

BPA's 2024 Resource Program Planning and Development

Public Workshop

June 1, 2023

Agenda

Time Start	Time End	Торіс	Presenter(s)
9 a.m.	9:05 a.m.	Intro and Expectations	Brian Dombeck
9:05 a.m.	9:30 a.m.	Power Planning at BPA	Ryan Egerdahl
9:30 a.m.	10:00 a.m.	Mechanics of Identifying Resource Solutions	Eric Graessley
10:00 a.m.	10:15 a.m.	BREAK	
10:15 a.m.	11:10 a.m.	RP24 Scenarios and Sensitivities	Adela Arguello Eric Graessley Hanna Lee Erin Riley
11:00 a.m.	11:15 a.m.	BREAK	
11:15 a.m.	11:55 a.m.	Public Discussion and Q&A	All
11:55 a.m.	12 p.m.	Wrap Up	Brian Dombeck

Format

- Presenters will take pauses for questions.
- Questions will be addressed in the order received.
- Please state your name and organization.
- If a question/opportunity for feedback arises during a presentation, please:
 - Webex: Write it in the Webex Q&A or raise your Webex hand; when called on, mute/unmute yourself.

Note: The "Chat" feature in Webex has been disabled for this meeting. Please type Questions in the "Q&A" box or raise your hand to be recognized.

Workshop Roles & Expectations

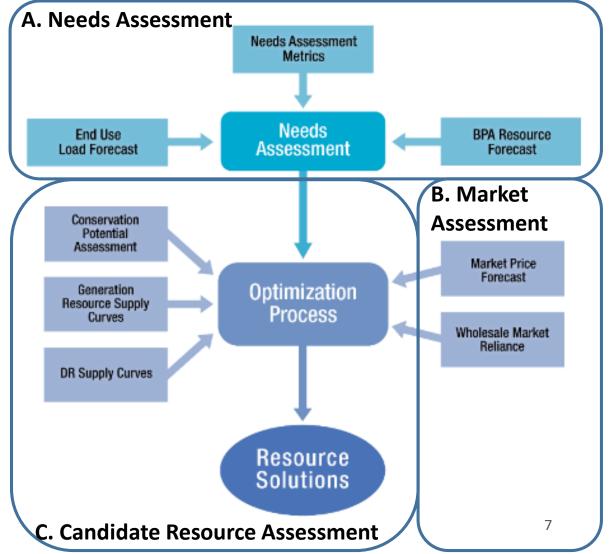
Bonneville: Provide open and inclusive opportunities for feedback.

Participants: Provide feedback and share perspectives.

All: Respect one another and assume good intentions.

Bring a constructive mentality.

BPA Power Planning Overview


Power Planning at BPA

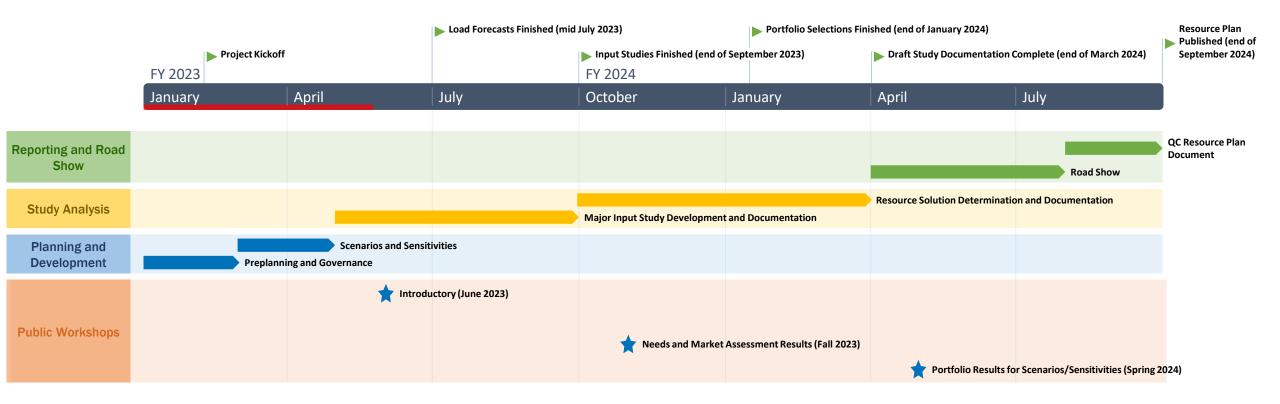
- Each year, BPA publishes the Pacific Northwest Loads and Resources Study – often referred to as the **White Book** - which analyzes BPA's projections of retail loads, contract obligations, contract purchases, and resource capabilities over a 10-year study horizon and describes expected energy and capacity deficits under varying water conditions.
- On a biennial basis, long-term power planners in BPA Power services conduct an IRP-like assessment collectively referred to as the **Resource Program** which examines uncertainty in loads, water supply, natural gas prices, and electricity market prices to develop a least-cost portfolio of resources that meet BPA's obligations.
- These processes are voluntarily undertaken to inform acquisition strategies and provide valuable insight into how Bonneville can meet its obligations and strategic objectives cost-effectively. <u>They</u> <u>are neither decision documents nor a process required by any</u> <u>external entity.</u>

BPA Resource Program Process Map

- A. The **Needs Assessment** measures the federal system's expected generating resource capabilities to meet projected load obligations and produces a set of metrics which characterize the expected surplus/deficit of the existing system over the study period.
- B. The Market Assessment simulates the evolution of power markets in the Western Interconnect to generate a long-term forecast of Mid-Columbia prices and market availability under a variety of generation, load, and economic conditions
- C. The **Candidate Resource Assessment** explores how the varying costs, performance, and availability of candidate demand-and-supply-side resources (including conservation, demand response, market purchases, and generating resources) can be used to provide a least-cost resource strategy for meeting identified needs

Key Findings of the 2022 Resource Program

- The Needs Assessment found that over the 10-year study period of FY24-33 the federal system was projected to have HLH energy deficits, most notably in the winter and late summer, and to have surpluses under the Super-Peak and the 18-Hour Capacity metrics with the P10 HLH metric deficits representing the most constrained periods and conditions for BPA to meet its obligations.
- The **Market Assessment** found that prices were expected to exhibit significant volatility over time, including relatively tight market conditions in key summer/winter months and a high-likelihood of negative average prices in the spring
- Least-cost resource strategies identified in the Candidate Resource Assessment relied primarily on conservation, demand response, and market purchases to fill expected system needs, with renewables showing up in costlier, volatility-reducing portfolios
 - Conservation Potential Assessment (CPA) and Demand Response Potential Assessment (DRPA) produced by external consultants and relied on supply curves developed and used by the Northwest Power and Conservation Council (NWPCC) in its 2021 Power Plan
 - Cost and performance characteristics of candidate supply-side resources developed from external information in conjunction with SME judgment
 - Market expected to have adequate availability to fill needs over most of study horizon, with notable exceptions emerging in October months later in the study.


For RP24, a Complex Planning Environment

- New long-term power contracts (2028)
- Regional and national clean energy policies
- Supply chain challenges
- Emergent technologies, markets, and programs

Planning Approach to 2024 Resource Program

- Maintain emphasis on examining how various uncertainties influence identified least-cost resource solutions
- Expand analysis to include limited topological considerations to further align BPA power planning with the Western Power Pool's (WPP) Western Resource Adequacy Program (WRAP)
- Replace Aurora portfolio optimization methodology with new solver developed by BPA specifically for the Resource Program in determining least-cost resource strategy for meeting identified needs
- Two scenarios:
 - Base case
 - Accelerated clean energy transition (Fast Transition)
- Sensitivity Analyses (more details later in presentation)
 - Stress system loads and generating resources
 - Costs and availability of candidate resources
 - Prices and ability to rely on wholesale power market

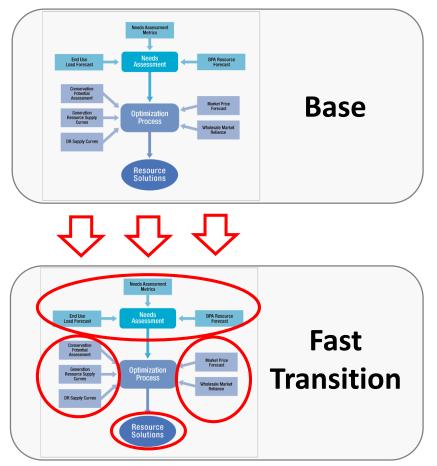
2024 Resource Program Timeline

*For illustrative purposes only. All dates tentative and subject to change

Resource Program Connection to Provider of Choice

To help inform BPA customer contract elections:

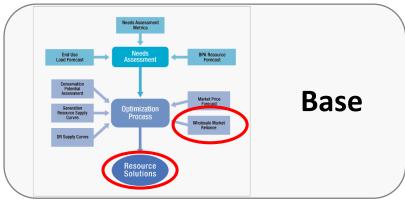
- Provides valuable insight into potential BPA resource portfolio sizes, costs, and compositions;
- Evaluates the implied fuel mix and carbon content of BPA system;

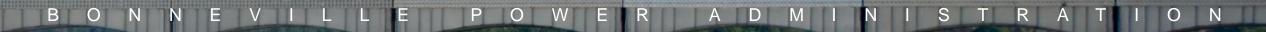

Resource Program Connection to NWPCC Planning

- Council's Power Plan
- Conservation and 6(b) of the 1980 Northwest Power Act (NWPA)
 - BPA Energy Efficiency Action Plan (EEAP)
- "Major resources" and 6(c) of the 1980 NWPA
 - Planned capability greater than 50 aMW acquired for period of more than 5 years

RP24 Planning Framework

<u>Scenarios</u>

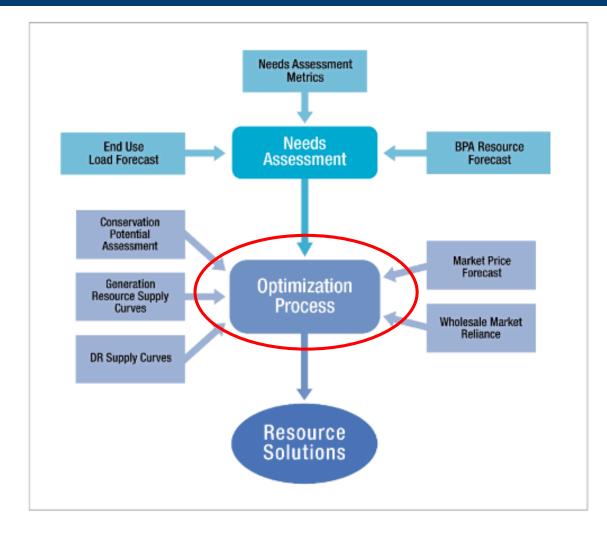

Scenarios are comprised of a set of inputs that are consistently developed for a future outlook.



<u>Sensitivities</u>

Changes to individual input assumptions (or smaller subsets of input assumptions) within a given scenario.

- Provide BPA decision-makers with additional options to address key strategic interests (PoC / Carbon Vision, etc).
- Evaluate solution sensitivity to specific assumptions
- Assess solution robustness.

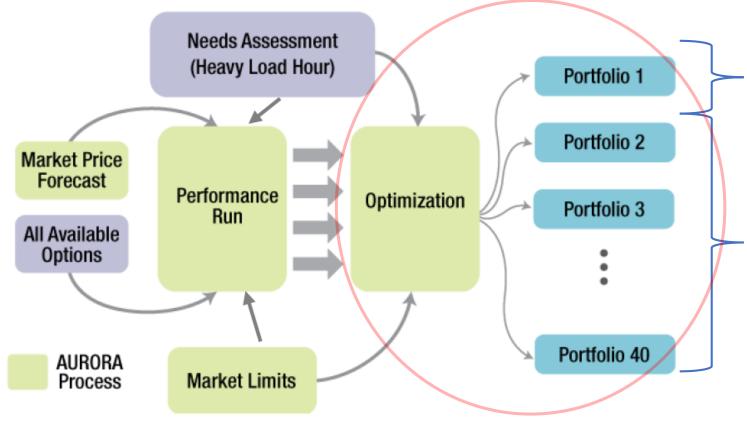


Resource Selection Methodology

BONNEVILLE POWER ADMINISTRATION

The Solver (Optimization Process)

Outline


Aurora's Portfolio Optimization (old process)

- Quick review
- Issues and limitations

New Solver

- Main benefits
- Focus on addressing uncertainty through scenarios + sensitivities

Aurora Portfolio Optimization Review

Aurora solves for:

1) The least-cost solution (portfolio)* that satisfies monthly p10 HLH energy needs over the planning horizon

2) 39 additional portfolios that minimize *variation* of total costs—reducing the overall <u>range</u> of potential financial outcomes under different possible future conditions, given the selected resources and market reliance

*A solution, or portfolio, is a combination of selected resources and market reliance that meet needs over the planning horizon

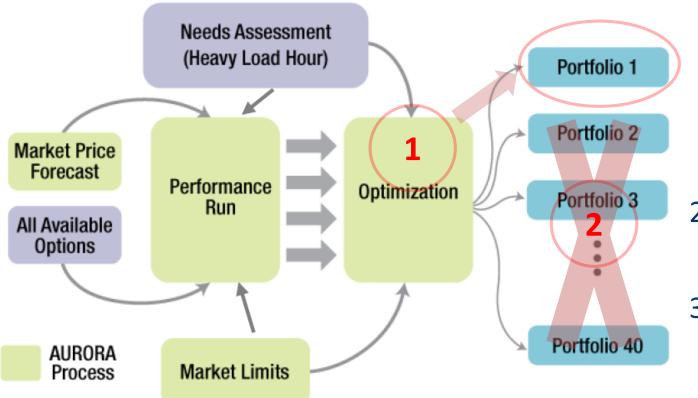
Aurora Portfolio Optimization Issues and Limitations

• Very poor fit for BPA needs

- The portfolio optimization is designed for more traditional utility planning (meet annual planning reserve margins and low variability energy needs)
- Extensive modifications / customizations are required to capture BPA's stochastic energy needs and 18-hour capacity metric
- Limited developer appetite to support changes that impact only one user of the model

• ~12-24 hours of runtime to solve for one case / scenario

• Vast majority related to inefficient data management


• Highly time consuming to modify once working

- Evaluating key drivers of resource selection decisions required significant time and effort
- Very limited ability to accommodate exploratory analysis

• 39 variance reducing portfolios have arbitrary budget limits, limited comparative value across cases, and often largely fail to reduce risk

- The model would increase spending by \$50-100+ million to reduce risks by \$10 million (roughly analogous to paying \$50,000 to insure a \$25,000 car)
- Does not explicitly address tail risks (adverse outcomes were becoming more likely and had higher costs)

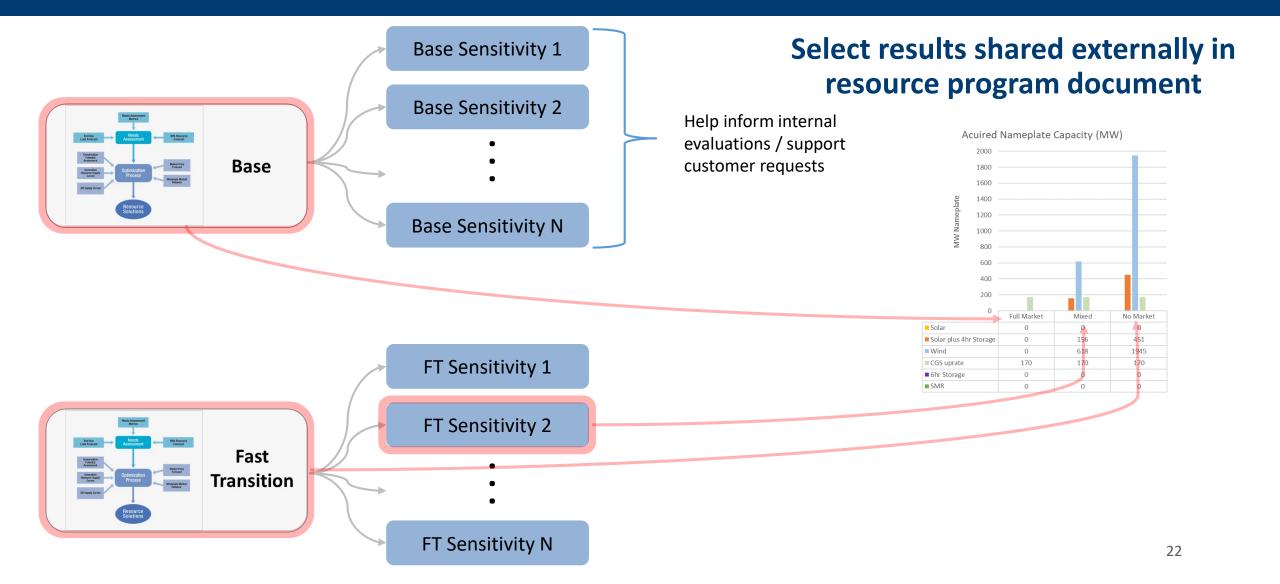
New Solver

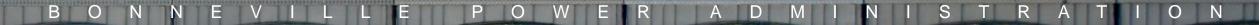
1.Replaces Aurora, finds the least cost solution to all needs with optimization using well established algorithms and solvers widely available in statistical programming tools (R/Python)

2. Eliminates variance reduction portfolios

3.Provides numerous additional benefits (next slide)

New Solver Benefits

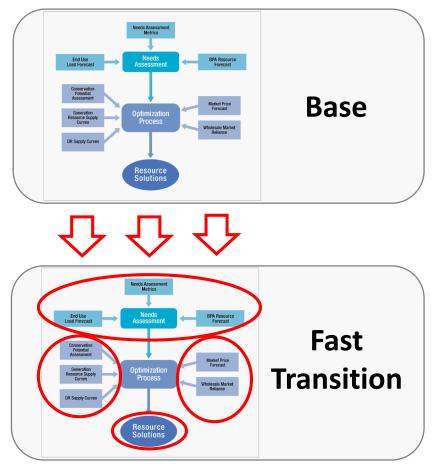

Can model all existing BPA needs


- Separately or any combination of monthly p10 energy for HLH/LLH/super-peak/graveyard/flat
- 18-hour summer and winter capacity metric
- Readily accommodate WRAP metrics separately or in combination with other BPA needs
- High flexibility enables us to focus on addressing risk and uncertainty through scenarios + sensitivities
 - Gives us the ability to tie different resource selections to specific risks
 - Evaluate key drivers of resource selection decisions to better understand results
 - More readily accommodates evolving agency priorities and uncertain policy environment

• Estimated 10 minute solve time per case

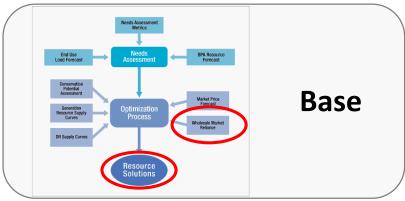
For comparison, Aurora typically solves for about 150 billion variables when producing the rate case price forecast with ~ 1 week of solve time. For a single hour of a single iteration of that study, Aurora is solving for about 6,200 variables with tens of thousands of constraints in a fraction of a second. The new solver will only need to evaluate about 200 variables with 1,000-2,000 constraints.

Making Sense of Results


Scenarios and Sensitivities

RP24 Planning Framework

<u>Scenarios</u>


Scenarios are comprised of a set of inputs that are consistently developed for a future outlook.

<u>Sensitivities</u>

Changes to individual input assumptions (or smaller subsets of input assumptions) within a given scenario.

- Provide BPA decision-makers with additional options to address key strategic interests (PoC / Carbon Vision, etc).
- Evaluate solution sensitivity to specific assumptions
- Assess solution robustness.

Two Scenarios: Base and Fast Transition

Category	Base	Fast Transition (relative to base)
BPA Loads	 Expected, mid-range load growth with average economic activity Electrification / behind-the-meter (BTM) solar PV consistent with current policy Two zones (primary and BPA-SE) Expected conservation removed ("Frozen efficiency") Current customer elections Climate change impacts on technology saturation and temperature adjustments 	 Moderately higher load growth, slightly elevated economic activity Higher electrification/ BTM solar PV, and speculative loads
BPA Resources	 Federal hydro under 2020 EIS selected alternative & AOP24 treaty Planned FCRPS upgrades (increased capacity at some plants during study period) Current CGS (no uprate) Climate change impacts on hydro generation from RMJOC-II, 2035 and beyond. 	Same as Base scenario
Energy Efficiency and Demand Response	 Refresh Conservation Potential Assessment (CPA) based on new industry trends and updated study years Include frequently deployable energy shifting products in the Demand Response Potential Assessment (DRPA) and update study years Incorporate zonal considerations and updated climate change assumptions 	Adjust potential based on load
Market Landscape	 Mid-range values for all fundamental assumptions (expected case WECC-wide loads, gas prices, resource costs, carbon prices, etc.) All current Federal/state policies High likelihood resource additions/retirements over next rate period Climate change not explicitly accounted for in WECC loads/resources 	 Higher electrification and moderately higher load growth WECC-wide carbon allowance pricing Accelerated decarbonization targets and/or additional ZEM targets in areas currently lacking explicit policies
Candidate Generating Resources	 High likelihood emerging tech (SMRs), solar, wind, and storage. Cost and performance characteristics developed from best available estimates using BPA specific assumptions 	Same as Base scenario
Solver	 Twenty year study horizon (FY26-FY45) Mixed-integer programming (MIP) approach solves for single portfolio which meets BPA needs at lowest total system cost (NPV) 	Same as Base scenario 25

Potential Sensitivities

Sensitivity	Details
BPA Loads – Traditional Load Growth	 Higher T2 elections of existing customer base (AHWM load growth is served by BPA), customers serve less of their own load growth with non-federal resources Load characteristics set by scenarios (Base, FT) Adjust EE/DR potential (if applicable)
BPA Loads – Block Adder	 Capture impact from additional flat block obligations placed on BPA e.g. 5(b) contracts from IOUs or NLSL from existing customers
Transmission – Possible B2H Delay	• Capture impact from hypothetical delay to energization of B2H and transfer service capability from Mid-C to BPA-SE
Market - Prices	 Positional shifts in price distribution reflecting sustained changes in energy prices (higher/lower) Changes to shape of price distribution to reflect increased tail risk from additional extreme events or significant renewables buildouts
Market – Availability	Changes to BPA ability to meet needs by relying on market purchases
Candidate Resources – Costs/Availability	 Costs and availability of candidate supply-side resources Cost/benefits of EE/DR from UCT perspective
Evaluate Incremental Need Impacts	• Run solver with no needs, only HLH energy, and only capacity to better understand contributors to resource selection
Study Horizon	 Consider shorter time horizon (e.g. ten instead of twenty years) to see how near term resource selections are influenced by long term assumptions



Discussion

Next Steps

*For illustrative purposes only. All dates tentative and subject to change

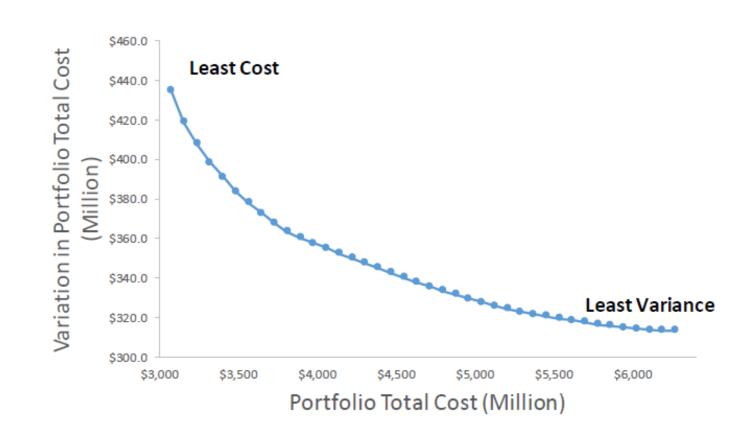
Get in Touch

Resource Program Contacts:

Ryan Egerdahl, Program Manager, <u>rjegerdahl@bpa.gov</u> Brian Dombeck, Program Coordinator, <u>bjdombeck@bpa.gov</u>

Find Us:

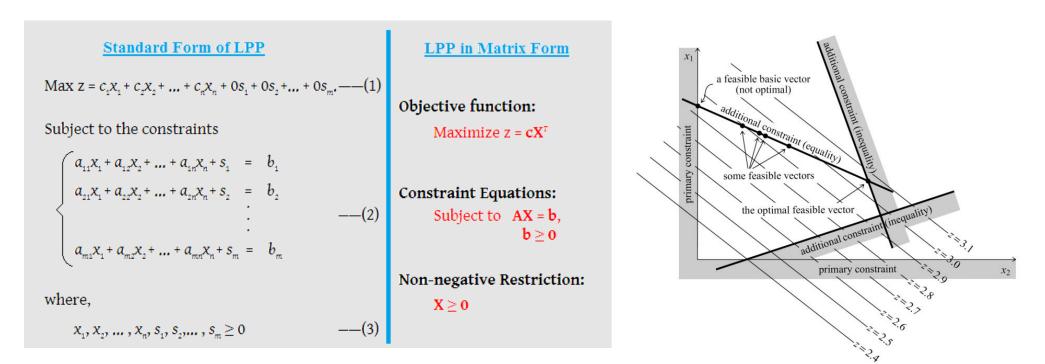
Email: <u>ResourceProgram@bpa.gov</u> Web: <u>Resource Planning (bpa.gov)</u>



Appendix: Solver

Aurora Portfolio Optimization Variance Reduction

- BPA selected 40 portfolios to calculate the trade-offs between minimizing total cost against the variation of portfolio costs.
- After developing the two end points (least cost / least variance), the range of average total portfolio cost was then split up across the 40 portfolios
- For each point along this range, the model solved for a result that minimizes total portfolio variation without exceeding that particular total cost level.



Constrained Optimization Refresher

- Objective function (min / max)
- Linear constraints
- Restrictions on decision variables

Linear program / other solvers* evaluate these systems of equations to find values for all decision variables that satisfy all constraints and produce the highest / lowest result of the objective function

*For more, Gurobi has a great <u>summary</u> of how they solve mixed integer problems

Max z = $c_{1}x_{1} + c_{2}x_{2}$ Subject to the co $\begin{cases} a_{11}x_{1} + a_{12}x_{2} + a_{21}x_{1} + a_{22}x_{2} + a_{21}x_{1} + a_{22}x_{2} + a_$) Object N Const) S Non-r	P in Matri tive function Aaximize z = raint Equat subject to A negative Res $\zeta \ge 0$	on: = cX^T tions: tX = b, $b \ge 0$		Filler v 3 r 6 n 0 On On	esource nonths e year e year	eprese e optio of ene summ resou	enting: ons ergy ne ier and	winter costs (capacity needs levelized fixed cc	osts + va	riable	
			Solar	Wind	SMR	MR_jan	MR_feb	MR_mar	MR_apr	MR_may	MR_jun			
Decision Variables Objective	Resource	eCost (\$M)	0.00 311.9	0.00 329.3	0.34 386.3	0.50 29.4	0.45 27.2	0.42 22.1	0.37 15.9	0.37 14.0	0.36 13.2	Total Portfolio Cost (\$M)		
Function	Portfolio	Cost (\$M)	0.0	0.0	132.1	14.7	12.2	9.2	5.8	5.1	4.7	183.9		
		Month	Solar	Wind	SMR	MR ian	MR feb	MR mar	MR anr	MR_may	MR iun	Needs	Acquired	
		Jan	791	1541	950	649	0	0	0	0	0	649	649	
		Feb	1054	1194	950	0	590	0	0	0	0	590	590	
	Energy	Mar	1414	1655	950	0	0	557	0	0	0	557	557	
	(aMW)	Apr	1433	1620	950	0	0	0	506	0	0	506	506	
		May	1753	1473	950	0	0	0	0	512	0	512	512	
Constraints		Jun	1929	1762	950	0	0	0	0	0	506	506	506	
	Capacity	Summer	250	500	950	0	0	0	0	0	0	325	325	
	capacity	Winter	750	750	950	0	0	0	0	0	0	275	325	
						2	-	-	-	-	-			
	WRAP	Summer	250	500	950	0	0	0	0	0	0	162.5	325	33
		Winter	750	750	<i>950</i>	0	0	0	0	0	0	137.5	325	

	rd Form of Ll	+ 0s ₂ + + 0s _m ((1)	<u>P in Matri</u> tive functio		Objective function										
Subject to the co	onstraints			/laximize z =			Solve for decision variables (amounts of resources to									
$(a_{1}, x_{1} + a_{1}, x_{2} + a_{3})$	$(a_{11}X_1 + a_{12}X_2 + + a_{1n}X_n + s_1) = b_1$						acquire) that minimize total portfolio costs									
$\begin{cases} a_{21}x_1 + a_{22}x_2 + . \end{cases}$	$\begin{cases} a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + s_2 = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + s_m = b_m \end{cases} $ (2)				Constraint Equations: Subject to $AX = b$, $b \ge 0$			acquire) that minimize total portiono costs								
(mi 1 m2 2	mn n m	m	Non-n	legative Re	striction:											
where,				د≥0												
$X_{1}, X_{2}, \dots, X_{n}, S$	$s_1, s_2, \ldots, s_m \ge 0$	(3)													
			Solar	Wind	SMR	MR_jan	MR_feb	MR_mar	MR_apr	MR_may	MR_jun					
Decision Variables			0.00	0.00	0.34	0.50	0.45	0.42	0.37	0.37	0.36	Total Portfolio				
	Resource	eCost (\$M)	311.9	329.3	386.3	29.4	27.2	22.1	15.9	14.0	13.2	Cost (\$M)				
Objective Function	Portfolio	Cost (\$M)	0.0	0.0	132.1	14.7	12.2	9.2	5.8	5.1	4.7	183.9				
		Month	Solar	Wind	SMR	MR_jan	MR_feb	MR_mar	MR_apr	MR_may	MR_jun	Needs	Acquired			
		Jan	791	1541	950	649	0	0	0	0	0	649	649			
		Feb	1054	1194	950	0	590	0	0	0	0	590	590			
	Energy	Mar	1414	1655	950	0	0	557	0	0	0	557	557			
	(aMW)	Apr	1433	1620	950	0	0	0	506	0	0	506	506			
		May	1753	1473	950	0	0	0	0	512	0	512	512			
Constraints		Jun	1929	1762	950	0	0	0	0	0	506	506	506			
	Capacity	Summer	250	500	950	0	0	0	0	0	0	325	325			
		Winter	750	750	950	0	0	0	0	0	0	275	325			
	WRAP	Summer	250	500	950	0	0	0	0	0	0	162.5	325			
		Winter	750	750	950	0	0	0	0	0	0	137.5	325			

	<u>Standa</u>	rd Form of L	<u>PP</u>	LI	<u>PP in Matri</u>	<u>x Form</u>		-		•							
			$_{1} + 0s_{2} + + 0s_{m}$	(1) Object	Objective function:			Constraints									
	Subject to the co	onstraints		Ν	/laximize z =	= cX ^T		Use January to show how constraints are									
	$\int a_{11} x_1 + a_{12} x_2 +$	$ + a_{1n} x_n + s_1 =$					repi	resent	ed								
	$a_{21}x_1 + a_{22}x_2 +$	$ + a_{2n} x_n + s_2 =$	Const	raint Equat	ions:												
	1	$\dots + a_{2n} X_n + S_2 =$	(2) <mark>S</mark>	ubject to A													
	$a_{m1}x_1 + a_{m2}x_2 +$	+ + $a_{mn} x_n + s_m$	$= b_m$			$b \ge 0$											
				Non-n	egative Re	striction:											
	where,			Х	$\zeta \ge 0$												
	$X_1, X_2, \dots, X_n,$	$s_1, s_2, \dots, s_m \ge 0$		(3)													
				Solar	Wind	SMR	MR_jan	MR_feb	MR_mar	MR_apr	MR_may	MR_jun					
	Decision																
	Variables			0.00	0.00	0.34	0.50	0.45	0.42	0.37	0.37	0.36	Total Portfolio				
				311.9	329.3	386.3	29.4	27.2	22.1	15.9	14.0	13.2	Cost (\$M)				
	Objective																
		Doutfolio	Cost (CNA)	0.0	0.0	132.1	117	12.2	9.2	FO	E 1	A 7	102.0				
	Function	Portiono	Cost (\$M)	0.0	0.0	192.1	14.7	12.2	9.2	5.8	5.1	4.7	183.9				
			Month	Solar	Wind	SMR	MP ion	MP fob	MP mar	MR_apr	MP may		Needs	Acquired			
			Jan	791	1541	950	649	0		0	0	0	649	649			
			Feb					-	-	-							
		Energy	Mar	1054 1414	1194 1655	950 950	0 0	590 0	0 557	0 0	0 0	0 0	590 557	590 557			
		(aMW)		1414	1620	950 950	0	0	0	506	0	0	506	506			
		(alvivv)	Apr May	1455 1753	1020	950 950	0	0	0	0	512	0	512	512			
C	onstraints		Jun	1929	1473	950 950	0	0	0	0	0	506	506	506			
C	onstraints		Jun	1929	1702	330	U	U	U	U	U	500	500	500			
		Canacity	Summer	250	500	950	0	0	0	0	0	0	325	325			
		capacity	Winter	750	750	950	0	0	0	0	0	0	275	325			
			whiter	750	750	550	0	0	0	0	0	0	215	525			
		WRAP	Summer	250	500	950	0	0	0	0	0	0	162.5	325			
			Winter	250 750	750	950 950	0	0	0	0	0	0	137.5	325			

<u>Standa</u>	ard Form of L	<u>PP</u>	LI	<u>PP in Matri</u>	<u>x Form</u>											
$\operatorname{Max} z = c_1 x_1 + c_2 x_2$	$x_2 + \dots + c_n x_n + 0 s_n$	$_{1} + 0s_{2} + + 0s_{m}$	(1)													
Subject to the co	constraints			Objective function: Maximize z = cX ^T												
	+ + $a_{in}X_n + S_i$	= b	, i i i	iaximize z -	- CA											
			Const	raint Equat	tions:											
{		(Subject to AX = b ,			Jan Energy Constraint 791 * X_1 + 1541 * X_2 + 950 * X_3 + 649 * X_4									
$a_{m1}x_1 + a_{m2}x_2$	+ + $a_{2n}X_n + S_2$ + + $a_{mn}X_n + S_m$	$= b_m$			$b \ge 0$		Juit 1						13 1 0 1 9			
			Non-r	iegative Re	striction:											
where,		,		$0 \leq \lambda$												
$X_1, X_2, \dots, X_n,$	$, s_1, s_2, \dots, s_m \ge 0$	(CN 4 D											
			Solar	Wind	SMR	IVIK_Jan	MR_feb	IVIK_mar	IVIK_apr	IVIR_may						
Decision			0.00	0.00	0.04	0.50	0.45	0.00	0.07	0.07	0.00	Total Portfolio				
			0.00	0.00	0.34	0.50	0.45	0.42	0.37	0.37	0.36					
	Resource	eCost (\$M)	311.9	329.3	386.3	29.4	27.2	22.1	15.9	14.0	13.2	Cost (\$M)				
Objective																
The second s	-															
unction	Portfolio	Cost (\$M)	0.0	0.0	132.1	14.7	12.2	9.2	5.8	5.1	4.7	183.9				
Function	Portfolio															
Function	Portfolio	Month	Solar	Wind	SMR	MR_jan	MR_feb	MR_mar	MR_apr	MR_may	MR_jun	Needs	Acquired			
Function	Portfolio	Month Jan	Solar 791	Wind 1541	SMR 950	MR_jan 649	MR_feb 0	MR_mar 0	MR_apr 0	MR_may 0	MR_jun 0	Needs 649	Acquired 649			
Function	Portfolio	Month	Solar	Wind	SMR	MR_jan	MR_feb	MR_mar	MR_apr	MR_may	MR_jun	Needs	Acquired			
Function		Month Jan Feb	Solar 791 1054	Wind 1541 1194	SMR 950 950	MR_jan 649 0	MR_feb 0 590	MR_mar 0 0	MR_apr 0 0	MR_may 0 0	MR_jun 0 0	Needs 649 590	Acquired 649 590			
	Energy (aMW)	Month Jan Feb Mar	Solar 791 1054 1414	Wind 1541 1194 1655	SMR 950 950 950	MR_jan 649 0 0	MR_feb 0 590 0	<u>MR_mar</u> 0 0 557	MR_apr 0 0 0	MR_may 0 0 0	MR_jun 0 0 0	Needs 649 590 557	Acquired 649 590 557			
	Energy (aMW)	Month Jan Feb Mar Apr	Solar 791 1054 1414 1433	Wind 1541 1194 1655 1620	SMR 950 950 950 950	MR_jan 649 0 0 0	MR_feb 0 590 0 0	MR_mar 0 0 557 0	MR_apr 0 0 0 506	<u>MR_may</u> 0 0 0 0	MR_jun 0 0 0 0 0	Needs 649 590 557 506	Acquired 649 590 557 506			
	Energy (aMW)	Month Jan Feb Mar Apr May Jun	Solar 791 1054 1414 1433 1753 1929	Wind 1541 1194 1655 1620 1473 1762	SMR 950 950 950 950 950 950	MR_jan 649 0 0 0 0 0	MR_feb 0 590 0 0 0 0	MR_mar 0 557 0 0 0	MR_apr 0 0 506 0 0	MR_may 0 0 0 512 0	MR_jun 0 0 0 0 0 506	Needs 649 590 557 506 512 506	Acquired 649 590 557 506 512 506			
	Energy (aMW)	Month Jan Feb Mar Apr May Jun Summer	Solar 791 1054 1414 1433 1753 1929 250	Wind 1541 1194 1655 1620 1473 1762	SMR 950 950 950 950 950 950	MR_jan 649 0 0 0 0 0 0	MR_feb 0 590 0 0 0 0 0	MR_mar 0 557 0 0 0	MR_apr 0 0 506 0 0 0	MR_may 0 0 0 512 0	MR_jun 0 0 0 0 0 0 0 506	Needs 649 590 557 506 512 506 325	Acquired 649 590 557 506 512 506 325			
	Energy (aMW)	Month Jan Feb Mar Apr May Jun	Solar 791 1054 1414 1433 1753 1929	Wind 1541 1194 1655 1620 1473 1762	SMR 950 950 950 950 950 950	MR_jan 649 0 0 0 0 0	MR_feb 0 590 0 0 0 0	MR_mar 0 557 0 0 0	MR_apr 0 0 506 0 0	MR_may 0 0 0 512 0	MR_jun 0 0 0 0 0 506	Needs 649 590 557 506 512 506	Acquired 649 590 557 506 512 506			
Function	Energy (aMW)	Month Jan Feb Mar Apr May Jun Summer	Solar 791 1054 1414 1433 1753 1929 250	Wind 1541 1194 1655 1620 1473 1762	SMR 950 950 950 950 950 950	MR_jan 649 0 0 0 0 0 0	MR_feb 0 590 0 0 0 0 0	MR_mar 0 557 0 0 0	MR_apr 0 0 506 0 0 0	MR_may 0 0 0 512 0	MR_jun 0 0 0 0 0 0 0 506	Needs 649 590 557 506 512 506 325	Acquired 649 590 557 506 512 506 325			

	Standard Form of LPP			LI	<u>PP in Matri</u>	<u>x Form</u>										
	$\operatorname{Max} z = c_1 x_1 + c_2 x_2$	$_{2}$ + + $C_{n}X_{n}$ + $0S_{1}$	$+ 0s_2 + + 0s_m ($		tive functio	on:		Solutions!								
	Subject to the co	onstraints			/laximize z =											
	$\int a_{11} x_1 + a_{12} x_2 +$	$ + a_{in} x_n + s_i =$	· b ₁													
$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + s_2 = b_2$					raint Equat											
$\begin{cases} a_{21}X_1 + a_{22}X_2 + \dots + a_{2n}X_n + s_2 = b_2 \\ \vdots \\ a_{m1}X_1 + a_{m2}X_2 + \dots + a_{mn}X_n + s_m = b_m \end{cases} $ (2)				2) <mark>S</mark>	ubject to A	$\begin{array}{l} \mathbf{X} = \mathbf{b}, \\ \mathbf{b} \geq 0 \end{array}$										
	$a_{m1}x_1 + a_{m2}x_2 +$	+ + $a_{mn}X_n + S_m =$	= b _m			U≥U										
				Non-n	egative Re	striction:										
	where,		($\zeta \ge 0$											
	$X_1, X_2, \dots, X_n,$	$s_1, s_2, \dots, s_m \ge 0$	(
				Solar	Wind	SMR	MR_jan	MR_feb	MR_mar	MR_apr	MR_may	MR_jun				
	Decision												Total Doutfolio			
	Variables			0.00	0.00	0.34	0.50	0.45	0.42	0.37	0.37	0.36	Total Portfolio			
	ResourceCost (\$M)			311.9	329.3	386.3	29.4	27.2	22.1	15.9	14.0	13.2	Cost (\$M)			
	Objective															
	Function	Portfolio	Cost (\$M)	0.0	0.0	132.1	14.7	12.2	9.2	5.8	5.1	4.7	183.9			
			Month	Solar	Wind	SMR	MR_jan	MR_feb	MR_mar	MR_apr	MR_may	MR_jun	Needs	Acquir	red	
			Jan	791	1541	950	649	0	0	0	0	0	649		649	
			Feb	1054	1194	950	0	590	0	0	0	0	590		590	
		Energy	Mar	1414	1655	950	0	0	557	0	0	0	557		557	
		(aMW)	Apr	1433	1620	950	0	0	0	506	0	0	506		506	
			May	1753	1473	950	0	0	0	0	512	0	512		512	
	Constraints		Jun	1929	1762	950	0	0	0	0	0	506	506		506	
		Conscitu	Summor	250	500	050	0	0	0	0	0	0	225		225	
		Capacity	Winter	250 750	500 750	950 950	0 0	0 0	0 0	0 0	0 0	0 0	325 275		325 325	
			willer	750	/50	330	0	0	0	U	0	U	2/5		525	
		WRAP	Summer	250	500	950	0	0	0	0	0	0	162.5		325	
			Winter	750	750	950	0	0	0	0	0	0	137.5		325	