BP-14 Final Rate Proposal

Transmission Segmentation Study

BP-14-FS-BPA-06

July 2013

SEGMENTATION STUDY TABLE OF CONTENTS

СОМ	MONL	Y USEE	O ACRONYMS AND SHORT FORMS	iii
1.	INTR	ODUC1	FION	1
2.	SEGN	MENTIN	JG THE SYSTEM	3
	2.1	Segme	ents of the Federal Columbia River Transmission System (FCRTS)	3
		2.1.1	Generation Integration Segment	3
		2.1.2	Integrated Network Segment	4
		2.1.3	Southern Intertie Segment	5
		2.1.4	Eastern Intertie Segment	5
		2.1.5	Utility Delivery Segment	6
		2.1.6	Industrial Delivery Segment	6
		2.1.7	Ancillary Services Segment	7
	2.2	Segme	entation Methodology	7
3.	DETERMINING INVESTMENT AND O&M EXPENSES FOR THE			
	SEGN	MENTS		9
	3.1	Gross	Plant Investment in Existing Facilities	9
		3.1.1	Multi-Segmented Facilities	10
		3.1.2	Facilities Not Directly Associated with Segments	12
		3.1.3	Intangible Investment	12
		3.1.4	Land Investment	12
		3.1.5	Ancillary Service Investment	13
		3.1.6	General Plant Investment	13
	3.2	Future	Plant in Service	14
	3.3 Operations and Maintenance Expense		tions and Maintenance Expense	14
		3.3.1	Historical O&M Assignment to Facilities	15
	3.4	U.S. A	Army Corps of Engineers and U.S. Bureau of Reclamation Facilities	16

This page intentionally left blank.

COMMONLY USED ACRONYMS AND SHORT FORMS

AAC	Anticipated Accumulation of Cash
AGC	Automatic Generation Control
ALF	Agency Load Forecast (computer model)
aMW	average megawatt(s)
AMNR	Accumulated Modified Net Revenues
ANR	Accumulated Net Revenues
ASC	Average System Cost
BiOp	Biological Opinion
BPA	Bonneville Power Administration
Btu	British thermal unit
CDD	cooling degree day(s)
CDO	Contract Demand Quantity
CGS	Columbia Generating Station
CHWM	Contract High Water Mark
COE, Corps, or USACE	U.S. Army Corps of Engineers
Commission	Federal Energy Regulatory Commission
Corps, COE, or USACE	U.S. Army Corps of Engineers
COSA	Cost of Service Analysis
COU	consumer-owned utility
Council or NPCC	Northwest Power and Conservation Council
СР	Coincidental Peak
CRAC	Cost Recovery Adjustment Clause
CSP	Customer System Peak
СТ	combustion turbine
CY	calendar year (January through December)
DDC	Dividend Distribution Clause
dec	decrease, decrement, or decremental
DERBS	Dispatchable Energy Resource Balancing Service
DFS	Diurnal Flattening Service
DOE	Department of Energy
DSI	direct-service industrial customer or direct-service
	industry
DSO	Dispatcher Standing Order
EIA	Energy Information Administration
EIS	Environmental Impact Statement
EN	Energy Northwest, Inc.
EPP	Environmentally Preferred Power
ESA	Endangered Species Act
e-Tag	electronic interchange transaction information
FBS	Federal base system
FCRPS	Federal Columbia River Power System
FCRTS	Federal Columbia River Transmission System
FELCC	firm energy load carrying capability

FHFO	Funds Held for Others
FORS	Forced Outage Reserve Service
FPS	Firm Power Products and Services (rate)
FY	fiscal year (October through September)
GARD	Generation and Reserves Dispatch (computer model)
GEP	Green Energy Premium
GRSPs	General Rate Schedule Provisions
GTA	General Transfer Agreement
GWh	gigawatthour
HDD	heating degree day(s)
HLH	Heavy Load Hour(s)
HOSS	Hourly Operating and Scheduling Simulator (computer
	model)
HYDSIM	Hydrosystem Simulator (computer model)
ICE	Intercontinental Exchange
inc	increase, increment, or incremental
IOU	investor-owned utility
IP III	Industrial Firm Power (rate)
IPR	Integrated Program Review
IRD	Irrigation Rate Discount
IRM	Irrigation Rate Mitigation
IRMP	Irrigation Rate Mitigation Product
	Loint Operating Entity
	kilowett (1000 wette)
	kilowatt (1000 watts)
	knowaunour Levy Density Discount
	Low Density Discount
	Light Load Hour(s)
	Load Reduction Agreement
Mar	million acre-feet
Mid-C	Mid-Columbia
MMBtu	million British thermal units
MNR	Modified Net Revenues
MRNR	Minimum Required Net Revenue
MW	megawatt (1 million watts)
MWh	megawatthour
NCP	Non-Coincidental Peak
NEPA	National Environmental Policy Act
NERC	North American Electric Reliability Corporation
NFB	National Marine Fisheries Service (NMFS) Federal
	Columbia River Power System (FCRPS) Biological
	Opinion (BiOp)
NLSL	New Large Single Load
NMFS	National Marine Fisheries Service
NOAA Fisheries	National Oceanographic and Atmospheric
	Administration Fisheries
NORM	Non-Operating Risk Model (computer model)

Northwest Power Act	Pacific Northwest Electric Power Planning and
	Conservation Act
NPCC or Council	Pacific Northwest Electric Power and Conservation
	Planning Council
NPV	net present value
NR	New Resource Firm Power (rate)
NT	Network Transmission
NTSA	Non-Treaty Storage Agreement
NUG	non-utility generation
NWPP	Northwest Power Pool
OATT	Open Access Transmission Tariff
O&M	operation and maintenance
OATI	Open Access Technology International, Inc.
OMB	Office of Management and Budget
OY	operating year (August through July)
PF	Priority Firm Power (rate)
PFp	Priority Firm Public (rate)
PFx	Priority Firm Exchange (rate)
PNCA	Pacific Northwest Coordination Agreement
PNRR	Planned Net Revenues for Risk
PNW	Pacific Northwest
POD	Point of Delivery
POI	Point of Integration or Point of Interconnection
POM	Point of Metering
POR	Point of Receipt
Project Act	Bonneville Project Act
PRS	Power Rates Study
PS	BPA Power Services
PSW	Pacific Southwest
РТР	Point to Point Transmission (rate)
PUD	public or people's utility district
RAM	Rate Analysis Model (computer model)
RAS	Remedial Action Scheme
RD	Regional Dialogue
REC	Renewable Energy Certificate
Reclamation or USBR	U.S. Bureau of Reclamation
REP	Residential Exchange Program
RevSim	Revenue Simulation Model (component of RiskMod)
RFA	Revenue Forecast Application (database)
RHWM	Rate Period High Water Mark
RiskMod	Risk Analysis Model (computer model)
RiskSim	Risk Simulation Model (component of RiskMod)
ROD	Record of Decision
RPSA	Residential Purchase and Sale Agreement
RR	Resource Replacement (rate)
RRS	Resource Remarketing Service
1/1/0	

RSS	Resource Support Services
RT1SC	RHWM Tier 1 System Capability
RTO	Regional Transmission Operator
SCADA	Supervisory Control and Data Acquisition
SCS	Secondary Crediting Service
Slice	Slice of the System (product)
T1SFCO	Tier 1 System Firm Critical Output
TCMS	Transmission Curtailment Management Service
TOCA	Tier 1 Cost Allocator
TPP	Treasury Payment Probability
TRAM	Transmission Risk Analysis Model
Transmission System Act	Federal Columbia River Transmission System Act
TRL	Total Retail Load
TRM	Tiered Rate Methodology
TS	BPA Transmission Services
TSS	Transmission Scheduling Service
UAI	Unauthorized Increase
ULS	Unanticipated Load Service
USACE, Corps, or COE	U.S. Army Corps of Engineers
USBR or Reclamation	U.S. Bureau of Reclamation
USFWS	U.S. Fish and Wildlife Service
VERBS	Variable Energy Resources Balancing Service (rate)
VOR	Value of Reserves
VR1-2014	First Vintage rate of the BP-14 rate period
WECC	Western Electricity Coordinating Council (formerly
	WSCC)
WIT	Wind Integration Team
WSPP	Western Systems Power Pool

1	1. INTRODUCTION
2	The Bonneville Power Administration (BPA) segments its transmission facilities based
3	on the services those facilities provide. This Study explains how BPA segments its
4	transmission system for the FY 2014-2015 rate period, defines the segments, and
5	determines the investment and operations and maintenance (O&M) expenses for each
6	segment. BPA uses the information developed in this Study to assign the forecast
7	transmission revenue requirement to the segments. See the Transmission Revenue
8	Requirement Study Documentation, BPA-14-FS-BPA-08A, Tables 2.1 to 2.7. The
9	segmented revenue requirement is used to set transmission rates in the Transmission
10	Rates Study, BP-14-FS-BPA-07.
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

This page intentionally left blank.

1	2. SEGMENTING THE SYSTEM
2	BPA has segmented its transmission system for ratemaking purposes since the 1979 rate
3	case. Segments are groups of facilities that serve a particular purpose and, thus, are
4	appropriate to group together for ratesetting purposes. For example, facilities used to
5	integrate Federal power generation onto BPA's transmission system are assigned to the
6	Generation Integration segment. Facilities used to transmit power between the Pacific
7	Northwest and California are assigned to the Southern Intertie segment.
8	
9	2.1 Segments of the Federal Columbia River Transmission System (FCRTS)
10	The first step in segmentation is to assign transmission facilities to the various segments
11	based on the types of services those facilities provide. The second step is to develop the
12	current gross investment and the historical O&M expenses for each facility and assign the
13	investment and expenses to the segments.
14	
15	
16	For the FY 2014–2015 rate period, BPA divides its facilities into the following segments:
17	Generation Integration, Integrated Network, Southern Intertie, Eastern Intertie, Utility
18	Delivery, Direct Service Industry (DSI) Delivery, and Ancillary Services. These
19	segments are defined in the sections that follow.
20	
21	2.1.1 Generation Integration Segment
22	The Generation Integration segment consists of facilities that connect the Federal
23	generating plants to BPA's transmission facilities. This segment includes:
24	• Transmission lines and equipment between the generator and the first substation
25	at which the power enters the BPA Integrated Network segment;

1 Substation terminal equipment, such as disconnect switches, circuit breakers, and • 2 lightning arresters; and 3 Generator step-up transformers, which transform voltage from the generation 4 level to the transmission level. 5 6 Generation Integration facilities are analogous to facilities that BPA requires other 7 entities to provide to interconnect non-Federal generators. Because the purpose of these 8 facilities is to integrate Federal generation onto BPA's transmission system, the costs 9 associated with these facilities are assigned to and recovered through BPA's power rates. 10 11 2.1.2 **Integrated Network Segment** 12 The Integrated Network segment is the core of BPA's transmission system. The facilities 13 in this segment operate in concert to move power in bulk from generation sources (*e.g.*, 14 the Generation Integration segment) to load centers in the Pacific Northwest or other 15 segments (e.g., an intertie or delivery segment). The Integrated Network segment 16 consists of facilities that serve a transmission function with voltages ranging from 17 34.5 kV to 500 kV. 18 19 The facilities in this segment do not serve distinct functions as the Generation Integration 20 or Southern Intertie segments do. Instead, they provide services and benefits to BPA's 21 transmission network customers and are used for transmitting both Federal and non-22 Federal power. Therefore, they are treated as integrated facilities for purposes of cost 23 allocation and cost recovery. The composition of this segment recognizes the benefits of 24 displacement (local generation serving load instead of remote generation scheduled to 25 serve that load), bulk power transfers, voltage regulation, and increased overall reliability 26 resulting from alternative resource and transmission pathways.

1	
1	2.1.3 Southern Intertie Segment
2	The Southern Intertie segment is a system of transmission lines that interconnect the
3	Pacific Northwest to California power systems at the Oregon border. This segment
4	consists of two distinct transmission paths. The first path is a 1,000 kV direct-current
5	(DC) line from the Celilo Converter Station near The Dalles, Oregon, to the Nevada-
6	Oregon border; this DC line continues into the Los Angeles area. The second path
7	consists of multiple 500 kV alternating-current (AC) lines from north-central Oregon to
8	the California-Oregon border; these AC lines continue into north and central California.
9	BPA owns most of the Southern Intertie facilities north of the California-Oregon and
10	Nevada-Oregon borders. BPA does not own the following major Intertie facilities in
11	Oregon:
12	• One of the 500 kV AC lines from Grizzly substation to Malin substation in central
13	Oregon and associated terminals (owned by Portland General Electric Company);
14	and
15	• The Meridian-Captain Jack-Malin line and Summer Lake-Malin line and
16	associated terminals (owned by PacifiCorp).
17	
18	The Southern Intertie is used primarily to transmit power between the Pacific Northwest
19	and California. Keeping the Southern Intertie as a separate segment recognizes both its
20	distinctive use compared to the uses of other segments and the contractual obligations
21	that BPA has incurred regarding the use of these facilities.
22	
23	2.1.4 Eastern Intertie Segment
24	The Eastern Intertie segment consists of the two Garrison-Townsend 500 kV circuits and
25	associated substation facilities at Garrison. These facilities provide an additional
26	interconnection in Montana (primarily for the Colstrip generating project) to the

Integrated Network. These facilities were built pursuant to the Montana Intertie
 Agreement, which provides that the costs associated with building and maintaining these
 facilities are primarily allocated to the parties to the agreement.

- 4
- 5

2.1.5 Utility Delivery Segment

The Utility Delivery segment consists of substation facilities required to "step down"
(reduce) transmission voltages to delivery voltages below 34.5 kV. Step-down
transformers and associated switching and protection equipment constitute the majority
of facilities included in this segment. These facilities are generally located at a
customer's point(s) of delivery. Because these facilities serve a distinct purpose of
supplying power to utility customers at distribution voltages, BPA segments these
facilities separately and allocates their cost to the utility customers that use them.

13

The low-side voltage of the transformer is used to determine Utility Delivery facilities.
Facilities with voltages less than 34.5 kV, including step-down transformers with lowside voltages less than 34.5 kV, are included in the Utility Delivery segment.

17

18

25

26

2.1.6 Industrial Delivery Segment

This segment is similar to the Utility Delivery segment but consists of facilities that step
down transmission voltages to delivery voltages (*e.g.*, 6.9 or 13.8 kV) at three locations
where power is supplied to BPA's direct-service industrial (DSI) customers at
distribution voltages. Because these facilities serve a distinct purpose of supplying power
to DSI customers, BPA segments these facilities separately and allocates their cost to the
DSI customers that use them.

BP-14-FS-BPA-06 Page 6

1					
1	2.1.7 Ancillary Services Segment				
2	This segment consists of control and associated communications equipment necessary for				
3	BPA to provide the Scheduling, System Control, and Dispatch (SCD) service. This				
4	equipment includes monitoring and supervisory control equipment, associated				
5	communications equipment, and control center hardware and software. Because this				
6	equipment serves a distinct purpose of supporting BPA's provision of SCD services,				
7	BPA assigns it to the Ancillary Services segment and recovers its costs through the SCD				
8	rate.				
9					
10	2.2 Segmentation Methodology				
11	BPA assigns facilities to the defined segments based on the use of those facilities using a				
12	variety of source data, including:				
13	• Dispatching jurisdictional diagrams, also known as one-line diagrams				
14	(schematic drawings of lines and substation layouts);				
15	• Transmission contracts associated with various facilities; and				
16	• Work orders and other agreements under which facilities were constructed.				
17					
18	As described in section 3.1.1 below, when BPA determines that a facility serves multiple				
19	segments, it allocates the cost of that facility based on the ratios of costs of the				
20	specifically assigned major equipment (e.g., transformers, circuit breakers) in that				
21	facility.				
22					
23					
24					
25					
26					

This page intentionally left blank.

1 2

3

3. DETERMINING INVESTMENT AND O&M EXPENSES FOR THE SEGMENTS

4 In addition to defining the segments on BPA's system, this Study also determines the 5 current (as of the end of FY 2012) gross plant investment and historical three-year 6 average (FY 2010–2012) O&M expenses associated with facilities within the segments. 7 The segmented gross plant investment is used to calculate the segmented depreciation 8 expense and interest expense for the rate period. The segmented historical O&M 9 expenses are used to allocate the O&M expenses for the rate period across the segments. 10 Establishment of the segmented revenue requirement is described in the Transmission 11 Revenue Requirement Study, BP-14-FS-BPA-08. 12 13 3.1 **Gross Plant Investment in Existing Facilities** 14 BPA determines the gross plant investment in all existing transmission facilities as of the 15 end of the most recent fiscal year when the segmentation study is performed (FY 2012 16 for the FY 2014–2015 rate period). It includes both transmission plant and general plant 17 investments. Transmission plant investment refers to investment in lines and substations, 18 which are defined in FERC accounts 352 through 359. General plant investment refers to 19 investments in general equipment, such as communications equipment and office 20 furniture, which is defined in FERC accounts 390 through 398. 21 22 BPA uses the following resources to determine investment for station and transmission 23 line equipment: 24 Plant investment records identify the investment for the equipment at each 25 facility. 26 27

1	• One-line diagrams indicate the operating voltage or specific use of
2	facilities. One-line diagrams are used to identify the number, location, and
3	characteristics (such as voltage) of various breakers and transformers.
4	• Installation and maintenance records identify major equipment installed or
5	maintained by BPA. These records are used to identify and associate
6	specific equipment in the plant accounting records with that on the
7	one-line diagrams. This association is particularly useful in allocating
8	investment at facilities that support more than one function and whose
9	costs are allocated to more than one segment. Facilities that support more
10	than one function are described in more detail in section 3.1.1.
11	• Several of BPA's agreements (<i>e.g.</i> , agreements relating to the construction
12	and operation of the Southern and Eastern Interties) specify how the costs
13	for certain facilities should be recovered.
14	
15	3.1.1 Multi-Segmented Facilities
16	For facilities serving more than one segment, it is necessary to pro-rate the investment
17	between the segments. Generally, BPA uses the following process to allocate the
18	investment of multi-segmented facilities:
19	
20	1. For a substation, the investment in major components (e.g., circuit breakers,
21	transformers, and reactive equipment that is tracked separately in the investment
22	records) is grouped by equipment type and voltage level. A group may support
23	multiple terminals. Terminals are the points where transmission lines terminate in
24	a substation, and are segmented based on the segmentation of the associated
25	transmission lines. For example, a substation may have 230 kV equipment
26	supporting both Integrated Network and Generation Interconnection terminals and

1	11	
1		reactive equipment supporting only the Integrated Network segment. The major
2		equipment investment accordingly is separated into two groups, a 230 kV shared
3		group and a reactive group.
4	2.	The investment in remaining common equipment for the substation, such as
5		buildings and fences, is pro-rated to each group based on the investment in major
6		equipment. In the example above, if the 230 kV shared group has been assigned
7		80 percent of the investment in major facilities, it is also assigned 80 percent of
8		the investment in common equipment.
9	3.	The investment in each shared group is pro-rated between the segments based on
10		the number of terminals that are identified with each segment. Terminals are
11		assumed to be electrically interchangeable, and the cost of the shared group is
12		assumed to be shared equally among the terminals. Using the above example, if
13		the 230 kV shared group supports four Network terminals and two Generation
14		Interconnection terminals, two-thirds (4 of 6 terminals) of the 230 kV shared
15		group investment is allocated to the Network segment, and one-third (2 of 6
16		terminals) is allocated to the Generation Interconnection segment.
17	4.	A group that supports only one segment is allocated entirely to that segment. In
18		the example above, the reactive equipment investment with its pro-rated common
19		equipment would be allocated entirely to the Network.
20	5.	The percentage share of the multi-segmented facility's investment that has been
21		assigned to each segment is calculated. This percentage share is also used to
22		allocate the historical O&M associated with the facility. For example, if the
23		substation's total investment is \$5,000,000, and 90 percent (or \$4,500,000) has
24		been assigned to the Network segment, then 90 percent of the historical O&M is
25		also assigned to the Network segment.
26		

1

5

3.1.2 Facilities Not Directly Associated with Segments

Some transmission plant investment is not assigned to a particular segment because it
cannot be identified with a particular function or service. For example, emergency
equipment spares that support multiple segments are not assigned to particular segments.

The plant investment associated with these facilities is allocated to all the segments on a
pro-rata basis. For example, if 80 percent of the directly assigned investment in station
equipment is segmented to the Integrated Network segment, then 80 percent of the
indirect investment in station equipment is also segmented to the Integrated Network.
The Transmission Segmentation Study Documentation (Documentation), BP-14-FSBPA-06A, Table 2, lines 4 and 19, shows the allocation of the investment in these
facilities.

13

14 **3.1.3** Intangible Investment

Intangible investments are BPA's share of participation in facilities owned by others
(capacity rights). As shown in Documentation Table 2, BPA has \$9.6 million of
intangible investments. They are segmented to either the Integrated Network or Southern
Intertie based on the function each facility supports.

19

20

3.1.4 Land Investment

Land is typically not depreciated, and therefore no amortized costs for land need to be
segmented. However, BPA does have leased land that is depreciable (\$47.8 million) and
therefore needs to be segmented. The majority of this land supports transmission lines
(rights-of-way) and is segmented according to the function of the associated transmission
line. For example, leased land that supports a transmission line segmented to the

Integrated Network segment is also segmented to that segment. See Documentation
 Table 2.

BPA has depreciable leased land (\$568,000) associated with a radio station that is not
assigned to a specific segment but is prorated to the segments based on the total of the
line and station investment allocated to each segment, similar to general plant investment
described in section 3.1.6, below.

8

3

9

3.1.5 Ancillary Service Investment

As shown in Documentation Table 2, BPA has \$163.8 million in ancillary service
investment. This investment includes equipment designated as control equipment
(\$77.9 million), hardware and software at the control centers supporting scheduling and
dispatch (\$42.7 million), and communications equipment supporting Supervisory Control
and Data Acquisition (SCADA) (\$43.2 million). This investment is all allocated to the
Ancillary Services segment.

- 16
- 17

3.1.6 General Plant Investment

18 General plant investment is associated with equipment of a general nature (FERC 19 accounts 390 through 398). BPA's maintenance headquarters and BPA's 20 telecommunications system facilities (radio stations) are examples of general plant. 21 Through FY 2012, BPA has a general plant investment of \$763 million. The depreciation 22 cost associated with general plant investment is allocated pro-rata (based on the directly 23 assigned investment) to the segments on a net plant basis (after depreciation) in the Transmission Revenue Requirement Study, BP-14-FS-BPA-08. 24 25 26

1

3.2 Future Plant in Service

2 In order to estimate the investment that will be in place during the FY 2014–2015 rate 3 period, the historical investment is adjusted to remove investment in facilities expected to 4 be retired or sold and to include the forecast installation of new facilities during the rate 5 period. Documentation Table 3 summarizes the expected station and line investment for 6 fiscal years 2013 through 2015. New facility investment is identified from BPA's 7 Integrated Programs in Review (IPR) process. No specific facilities are identified for 8 retirement in this Study. However, in the Transmission Revenue Requirement Study, the 9 expected investment in new station facilities is reduced based on historical ratios of 10 retired equipment to new replacement equipment. Transmission Revenue Requirement 11 Study Documentation, BP-14-FS-BPA-08A, Chapter 4.

- 12
- 13

3.3 Operations and Maintenance Expense

This Study includes historical O&M expenses from plant record data for the last three fiscal years (2010, 2011, and 2012). Averaging the last three years of data instead of using only the most recent year minimizes potential biases, such as scheduling or weather anomalies in a particular year. The historical segmented O&M expenses average \$151.1 million annually. Documentation Table 4. The O&M expenses that are segmented include transmission operations costs associated with substation operations and all costs for transmission maintenance, including environmental expenses.

21

A few categories of historical O&M expenses are identified in this Study for
informational purposes but are not segmented. Scheduling costs and system operations
costs associated with dispatch are directly assigned to the Ancillary Services segment,
because these costs are related to providing Scheduling, System Control, and Dispatch
service. Marketing and business support costs are allocated on a net plant basis (pro rata,

1	11		
1	based	on the c	directly assigned investment) to the segments because these costs are
2	overhe	ead cost	s and are not associated with specific facilities. The treatment of these
3	foreca	st costs	for ratemaking purposes is addressed and described in more detail in the
4	Transı	nission	Revenue Requirement Study, BP-14-FS-BPA-08.
5			
6	The hi	storical	Ancillary Services O&M expenses average \$45.3 million annually. The
7	histori	cal mar	keting and business support expenses average \$45.9 million annually.
8	Docur	nentatio	on Appendix C, Tables 2 and 3.
9			
10	3.3.1	Histor	rical O&M Assignment to Facilities
11	BPA u	ises the	following process to assign historical O&M expenses to the segments:
12		1.	Approximately one-third of historical O&M expenses set forth in BPA's
13			accounting records directly identify the facility being supported.
14			Documentation Appendix C, Table 4. The directly identified O&M
15			expenses for each fiscal year are broken down by category (e.g., programs
16			within BPA's transmission business line, substation operations,
17			transmission line maintenance) and facility type (e.g., transmission lines,
18			substations, metering stations). Documentation Appendix C, Tables 6, 8,
19			and 10.
20		2.	Non-identified O&M expenses (that is, expenses not identified with a
21			specific facility, Documentation Appendix C, Table 5) are determined for
22			each category and fiscal year by subtracting the directly identified O&M
23			expenses (Documentation Appendix C, Table 4) from the total O&M
24			expenses (Documentation Appendix C, Table 1).
25		3.	For those categories that have both directly identified and non-identified
26			expenses, the non-identified portion within each category is pro-rated to

1			each facility type in proportion to the directly identified expenses for each
2			facility type. Documentation Appendix C, Tables 7, 9, and 11.
3		4.	Some categories of O&M expenses have no directly identified facilities
4			(Right-of-Way Maintenance, Technical Training, Vegetation
5			Management, Environmental Analysis). The total for these categories is
6			identified by fiscal year. Documentation Appendix C, Table 5, line 77.
7			This total is allocated in proportion to the total of directly identified
8			expenses for each facility type. Documentation Appendix C, Tables 7, 9
9			and 11, lines 94, 121, and 140.
10		5.	An annual total O&M expense is calculated for each facility type by
11			adding the directly identified expenses in step 1 and the non-identified
12			expenses in steps 3 and 4, above, for each fiscal year. Documentation
13			Appendix C, lines 95, 122, and 141.
14		6.	The total expense for each facility type is divided by the directly identified
15			expenses to determine an annual multiplier for each facility type.
16			Documentation Appendix C, lines 96, 123, and 142.
17		7.	The directly identified annual O&M expense for each facility type is
18			multiplied by the annual multiplier for the facility type, and the three-year
19			average is the assigned historical O&M expense. The historical facility
20			O&M expenses are then allocated to segments according to the percentage
21			of the investment in each facility type that has been allocated to that
22			segment. Documentation Appendix A.
23			
24	3.4	U.S. A	rmy Corps of Engineers and U.S. Bureau of Reclamation Facilities
25	The in	vestmei	nt and annual O&M expenses for the U.S. Army Corps of Engineers and
26	U.S. B	ureau o	f Reclamation facilities that function as part of BPA's transmission system

1	are included in the transmission revenue requirement, even though BPA does not own
2	these facilities. The segmentation of these costs is described in the Generation Inputs
3	study, BP-14-FS-BPA-05, section 8.
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

BONNEVILLE POWER ADMINISTRATION DOE/BP-4542 • July 2013