

Vancouver Control Center

Customer Workshop March 13, 2024

O N N E V I L L E

Business Need

The existing Dittmer Control Center (DCC) is at end-of-functional life and must be upgraded or replaced to retain functionality and mitigate growing operational risks.

- Improve resiliency (weather, fire, seismic)
- Improve security (physical, cyber)
- Supports the evolving grid system needs
- Supports control center operational needs

- Enhance the value of products and services

Modernize

business systems and processes

strength

Invest in peopl

- Sustain financial
- Mature asse management

Improve workflow and efficiency

Lowers lifecycle facility costs

Effective office space utilization

Consolidate data centers

What's in it for Customers?

Continuity, resiliency and efficiency are essential for Bonneville to meet customer needs and reliably serve the Pacific NW

Business Need

O N N E V I L L E

• Even in RTO/ISO structures, local utilities maintain most TOP responsibilities and some BA responsibilities

NERC Reqs.	MidWe	est ISO	Local	Local Utility			
	BA	ТОР	BA	ТОР			
Full	332	37	0	0			
Partial	7	2	7	2			
None	4	489	332	37			
Normal	110	0	114	489			

RTO: Regional Transmission Organization ISO: Independent System Operator TOP: Transmission Operator BA: Balancing Authority NERC: North American Electric Reliability Corp. RAS: Remedial Action Schemes

*Organization Registration and Organization Certification (nerc.com)

- Control Center functions are more than just NERC responsibilities, for example:
 - Safe switching and clearance procedures
 - Dispatching crews
 - Monitoring control systems and communications networks
- Technology needs are significant, for example:
 - Significant RAS infrastructure
- Communications network is designed and built to support the Transmission system
- Legal and policy constraints on contracting out inherently governmental functions

BONNEVILLE POWER

Strategic Alignment

Alignment: Investment integrated in FY24 Strategic Asset Management Plans (SAMPs) and FY23 Asset Plans (Trans/Facilities/IT)

D

Business Needs: The Dittmer building is at end-of-functional life as a Control Center and must be replaced to preserve existing functionality and mitigate growing operational risks.

Continuity

Efficiency

Expandability

Benchmarking: Facility and technology investments would provide an average level of quality and service compared to peers, e.g., CAISO, MISO, PGE, SDG&E, TVA, Duke, BC Hydro

BONNEVILLE POWÈR

Investment Goals

Objective: Implement a modern control center with the necessary continuity, security, and technology capabilities to support critical functions through an all-hazards event with flexibility for future growth and market opportunities.

Lifecycle replacement of Dittmer Control Center

- Provide growth potential on the Ross Complex and enable future mission requirements
- Multiple options were extensively examined for Dittmer Control Center renovation/expansion and declined due to:
 - Unacceptable level of operational risk
 - Unable to mitigate all risks (security, hazards, safety and operations)
 - Higher long-term cost
- Long-Term Planning
 - VCC is an enabling investment which balances business needs, risks and long-term costs
 - VCC investment is included in the Transmission and Facilities SAMPs, Asset Plans and IPR projections
- Prior Approvals for Design Services
 - Facility design approved for \$45M (Capital Expand) November 2021
 - Technology design approved for \$57M (Capital Sustain) November 2021

BONNEVILLE POWÈR.

Investment Benefits

• People:

- Mitigate life safety hazards and provide building/fire code compliance
- Mitigate capacity constraint and enable future mission capabilities
- Optimize workspaces to support real-time operations

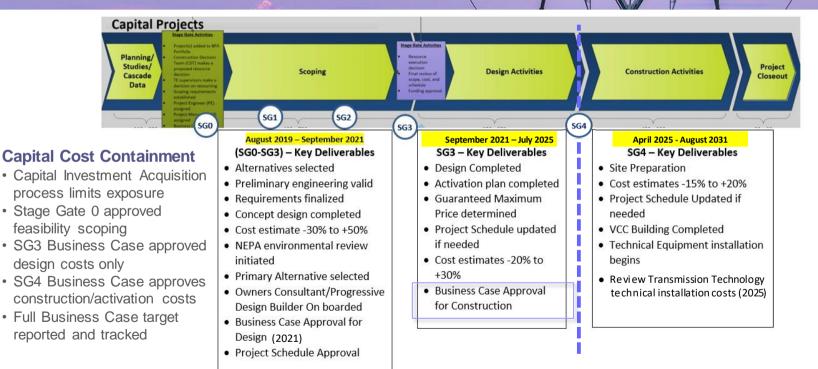
Continuity:

- Improve grid situational awareness, response, and control
- Improve resiliency for an All-Hazards event
- Improves security
- Improve continuity of operations (COOP)

• Expandability:

- Adaptive functional areas support the evolution of future markets and business needs

D


- Flexible and secure workspaces to meet current and future compliance requirements

• Financial:

- Consolidate and protect agency data centers
- Lower lifecycle technology and facility costs

Timeline and Deliverables

BONNEVILLE

Take Away: Continuous oversight and management of cost, schedule and technical requirements to increase success of project delivery and activation.

Project Schedule

BONNEVILLE POWER

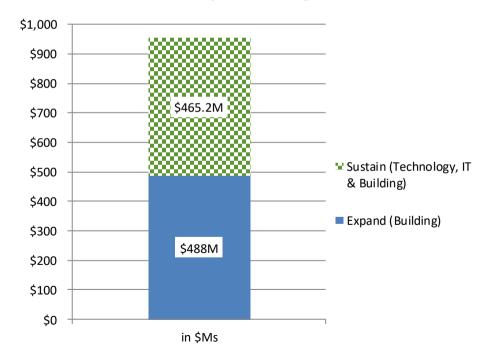
Project Schedule Milestones	Schedule
Technology 65% completed	Apr. 2024
Facility Construction Begin	Apr. 2025
Technology GMP	Apr. 2025
Technology Design complete	July 2025
Facility Substantial Completion	Nov. 2028
Technology Install/Testing Complete	Sep. 2029
Technology Completion/Project Complete	Aug. 2031

Initial Cost Forecast

BONNEVILLE POWER

BP-22 - IPR2

(\$ Millions)	Capital spending assumed Vancouver Control Center								
	2022	2022 2023 2024 2025 2026		2026	2027	Total			
Facilities	\$12,2	\$42	\$78	\$55	-	-	\$187.2		
Transmission	-	-	-	\$148.6	\$144	\$70	\$362.6		
IT	-	-	-	\$5	-	-	\$5		
Total Vancouver Control Center	\$12.2	\$42	\$78	\$208.6	\$144	\$70	\$554.8		


BONNEVILLE POWÈR

Current Forecasted Costs

VCC Current Forecast (\$Millions)	Actuals		Actuals		Rate Case		Rate Case		Rate Case				
	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY31	Totals
Facilities Costs (Capital & Expense)		\$1.4	\$4.2	\$17.4	\$36.8	\$93.6	\$153.7	\$146.1	\$39.7	\$3.9	\$0.0	\$0.0	\$496.6
Transmission Costs (Capital)	\$0.2	\$1.8	\$2.5	\$17.5	\$21.8	\$38.8	\$76.7	\$68.4	\$115.4	\$33.5	\$25.6	\$58.0	\$460.2
IT Costs (Capital)									\$2.5	\$2.5			\$5.0
Total Costs	\$0.2	\$3.2	\$6.7	\$34.9	\$58.6	\$132.4	\$230.4	\$214.5	\$157.6	\$39.9	\$25.6	\$58.0	\$961.8

Current Capital Funding Allocation

*Current – This does not include the Expense component amount for Facilities (\$8.6M)

BONNEVILLE POWÈR

Why the Change in Costs

Cost drivers for the Facility costs:

- 1. Federal security considerations
- 2. Continuity resiliency
- 3. Seismic resiliency
- 4. Regulatory requirements
- 5. Market Escalation

Cost drivers for the Technology costs:

- 1. Market Escalation
 - Racks
 - Equipment
 - Pathways
 - Infrastructure
- 2. Regulatory requirements

Rate Impact

- The costs (e.g. debt service, depreciation) are not anticipated to provide significant upward rate pressure in BP-26 because the project goes into service after the rate period.
- The project is projected to create upward rate pressure averaging just more than 3% per year from 2030 through approximately 2045
- Beyond 2045, rate pressure is expected to be below 2% until the project is paid for in 2067
- Spending associated with the project from a Portfolio perspective will be included in IPR and are subject to decisions related to those discussions.

Risk Mitigation

- Senior leader oversight
- Progressive Design Build delivery model
- Risk informed cost/schedule
- Guaranteed Maximum Price contract
- Improved cost/schedule certainty
- Costs are contained through use of the Capital Investment Acquisition (CIA) process

D

- Shift +1 year for scoping to refine cost and schedule

Moving Forward

Next Steps

- Future customer workshops on updates for VCC
 - Strategic Asset Management Plan (ie. April 2024)
 - Quarterly Business Review (ie. May 2024), quarterly updates
 - Integrated Program Review (June 2024)
 - Another customer workshop in Fall of 2025, after the Guaranteed Maximum Price (GMP) on technology costs are received
- Exploring all financing options, including lease financing
- Continue to refine future capital projections, including sustain vs. expand, to deliver long-term value

Questions?

