIRFLOW SETTING</td>
<td>DIP SWITCH SETTING</td>
<td>AIRFLOW POWER</td>
<td>EXTERNAL STATIC PRESSURE</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SW1 SW2 SW3 SW4</td>
<td></td>
<td>0.1 0.3 0.5 0.7 0.9</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>300 CFM/ton</td>
<td>ON ON OFF ON</td>
<td>CFM</td>
<td>761 63 755 98 131</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>341 CFM/ton</td>
<td>ON ON OFF OFF</td>
<td>CFM</td>
<td>862 82 861 120 158</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>384 CFM/ton</td>
<td>ON ON ON OFF</td>
<td>CFM</td>
<td>962 106 963 147 190</td>
</tr>
<tr>
<td>2.5</td>
<td>LOW</td>
<td>319 CFM/ton</td>
<td>OFF ON OFF ON</td>
<td>CFM</td>
<td>961 106 962 147 189</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>363 CFM/ton</td>
<td>OFF ON OFF OFF</td>
<td>CFM</td>
<td>1092 146 1093 192 249</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>408 CFM/ton</td>
<td>OFF ON ON OFF</td>
<td>CFM</td>
<td>1231 196 1231 249 301</td>
</tr>
<tr>
<td>3</td>
<td>LOW</td>
<td>315 CFM/ton</td>
<td>ON OFF OFF ON</td>
<td>CFM</td>
<td>1104 150 1105 197 245</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>357 CFM/ton</td>
<td>ON OFF OFF OFF</td>
<td>CFM</td>
<td>1258 209 1258 263 317</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>402 CFM/ton</td>
<td>ON OFF ON OFF</td>
<td>CFM</td>
<td>1418 286 1415 347 406</td>
</tr>
<tr>
<td>3.5</td>
<td>LOW</td>
<td>308 CFM/ton</td>
<td>OFF OFF OFF ON</td>
<td>CFM</td>
<td>1238 199 1238 253 306</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>350 CFM/ton</td>
<td>OFF OFF OFF OFF</td>
<td>CFM</td>
<td>1412 202 1410 254 306</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>394 CFM/ton</td>
<td>OFF OFF ON OFF</td>
<td>CFM</td>
<td>1570 393 1528 436 466</td>
</tr>
</tbody>
</table>

(*) Factory Default Setting

Table 9. Air Flow Performance
Table 11. Air Flow Performance

<table>
<thead>
<tr>
<th>OUTDOOR UNIT SIZE (TONS)</th>
<th>SPEED SETTING</th>
<th>AIRFLOW SETTING</th>
<th>DIP SWITCH SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SW1</td>
<td>SW2</td>
<td>SW3</td>
</tr>
<tr>
<td>3</td>
<td>LOW</td>
<td>324 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>368 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>423 CFM/ton</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>3.5</td>
<td>LOW</td>
<td>314 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>357 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>411 CFM/ton</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>4</td>
<td>LOW</td>
<td>298 CFM/ton</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>339 CFM/ton</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>391 CFM/ton</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>5</td>
<td>LOW</td>
<td>305 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>347 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>399 CFM/ton</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

(1) Factory Default Setting
(2) Airflow must not exceed 1800 cfm in horizontal right, horizontal left, and downflow applications due to condensate blowoff. The 5 ton high tap shall not be used in these applications.
Table 13. Air Flow Performance

<table>
<thead>
<tr>
<th>OUTDOOR UNIT SIZE (TONS)</th>
<th>SPEED SETTING</th>
<th>AIRFLOW SETTING</th>
<th>DIP SWITCH SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SW1 SW2 SW3 SW4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>323 CPM/ton</td>
<td>ON ON OFF ON</td>
<td>0.1</td>
<td>0.3 0.5 0.7 0.9</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>367 CPM/ton</td>
<td>ON ON OFF OFF</td>
<td>0.1</td>
<td>1.2 1.3 1.5 1.7</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>415 CPM/ton</td>
<td>ON ON ON OFF</td>
<td>0.1</td>
<td>1.3 1.4 1.5 1.6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>315 CPM/ton</td>
<td>OFF ON OFF ON</td>
<td>0.1</td>
<td>1.2 1.3 1.5 1.7</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>358 CPM/ton</td>
<td>OFF ON OFF OFF</td>
<td>0.1</td>
<td>1.3 1.4 1.5 1.6</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>404 CPM/ton</td>
<td>OFF ON OFF OFF</td>
<td>0.1</td>
<td>1.3 1.4 1.5 1.6</td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>309 CPM/ton</td>
<td>ON OFF OFF ON</td>
<td>0.1</td>
<td>1.2 1.3 1.5 1.7</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>351 CPM/ton</td>
<td>ON OFF OFF OFF</td>
<td>0.1</td>
<td>1.3 1.4 1.5 1.6</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>396 CPM/ton</td>
<td>ON OFF OFF OFF</td>
<td>0.1</td>
<td>1.3 1.4 1.5 1.6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>295 CPM/ton</td>
<td>OFF OFF OFF ON</td>
<td>0.1</td>
<td>1.2 1.3 1.5 1.7</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
<td>335 CPM/ton</td>
<td>OFF OFF OFF OFF</td>
<td>0.1</td>
<td>1.3 1.4 1.5 1.6</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>379 CPM/ton</td>
<td>OFF OFF OFF OFF</td>
<td>0.1</td>
<td>1.3 1.4 1.5 1.6</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Factory Default Setting
Minimum Airflow CFM

TEM6A0B24H21SB, TEM6A0B30H21SB

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Heater Airflow CFM</th>
<th>With Heat Pump</th>
<th>Without Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHTR1564BRK, BAYHTR1504LUG</td>
<td>660</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1565BRK, BAYHTR1505LUG</td>
<td>660</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>BAYHTR156BRK, BAYHTR150BLUG</td>
<td>780</td>
<td>660</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1510BRK, BAYHTR1510LUG</td>
<td>780</td>
<td>660</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td>1050</td>
<td>850</td>
<td></td>
</tr>
<tr>
<td>BAYHTR3510LUG</td>
<td>780</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td>900</td>
<td>850</td>
<td></td>
</tr>
</tbody>
</table>

TEM6A0C36H31SB, TEM6A0C42H41SB

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Heater Airflow CFM</th>
<th>With Heat Pump</th>
<th>Without Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHTR1564BRK, BAYHTR1504LUG</td>
<td>875</td>
<td>675</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1565BRK, BAYHTR1505LUG</td>
<td>875</td>
<td>675</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1568BRK, BAYHTR1508LUG</td>
<td>950</td>
<td>820</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1510BRK, BAYHTR1510LUG</td>
<td>1000</td>
<td>820</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td>1000</td>
<td>820</td>
<td></td>
</tr>
<tr>
<td>BAYHTR3510LUG</td>
<td>875</td>
<td>820</td>
<td></td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td>1000</td>
<td>950</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1523BRK</td>
<td>1300</td>
<td>1140</td>
<td></td>
</tr>
</tbody>
</table>

TEM6A0C48H41SB, TEM6A0C60H51SB

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Heater Airflow CFM</th>
<th>With Heat Pump</th>
<th>Without Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHTR1564BRK, BAYHTR1504LUG</td>
<td>1200</td>
<td>975</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1565BRK, BAYHTR1505LUG</td>
<td>1200</td>
<td>975</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1568BRK, BAYHTR1508LUG</td>
<td>1350</td>
<td>975</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1510BRK, BAYHTR1510LUG</td>
<td>1350</td>
<td>975</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td>1365</td>
<td>975</td>
<td></td>
</tr>
<tr>
<td>BAYHTR3510LUG</td>
<td>1365</td>
<td>1120</td>
<td></td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td>1300</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1523BRK</td>
<td>1810</td>
<td>1505</td>
<td></td>
</tr>
</tbody>
</table>

TEM6A0D48H41SB, TEM6A0D60H51SB

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Heater Airflow CFM</th>
<th>With Heat Pump</th>
<th>Without Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHTR1564BRK, BAYHTR1504LUG</td>
<td>1150</td>
<td>975</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1565BRK, BAYHTR1505LUG</td>
<td>1150</td>
<td>975</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1510BRK, BAYHTR1510LUG</td>
<td>1150</td>
<td>975</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td>1300</td>
<td>1125</td>
<td></td>
</tr>
<tr>
<td>BAYHTR3510LUG</td>
<td>1300</td>
<td>1125</td>
<td></td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td>1360</td>
<td>1125</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1523BRK</td>
<td>1550</td>
<td>1345</td>
<td></td>
</tr>
<tr>
<td>BAYHTR1525BRK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TEM6A0B24H21SB, TEM6A0E30H21SB Airflow Performance with Auxiliary Heat

<table>
<thead>
<tr>
<th>Airflow Settings</th>
<th>Dip Switch Settings</th>
<th>Nominal Airflow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Switch 7</td>
<td>Switch 8</td>
</tr>
<tr>
<td>Low</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Med-Lo</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>Med-Hi</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>High</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

See following tables for heater application:
- Pressure Drop for Electrical Heaters
- Minimum Heating Airflow Matrix (on unit nameplates)

TEM6A0C36H31SB, TEM6A0C42H41SB Airflow Performance with Auxiliary Heat

<table>
<thead>
<tr>
<th>Airflow Settings</th>
<th>Dip Switch Settings</th>
<th>Nominal Airflow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Switch 7</td>
<td>Switch 8</td>
</tr>
<tr>
<td>Low</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Med-Lo</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>Med-Hi</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>High</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

See following tables for heater application:
- Pressure Drop for Electrical Heaters
- Minimum Heating Airflow Matrix (on unit nameplates)

TEM6A0C48H41SB, TEM6A0C60H51SB Airflow Performance with Auxiliary Heat

<table>
<thead>
<tr>
<th>Airflow Settings</th>
<th>Dip Switch Settings</th>
<th>Nominal Airflow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Switch 7</td>
<td>Switch 8</td>
</tr>
<tr>
<td>Low</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Med-Lo</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>Med-Hi</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>High</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

See following tables for heater application:
- Pressure Drop for Electrical Heaters
- Minimum Heating Airflow Matrix (on unit nameplates)

TEM6A0D48H41SB, TEM6A0D60H51SB Airflow Performance with Auxiliary Heat

<table>
<thead>
<tr>
<th>Airflow Settings</th>
<th>Dip Switch Settings</th>
<th>Nominal Airflow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Switch 7</td>
<td>Switch 8</td>
</tr>
<tr>
<td>Low</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Med-Lo</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>Med-Hi</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>High</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

See following tables for heater application:
- Pressure Drop for Electrical Heaters
- Minimum Heating Airflow Matrix (on unit nameplates)
Heater Pressure Drop Table

<table>
<thead>
<tr>
<th>Airflow CFM</th>
<th>Number of Racks</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Air Pressure Drop — Inches W.G.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td>0.02</td>
<td>0.04</td>
<td>0.05</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>0.01</td>
<td>0.04</td>
<td>0.05</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.01</td>
<td>0.03</td>
<td>0.04</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>0.01</td>
<td>0.03</td>
<td>0.04</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heater Racks

<table>
<thead>
<tr>
<th>Heater Model</th>
<th>No. of Racks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHTR1504</td>
<td>1</td>
</tr>
<tr>
<td>BAYHTR1505</td>
<td>1</td>
</tr>
<tr>
<td>BAYHTR1508</td>
<td>2</td>
</tr>
<tr>
<td>BAYHTR1510</td>
<td>2</td>
</tr>
<tr>
<td>BAYHTR1516</td>
<td>3</td>
</tr>
<tr>
<td>BAYHTR1517</td>
<td>3</td>
</tr>
<tr>
<td>BAYHTR3510</td>
<td>3</td>
</tr>
<tr>
<td>BAYHTR3517</td>
<td>3</td>
</tr>
<tr>
<td>BAYHTR3515</td>
<td>3</td>
</tr>
<tr>
<td>BAYHTR1522</td>
<td>4</td>
</tr>
<tr>
<td>BAYHTR1523</td>
<td>4</td>
</tr>
<tr>
<td>BAYHTR1525</td>
<td>4</td>
</tr>
</tbody>
</table>

Subcooling Adjustment

<table>
<thead>
<tr>
<th>System Matched with:</th>
<th>Indoor Unit Model No.</th>
<th>Outdoor Model No.</th>
<th>Subcooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 SEER HP — 2 ton</td>
<td>TEM6A0C36H31</td>
<td>47WR6524H1000A</td>
<td>13 Degrees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47WR6524H1000A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>446H6524H1000A</td>
<td></td>
</tr>
<tr>
<td>15 SEER HP — 2 ton</td>
<td>TEM6A0B24H21</td>
<td>47WR5024G1000A</td>
<td>14 Degrees</td>
</tr>
<tr>
<td></td>
<td>TEM6A0B30H21</td>
<td>446H5024G1000A</td>
<td></td>
</tr>
<tr>
<td>15 SEER HP — 3 ton</td>
<td>TEM6A0B30H21</td>
<td>47WR5024G1000A</td>
<td>14 Degrees</td>
</tr>
<tr>
<td></td>
<td>TEM6A0C36H31</td>
<td>446H5024G1000A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEM6A0C42H41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All other matches must be charged per the nameplate charging instructions.

Subcooling Adjustment for TEM6A0C48H41 & TEM6A0C60H51

<table>
<thead>
<tr>
<th>OD Equipment</th>
<th>Up Flow / Horizontal</th>
<th>Down Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC UNIT</td>
<td>OD Name Plate</td>
<td>OD Name Plate</td>
</tr>
<tr>
<td>HP UNIT ≤ 3.5 Tons</td>
<td>OD Name Plate</td>
<td>OD Name Plate + 4 Degrees</td>
</tr>
<tr>
<td>HP UNIT = 4 and 5 Tons</td>
<td>OD Name Plate</td>
<td>OD Name Plate</td>
</tr>
</tbody>
</table>
Figure 2. Dip Switches

DIP SWITCHES (TYPICAL SETTINGS)

If the airflow needs to be increased or decreased, see the Airflow Label on the air handler or Blower Performance Table.

Be sure to set the correct airflow for cooling and heating.

Switches 1–4 Cooling Airflow
Switches 5–6 Fan Off Delay Options
Switches 7–8 Auxiliary Heat

Indoor Blower Timing

Important: Leave dip switches 5 and 6 in the “as-shipped” positions during system start-up and check out. Afterwards, adjust as desired.

Table 3. Cooling Off — Delay Options

<table>
<thead>
<tr>
<th>SWITCH SETTINGS</th>
<th>SELECTION</th>
<th>NOMINAL AIRFLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 — OFF</td>
<td>6 — OFF</td>
<td>NONE</td>
</tr>
<tr>
<td>5 — ON</td>
<td>6 — OFF</td>
<td>1.5 MINUTES</td>
</tr>
<tr>
<td>5 — OFF</td>
<td>6 — ON</td>
<td>3 MINUTES</td>
</tr>
<tr>
<td>5 — ON</td>
<td>6 — ON</td>
<td>ENHANCED (b)</td>
</tr>
</tbody>
</table>

(a) Default setting
(b) This ENHANCED MODE selection provides a ramping up and ramping down of the blower speed to provide improved comfort, quietness, and potential energy savings. The graph shows the ramping process.
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: Trane
Model: TEM8A

7. Blower
This unit is supplied with a variable speed motor with a direct drive blower wheel which can obtain various air flows. The unit is shipped with factory set cooling and heating air flows. Performance tables are available for additional airflow settings. Disconnect all power to the unit before making any adjustments to the airflow settings. Be sure to check the airflow and the temperature drop across the evaporator coil to ensure sufficient airflow.

8. Airflow Adjustment
 Note: A CDA tool may be plugged into the TEM8 control board and used to configure or monitor the system

9. Indoor Blower Timing

Table 3. Delay Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90 seconds at 100% air flow</td>
</tr>
<tr>
<td>2</td>
<td>No delay</td>
</tr>
<tr>
<td>3</td>
<td>180 seconds at 50% air flow</td>
</tr>
<tr>
<td>4</td>
<td>Enhanced Mode</td>
</tr>
</tbody>
</table>

Figure 1. Enhanced Mode

- 100% if necessary
- Efficiency
- 50% Dehumidify
- Warm Air Heating
- 60% Fast Coil Heating
- 60% Fast Coil Cooling
- as required

Compressor Operation: ON

Go To Model List
Unit Test Mode

Unit Test Mode will exit if any demand is given to the unit.

To enter Unit Test Mode:
1. Set System Switch on comfort control to Off.
2. Scroll down to the Unit Test selection and push the “Enter” button.

Sequence of Unit Test Mode (OD unit is not energized during the Unit Test Mode)

1. AFC energizes the blower at 50% and then continues to ramp until it reaches 100% cooling airflow.
2. Humidifier contacts close when the blower starts.
3. AFC energizes the W relays in 10 second intervals. The blower remains at 100% airflow.
4. All relays de-energize and the blower shuts off five seconds after the last bank of heat is energized.

Note: If an error occurs during the Unit Test Mode, the Fault LED will flash a code and continue the test.
<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>1.5 tons</td>
<td>290 CFM/ton</td>
<td>Watts</td>
<td>430</td>
<td>530</td>
<td>430</td>
<td>415</td>
</tr>
<tr>
<td></td>
<td>350 CFM/ton</td>
<td>Watts</td>
<td>620</td>
<td>620</td>
<td>520</td>
<td>514</td>
</tr>
<tr>
<td></td>
<td>400 CFM/ton</td>
<td>Watts</td>
<td>590</td>
<td>680</td>
<td>590</td>
<td>539</td>
</tr>
<tr>
<td></td>
<td>450 CFM/ton</td>
<td>Watts</td>
<td>670</td>
<td>798</td>
<td>670</td>
<td>671</td>
</tr>
<tr>
<td></td>
<td>290 CFM/ton</td>
<td>Watts</td>
<td>670</td>
<td>670</td>
<td>570</td>
<td>573</td>
</tr>
<tr>
<td></td>
<td>350 CFM/ton</td>
<td>Watts</td>
<td>850</td>
<td>910</td>
<td>850</td>
<td>869</td>
</tr>
<tr>
<td></td>
<td>400 CFM/ton</td>
<td>Watts</td>
<td>790</td>
<td>879</td>
<td>790</td>
<td>799</td>
</tr>
<tr>
<td></td>
<td>450 CFM/ton</td>
<td>Watts</td>
<td>890</td>
<td>917</td>
<td>890</td>
<td>899</td>
</tr>
<tr>
<td>2 tons</td>
<td>290 CFM/ton</td>
<td>Watts</td>
<td>570</td>
<td>670</td>
<td>570</td>
<td>670</td>
</tr>
<tr>
<td></td>
<td>350 CFM/ton</td>
<td>Watts</td>
<td>900</td>
<td>941</td>
<td>900</td>
<td>941</td>
</tr>
<tr>
<td></td>
<td>400 CFM/ton</td>
<td>Watts</td>
<td>110</td>
<td>122</td>
<td>110</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>450 CFM/ton</td>
<td>Watts</td>
<td>145</td>
<td>161</td>
<td>145</td>
<td>161</td>
</tr>
<tr>
<td>2.5 tons ↑</td>
<td>290 CFM/ton</td>
<td>Watts</td>
<td>720</td>
<td>823</td>
<td>720</td>
<td>724</td>
</tr>
<tr>
<td></td>
<td>350 CFM/ton</td>
<td>Watts</td>
<td>900</td>
<td>904</td>
<td>900</td>
<td>904</td>
</tr>
<tr>
<td></td>
<td>400 CFM/ton</td>
<td>Watts</td>
<td>990</td>
<td>990</td>
<td>990</td>
<td>990</td>
</tr>
<tr>
<td></td>
<td>450 CFM/ton</td>
<td>Watts</td>
<td>120</td>
<td>131</td>
<td>120</td>
<td>131</td>
</tr>
</tbody>
</table>

- Factory Setting
- Status LED will blink once per 100 CPM requested. In torque mode, actual airflow may be lower.
- To prevent water blow-off, the max airflow demand allowable is 1000 CPM. If an outdoor multiplier and cooling airflow setting result in a demand higher than 1000, the APC will default the demand back to 1000.
- Torque mode will reduce airflow when static is above approximately 0.3” water column.
- All heating modes default to Constant CFM.
- In communicating mode, default CFM/ton is 400.
- Cooling airflow values are with wet coil, no filter.
TEM8A0B30V3 1DB Airflow Performance

<table>
<thead>
<tr>
<th>Outdoor Multiplier (Tons)</th>
<th>Cooling Airflow Setting</th>
<th>Airflow Power</th>
<th>External Static Pressure (Constant CFM/Constant Torque)</th>
<th>Heating Airflow Setting</th>
<th>Airflow Power</th>
<th>External Static Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFM/ton</td>
<td>Watts</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>1.5 tons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350 CFM/ton</td>
<td>520 / 620</td>
<td>60 / 63</td>
<td>520 / 514</td>
<td>520 / 388</td>
<td>520 / NA</td>
<td>520 / NA</td>
</tr>
<tr>
<td>400 CFM/ton</td>
<td>590 / 780</td>
<td>75 / 76</td>
<td>590 / 593</td>
<td>590 / 453</td>
<td>590 / NA</td>
<td>590 / NA</td>
</tr>
<tr>
<td>2 tons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290 CFM/ton</td>
<td>570 / 670</td>
<td>60 / 63</td>
<td>570 / 573</td>
<td>570 / NA</td>
<td>570 / NA</td>
<td>570 / NA</td>
</tr>
<tr>
<td>350 CFM/ton</td>
<td>690 / 781</td>
<td>85 / 91</td>
<td>690 / 696</td>
<td>690 / 569</td>
<td>690 / NA</td>
<td>690 / NA</td>
</tr>
<tr>
<td>2.5 tons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350 CFM/ton</td>
<td>870 / 963</td>
<td>140 / 157</td>
<td>870 / 892</td>
<td>870 / 749</td>
<td>870 / 646</td>
<td>870 / 540</td>
</tr>
<tr>
<td>400 CFM/ton</td>
<td>990 / 1087</td>
<td>185 / 185</td>
<td>990 / 1011</td>
<td>990 / 872</td>
<td>990 / 759</td>
<td>990 / 656</td>
</tr>
<tr>
<td>450 CFM/ton</td>
<td>1120 / 112</td>
<td>1120 / 112</td>
<td>1120 / 105</td>
<td>1120 / 921</td>
<td>1120 / 812</td>
<td>1120 / 714</td>
</tr>
<tr>
<td>3 tons **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290 CFM/ton</td>
<td>990 / 1114</td>
<td>152 / 176</td>
<td>1008 / 1035</td>
<td>1008 / 943</td>
<td>1008 / 828</td>
<td>1008 / 727</td>
</tr>
<tr>
<td>350 CFM/ton</td>
<td>1120 / 112</td>
<td>1120 / 112</td>
<td>1008 / 1035</td>
<td>1008 / 943</td>
<td>1008 / 828</td>
<td>1008 / 727</td>
</tr>
<tr>
<td>400 CFM/ton</td>
<td>990 / 1114</td>
<td>152 / 176</td>
<td>1008 / 1035</td>
<td>1008 / 943</td>
<td>1008 / 828</td>
<td>1008 / 727</td>
</tr>
<tr>
<td>450 CFM/ton</td>
<td>1120 / 112</td>
<td>1120 / 112</td>
<td>1008 / 1035</td>
<td>1008 / 943</td>
<td>1008 / 828</td>
<td>1008 / 727</td>
</tr>
</tbody>
</table>

Factory Setting
- Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.
- To prevent water blow-off, the max airflow demand allowable is 1000 CFM. If an outdoor multiplier and cooling airflow setting results in a demand higher than 1000, the AFC will default the demand back to 1000.

Torque mode will reduce airflow when static is above approximately 0.3” water column.
- All heating modes default to Constant CFM.
- In communicating mode, default CFM/ton is 400.
- Cooling airflow values are with wet coil, no filter.
<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Constant CFM / Constant Torque</td>
<td></td>
<td></td>
<td>Constant CFM / Constant Torque</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>2.5 tons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 CFM/ton</td>
<td>Watts</td>
<td>735 / 837</td>
<td>727 / 702</td>
<td>700 / 593</td>
<td>673 / 415</td>
<td>660 / 415</td>
</tr>
<tr>
<td>400 CFM/ton</td>
<td>Watts</td>
<td>1007 / 1064</td>
<td>1016 / 971</td>
<td>1033 / 874</td>
<td>1020 / 786</td>
<td>1010 / 711</td>
</tr>
<tr>
<td>450 CFM/ton</td>
<td>Watts</td>
<td>1135 / 1198</td>
<td>1146 / 1093</td>
<td>1176 / 1001</td>
<td>1140 / 919</td>
<td>1130 / 845</td>
</tr>
<tr>
<td>3 tons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 CFM/ton</td>
<td>Watts</td>
<td>878 / 993</td>
<td>879 / 872</td>
<td>876 / 771</td>
<td>874 / 682</td>
<td>865 / 602</td>
</tr>
<tr>
<td>350 CFM/ton</td>
<td>Watts</td>
<td>1057 / 1154</td>
<td>1068 / 1045</td>
<td>1061 / 952</td>
<td>1057 / 869</td>
<td>1050 / 793</td>
</tr>
<tr>
<td>400 CFM/ton</td>
<td>Watts</td>
<td>1209 / 1289</td>
<td>1223 / 1190</td>
<td>1247 / 1120</td>
<td>1210 / 1024</td>
<td>1190 / 952</td>
</tr>
<tr>
<td>450 CFM/ton</td>
<td>Watts</td>
<td>1364 / 1426</td>
<td>1375 / 1354</td>
<td>1393 / 1253</td>
<td>1340 / 1179</td>
<td>1330 / 1110</td>
</tr>
<tr>
<td>3.5 tons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350 CFM/ton</td>
<td>Watts</td>
<td>1235 / 1312</td>
<td>1249 / 1218</td>
<td>1264 / 1126</td>
<td>1230 / 1050</td>
<td>1220 / 978</td>
</tr>
<tr>
<td>400 CFM/ton</td>
<td>Watts</td>
<td>1416 / 1471</td>
<td>1424 / 1383</td>
<td>1439 / 1295</td>
<td>1420 / 1200</td>
<td>1410 / 1163</td>
</tr>
<tr>
<td>450 CFM/ton</td>
<td>Watts</td>
<td>1601 / 1640</td>
<td>1618 / 1551</td>
<td>1647 / 1465</td>
<td>1632 / 1384</td>
<td>1620 / 1329</td>
</tr>
<tr>
<td>4 tons †</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 CFM/ton</td>
<td>Watts</td>
<td>1188 / 1276</td>
<td>1192 / 1175</td>
<td>1202 / 1087</td>
<td>1170 / 907</td>
<td>1160 / 837</td>
</tr>
<tr>
<td>350 CFM/ton</td>
<td>Watts</td>
<td>1416 / 1452</td>
<td>1424 / 1380</td>
<td>1439 / 1295</td>
<td>1420 / 1200</td>
<td>1410 / 1163</td>
</tr>
<tr>
<td>400 CFM/ton</td>
<td>Watts</td>
<td>1625 / 1616</td>
<td>1638 / 1538</td>
<td>1654 / 1461</td>
<td>1639 / 1395</td>
<td>1628 / 1339</td>
</tr>
<tr>
<td>450 CFM/ton</td>
<td>Watts</td>
<td>1714 / 1605</td>
<td>1730 / 1524</td>
<td>1751 / 1452</td>
<td>1736 / 1395</td>
<td>1731 / 1341</td>
</tr>
</tbody>
</table>

- † Factory Setting
- Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.
- In communicating mode, default CFM/ton is 400.
- Torque mode will reduce airflow when static is above approximately 0.3” water column.
- All heating modes default to Constant CFM.
- Cooling airflow values are with wet coil, no filter.

Go To Model List
<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTING</th>
<th>AIRFLOW POWER</th>
<th>EXTERNAL STATIC PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 tons</td>
<td>290 CFM/ton</td>
<td>1015 Watts</td>
<td>984 / 983 / 985 / 986</td>
<td>0.1</td>
<td>290 CFM/ton</td>
<td>1843 / 1921</td>
</tr>
<tr>
<td></td>
<td>350 CFM/ton</td>
<td>1769 Watts</td>
<td>1037 / 1037 / 1037 / 1037</td>
<td>0.3</td>
<td>350 CFM/ton</td>
<td>1921 / 2192</td>
</tr>
<tr>
<td></td>
<td>400 CFM/ton</td>
<td>2220 Watts</td>
<td>1169 / 1169 / 1169 / 1169</td>
<td>0.5</td>
<td>400 CFM/ton</td>
<td>2192 / 2432</td>
</tr>
<tr>
<td></td>
<td>450 CFM/ton</td>
<td>2773 Watts</td>
<td>1334 / 1334 / 1334 / 1334</td>
<td>0.7</td>
<td>450 CFM/ton</td>
<td>2432 / 2800</td>
</tr>
<tr>
<td></td>
<td>3.5 tons</td>
<td>290 CFM/ton</td>
<td>1015 / 1015 / 1015 / 1015</td>
<td>0.9</td>
<td>290 CFM/ton</td>
<td>1843 / 1921</td>
</tr>
<tr>
<td></td>
<td>350 CFM/ton</td>
<td>1769 Watts</td>
<td>1037 / 1037 / 1037 / 1037</td>
<td>0.5</td>
<td>350 CFM/ton</td>
<td>1921 / 2192</td>
</tr>
<tr>
<td></td>
<td>400 CFM/ton</td>
<td>2220 Watts</td>
<td>1169 / 1169 / 1169 / 1169</td>
<td>0.7</td>
<td>400 CFM/ton</td>
<td>2192 / 2432</td>
</tr>
<tr>
<td></td>
<td>450 CFM/ton</td>
<td>2773 Watts</td>
<td>1334 / 1334 / 1334 / 1334</td>
<td>0.9</td>
<td>450 CFM/ton</td>
<td>2432 / 2800</td>
</tr>
<tr>
<td>4 tons</td>
<td>290 CFM/ton</td>
<td>1015 Watts</td>
<td>984 / 983 / 985 / 986</td>
<td>0.1</td>
<td>290 CFM/ton</td>
<td>1843 / 1921</td>
</tr>
<tr>
<td></td>
<td>350 CFM/ton</td>
<td>1769 Watts</td>
<td>1037 / 1037 / 1037 / 1037</td>
<td>0.3</td>
<td>350 CFM/ton</td>
<td>1921 / 2192</td>
</tr>
<tr>
<td></td>
<td>400 CFM/ton</td>
<td>2220 Watts</td>
<td>1169 / 1169 / 1169 / 1169</td>
<td>0.5</td>
<td>400 CFM/ton</td>
<td>2192 / 2432</td>
</tr>
<tr>
<td></td>
<td>450 CFM/ton</td>
<td>2773 Watts</td>
<td>1334 / 1334 / 1334 / 1334</td>
<td>0.7</td>
<td>450 CFM/ton</td>
<td>2432 / 2800</td>
</tr>
<tr>
<td></td>
<td>5 tons</td>
<td>290 CFM/ton</td>
<td>1015 / 1015 / 1015 / 1015</td>
<td>0.1</td>
<td>290 CFM/ton</td>
<td>1843 / 1921</td>
</tr>
<tr>
<td></td>
<td>350 CFM/ton</td>
<td>1769 Watts</td>
<td>1037 / 1037 / 1037 / 1037</td>
<td>0.3</td>
<td>350 CFM/ton</td>
<td>1921 / 2192</td>
</tr>
<tr>
<td></td>
<td>400 CFM/ton</td>
<td>2220 Watts</td>
<td>1169 / 1169 / 1169 / 1169</td>
<td>0.5</td>
<td>400 CFM/ton</td>
<td>2192 / 2432</td>
</tr>
<tr>
<td></td>
<td>450 CFM/ton</td>
<td>2773 Watts</td>
<td>1334 / 1334 / 1334 / 1334</td>
<td>0.7</td>
<td>450 CFM/ton</td>
<td>2432 / 2800</td>
</tr>
</tbody>
</table>

- † Factory Setting
- Status LED will blink once per 100 CPM requested. In torque mode, actual airflow may be lower.
- In communicating mode, default CPM/Ton is 400.
- Torque mode will reduce airflow when static is above approximately 0.3” water column.
- All heating modes default to Constant CPM.
- Cooling airflow values are with wet coil, no filter.
<table>
<thead>
<tr>
<th>OUTDOOR MULTIPLIER (TONS)</th>
<th>COOLING AIRFLOW SETTING</th>
<th>AIRFLOW CFM/ton</th>
<th>EXTERNAL STATIC PRESSURE (Constant CFM / Constant Torque)</th>
<th>HEATING AIRFLOW SETTING</th>
<th>AIRFLOW POWER CFM/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>859 / 1010</td>
<td>680 / 880</td>
<td>568 / 771</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>73 / 92</td>
<td>110 / 110</td>
<td>153 / 125</td>
</tr>
<tr>
<td>3 tons</td>
<td></td>
<td></td>
<td>1042 / 1173</td>
<td>1058 / 1056</td>
<td>1054 / 955</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>107 / 131</td>
<td>148 / 151</td>
<td>194 / 167</td>
</tr>
<tr>
<td></td>
<td>290</td>
<td></td>
<td>1124 / 1310</td>
<td>1215 / 1022</td>
<td>1215 / 943</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150 / 172</td>
<td>194 / 172</td>
<td>247 / 211</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td></td>
<td>1350 / 1448</td>
<td>1380 / 1349</td>
<td>1360 / 1250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1007 / 1141</td>
<td>1024 / 1022</td>
<td>1018 / 999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>99 / 122</td>
<td>140 / 122</td>
<td>185 / 158</td>
</tr>
<tr>
<td>3.5 tons</td>
<td></td>
<td></td>
<td>1122 / 1335</td>
<td>1125 / 1027</td>
<td>1232 / 1155</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150 / 180</td>
<td>196 / 202</td>
<td>246 / 219</td>
</tr>
<tr>
<td></td>
<td>290</td>
<td></td>
<td>1421 / 1495</td>
<td>1429 / 1398</td>
<td>1430 / 1310</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>211 / 242</td>
<td>268 / 267</td>
<td>323 / 285</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td></td>
<td>1583 / 1657</td>
<td>1592 / 1469</td>
<td>1588 / 1419</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>275 / 320</td>
<td>334 / 346</td>
<td>394 / 367</td>
</tr>
<tr>
<td>4 tons</td>
<td></td>
<td></td>
<td>1155 / 1297</td>
<td>1164 / 1100</td>
<td>1166 / 1032</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>133 / 167</td>
<td>177 / 189</td>
<td>226 / 206</td>
</tr>
<tr>
<td></td>
<td>290</td>
<td></td>
<td>1431 / 1518</td>
<td>1421 / 1420</td>
<td>1408 / 1334</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td></td>
<td>1625 / 1700</td>
<td>1625 / 1514</td>
<td>1617 / 1434</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>302 / 343</td>
<td>360 / 359</td>
<td>418 / 391</td>
</tr>
<tr>
<td>5 tons f</td>
<td></td>
<td></td>
<td>1818 / 1886</td>
<td>1825 / 1800</td>
<td>1815 / 1734</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>388 / 458</td>
<td>585 / 511</td>
<td>598 / 529</td>
</tr>
</tbody>
</table>

- † Factory Setting.
- Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower.
- In communicating mode, default CFM/ton is 400.
- Torque mode will reduce airflow when static is above approximately 0.3" water column.
- All heating modes default to Constant CFM.
- Cooling airflow values are with wet coil, no filter.
Minimum Airflow CFM

TEM8A0B24V21DB, TEM8A0B30V31DB

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Heater Airflow CFM</th>
<th>With Heat Pump</th>
<th>Without Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHTR1504BRK, BAYHTR1504LUG</td>
<td></td>
<td>650</td>
<td>600</td>
</tr>
<tr>
<td>BAYHTR1505BRK, BAYHTR1505LUG</td>
<td></td>
<td>850</td>
<td>700</td>
</tr>
<tr>
<td>BAYHTR1510BRK, BAYHTR1510LUG</td>
<td></td>
<td>856</td>
<td>700</td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td></td>
<td>1000</td>
<td>850</td>
</tr>
<tr>
<td>BAYHTR3510LUG</td>
<td></td>
<td>856</td>
<td>700</td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td></td>
<td>1000</td>
<td>850</td>
</tr>
</tbody>
</table>

TEM8A0C36V31DB, TEM8A0C42V41DB

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Heater Airflow CFM</th>
<th>With Heat Pump</th>
<th>Without Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHTR1504BRK, BAYHTR1504LUG</td>
<td></td>
<td>675</td>
<td>675</td>
</tr>
<tr>
<td>BAYHTR1505BRK, BAYHTR1505LUG</td>
<td></td>
<td>950</td>
<td>900</td>
</tr>
<tr>
<td>BAYHTR1510BRK, BAYHTR1510LUG</td>
<td></td>
<td>950</td>
<td>900</td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td></td>
<td>950</td>
<td>900</td>
</tr>
<tr>
<td>BAYHTR3510LUG</td>
<td></td>
<td>950</td>
<td>900</td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td></td>
<td>1050</td>
<td>950</td>
</tr>
<tr>
<td>BAYHTR1523BRK</td>
<td></td>
<td>1500</td>
<td>1300</td>
</tr>
</tbody>
</table>

TEM8A0C60V51D

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Heater Airflow CFM</th>
<th>With Heat Pump</th>
<th>Without Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHTR1504BRK, BAYHTR1504LUG</td>
<td></td>
<td>900</td>
<td>800</td>
</tr>
<tr>
<td>BAYHTR1505BRK, BAYHTR1505LUG</td>
<td></td>
<td>1200</td>
<td>1000</td>
</tr>
<tr>
<td>BAYHTR1510BRK, BAYHTR1510LUG</td>
<td></td>
<td>1350</td>
<td>1000</td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td></td>
<td>1400</td>
<td>1100</td>
</tr>
<tr>
<td>BAYHTR3510LUG</td>
<td></td>
<td>1200</td>
<td>1000</td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td></td>
<td>1400</td>
<td>1100</td>
</tr>
<tr>
<td>BAYHTR1523BRK</td>
<td></td>
<td>1430</td>
<td>1300</td>
</tr>
<tr>
<td>BAYHTR1523BRK</td>
<td></td>
<td>1850</td>
<td>1600</td>
</tr>
</tbody>
</table>

TEM8A0D48V41DB, TEM8A0D60V51DB

<table>
<thead>
<tr>
<th>Heater</th>
<th>Minimum Heater Airflow CFM</th>
<th>With Heat Pump</th>
<th>Without Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHTR1504BRK, BAYHTR1504LUG</td>
<td></td>
<td>900</td>
<td>800</td>
</tr>
<tr>
<td>BAYHTR1505BRK, BAYHTR1505LUG</td>
<td></td>
<td>1200</td>
<td>1000</td>
</tr>
<tr>
<td>BAYHTR1510BRK, BAYHTR1510LUG</td>
<td></td>
<td>1200</td>
<td>1000</td>
</tr>
<tr>
<td>BAYHTR1517BRK</td>
<td></td>
<td>1400</td>
<td>1100</td>
</tr>
<tr>
<td>BAYHTR3510LUG</td>
<td></td>
<td>1200</td>
<td>1000</td>
</tr>
<tr>
<td>BAYHTR3517LUG</td>
<td></td>
<td>1400</td>
<td>1100</td>
</tr>
<tr>
<td>BAYHTR1523BRK</td>
<td></td>
<td>1400</td>
<td>1300</td>
</tr>
<tr>
<td>BAYHTR1523BRK</td>
<td></td>
<td>1600</td>
<td>1400</td>
</tr>
</tbody>
</table>
Heater Pressure Drop Table

<table>
<thead>
<tr>
<th>Airflow CFM</th>
<th>Number of Racks</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1800</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>1700</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>1600</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>1500</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>1400</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>1300</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>1200</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>1100</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>1000</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>900</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>800</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>700</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>600</td>
<td>0.01</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Heater Racks

<table>
<thead>
<tr>
<th>Heater Model</th>
<th>No. of Racks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHTR1504</td>
<td>1</td>
</tr>
<tr>
<td>BAYHTR1505</td>
<td>1</td>
</tr>
<tr>
<td>BAYHTR1508</td>
<td>2</td>
</tr>
<tr>
<td>BAYHTR1510</td>
<td>2</td>
</tr>
<tr>
<td>BAYHTR1516</td>
<td>3</td>
</tr>
<tr>
<td>BAYHTR3510</td>
<td>3</td>
</tr>
<tr>
<td>BAYHTR3515</td>
<td>3</td>
</tr>
<tr>
<td>BAYHTR1517</td>
<td>3</td>
</tr>
<tr>
<td>BAYHTR1522</td>
<td>4</td>
</tr>
<tr>
<td>BAYHTR1523</td>
<td>4</td>
</tr>
<tr>
<td>BAYHTR3517</td>
<td>3</td>
</tr>
<tr>
<td>BAYHTR1525</td>
<td>4</td>
</tr>
</tbody>
</table>

Subcooling Adjustment

<table>
<thead>
<tr>
<th>System Matched with:</th>
<th>Indoor Unit Model No.</th>
<th>Outdoor Model No.</th>
<th>Subcooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 SEER HP – 2 ton</td>
<td>TEM8A0C36V31</td>
<td>4TW6024H1000A</td>
<td>13 Degrees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4TWX6024H1000A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4A6H66024H1000A</td>
<td></td>
</tr>
<tr>
<td>15 SEER HP – 2 ton</td>
<td>TEM8A0B24V31</td>
<td>4TW5024G1000A</td>
<td>14 Degrees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4A6H5324G1000A</td>
<td></td>
</tr>
<tr>
<td>15 SEER HP – 3 ton</td>
<td>TEM8A0B30V31</td>
<td>4TW5036G1000A</td>
<td>14 Degrees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4A6H5363G1000A</td>
<td></td>
</tr>
</tbody>
</table>

All other matches must be charged per the nameplate charging instructions

Subcooling Adjustment for TEM8A0C48V41 & TEM8A0C60V51

<table>
<thead>
<tr>
<th>Sub-Cooling Charge Specification For AHRI Rated Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD Equipment</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>AC UNIT</td>
</tr>
<tr>
<td>HP UNIT ≤ 3.5 Tons</td>
</tr>
<tr>
<td>HP UNIT = 4 and 5 Tons</td>
</tr>
</tbody>
</table>
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: York

Model: AE Series

TABLE 4: Electrical Heat: Minimum Fan Speed

<table>
<thead>
<tr>
<th>Heater Kit Models<sup>1,2,3</sup></th>
<th>Nom. kW @ 240V</th>
<th>18B</th>
<th>24B</th>
<th>30B</th>
<th>36B</th>
<th>36C</th>
<th>42C</th>
<th>48C</th>
<th>48D</th>
<th>60C</th>
<th>60D</th>
</tr>
</thead>
<tbody>
<tr>
<td>GKH(1,2)X5502026</td>
<td>19.2kW</td>
<td>–</td>
</tr>
<tr>
<td>GKH(1,2)X5502506</td>
<td>24kW</td>
<td>18B</td>
<td>24B</td>
<td>30B</td>
<td>36B</td>
<td>36C</td>
<td>42C</td>
<td>48C</td>
<td>48D</td>
<td>60C</td>
<td>60D</td>
</tr>
</tbody>
</table>

1. (0,1) = 0 = no service disconnect OR 1 = with service disconnect.
2. (1,2) = 1 = with service disconnect, no breaker jumper bar OR 2 = with service disconnect & breaker jumper bar.
3. 6KH3 = 3-Phase with terminal block connectors only, 6KH4 = 3-Phase with service disconnect.

TABLE 11: Air Flow Data (CFM)¹

<table>
<thead>
<tr>
<th>Models</th>
<th>Blower Motor Speed</th>
<th>External Static Pressure (in. wc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>18B</td>
<td>#5 HI</td>
<td>1132</td>
</tr>
<tr>
<td></td>
<td>#4 M1-HI</td>
<td>1025</td>
</tr>
<tr>
<td></td>
<td>#3 MED</td>
<td>821</td>
</tr>
<tr>
<td></td>
<td>#2 M1-LO</td>
<td>661</td>
</tr>
<tr>
<td></td>
<td>#1 LO</td>
<td>510</td>
</tr>
<tr>
<td>24B</td>
<td>#5 HI</td>
<td>1117</td>
</tr>
<tr>
<td></td>
<td>#4 M1-HI</td>
<td>1032</td>
</tr>
<tr>
<td></td>
<td>#3 MED</td>
<td>838</td>
</tr>
<tr>
<td></td>
<td>#2 M1-LO</td>
<td>644</td>
</tr>
<tr>
<td></td>
<td>#1 LO</td>
<td>474</td>
</tr>
<tr>
<td>30B</td>
<td>#5 HI</td>
<td>1113</td>
</tr>
<tr>
<td></td>
<td>#4 M1-HI</td>
<td>1057</td>
</tr>
<tr>
<td></td>
<td>#3 MED</td>
<td>857</td>
</tr>
<tr>
<td></td>
<td>#2 M1-LO</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>#1 LO</td>
<td>489</td>
</tr>
<tr>
<td>36B</td>
<td>#5 HI</td>
<td>1323</td>
</tr>
<tr>
<td></td>
<td>#4 M1-HI</td>
<td>1255</td>
</tr>
<tr>
<td></td>
<td>#3 MED</td>
<td>1052</td>
</tr>
<tr>
<td></td>
<td>#2 M1-LO</td>
<td>855</td>
</tr>
<tr>
<td></td>
<td>#1 LO</td>
<td>653</td>
</tr>
<tr>
<td>36C</td>
<td>#5 HI</td>
<td>1562</td>
</tr>
<tr>
<td></td>
<td>#4 M1-HI</td>
<td>1277</td>
</tr>
<tr>
<td></td>
<td>#3 MED</td>
<td>1076</td>
</tr>
<tr>
<td></td>
<td>#2 M1-LO</td>
<td>881</td>
</tr>
<tr>
<td></td>
<td>#1 LO</td>
<td>707</td>
</tr>
<tr>
<td>42C</td>
<td>#5 HI</td>
<td>1594</td>
</tr>
<tr>
<td></td>
<td>#4 M1-HI</td>
<td>1442</td>
</tr>
<tr>
<td></td>
<td>#3 MED</td>
<td>1249</td>
</tr>
<tr>
<td></td>
<td>#2 M1-LO</td>
<td>1046</td>
</tr>
<tr>
<td></td>
<td>#1 LO</td>
<td>881</td>
</tr>
</tbody>
</table>
TABLE 11: Air Flow Data (CFM)\(^1\)

<table>
<thead>
<tr>
<th>Models</th>
<th>Blower Motor Speed</th>
<th>External Static Pressure (in. wc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>48C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5 HI</td>
<td>1759</td>
<td>1719</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1684</td>
<td>1639</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1611</td>
<td>1460</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>1305</td>
<td>1260</td>
</tr>
<tr>
<td>#1 LO</td>
<td>1123</td>
<td>1068</td>
</tr>
<tr>
<td>48D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5 HI</td>
<td>1774</td>
<td>1726</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1709</td>
<td>1658</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1484</td>
<td>1436</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>1295</td>
<td>1254</td>
</tr>
<tr>
<td>#1 LO</td>
<td>1102</td>
<td>1051</td>
</tr>
<tr>
<td>60C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5 HI</td>
<td>1964</td>
<td>1930</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1869</td>
<td>1855</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1693</td>
<td>1652</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>1486</td>
<td>1450</td>
</tr>
<tr>
<td>#1 LO</td>
<td>1292</td>
<td>1247</td>
</tr>
<tr>
<td>60D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5 HI</td>
<td>1907</td>
<td>1871</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1851</td>
<td>1816</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1648</td>
<td>1608</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>1456</td>
<td>1416</td>
</tr>
<tr>
<td>#1 LO</td>
<td>1261</td>
<td>1221</td>
</tr>
</tbody>
</table>

1. Air handler units have been tested to UL 1995 / CSA 22.2 standards up to 0.50” wc. external static pressure. Dry coil conditions only, tested without filters.

For optimal performance, external static pressures of 0.2” to 0.5” are recommended. Applications above 0.5” are not recommended.

Airflow data shown is from testing performed at 230V. AE units use a standard ECM constant torque motor, and there is minimal variation of airflow at other distribution voltage values. The above data can be used for airflow at other distribution voltages.

SECTION XI: BLOWER SPEED CONNECTIONS

Adjust blower motor speed to provide airflow within the minimum and maximum limits approved for indoor coil, electric heat and outdoor unit. Make speed tap adjustments at the motor terminal block. Refer to airflow data listed in Table 11. Connect motor wires to motor speed tap receptacle for speed desired.
The standard ECM motor operates when a 24 VAC signal is sent to any of its 5-speed taps. If simultaneous 24 VAC inputs are present, the motor operates at the highest speed tap that is energized. The lowest speed is 1, and the highest speed is 5. The air handler comes factory wired with the electric heat kit connected to tap 5 for the heating speed, and the cooling/heat pump connected to tap 4 for the heating speed. The cooling / heat pump indicating speed is supplied by the thermostat “G” signal.

The electric heat kit wire for the heating speed should be moved from 5 to the appropriate speed tap according to Table 4. If electric heat requires speed tap 5, the highest speed tap available for cooling / heat pump heating is tap 4.

If a lower circulating speed is desired for fan only operation (lower than a heating or cooling fan speed), connect the factory “red” wire shipped on tap #4 into the lowest setting desired. Field install a wire from low voltage “YEL,” and connect it to the motor speed tap desired for cooling / heat pump heating fan speed.

![Diagram](image)

FIGURE 17: Blower Speed Connections

SECTION XIV: AIR SYSTEM ADJUSTMENT

To check the Cubic Feet per Minute (CFM), measure the external duct static using a manometer and static pressure tips. To prepare coil for static pressure measurements run the fan only to assure a dry coil.

NOTICE

Refer to Table 11 for coil Air Flow Data of Cubic Feet Per Minute (CFM).

Drill 2 holes, one 12" away from the air handler in the supply air duct and on 12" away from the air handler in the return air duct (before any elbows in the duct work). Insert the pressure tips, and energize the blower motor. See Table 9 to determine the air flow, and make the necessary adjustments to keep the CFM within the airflow limitations of the coil.

EXTERNAL DUCT STATIC

Measure the supply air static pressure. Record this positive number. Measure the return air static pressure. Record this negative number. Treat the negative number as a positive, and add the two numbers together to determine the total external system static pressure. If a filter rack is installed on the return air end of the air handler or indoor coil section, make sure to measure the return air duct static between the filter and the indoor coil.

![Diagram](image)

FIGURE 18: Duct Static Measurements
Manufacturer: York

Model: AP Series

ELECTRICAL HEAT - MINIMUM FAN SPEED

<table>
<thead>
<tr>
<th>Heater Kit Models 1,2,3</th>
<th>Nom. kW@240V</th>
<th>18B</th>
<th>24B</th>
<th>36B</th>
<th>36C</th>
<th>37C</th>
<th>42C</th>
<th>48C</th>
<th>48D</th>
<th>60C</th>
<th>60D</th>
</tr>
</thead>
<tbody>
<tr>
<td>HK0(1.1)65002000</td>
<td>2.4kW</td>
<td>Med</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>HK0(1.1)65005000</td>
<td>4.6kW</td>
<td>Med</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>HK0(1.1)65008000</td>
<td>7.7kW</td>
<td>High</td>
<td>High</td>
<td>Med</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>HKD(1.1)65010000</td>
<td>9.6kW</td>
<td>High</td>
<td>High</td>
<td>Med</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>HKD(1.2)65013000</td>
<td>12.5kW</td>
<td>Med</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>HKD(1.2)65015000</td>
<td>14.4kW</td>
<td>Med</td>
<td>Low</td>
<td>Med</td>
<td>Low</td>
<td>Med</td>
<td>Med</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>HKD(1.2)65018000</td>
<td>17.3kW</td>
<td>Med</td>
<td>Low</td>
<td>Med</td>
<td>Low</td>
<td>Med</td>
<td>Med</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>HK(1.2)65020000</td>
<td>19.2kW</td>
<td>Med</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Med</td>
<td>Med</td>
<td>High</td>
<td>Med</td>
<td>Med</td>
<td>Med</td>
</tr>
<tr>
<td>HKD(1.2)65025025</td>
<td>24kW</td>
<td>Med</td>
<td>Low</td>
<td>Med</td>
<td>Low</td>
<td>Med</td>
<td>Med</td>
<td>Low</td>
<td>Med</td>
<td>Med</td>
<td>Med</td>
</tr>
</tbody>
</table>

1. (0,1) = 0 with no service disconnect OR 1 = with service disconnect.
2. (1,2) = 1 with service disconnect, no breaker jumper bar OR 2 = with service disconnect & breaker jumper bar.
3. 6HK3 = 3-Phase with terminal block connectors only, 6HK4 = 3-Phase with service disconnect.

APPLICATION FACTORS - RATED CFM VS. ACTUAL CFM

<table>
<thead>
<tr>
<th>% Of Rated Airflow (CFM)</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
<th>110%</th>
<th>120%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Factor</td>
<td>0.96</td>
<td>0.98</td>
<td>1.00</td>
<td>1.02</td>
<td>1.03</td>
</tr>
</tbody>
</table>

BLOWER SPEED CONNECTIONS

- **PSC STANDARD MOTOR**
 - Factory wired to fan motor relay terminal on control board
 - Alternate connection AP60, RFCX60, MP20

- **ALL OTHER AIR HANDLER**
 - Factory wired to transformer
 - High: PRP, Low: BRN, Med: BLK

- **230 VOLT BLOWER MOTOR**
 - Ground: GND.
TABLE 9: Air Flow Data (CFM)\(^1\)

<table>
<thead>
<tr>
<th>Models</th>
<th>Blower Motor Speed</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
<th>0.70</th>
</tr>
</thead>
<tbody>
<tr>
<td>18B</td>
<td>High</td>
<td>723</td>
<td>702</td>
<td>666</td>
<td>576</td>
<td>523</td>
<td>373</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>566</td>
<td>543</td>
<td>480</td>
<td>382</td>
<td>305</td>
<td>183</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>394</td>
<td>330</td>
<td>183</td>
<td>144</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>24B</td>
<td>High</td>
<td>990</td>
<td>973</td>
<td>953</td>
<td>924</td>
<td>885</td>
<td>797</td>
<td>713</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>736</td>
<td>723</td>
<td>703</td>
<td>644</td>
<td>606</td>
<td>540</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>579</td>
<td>562</td>
<td>513</td>
<td>463</td>
<td>395</td>
<td>287</td>
<td>202</td>
</tr>
<tr>
<td>30B</td>
<td>High</td>
<td>1228</td>
<td>1192</td>
<td>1134</td>
<td>1078</td>
<td>1023</td>
<td>951</td>
<td>843</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1023</td>
<td>998</td>
<td>958</td>
<td>915</td>
<td>859</td>
<td>741</td>
<td>677</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>769</td>
<td>745</td>
<td>701</td>
<td>632</td>
<td>577</td>
<td>495</td>
<td>433</td>
</tr>
<tr>
<td>36B</td>
<td>High</td>
<td>1522</td>
<td>1475</td>
<td>1416</td>
<td>1340</td>
<td>1276</td>
<td>1188</td>
<td>1108</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1251</td>
<td>1217</td>
<td>1180</td>
<td>1135</td>
<td>1085</td>
<td>1042</td>
<td>968</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>965</td>
<td>951</td>
<td>936</td>
<td>914</td>
<td>886</td>
<td>836</td>
<td>742</td>
</tr>
<tr>
<td>36C</td>
<td>High</td>
<td>1538</td>
<td>1489</td>
<td>1450</td>
<td>1400</td>
<td>1283</td>
<td>1201</td>
<td>1110</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1159</td>
<td>1147</td>
<td>1096</td>
<td>1042</td>
<td>994</td>
<td>943</td>
<td>877</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>966</td>
<td>933</td>
<td>892</td>
<td>859</td>
<td>812</td>
<td>769</td>
<td>679</td>
</tr>
<tr>
<td>42C</td>
<td>High</td>
<td>1827</td>
<td>1769</td>
<td>1707</td>
<td>1634</td>
<td>1545</td>
<td>1315</td>
<td>1236</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1444</td>
<td>1423</td>
<td>1392</td>
<td>1348</td>
<td>1204</td>
<td>1118</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1136</td>
<td>1140</td>
<td>1116</td>
<td>1041</td>
<td>982</td>
<td>893</td>
<td>842</td>
</tr>
<tr>
<td>48C</td>
<td>High</td>
<td>1688</td>
<td>1643</td>
<td>1583</td>
<td>1507</td>
<td>1441</td>
<td>1357</td>
<td>1062</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1482</td>
<td>1436</td>
<td>1392</td>
<td>1340</td>
<td>1289</td>
<td>1080</td>
<td>971</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1252</td>
<td>1222</td>
<td>1186</td>
<td>1148</td>
<td>1097</td>
<td>928</td>
<td>810</td>
</tr>
<tr>
<td>48D</td>
<td>High</td>
<td>1988</td>
<td>1931</td>
<td>1853</td>
<td>1775</td>
<td>1696</td>
<td>1606</td>
<td>1391</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1672</td>
<td>1636</td>
<td>1587</td>
<td>1522</td>
<td>1439</td>
<td>1302</td>
<td>1139</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1376</td>
<td>1348</td>
<td>1309</td>
<td>1249</td>
<td>1138</td>
<td>1038</td>
<td>973</td>
</tr>
<tr>
<td>60C</td>
<td>High</td>
<td>1851</td>
<td>1813</td>
<td>1757</td>
<td>1680</td>
<td>1601</td>
<td>1513</td>
<td>1262</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1718</td>
<td>1687</td>
<td>1631</td>
<td>1562</td>
<td>1499</td>
<td>1417</td>
<td>1185</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1500</td>
<td>1546</td>
<td>1505</td>
<td>1441</td>
<td>1383</td>
<td>1258</td>
<td>1144</td>
</tr>
<tr>
<td>60D</td>
<td>High</td>
<td>1932</td>
<td>1871</td>
<td>1784</td>
<td>1701</td>
<td>1610</td>
<td>1491</td>
<td>1345</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1705</td>
<td>1734</td>
<td>1660</td>
<td>1500</td>
<td>1510</td>
<td>1402</td>
<td>1225</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1622</td>
<td>1584</td>
<td>1524</td>
<td>1472</td>
<td>1391</td>
<td>1277</td>
<td>1115</td>
</tr>
</tbody>
</table>

1. Air handler units have been tested to UL 1995 / CSA 22.2 standards up to 0.30" wc. external static pressure.
 Dry coil conditions only, tested without filters.
 For optimal performance, external static pressures of 0.2" to 0.5" are recommended. Applications above 0.5" are not recommended.
TABLE 8: Air Flow Data (CFM)1 (Continued)

<table>
<thead>
<tr>
<th>Models</th>
<th>Blower Motor Speed</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
<th>0.70</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>230 Volts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18B</td>
<td>High</td>
<td>806</td>
<td>780</td>
<td>745</td>
<td>687</td>
<td>623</td>
<td>508</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>640</td>
<td>614</td>
<td>563</td>
<td>500</td>
<td>405</td>
<td>284</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>461</td>
<td>414</td>
<td>325</td>
<td>188</td>
<td>156</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>24B</td>
<td>High</td>
<td>1142</td>
<td>1114</td>
<td>1078</td>
<td>1051</td>
<td>988</td>
<td>931</td>
<td>778</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>854</td>
<td>840</td>
<td>826</td>
<td>800</td>
<td>738</td>
<td>688</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>684</td>
<td>663</td>
<td>633</td>
<td>578</td>
<td>510</td>
<td>445</td>
<td>322</td>
</tr>
<tr>
<td>30B</td>
<td>High</td>
<td>1310</td>
<td>1270</td>
<td>1213</td>
<td>1151</td>
<td>1081</td>
<td>1008</td>
<td>917</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1139</td>
<td>1104</td>
<td>1059</td>
<td>1005</td>
<td>952</td>
<td>880</td>
<td>789</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>983</td>
<td>941</td>
<td>804</td>
<td>759</td>
<td>678</td>
<td>606</td>
<td>513</td>
</tr>
<tr>
<td>36B</td>
<td>High</td>
<td>1601</td>
<td>1552</td>
<td>1485</td>
<td>1414</td>
<td>1337</td>
<td>1258</td>
<td>1178</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1385</td>
<td>1352</td>
<td>1302</td>
<td>1252</td>
<td>1193</td>
<td>1106</td>
<td>1067</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1117</td>
<td>1103</td>
<td>1079</td>
<td>1044</td>
<td>1001</td>
<td>945</td>
<td>889</td>
</tr>
<tr>
<td>36C</td>
<td>High</td>
<td>1671</td>
<td>1636</td>
<td>1581</td>
<td>1513</td>
<td>1439</td>
<td>1330</td>
<td>1210</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1326</td>
<td>1310</td>
<td>1280</td>
<td>1238</td>
<td>1162</td>
<td>1081</td>
<td>994</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1125</td>
<td>1102</td>
<td>1059</td>
<td>1014</td>
<td>950</td>
<td>884</td>
<td>827</td>
</tr>
<tr>
<td>42C</td>
<td>High</td>
<td>1924</td>
<td>1861</td>
<td>1778</td>
<td>1707</td>
<td>1618</td>
<td>1442</td>
<td>1271</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1629</td>
<td>1585</td>
<td>1541</td>
<td>1470</td>
<td>1403</td>
<td>1226</td>
<td>1073</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1323</td>
<td>1295</td>
<td>1271</td>
<td>1232</td>
<td>1111</td>
<td>1045</td>
<td>954</td>
</tr>
<tr>
<td>48C</td>
<td>High</td>
<td>1775</td>
<td>1727</td>
<td>1668</td>
<td>1596</td>
<td>1513</td>
<td>1431</td>
<td>1190</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1591</td>
<td>1551</td>
<td>1500</td>
<td>1447</td>
<td>1380</td>
<td>1312</td>
<td>1059</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1392</td>
<td>1363</td>
<td>1317</td>
<td>1267</td>
<td>1206</td>
<td>1025</td>
<td>924</td>
</tr>
<tr>
<td>48D</td>
<td>High</td>
<td>2150</td>
<td>2069</td>
<td>1988</td>
<td>1894</td>
<td>1812</td>
<td>1690</td>
<td>1481</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1878</td>
<td>1812</td>
<td>1752</td>
<td>1677</td>
<td>1604</td>
<td>1497</td>
<td>1258</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1583</td>
<td>1543</td>
<td>1493</td>
<td>1437</td>
<td>1332</td>
<td>1164</td>
<td>1075</td>
</tr>
<tr>
<td>60C</td>
<td>High</td>
<td>1931</td>
<td>1889</td>
<td>1808</td>
<td>1730</td>
<td>1655</td>
<td>1566</td>
<td>1472</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1845</td>
<td>1798</td>
<td>1731</td>
<td>1659</td>
<td>1581</td>
<td>1498</td>
<td>1249</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1726</td>
<td>1692</td>
<td>1640</td>
<td>1578</td>
<td>1503</td>
<td>1416</td>
<td>1174</td>
</tr>
<tr>
<td>60D</td>
<td>Medium</td>
<td>2040</td>
<td>1969</td>
<td>1885</td>
<td>1779</td>
<td>1686</td>
<td>1562</td>
<td>1439</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>1917</td>
<td>1861</td>
<td>1779</td>
<td>1694</td>
<td>1604</td>
<td>1492</td>
<td>1299</td>
</tr>
</tbody>
</table>

1. Air handler units have been tested to UL 1995 / CSA 22.2 standards up to 0.30" wc. external static pressure. Dry coil conditions only, tested without filters. For optimal performance, external static pressures of 0.2" to 0.5" are recommended. Applications above 0.5" are not recommended.

SECTION XIV: AIR SYSTEM ADJUSTMENT

To check the Cubic Feet per Minute (CFM), measure the external duct static using a manometer and static pressure tips. To prepare coil for static pressure measurements run the fan only to assure a dry coil.

NOTICE

Refer to Table 8 for coil Air Flow Data of Cubic Feet Per Minute (CFM).

Drill 2 holes, one 12" away from the air handler in the supply air duct and on 12" away from the air handler in the return air duct (before any elbows in the duct work). Insert the pressure tips, and energize the blower motor. See Table 8 to determine the air flow, and make the necessary adjustments to keep the CFM within the airflow limitations of the coil.
EXTERNAL DUCT STATIC
Measure the supply air static pressure. Record this positive number.
Measure the return air static pressure. Record this negative number.
Treat the negative number as a positive, and add the two numbers together to determine the total external system static pressure. If a filter rack is installed on the return air end of the air handler or indoor coil section, make sure to measure the return air duct static between the filter and the indoor coil.

FIGURE 17: Duct Static Measurements
PTCS External Static Pressure – CFM Manufacturer Lookup Tables

Manufacturer: York

Model: AVC Series

SECTION XII: AIRFLOW AND COMFORT SETTING SELECTION

AIRFLOW SELECTION

When not using communicating functionality, the airflow and comfort setting selection jumpers must be set properly at the time of installation for proper system operation. Place jumpers in the proper locations based on the information shown in Table 15 & Figure 17.

Inputs to air handler control board are passed to the motor which determines the target CFM to be delivered. The following inputs will produce the CFM per the appropriate table and selected tap settings.

NOTICE

Incorrect airflow and comfort settings may result in decreased system efficiency and performance.

These variable speed air handlers are designed to deliver constant airflow (CFM) regardless of the external static pressure (ESP) in the ductwork. Therefore, if too many supply registers are closed, a filter becomes clogged, or there is a restriction in the ductwork, the motor will automatically operate at a higher speed to compensate for the higher ESP. This may result in a higher operating sound level and motor damage.

To Set Cooling Airflow:

Refer to the outdoor unit technical guides for the recommended airflow with the matching indoor coil. Refer to Table 15 for the possible high speed cooling and heat pump airflow selections.

Find the recommended system airflow in Table 15 for the installed air handler model and outdoor unit.

Select the COOL airflow needed from Table 15. Set the COOL and ADJUST Jumpers on the control as indicated in Table 15.

TABLE 8: Electrical Heat: Minimum Fan Speed

<table>
<thead>
<tr>
<th>Heater Kit Models 1,2,3</th>
<th>Nom. kW @240V</th>
<th>18B</th>
<th>24B</th>
<th>30B</th>
<th>36B</th>
<th>36C</th>
<th>42C</th>
<th>48C</th>
<th>48D</th>
<th>60C</th>
<th>60D</th>
</tr>
</thead>
<tbody>
<tr>
<td>6HK(0,1)6500206</td>
<td>2.4kW</td>
<td>Med Lo (D)</td>
</tr>
<tr>
<td>6HK(0,1)6500506</td>
<td>4.8kW</td>
<td>Med Lo (D)</td>
<td>Med C (C)</td>
</tr>
<tr>
<td>6HK(0,1)6500606</td>
<td>7.7kW</td>
<td>Med C (C)</td>
<td>Med Hi (B)</td>
</tr>
<tr>
<td>6HK(0,1)6501006 6HK36501025</td>
<td>9.6kW</td>
<td>Med C (C)</td>
<td>Med Hi (B)</td>
</tr>
<tr>
<td>6HK(1,2)6501306</td>
<td>12.5kW</td>
<td>–</td>
<td>Med Hi (B)</td>
<td>Med Hi (B)</td>
<td>Med C (C)</td>
</tr>
<tr>
<td>6HK(1,2)6501506 6HK36501525</td>
<td>14.4kW</td>
<td>–</td>
<td>–</td>
<td>Med Hi (B)</td>
</tr>
<tr>
<td>6HK(1,2)6501806 6HK36501825</td>
<td>17.3kW</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Med Hi (B)</td>
</tr>
<tr>
<td>6HK(1,2)6502006 6HK46502025</td>
<td>19.2kW</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Hi (A)</td>
<td>Hi (A)</td>
<td>Hi (A)</td>
<td>Hi (A)</td>
<td>Hi (A)</td>
<td>Hi (A)</td>
</tr>
<tr>
<td>6HK(1,2)6502506 6HK46502525</td>
<td>24kW</td>
<td>–</td>
</tr>
</tbody>
</table>

1. (0,1) = 0 = no service disconnect OR 1 = with service disconnect.
2. (1,2) = 1 = with service disconnect, no breaker jumper bar OR 2 = with service disconnect & breaker jumper bar.
3. 6HK3 = 3-Phase with terminal block connectors only, 6HK4 = 3-Phase with service disconnect.
To Set Heat Pump Airflow:
The heat pump airflow setting is the same as the cooling airflow setting. No additional airflow setting is required. However, you must set the AC/HP jumper to the HP position for proper system operation (See Figure 17).

To Set Electric W1 Heat Airflow:
The blower speed required for 1st stage electric heat is different than cooling. Refer to Table 15 for the possible CFM selections. Refer to Table 8 for the minimum required airflow for the electric heater installed. Find the desired airflow in Table 15 for low heat. Set the HEAT jumper on the control as indicated in Table 15.

To Set W2 Electric Heat Airflow:
Airflow for any W2 input, which is for Stages 2 & 3 of electric heat, is the indicated CFM for high heat tap selection on Table 10.

CAUTION
DO NOT change the ADJUST tap position on the control as this will change your cooling airflow previously selected.

Blower Ramp-Up / Ramp-Down:
To minimize the sound made by the blower when it speeds up or slows down, the blower will slowly ramp up or down from one speed to another. Changes in blower speed during A/C or heat pump heating can take up to 30 seconds. Changes in blower speed during electric resistance heating can take up to 15 seconds.

COMFORT SETTINGS
TABLE 5: Comfort Setting Selection

<table>
<thead>
<tr>
<th>DELAY TAP</th>
<th>COMFORT SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Normal</td>
</tr>
<tr>
<td>B</td>
<td>Humid</td>
</tr>
<tr>
<td>C</td>
<td>Dry</td>
</tr>
<tr>
<td>D</td>
<td>Temperate</td>
</tr>
</tbody>
</table>

Normal
The normal setting provides a ramp-up from zero airflow to full capacity and a ramp-down from full capacity back to zero airflow.

Humid
The humid setting is best suited for installations where the humidity is frequency very high during cooling season, such as in the southern part of the country. On a call for cooling, the blower will ramp up to 60% of full capacity and will stay there for two minutes, then will ramp up to 82% of full capacity and will stay there for two minutes, and then will ramp up to full capacity, where it will stay until the wall thermostat is satisfied.

Dry
The dry setting is best suited to parts of the country where excessive humidity is not generally a problem, where the summer months are usually dry. On a call for cooling, the motor will ramp up to full capacity and will stay there until the thermostat is satisfied. At the end of the cooling cycle, the blower will ramp down to 50% of full capacity where it will stay for 60 seconds. Then it will ramp down to zero.

Temperate
The temperate setting is best suited for most of the country, where neither excessive humidity nor extremely dry conditions are the norm. On a call for cooling, the motor will ramp up to 83% of full capacity and will stay there for 60 seconds, then will ramp up to full capacity. At the end of the cooling cycle, the motor will ramp down to 83% of full capacity and will stay there for 30 seconds, then will ramp down to zero.
TABLE 15: Air Flow Data (CFM)

<table>
<thead>
<tr>
<th>Cool Tap</th>
<th>ADJ Tap</th>
<th>18B High</th>
<th>18B Low</th>
<th>24B High</th>
<th>24B Low</th>
<th>36B High</th>
<th>36B Low</th>
<th>36C High</th>
<th>36C Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>810</td>
<td>527</td>
<td>1022</td>
<td>562</td>
<td>1060</td>
<td>731</td>
<td>1350</td>
<td>875</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>675</td>
<td>438</td>
<td>795</td>
<td>437</td>
<td>1013</td>
<td>656</td>
<td>1238</td>
<td>804</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>720</td>
<td>468</td>
<td>900</td>
<td>495</td>
<td>1000</td>
<td>650</td>
<td>1200</td>
<td>780</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>600</td>
<td>390</td>
<td>700</td>
<td>385</td>
<td>900</td>
<td>585</td>
<td>1100</td>
<td>715</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>630</td>
<td>410</td>
<td>783</td>
<td>431</td>
<td>875</td>
<td>569</td>
<td>1050</td>
<td>683</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>534</td>
<td>347</td>
<td>766</td>
<td>421</td>
<td>944</td>
<td>549</td>
<td>1125</td>
<td>731</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>525</td>
<td>341</td>
<td>609</td>
<td>335</td>
<td>788</td>
<td>512</td>
<td>963</td>
<td>626</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>450</td>
<td>293</td>
<td>568</td>
<td>312</td>
<td>703</td>
<td>457</td>
<td>900</td>
<td>585</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>475</td>
<td>309</td>
<td>675</td>
<td>371</td>
<td>750</td>
<td>488</td>
<td>1000</td>
<td>650</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>400</td>
<td>260</td>
<td>500</td>
<td>275</td>
<td>625</td>
<td>406</td>
<td>800</td>
<td>520</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>416</td>
<td>270</td>
<td>587</td>
<td>323</td>
<td>656</td>
<td>427</td>
<td>875</td>
<td>569</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>350</td>
<td>228</td>
<td>435</td>
<td>239</td>
<td>547</td>
<td>355</td>
<td>700</td>
<td>455</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cool Tap</th>
<th>ADJ Tap</th>
<th>42C High</th>
<th>42C Low</th>
<th>48C High</th>
<th>48C Low</th>
<th>48D High</th>
<th>48D Low</th>
<th>60C High</th>
<th>60C Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>1596</td>
<td>1037</td>
<td>1760</td>
<td>1144</td>
<td>1760</td>
<td>1144</td>
<td>1860</td>
<td>1308</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>1400</td>
<td>910</td>
<td>1540</td>
<td>1001</td>
<td>1540</td>
<td>1001</td>
<td>1640</td>
<td>1196</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>1425</td>
<td>926</td>
<td>1600</td>
<td>1040</td>
<td>1600</td>
<td>1040</td>
<td>1750</td>
<td>1138</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>1250</td>
<td>813</td>
<td>1400</td>
<td>910</td>
<td>1400</td>
<td>910</td>
<td>1551</td>
<td>1028</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>1268</td>
<td>824</td>
<td>1424</td>
<td>926</td>
<td>1424</td>
<td>926</td>
<td>1531</td>
<td>995</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>1344</td>
<td>874</td>
<td>1330</td>
<td>858</td>
<td>1320</td>
<td>858</td>
<td>1551</td>
<td>1028</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>1113</td>
<td>723</td>
<td>1246</td>
<td>810</td>
<td>1246</td>
<td>810</td>
<td>1400</td>
<td>910</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>1120</td>
<td>728</td>
<td>1100</td>
<td>715</td>
<td>1100</td>
<td>715</td>
<td>1323</td>
<td>860</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>1200</td>
<td>780</td>
<td>1200</td>
<td>780</td>
<td>1200</td>
<td>780</td>
<td>1375</td>
<td>894</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>1000</td>
<td>650</td>
<td>1000</td>
<td>650</td>
<td>1000</td>
<td>650</td>
<td>1150</td>
<td>748</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>1068</td>
<td>694</td>
<td>1068</td>
<td>694</td>
<td>1068</td>
<td>694</td>
<td>1203</td>
<td>782</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>890</td>
<td>579</td>
<td>890</td>
<td>579</td>
<td>890</td>
<td>579</td>
<td>1006</td>
<td>654</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heat Tap</th>
<th>18B High</th>
<th>18B Low</th>
<th>24B High</th>
<th>24B Low</th>
<th>36B High</th>
<th>36B Low</th>
<th>36C High</th>
<th>36C Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>850</td>
<td>850</td>
<td>1025</td>
<td>980</td>
<td>1025</td>
<td>850</td>
<td>1225</td>
<td>1020</td>
</tr>
<tr>
<td>B</td>
<td>750</td>
<td>750</td>
<td>960</td>
<td>960</td>
<td>960</td>
<td>775</td>
<td>1150</td>
<td>950</td>
</tr>
<tr>
<td>C</td>
<td>675</td>
<td>675</td>
<td>725</td>
<td>725</td>
<td>750</td>
<td>750</td>
<td>950</td>
<td>950</td>
</tr>
<tr>
<td>D</td>
<td>425</td>
<td>425</td>
<td>580</td>
<td>580</td>
<td>580</td>
<td>580</td>
<td>725</td>
<td>725</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heat Tap</th>
<th>42C High</th>
<th>42C Low</th>
<th>48C High</th>
<th>48C Low</th>
<th>48D High</th>
<th>48D Low</th>
<th>60C High</th>
<th>60C Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1430</td>
<td>1200</td>
<td>1650</td>
<td>1200</td>
<td>1650</td>
<td>1150</td>
<td>1850</td>
<td>1250</td>
</tr>
<tr>
<td>B</td>
<td>1375</td>
<td>1150</td>
<td>1550</td>
<td>1150</td>
<td>1600</td>
<td>1050</td>
<td>1775</td>
<td>1200</td>
</tr>
<tr>
<td>C</td>
<td>1150</td>
<td>1050</td>
<td>1375</td>
<td>1050</td>
<td>1325</td>
<td>1000</td>
<td>1570</td>
<td>1150</td>
</tr>
<tr>
<td>D</td>
<td>900</td>
<td>900</td>
<td>1150</td>
<td>1000</td>
<td>1125</td>
<td>760</td>
<td>1370</td>
<td>1050</td>
</tr>
</tbody>
</table>

1. Air handler units have been tested to UL 1095 / CSA 22.2 standards up to 0.50" wc. external static pressure.

SECTION XV: AIR SYSTEM ADJUSTMENT
To check the Cubic Feet per Minute (CFM), measure the external duct static using a manometer and static pressure tips. To prepare cost for static pressure drop measurements run the fan only to assure a dry coil. Drill 2 holes, one 12" away from the air handler in the supply air duct and one 12" away from the air handler in the return air duct (before any elbows in the duct work). Insert the pressure tips and read the pressure drop from the manometer.
EXTERNAL DUCT STATIC

Measure the supply air static pressure. Record this positive number. Measure the return air static pressure. Record this negative number. Treat the negative number as a positive, and add the two numbers together to determine the total external system static pressure. If a filter rack is installed on the return air end of the air handler or indoor coil section, make sure to measure the return air duct static between the filter and the indoor coil.

FIGURE 22: Duct Static Measurements
Adjust blower motor speed to provide airflow within the minimum and maximum limits approved for indoor coil, electric heat and outdoor unit. Make speed tap adjustments at the motor terminal block. Refer to airflow data listed in Table 11. Connect motor wires to motor speed tap receptacle for speed desired.

The standard ECM motor operates when a 24 VAC signal is sent to any of its 5-speed taps. If simultaneous 24 VAC inputs are present, the motor operates at the highest speed tap that is energized. The lowest speed is 1, and the highest speed is 5. The air handler comes factory wired with the electric heat kit connected to tap 5 for the heating speed, and the cooling heat pump connected to tap 4 for the heating speed. The cooling / heat pump indicating speed is supplied by the thermostat “G” signal.

The electric heat kit wire for the heating speed should be moved from 5 to the appropriate speed tap according to Table 4. If electric heat requires speed tap 5, the highest speed tap available for cooling / heat pump heating is tap 4.

If a lower circulating speed is desired for fan only operation (lower than a heating or cooling fan speed), connect the factory “red” wire shipped on tap #4 into the lowest setting desired. Field install a wire from low voltage “YEL” and connect it to the motor speed tap desired for cooling / heat pump heating fan speed.

FIGURE 10: Blower Speed Connections
<table>
<thead>
<tr>
<th>Heater Kit Models (^1) (^2) (^3)</th>
<th>Nom. kW @240V</th>
<th>Air Handler Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ME08B</td>
<td>ME12B</td>
</tr>
<tr>
<td>6HK(0,1)6500206</td>
<td>2.4kW</td>
<td>Med Lo (#2)</td>
</tr>
<tr>
<td>6HK(0,1)6500506</td>
<td>4.6kW</td>
<td>Med (#3)</td>
</tr>
<tr>
<td>6HK(0,1)6500806</td>
<td>7.7kW</td>
<td>Med Hi (#4)</td>
</tr>
<tr>
<td>6HK(0,1)6501006 8HK36501025</td>
<td>9.6kW</td>
<td>Med Hi (#4)</td>
</tr>
<tr>
<td>6HK(1,2)6501306</td>
<td>12.5kW</td>
<td>Hi (#5)</td>
</tr>
<tr>
<td>6HK(1,2)6501506 8HK36501525</td>
<td>14.4kW</td>
<td>–</td>
</tr>
<tr>
<td>6HK(1,2)6501806 8HK36501825</td>
<td>17.3kW</td>
<td>–</td>
</tr>
<tr>
<td>6HK(1,2)6502006 8HK46502025</td>
<td>19.2kW</td>
<td>–</td>
</tr>
<tr>
<td>6HK(1,2)6502506 8HK46502525</td>
<td>24kW</td>
<td>–</td>
</tr>
</tbody>
</table>

1. \(0\) \(0\) = no service disconnect OR 1 = with service disconnect.
2. \(1.2\) = 1 = with service disconnect, no breaker jumper bar OR 2 = with service disconnect & breaker jumper bar.
3. 6HK3 = 3-Phase with terminal block connectors only, 6HK4 = 3-Phase with service disconnect.
<table>
<thead>
<tr>
<th>Models</th>
<th>CM Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ME08B</td>
<td>CM16B</td>
</tr>
<tr>
<td>#5 HI</td>
<td>939</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>833</td>
</tr>
<tr>
<td>#3 MED</td>
<td>638</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>533</td>
</tr>
<tr>
<td>#1 LO</td>
<td>479</td>
</tr>
<tr>
<td>#5 HI</td>
<td>923</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>846</td>
</tr>
<tr>
<td>#3 MED</td>
<td>631</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>570</td>
</tr>
<tr>
<td>#1 LO</td>
<td>477</td>
</tr>
<tr>
<td>ME24B</td>
<td>CM30B</td>
</tr>
<tr>
<td>#5 HI</td>
<td>937</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>845</td>
</tr>
<tr>
<td>#3 MED</td>
<td>639</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>560</td>
</tr>
<tr>
<td>#1 LO</td>
<td>481</td>
</tr>
<tr>
<td>ME12B</td>
<td>CM36B</td>
</tr>
<tr>
<td>#5 HI</td>
<td>1355</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1273</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1074</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>882</td>
</tr>
<tr>
<td>#1 LO</td>
<td>659</td>
</tr>
<tr>
<td>CM30B</td>
<td>CM36B</td>
</tr>
<tr>
<td>#5 HI</td>
<td>1354</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1268</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1069</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>859</td>
</tr>
<tr>
<td>#1 LO</td>
<td>654</td>
</tr>
<tr>
<td>CM16B</td>
<td>CM30B</td>
</tr>
<tr>
<td>#5 HI</td>
<td>1533</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1490</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1295</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>1099</td>
</tr>
<tr>
<td>#1 LO</td>
<td>803</td>
</tr>
<tr>
<td>CM36B</td>
<td>CM30D</td>
</tr>
<tr>
<td>#5 HI</td>
<td>1504</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1568</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1263</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>1074</td>
</tr>
<tr>
<td>#1 LO</td>
<td>868</td>
</tr>
</tbody>
</table>

TABLE 11: Air Flow Data (CFM)

<table>
<thead>
<tr>
<th>Models</th>
<th>CM Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go To Model List
TABLE 11: Air Flow Data (CFM)

<table>
<thead>
<tr>
<th>Models</th>
<th>CM Models</th>
<th>Blower Motor Speed</th>
<th>External Static Pressure (in. wc)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>CM36C</td>
<td>#5 HI</td>
<td>1776</td>
<td>1735</td>
</tr>
<tr>
<td></td>
<td>#4 MED-HI</td>
<td>1701</td>
<td>1683</td>
</tr>
<tr>
<td></td>
<td>#3 MED</td>
<td>1522</td>
<td>1475</td>
</tr>
<tr>
<td></td>
<td>#2 MED-LO</td>
<td>1267</td>
<td>1259</td>
</tr>
<tr>
<td>#1 LO</td>
<td>1112</td>
<td>1052</td>
<td>1002</td>
</tr>
<tr>
<td>#5 HI</td>
<td>1754</td>
<td>1719</td>
<td>1678</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1678</td>
<td>1637</td>
<td>1599</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1465</td>
<td>1454</td>
<td>1411</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>1286</td>
<td>1235</td>
<td>1198</td>
</tr>
<tr>
<td>#1 LO</td>
<td>1110</td>
<td>1056</td>
<td>1006</td>
</tr>
<tr>
<td>#5 HI</td>
<td>1769</td>
<td>1727</td>
<td>1689</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1692</td>
<td>1648</td>
<td>1605</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1554</td>
<td>1505</td>
<td>1461</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>1389</td>
<td>1256</td>
<td>1213</td>
</tr>
<tr>
<td>#1 LO</td>
<td>1118</td>
<td>1057</td>
<td>1007</td>
</tr>
<tr>
<td>#5 HI</td>
<td>1764</td>
<td>1757</td>
<td>1720</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1690</td>
<td>1643</td>
<td>1604</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1554</td>
<td>1505</td>
<td>1461</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>1393</td>
<td>1259</td>
<td>1216</td>
</tr>
<tr>
<td>#1 LO</td>
<td>1114</td>
<td>1056</td>
<td>1006</td>
</tr>
<tr>
<td>#5 HI</td>
<td>1796</td>
<td>1747</td>
<td>1709</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1721</td>
<td>1674</td>
<td>1637</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1584</td>
<td>1537</td>
<td>1493</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>1409</td>
<td>1313</td>
<td>1272</td>
</tr>
<tr>
<td>#1 LO</td>
<td>1118</td>
<td>1057</td>
<td>1007</td>
</tr>
<tr>
<td>#5 HI</td>
<td>1783</td>
<td>1735</td>
<td>1698</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1708</td>
<td>1664</td>
<td>1620</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1571</td>
<td>1526</td>
<td>1482</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>1407</td>
<td>1315</td>
<td>1274</td>
</tr>
<tr>
<td>#1 LO</td>
<td>1114</td>
<td>1056</td>
<td>1006</td>
</tr>
<tr>
<td>#5 HI</td>
<td>1783</td>
<td>1735</td>
<td>1698</td>
</tr>
<tr>
<td>#4 MED-HI</td>
<td>1708</td>
<td>1664</td>
<td>1620</td>
</tr>
<tr>
<td>#3 MED</td>
<td>1571</td>
<td>1526</td>
<td>1482</td>
</tr>
<tr>
<td>#2 MED-LO</td>
<td>1407</td>
<td>1315</td>
<td>1274</td>
</tr>
<tr>
<td>#1 LO</td>
<td>1114</td>
<td>1056</td>
<td>1006</td>
</tr>
</tbody>
</table>

1. Air handler units have been tested to UL 1995 / CSA 22.2 No. 236 standards up to 0.50" wc. external static pressure.
 Dry coil conditions only, tested without filters.
 For optimal performance, external static pressures of 0.2" to 0.5" are recommended. Heating applications tested at 0.50" w.c. esp.
 Airflow data shown is from testing performed at 230V. AE units use a standard ECM constant torque motor, and there is minimal variation of airflow at other
 distribution voltages. The above data can be used for airflow at other distribution voltages.

SECTION XI: AIR SYSTEM ADJUSTMENT
To check the Cubic Feet per Minute (CFM), measure the static pressure drop across the air handler using a manometer and static pressure tips. To prepare coil for static pressure drop measurements run the fan only to assure a dry coil.

NOTICE
Refer to Table 9 for coil Air Flow Data of Cubic Feet Per Minute (CFM). Run the fan on the highest speed to be used.
Drill 2 holes, one 12" away from the air handler in the supply air duct and on 12" away from the air handler in the return air duct (before any elbows in the duct work). Insert the pressure taps and read the pressure drop from the manometer. See Table 9 to determine the airflow, and make the necessary adjustments to keep the CFM within the airflow limitations of the coil.

EXTERNAL DUCT STATIC

Measure the supply air static pressure. Record this positive number. Measure the return air static pressure. Record this negative number. Treat the negative number as a positive, and add the two numbers together. This is total system static. If a filter rack is installed on the return air end of the air handler or indoor coil section, the return air duct static must be measured between the filter and the indoor coil.
Manufacturer: York

Model: MVC Series

SECTION IX: AIRFLOW AND COMFORT SETTING SELECTION

AIRFLOW SELECTION
When not using communicating functionality, the airflow and comfort setting selection jumpers must be set properly at the time of installation for proper system operation. Place jumpers in the proper locations based on the information shown in Tables 8 & 15.

Inputs to air handler control board are passed to the motor which determines the target CFM to be delivered. The following inputs will produce the CFM per the appropriate table and selected tap settings.

NOTICE
Incorrect airflow and comfort settings may result in decreased system efficiency and performance.

These variable speed air handlers are designed to deliver constant airflow (CFM) regardless of the external static pressure (ESP) in the ductwork. Therefore, if too many supply registers are closed, a filter becomes clogged, or there is a restriction in the ductwork, the motor will automatically operate at a higher speed to compensate for the higher ESP. This may result in a higher operating sound level and motor damage.

To Set Cooling Airflow:
Refer to the outdoor unit technical guide for the recommended airflow with the matching indoor coil. Refer to Table 15 for the possible high speed cooling and heat pump airflow selections.

Find the recommended system airflow in Table 15 for the installed air handler model and outdoor unit.

Select the COOL airflow you need from Table 15. Set the COOL and ADJUST Jumpers on the control as indicated in Table 15.

TABLE 8: Electrical Heat - Minimum Fan Speed

<table>
<thead>
<tr>
<th>Heater Kit Models1,2,3</th>
<th>Nom. kW @240V</th>
<th>MVC08B</th>
<th>MVC12B</th>
<th>MVC14D</th>
<th>MVC16C</th>
<th>MVC20D</th>
</tr>
</thead>
<tbody>
<tr>
<td>6HK(0,1)6500206</td>
<td>2.4kW</td>
<td>Med Lo (D)</td>
</tr>
<tr>
<td>6HK(0,1)6500506</td>
<td>4.8kW</td>
<td>Med (C)</td>
<td>Med Lo (D)</td>
<td>Med Lo (D)</td>
<td>Med Lo (D)</td>
<td>Med Lo (D)</td>
</tr>
<tr>
<td>6HK(0,1)6500806</td>
<td>7.7kW</td>
<td>Med Hi (B)</td>
<td>Med Lo (D)</td>
<td>Med Lo (D)</td>
<td>Med (C)</td>
<td>Med Lo (D)</td>
</tr>
<tr>
<td>6HK(0,1)6501006 6HK36501025</td>
<td>9.6kW</td>
<td>Med Hi (B)</td>
<td>Med Lo (D)</td>
<td>Med (C)</td>
<td>Med Lo (D)</td>
<td>Med Lo (D)</td>
</tr>
<tr>
<td>6HK(1,2)6501306</td>
<td>12.5kW</td>
<td>Hi (A)</td>
<td>Med Hi (B)</td>
<td>Med (C)</td>
<td>Med Lo (D)</td>
<td>Med Lo (D)</td>
</tr>
<tr>
<td>6HK(1,2)6501506 6HK36501525</td>
<td>14.4kW</td>
<td>--</td>
<td>Hi (A)</td>
<td>Med (C)</td>
<td>Med Lo (D)</td>
<td>Med Lo (D)</td>
</tr>
<tr>
<td>6HK(1,2)6501806 6HK36501825</td>
<td>17.3kW</td>
<td>--</td>
<td>Hi (A)</td>
<td>Med Hi (B)</td>
<td>Med (C)</td>
<td>Med (C)</td>
</tr>
<tr>
<td>6HK(1,2)6502006 6HK46502025</td>
<td>19.2kW</td>
<td>--</td>
<td>Hi (A)</td>
<td>--</td>
<td>Med Hi (B)</td>
<td>Med (C)</td>
</tr>
<tr>
<td>6HK(1,2)6502506 6HK46502525</td>
<td>24kW</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Med (C)</td>
</tr>
</tbody>
</table>

1. (0,1) - 0 = no service disconnect OR 1 = with service disconnect.
2. (1,2) - 1 = with service disconnect, no breaker jumper bar OR 2 = with service disconnect & breaker jumper bar.
3. 6HK3 = 3-Phase with terminal block connectors only, 6HK4 = 3-Phase with service disconnect.
To Set Heat Pump Airflow:
The heat pump airflow setting is the same as the cooling airflow setting. No additional airflow setting is required. However, you must set the AC/HP jumper to the HP position for proper system operation (See Figure 10).

To Set Electric W/ Heat Airflow:
The blower speed required for 1st stage electric heat is different than cooling. Refer to Table 15 for the possible CFM selections. Refer to Table 8 for the minimum required airflow for the electric heater installed. Find the desired airflow in Table 15 for low heat. Set the HEAT jumper on the control as indicated in Table 15.

To Set W2 Electric Heat Airflow:
Airflow for any W2 input, which is for Stages 2 & 3 of electric heat, is the indicated CFM for high heat tap selection on Table 15.

CAUTION
DO NOT change the ADJUST tap position on the control as this will change your cooling airflow previously selected.

Blower Ramp-Up / Ramp-Down:
To minimize the sound made by the blower when it speeds up or slows down, the blower will slowly ramp up or down from one speed to another. Changes in blower speed during A/C or heat pump heating can take up to 30 seconds. Changes in blower speed during electric resistance heating can take up to 15 seconds.

COMFORT SETTINGS

<table>
<thead>
<tr>
<th>TABLE 6: Comfort Setting Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELAY TAP</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

Normal
The normal setting provides a ramp-up from zero airflow to full capacity and a ramp-down from full capacity back to zero airflow.

Humid
The humid setting is best-suited for installations where the humidity is frequently very high during cooling season, such as in the southern part of the country. On a call for cooling, the blower will ramp up to 50% of full capacity and will stay there for two minutes, then will ramp up to 82% of full capacity and will stay there for five minutes, and then will ramp up to full capacity, where it will stay until the wall thermostat is satisfied.

Dry
The dry setting is best suited to parts of the country where excessive humidity is not generally a problem, where the summer months are usually dry. On a call for cooling the motor will ramp up to full capacity and will stay there until the thermostat is satisfied. At the end of the cooling cycle, the blower will ramp down to 50% of full capacity where it will stay for 60 seconds. Then it will ramp down to zero.

Temperate
The temperate setting is best suited for most of the country, where neither excessive humidity nor extremely dry conditions are the norm. On a call for cooling, the motor will ramp up to 03% of full capacity and will stay there for 90 seconds, then will ramp up to full capacity. At the end of the cooling cycle, the motor will ramp down to 63% of full capacity and will stay there for 30 seconds, then will ramp down to zero.
TABLE 15: Air Flow Data (CFM)

High/Low Speed Cooling and Heat Pump CFM

<table>
<thead>
<tr>
<th>Cool Tap</th>
<th>ADJ Tap²</th>
<th>MVC08B</th>
<th>MVC12B</th>
<th>MVC14D</th>
<th>MVC16C</th>
<th>MVC20D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>1022</td>
<td>562</td>
<td>1350</td>
<td>878</td>
<td>1425</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>795</td>
<td>437</td>
<td>1238</td>
<td>804</td>
<td>1425</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>900</td>
<td>460</td>
<td>1290</td>
<td>760</td>
<td>1425</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>700</td>
<td>365</td>
<td>1120</td>
<td>716</td>
<td>1250</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>783</td>
<td>431</td>
<td>1050</td>
<td>683</td>
<td>1286</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>766</td>
<td>421</td>
<td>1125</td>
<td>731</td>
<td>1344</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>690</td>
<td>335</td>
<td>963</td>
<td>626</td>
<td>1113</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>568</td>
<td>312</td>
<td>1000</td>
<td>650</td>
<td>1120</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>675</td>
<td>371</td>
<td>1000</td>
<td>650</td>
<td>1200</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>500</td>
<td>275</td>
<td>800</td>
<td>520</td>
<td>1000</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>587</td>
<td>323</td>
<td>875</td>
<td>569</td>
<td>1068</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>435</td>
<td>239</td>
<td>700</td>
<td>455</td>
<td>890</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cool Tap</th>
<th>ADJ Tap²</th>
<th>MVC08B</th>
<th>MVC12B</th>
<th>MVC14D</th>
<th>MVC16C</th>
<th>MVC20D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>28.9</td>
<td>15.9</td>
<td>38.2</td>
<td>24.8</td>
<td>40.4</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>22.5</td>
<td>12.4</td>
<td>35.0</td>
<td>22.8</td>
<td>43.4</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>25.5</td>
<td>14.0</td>
<td>34.0</td>
<td>22.1</td>
<td>43.4</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>19.8</td>
<td>10.9</td>
<td>31.1</td>
<td>20.2</td>
<td>35.4</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>22.2</td>
<td>12.2</td>
<td>26.7</td>
<td>19.3</td>
<td>35.9</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>21.7</td>
<td>11.9</td>
<td>31.9</td>
<td>20.7</td>
<td>33.1</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>17.2</td>
<td>9.5</td>
<td>27.3</td>
<td>17.7</td>
<td>31.5</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>16.1</td>
<td>8.8</td>
<td>25.5</td>
<td>16.6</td>
<td>31.7</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>19.1</td>
<td>10.5</td>
<td>28.3</td>
<td>18.4</td>
<td>34.0</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>14.2</td>
<td>7.8</td>
<td>22.7</td>
<td>14.7</td>
<td>23.3</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>16.8</td>
<td>9.1</td>
<td>24.8</td>
<td>16.1</td>
<td>32.2</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>12.3</td>
<td>6.8</td>
<td>18.8</td>
<td>12.9</td>
<td>25.2</td>
</tr>
</tbody>
</table>

High/Low Speed Heat CFM

<table>
<thead>
<tr>
<th>Heat Tap</th>
<th>ADJ Tap²</th>
<th>MVC08B</th>
<th>MVC12B</th>
<th>MVC14D</th>
<th>MVC16C</th>
<th>MVC20D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Any</td>
<td>1022</td>
<td>980</td>
<td>1225</td>
<td>1020</td>
<td>1425</td>
</tr>
<tr>
<td>B</td>
<td>Any</td>
<td>960</td>
<td>960</td>
<td>1150</td>
<td>950</td>
<td>1325</td>
</tr>
<tr>
<td>C</td>
<td>Any</td>
<td>725</td>
<td>725</td>
<td>860</td>
<td>750</td>
<td>1125</td>
</tr>
<tr>
<td>D</td>
<td>Any</td>
<td>580</td>
<td>580</td>
<td>725</td>
<td>725</td>
<td>900</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heat Tap</th>
<th>ADJ Tap²</th>
<th>MVC08B</th>
<th>MVC12B</th>
<th>MVC14D</th>
<th>MVC16C</th>
<th>MVC20D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Any</td>
<td>29.0</td>
<td>27.8</td>
<td>34.7</td>
<td>28.9</td>
<td>43.4</td>
</tr>
<tr>
<td>B</td>
<td>Any</td>
<td>27.2</td>
<td>27.2</td>
<td>32.6</td>
<td>26.9</td>
<td>37.5</td>
</tr>
<tr>
<td>C</td>
<td>Any</td>
<td>20.5</td>
<td>20.5</td>
<td>26.9</td>
<td>21.2</td>
<td>31.9</td>
</tr>
<tr>
<td>D</td>
<td>Any</td>
<td>16.4</td>
<td>16.4</td>
<td>20.5</td>
<td>20.5</td>
<td>25.5</td>
</tr>
</tbody>
</table>

1. Air handler units have been tested to UL 1995 / CSA 22.2 standards up to 0.50” w.c. external static pressure.
2. The ADJ tap does not affect the HEAT tap setting.
3. Low speed cooling used only with two stage outdoor units. Speed is preset to 65% of high speed.
4. High speed cooling used with only one stage outdoor units.
5. Dehumidification speed is 85% of jumper selected COOL tap and ADJUST tap.
6. Some settings, LOW COOL and/or LOW HEAT airflow may be lower than what is required to operate an airflow switch on some models of electronic air cleaners. Consult the instructions for the electronic air cleaner for further details.
7. Airflow (CFM) indicator light (LED) flashes once for every 100 CFM (i.e. 12 flashes is 1200 CFM) – blinks are approximate +/- 10% of actual CFM.
SECTION XII: AIR SYSTEM ADJUSTMENT

To check the Cubic Feet per Minute (CFM), measure the external duct static using a manometer and static pressure tips. To prepare coil for static pressure drop measurements run the fan only to assure a dry coil. Drill 2 holes, one 12” away from the air handler in the supply air duct and on 12” away from the air handler in the return air duct (before any elbows in the duct work). Insert the pressure tips and read the pressure drop from the manometer.

EXTERNAL DUCT STATIC

Measure the supply air static pressure. Record this positive number. Measure the return air static pressure. Record this negative number. Treat the negative number as a positive, and add the two numbers together to determine the total external system static pressure. If a filter rack is installed on the return air end of the air handler or indoor coil section, make sure to measure the return air duct static between the filter and the indoor coil.

FIGURE 15: Duct Static Measurements