

**Available Transfer Capability
Implementation Document
(North American Energy Standards Board WEQ-023)**

**Bonneville Power Administration
Transmission Services**

Effective Date: February 11, 2026

Contents

I. Purpose	1
II. Definitions	1
III. Overview	2
Methodology Selected	2
Rated System Path Methodology, WEQ-023-2.2	2
ATC Calculations	2
ATC Calculation Periods	2
Frequency of ATC Recalculation.....	2
IV. Allocation Processes	2
V. Outages	3
Outage Planning.....	3
VI. Priorities Used to Set TTC	3
VII. Rated System Path Methodology for BPA's Paths.....	5
BPA's Paths	5
Calculating TTC	9
Data and Assumptions.....	9
Process to Determine TTC	10
Calculating Firm Transmission Service for Paths	12
Calculating Firm Existing Transmission Commitments (ETC _F)	12
Determining base ETC for Flow-Based Paths.....	14
Calculating Interim ETC _F for Flow-based Paths.....	19
Calculating Firm Available Transfer Capability (ATC _F)	21
Calculating Non-Firm Transmission Service for BPA's Paths	23
Calculating Non-Firm Existing Transmission Commitments (ETC _{NF})	23
Calculating Non-Firm Available Transfer Capability (ATC _{NF})	24
Adjustments to Flow-based Path ATC Values	30
VIII. Responding to Methodology/Documentation Clarifications and/or Data Requests	30
IX. ATCID Revisions	31

3 **I. Purpose**

4 This Available Transfer Capability Implementation Document (ATCID) addresses all the
5 requirements of North American Energy Standards Board (NAESB) Wholesale Electric Quadrant
6 business practice standard 023 (WEQ-023) and includes BPA's Postback Methodology.

7 This ATCID only applies to ATC calculations through month 13.

8 **II. Definitions**

9 All capitalized terms used in this ATCID are either contained in NERC's Glossary of Terms,
10 NAESB WEQ-000, or are defined in this ATCID.

11 Defined terms specific to BPA include:

- 12 • **Federal Columbia River Power System (FCRPS):** The system consisting of the 31
13 federally constructed hydroelectric dams¹ on the Columbia and Snake Rivers, and the
14 Columbia Generating Station nuclear plant.
- 15 • **Federal Columbia River Transmission System (FCRTS):** The FCRTS is comprised of
16 BPA's main grid network Facilities (network), Interconnections with other transmission
17 systems (external Interconnections²), interties,³ delivery Facilities, subgrid Facilities,
18 and generation Interconnection Facilities within the Pacific Northwest region and with
19 western Canada and California.
- 20 • **Long-Term Reservation:** a confirmed reservation that has duration greater than or
21 equal to 365 days
- 22 • **Short-Term Reservation:** a confirmed reservation that has a duration of less than 365
23 days

¹ Albeni Falls, Anderson Ranch, Big Cliff, Black Canyon, Boise River Diversion, Bonneville, Chandler, Chief Joseph, Cougar, Detroit, Dexter, Dworshak, Foster, Grand Coulee, Green Peter, Green Springs, Hills Creek, Hungry Horse, Ice Harbor, John Day, Libby, Little Goose, Lookout Point, Lost Creek, Lower Granite, Lower Monumental, McNary, Minidoka, Palisades, Roza and The Dalles

² Northern Intertie, Reno-Alturas, West of Hatwai, West of Garrison and La Grande paths.

³ AC Intertie (NWACI), Pacific DC Intertie (PDCI), and Montana Intertie.

24 **III. Overview**

25 BPA owns and provides Transmission Service over the FCRTS. BPA is registered with NERC as a
26 Transmission Operator (TOP) and Transmission Service Provider (TSP), among other
27 registrations.

28 **Methodology Selected**

29 **Rated System Path Methodology, WEQ-023-2.2**

30 BPA has elected to use the Rated System Path Methodology to calculate Total Transfer
31 Capability (TTC) and Available Transfer Capability (ATC) for all its paths. The description
32 of how BPA implements this methodology for these paths is included in this ATCID.

33 **ATC Calculations**

34 **ATC Calculation Periods**

35 BPA calculates ATC values using the Rated System Path Methodology for the following time
36 periods:

- 37 • Hourly values for up to 168 hours. The next hour may be calculated in subhourly
38 intervals, with the most limiting subhourly ATC value being the hourly value.
- 39 • Daily values for day 3 through day 90. For days 3 to 7 (up to hour 168), the daily ATC
40 value is the most limiting hourly ATC value for that day.
- 41 • Monthly values for month 2 through month 13. For months 2 and 3 (up to day 90), the
42 monthly ATC value is the most limiting daily ATC value for that month.

43 **Frequency of ATC Recalculation**

44 BPA recalculates ATC on the following frequency, even if the calculated values
45 identified in the ATC equation are unchanged:

- 46 • Hourly, at least once per hour
- 47 • Daily, at least once per day
- 48 • Monthly, at least once per day

49 BPA may recalculate ATC values more frequently due to changes in Total Transfer
50 Capability (TTC), Power Transfer Distribution Factors (PTDFs), system issues or as deemed
51 necessary.

52 **IV. Allocation Processes**

53 BPA allocates transfer capability among multiple owners or users of its 1:1 and flow-based
54 paths.

55 **Allocations - TTC:**

56 For paths where allocation agreements exist, BPA allocates TTC according to the
57 contractual rights of the various owners as defined in the agreements.

58 Allocation agreements do not exist for two of BPA's flow-based paths that have multiple
59 owners: Columbia Injection N>S and Wanapum Injection N>S. For Columbia Injection N>S
60 and Wanapum Injection N>S, BPA determines its share of TTC based on BPA-owned
61 transmission lines that make up these paths when all lines are in service. During outage
62 conditions, individual allocations exist for the loss of each transmission line in the line
63 definitions for these paths.

64 **Allocations - base ETC:**

65 BPA allocates base ETC among some of its shared flow-based paths. To allocate base ETC
66 for South of Allston N>S, BPA uses the contractual rights defined in the South of Allston
67 allocation agreement. To allocate base ETC for the Columbia Injection N>S, Wanapum
68 Injection N>S, and Cross Cascades North E>W paths, BPA only models the BPA-owned
69 transmission lines that make up these paths in the ETC cases. BPA does not allocate base
70 ETC across any other shared flow-based paths.

71 **Allocations - PTDFs:**

72 BPA calculates PTDFs based on the full path definition of all paths with the exception of
73 Columbia Injection N>S, Wanapum Injection N>S and Cross Cascades North E>W. For these
74 three paths, BPA calculates PTDFs based on the BPA-owned transmission lines that make
75 up these paths.

76 **V. Outages**

77 **Outage Planning**

78 Outage plans and the policy are posted to the Outage Plans website at: [Outage Coordination -
79 Bonneville Power Administration \(bpa.gov\)](http://Outage%20Coordination%20-%20Bonneville%20Power%20Administration%20(bpa.gov))

80 **VI. Priorities Used to Set TTC**

81 BPA may update assumptions and calculate new TTCs when changes to System conditions will
82 significantly impact those limits and may use those updated assumptions to determine new
83 TTC values. The most conservative hourly TTC calculated for a given outage or combination
84 of outages becomes the governing TTC for the daily calculation period. Likewise, the most
85 conservative daily TTC for a given outage or combination of outages becomes the governing
86 TTC for the monthly calculation period.

87 The following hierarchy of priorities categorizes the TTC values based on the time period
88 being calculated and the reason for the change. This prioritization may then be used to
89 revise the path TTC for a given time period if BPA determines that more recent assumptions
90 to calculate TTC values better reflect updated System information:

- **Real-time limit (highest priority):** The “Real-time limit” priority governs when BPA updates the assumptions of System conditions to calculate TTCs during the Real-time horizon. A change to the TTC calculation with the Real-time priority governs all other priorities. For example, if BPA receives an update that a scheduled outage will be extended by two hours early in the Real-time day, BPA may update the assumptions for the TTC calculation accordingly for the additional two hours and may use those same updated assumptions to update the TTC. If there are multiple real-time updates to assumptions for TTC calculations, the most recent TTC calculated governs.
- **Scheduling limit:** The “scheduling limit” priority may be used occasionally when the assumptions for the TTC are not governing or an actual scheduling limit has been imposed. If there is more than one scheduling limit, the lowest scheduling limit governs until a Real-time limit TTC is submitted.
- **Pre-schedule forecast:** The “pre-schedule forecast” TTC priority may be used for a path if the assumptions for the TTC calculations are updated for the pre-schedule period. For example, for TTCs calculated for flow-based paths that are derived using nomograms, if the assumptions are re-evaluated just prior to the pre-schedule day to incorporate updated data inputs, the TTC may be updated. The pre-schedule forecast TTC governs over the ‘studied’ priority.
- **Studied:** The “studied” priority is used when there are outages where a study report has been issued, including those provided by other TOPs. For example, if a study report is issued evaluating assumptions for line outage system conditions, the TTCs in that report govern over any lower-priority TTCs for the duration of the line outage conditions.
- **Estimated known limit:** The “estimated known limit” priority is used to establish unstudied TTCs or to define seasonal path TTCs that govern over “short-term seasonal” or “Path Rating” priorities.
- **Short-term seasonal:** The “short-term seasonal” priority is used for TTCs issued for seasonal Path Ratings. As these Ratings may be higher at certain times during the year, the short-term seasonal priority governs over the Path Rating priority. For example, if the longer-term Path Rating for a path is 7800 MW, but seasonally this Rating increases to 8000 MW, the short-term seasonal Rating of 8000 MW governs and is used to set the TTC during the season to which it applies.
- **Path Rating:** The “Path Rating” priority is used to set base TTCs using either the Rating of the paths, TTCs studied using normal conditions, TTCs calculated for the planning horizon, or all of the above. The lowest value resulting from the above calculations governs for the given time period and is used to set the TTC. For example, if under normal conditions the TTC for a path is 4410 MW, but the TTC calculated for the planning horizon is 4100 MW, the lower TTC of 4100 MW governs and is used to set the TTC for the path.
- **Informational limit (lowest priority):** The “informational limit” is used while establishing the initial setup of paths within the scheduling and reservation system. The informational limit is equal to the initial Path Rating of the path.

133 **VII. Rated System Path Methodology for BPA's Paths**

134 This section describes how BPA implements the Rated System Path methodology for its paths.

135 **BPA's Paths**

136 The following tables list BPA's paths. BPA has a combination of 1:1 and flow-based paths and
137 uses the Rated System Path methodology to calculate ATC for both.

138 **Table 1, BPA's 1:1 Paths**

1:1 Path Name	Direction	1:1 OASIS Path Name
Northern Intertie	N>S	NI_TOTL_N>S
Northern Intertie	S>N	NI_TOTL_S>N
West of Garrison ⁴	E>W	WOGARR_E>W
West of Garrison ⁵	W>E	WOGARR_W>E
La Grande	W>E	LAGR_W>E
La Grande	E>W	LAGR_E>W
Montana Intertie	E>W	MI_E>W
Reno-Alturas	N>S	RATS_N>S
Reno-Alturas	S>N	RATS_S>N
AC Intertie (NWACI)	N>S	AC_N>S
AC Intertie (NWACI)	S>N	AC_S>N
Pacific DC Intertie (PDCI)	S>N	DC_S>N
Pacific DC Intertie (PDCI)	N>S	DC_N>S
Rock Creek Wind	Gen	ROCKCK_GEN
John Day Wind	Gen	JDWIND_GEN
Satsop Injection	Gen	SATSOP_GEN

⁴ and ⁵ BPA treats West of Garrison with the same rating as the Montana to Northwest Path (Path 8 in the WECC Path Rating Catalog).

Table 2, BPA's Flow-Based Paths

Flow-based Path Name	Direction	Flow-based OASIS Path Name	Transmission Line Components	Case used for base ETC calculation
North of Hanford	N>S	NOHANF	Vantage-Hanford #1 500-kV; Grand Coulee-Hanford #1 500-kV; and Shultz-Wautoma #1 500-kV	Heavy load
North of Hanford	S>N	NOHANF_S>N	Hanford-Vantage #1 500-kV; Hanford-Grand Coulee #1 500-kV; and Wautoma-Shultz #1 500-kV	Heavy load
South of Allston	N>S	SOALSN	<p>BPA-Owned Transmission Lines: Allston-Keeler 500-kV; Lexington-Ross 230-kV; and Allston-St. Helens 115-kV;</p> <p>Portland General Electric-Owned Transmission Lines: Evergreen-St. Marys-Trojan 230-kV; and Trojan-Harborton 230-kV;</p> <p>PacifiCorp-Owned Transmission Lines: Merwin-St. Johns 115-kV; Astoria-Seaside 115-kV; and Clatsop 230/115-kV</p>	Heavy load
Raver-Paul	N>S	RAVR_PAUL	<p>Raver-Paul #1 500-kV</p> <p>When Raver-Paul #1 500-kV is out of service, the following lines are monitored: Raver-Paul #1 500-kV; St. Clair-South Tacoma #1 230-kV; Chehalis-Covington #1 230-kV; Frederickson-St. Clair 115-kV; and Electron Heights-Blumaer 115-kV</p>	Heavy load
Cross Cascades North	E>W	C-CASC_N	<p>BPA-Owned Transmission Lines: Schultz-Raver #1, #3, & #4 500-kV; Schultz-Echo Lake #1 500-kV; Chief Joseph-Monroe #1 500-kV; Chief Joseph-Snohomish #3 & #4 345-kV; Rocky Reach-Maple Valley #1 345-kV; Grand Coulee-Olympia #1 287-kV; and Bettas Road-Covington #1 230-kV;</p> <p>Puget Sound Energy-Owned Transmission Line: Rocky Reach-Cascade 230-kV</p>	Heavy load

Flow-based Path Name	Direction	Flow-based OASIS Path Name	Transmission Line Components	Case used for base ETC calculation
Cross Cascades South	E>W	C-CACS_S	BPA-Owned Transmission Lines: Big-Eddy-Ostrander #1 500-kV; Ashe-Marion #2 500-kV; Buckley-Marion #1 500-kV; Knight-Ostrander #1 500-kV; John Day-Marion #1 500-kV; McNary-Ross #1 345-kV; Big Eddy-Chemawa #1 230-kV; Big Eddy-McLoughlin #1 & #2 230-kV; Midway-North Bonneville #1 230-kV; Jones Canyon-Santiam #1 230-kV; and Big Eddy-Troutdale #1 230-kV PGE-Owned Transmission Line: Round Butte-Bethel 230-kV	Heavy load
West of McNary	E>W	WOMCNY	Coyote Springs-Slatt #1 500-kV; McNary-Ross #1 345-kV; Harvalum-Big Eddy #1 230-kV; Jones Canyon-Santiam #1 230-kV; and McNary-John Day #2 500-kV	Heavy load
West of Slatt	E>W	WOSLATT	Slatt-Buckley #1 500-kV; and Slatt-John Day #1 500-kV	Heavy load
West of John Day	E>W	WOJD_E>W	John Day-Big Eddy #1 500-kV; John Day-Big Eddy #2 500-kV; and John Day-Marion #1 500-kV	Heavy load
South of Boundary	N>S	SBNDRY_N>S	Boundary-Bell #1 230-kV; Boundary-Bell #3 230-kV; Boundary-Usk #1 230-kV; and Boundary 230/115-kV Transformer #1	Heavy load
Columbia Injection	N>S	CLMBIA_N>S	BPA-Owned Transmission Lines: Columbia-Grand Coulee #1 230-kV; Columbia-Grand Coulee #3 230-kV; Columbia-Rocky Reach #1 230-kV; Columbia-Valhalla #1 115-kV; and Columbia-Valhalla #2 115-kV; Chelan PUD-Owned Transmission Line: Columbia-Rocky Reach #2 230-kV Douglas PUD-Owned Transmission Line: Rapids-Columbia #1 230k	Heavy load

Flow-based Path Name	Direction	Flow-based OASIS Path Name	Transmission Line Components	Case used for base ETC calculation
Wanapum Injection	N>S	WANAPM_N>S	BPA-Owned Transmission Line: Vantage-Midway #1 230-kV; Grant PUD-Owned Transmission Line: Priest Rapids-Midway #3 230-kV	Heavy load
West of Lower Monumental (West of LoMo)	E>W	W_LOMO_E>W	Lower Monumental-Ashe 500-kV; Lower Monumental-Hanford 500-kV; and Lower Monumental-McNary 500-kV	Heavy load
North of Echo Lake	S>N	N_ECOL_S>N	Echo Lake-Monroe-SnoKing Tap #1 500-kV; Echo Lake-Maple Valley #1 500-kV; Echo Lake-Maple Valley #2 500-kV; and Covington-Maple Valley #2 230-kV	Heavy load
South of Custer	N>S	SCSTER_N>S	Custer-Monroe #1 500-kV; Custer-Monroe #2 500-kV; Custer-Bellingham #1 230-kV; and Custer-Murray #1 230-kV	Heavy load
North of Grizzly	N>S	GRZN_N>S	Buckley-Grizzly #1 500-kV; John Day-Grizzly #1 500-kV; John Day-Grizzly #2 500-kV; and Maupin-Redmond #1 230-kV	Heavy load
North of Pearl	S>N	NOPE_S>N	BPA-Owned Transmission Line: Pearl-Keeler #1 500-kV ⁶ ; BPA/Portland General Electric Jointly Owned Lines: Pearl-Sherwood #1 230-kV; Pearl-Sherwood #2 230-kV; Pearl Tap to the McLoughlin-Sherwood #1 230-kV	Heavy load

⁶ When calculating the TTC for the North of Pearl path, BPA excludes the counterflows of the Pearl-Keeler #1 500-kV line.

Flow-based Path Name	Direction	Flow-based OASIS Path Name	Transmission Line Components	Case used for base ETC calculation
West of Hatwai	E>W	WOH_E>W	Hatwai-Lower Granite #1 500-kV; Bell-Grand Coulee #6 500-kV; Bell-Grand Coulee #3 230-kV; Bell-Grand Coulee #5 230-kV; Westside-Grand Coulee #1 230-kV; Dry Creek-Talbot 230-kV; North Lewiston-Tucannon River #1 115-kV; Devils Gap-Stratford 115-kV; Lind-Warden 115-kV; Creston-Bell #1 115-kV; and Dry Gulch-Pomeroy 69-kV	Light load

140 **Calculating TTC**

141 **Data and Assumptions**

142 When calculating TTC for its paths, BPA uses power flow base cases that model the
143 Western Interconnection. These base cases utilize data and assumptions consistent with
144 the time period being studied as follows:

145 BPA models all existing System Elements, including but not limited to any transmission
146 additions and retirements, in their normal operating condition for the assumed initial
147 conditions, up to the time horizon in which BPA begins modeling planned outages.

148 The base cases include generators and phase shifters.

149 BPA uses the Load forecasts contained in the base cases.

150 Generation and Transmission Facility additions and retirements within the WECC
151 footprint are included in the seasonal operating base cases for the season in which
152 they are energized/de-energized, respectively. BPA engineers modify the base cases
153 to reflect the actual dates of energization/de-energization, as well as expected
154 generation for the timeframe under study.

155 The base cases include Facility Ratings as provided to WECC, the RC, and/or BPA by
156 the TOPs, Transmission Owners and Generator Owners.

157 If Facility changes are made by BPA or another entity, then the base cases will be
158 updated to reflect these changes with a mid-season update.

159 The approved seasonal operating base cases that include the Facility changes will not
160 be used until 0 to 16 days prior to the energization or implementation of the Facility
161 change.

162 For periods beyond two weeks, the base cases will be updated as necessary to perform
163 seasonal studies for the current or upcoming season in accordance with the current
164 BPA study processes.

165 For all paths, except West of Garrison and Northern Intertie South to North, BPA uses
166 the all lines in service TTC from the relevant seasonal studies when there are no
167 studied outages to set the TTC of the path for the corresponding seasonal time
168 periods.

169 For West of Garrison, for the seasons or time periods in which the seasonal studies
170 have not been completed, the most recent year's seasonal study results will be used
171 for setting the TTC for the path.

172 For Northern Intertie South to North, for the seasons or time periods in which the
173 seasonal studies have not been completed, the most recent year's seasonal study
174 results will be used for setting the TTC. BPA uses the minimum TTC from the relevant
175 seasonal studies to set the TTC of the path for periods from the next day and
176 beyond. For the Real-time horizon, when there are no studied outages, BPA uses the
177 maximum TTC from the relevant seasonal studies to set the TTC of the path.

178 BPA models Special Protection Systems (BPA uses the term Remedial Action Schemes
179 or RAS) that currently exist or are projected for implementation within the studied
180 time horizon.

181 The base cases include all series compensation for each line at the expected operating
182 level.

183 **Process to Determine TTC**

184 BPA adjusts generation and Load, and outages, within the power-flow base cases to
185 determine the TTC that can be simulated for each of its paths.

186 BPA incorporates outages relevant to the path being studied when performing its TTC
187 studies. Generally, BPA studies outages 10 to 16 days prior to the outage start date.

188 BPA studies single and multiple Contingencies that are relevant to the path being studied.

189 When modeling normal conditions, BPA models all Transmission Elements in BPA's TOP
190 Area and adjacent TOP Areas at or below 100 percent of their continuous Rating. Any
191 reliability constraints requested by another TOP will also be included.

192 BPA models Contingencies as per the current version of "RC West System Operating Limits
193 Methodology for the Operations Horizon" (RC West SOL Methodology) posted on RC West's
194 website.

195 When modeling Contingencies, BPA determines TTCs by stressing the system until flows
196 exceed emergency Facility Ratings or voltages fall outside emergency System Voltage
197 Limits (i.e., the post-Contingency state). BPA does this by simulating transfers performed
198 through the adjustment of generation and Load. If a Facility does not have an emergency
199 Facility Rating, the normal Facility Rating is used. If there is no emergency System Voltage
200 Limit, the normal System Voltage Limit is used. If a path has a Stability Limit, and the
201 Stability Limit is lower than the limit found when studying emergency Facility Ratings and
202 emergency System Voltage Limits, the Stability Limit becomes the TTC. By meeting the
203 criteria in the RC West SOL Methodology, uncontrolled separation should not occur. BPA
204 does not take into account expected transmission uses in the determination of TTC.

205 BPA's paths listed below are bi-directional and have TTCs in both the prevailing and non-
206 prevailing direction of flow.

- Northern Intertie
- West of Garrison
- La Grande
- Reno-Alturas
- AC Intertie (NWACI)
- Pacific DC Intertie (PDCI)
- North of Hanford

214 All of BPA's other paths are one directional, in the prevailing direction of flow, and have
215 studied TTCs that are established for the prevailing direction of flow.

216 For paths where TTC varies due to simultaneous interaction with one or more other paths,
217 BPA develops a nomogram, represented either by an equation or its graphical
218 representation, describing the interaction of the paths and the resulting TTC under
219 specified conditions. BPA then calculates a value, based on that nomogram and
220 forecasted System conditions for the time period studied, to develop its TTC values for
221 the affected paths.

222 BPA or the adjacent path TOP identifies when the new or increased TTC for a path being
223 studied by BPA or the adjacent path TOP has an adverse impact on the TTC value of
224 another existing path by modeling the flow on the path being studied at its proposed new
225 TTC level, while simultaneously modeling the flow on the existing path at its TTC level. In
226 doing so, BPA or the adjacent path TOP honors the reliability criteria described above.
227 BPA or the adjacent path TOP includes the resolution of this adverse impact in its study
228 report for the path.

229 The ratings for BPA's paths whose ratings were established, known, and used in operation
230 since January 1, 1994, have been re-established using updated methods. BPA studies its
231 paths, with the exception of La Grande, on a periodic basis and reconfirms the rating of
232 each path based on these studies. These ratings are then used to establish the TTC for
233 the path.

234 For the La Grande path, BPA uses the Accepted Rating of the path as defined in the WECC
235 Path Rating Catalog. BPA's La Grande path is part of the NW-Idaho path (WECC Path
236 14). The rating of Path 14 was reconfirmed through an updated study in 2010 when the
237 path definition had to be modified due to the addition of the Hemingway Substation by
238 PacifiCorp and Idaho Power.

239 BPA establishes the TTC at the lesser of the maximum allowable contractual allocation, or
240 the reliability limit determined by the TOP. The reliability limit includes, but is not
241 limited to, any System Operating Limit for an ATC path.

242 BPA creates a study report that describes the TTC applicable to the outages during the
243 studied time period and includes the limiting Contingencies and the limiting cause for the
244 calculated TTC. The RC West SOL Methodology document defines the steps taken and
245 assumptions BPA used to determine TTC for each path. BPA creates a study report for
246 each study it performs. The study report relies on the basic assumptions included in RC
247 West SOL methodology and identifies any changes to those basic assumptions.

248 Information regarding TTCs is shared electronically between the appropriate BPA
249 organizations within seven calendar days of the finalization of the study report for the TTCs.
250 BPA sends a notice to all TSPs for the paths listed in Table 1 where there are multiple TSPs
251 *prior* to limitations in TTCs.

252 A path for which BPA does not perform studies to determine the most current value of TTC is
253 Reno - Alturas. For Reno-Alturas, NV Energy determines TTC. The TTC is provided to BPA and
254 BPA then sends a Notice of Planned Path Limitation.

255 **Calculating Firm Transmission Service for Paths**

256 **Calculating Firm Existing Transmission Commitments (ETC_F)**

257 When calculating ETC_F for all time periods for its paths, BPA uses the following algorithm:

$$258 \quad ETC_F = NL_F + NITS_F + GF_F + PTP_F + ROR_F + OS_F$$

259 **Where:**

260 ETC_F is the firm ETC for the ATC path.

261 NL_F is the firm capacity set aside to serve peak Native Load forecast commitments, to include
262 losses, and Native Load growth, not otherwise included in Transmission Reliability Margin or
263 Capacity Benefit Margin.

264 BPA does not have any NL_F, and thus sets NL_F at zero for all of its paths for all time
265 periods. All of BPA's firm Transmission obligations are captured in the NITS_F, PTP_F, GF_F
266 and ROR_F components of the ETC_F algorithm.

267 NITS_F is the firm capacity reserved for Network Integration Transmission Service serving Load,
268 to include losses, and Load growth, not otherwise included in Transmission Reliability Margin
269 or Capacity Benefit Margin.

270 For BPA's 1:1 paths, BPA uses ten year maximum 1 in 10 coincidental peak Load forecasts
271 to encumber capacity for customers with a designated resource of FCRPS. For customers
272 with a designated resource outside of FCRPS, BPA uses the capacity designated for the
273 resource to encumber capacity across these paths.

274 On the La Grande W>E ATC path, BPA uses a different methodology to encumber capacity
275 for customers with a designated resource of FCRPS. BPA encumbers firm capacity based
276 on the coincidental 1 in 10 peak forecast, less critical water forecasts of the federal
277 generation located in the Idaho BAA. Idaho Power then specifies what will be served
278 across La Grande W>E and BPA encumbers this amount for this path.

279 For BPA's flow-based paths, BPA accounts for $NITS_F$ obligations with a combination of base
280 ETC and interim ETC calculations, as described further in this document.

281 GF_F is the firm capacity set aside for grandfathered contracts for energy and/or Transmission
282 Service, where executed prior to the effective date of a Transmission Service Provider's Open
283 Access Transmission Tariff or "safe harbor tariff."

284 The amount of GF_F BPA encumbers across its 1:1 paths is based on the terms of each
285 individual contract.

286 For BPA's flow-based paths, BPA accounts for GF_F obligations with base ETC calculations,
287 as described further in this document.

288 PTP_F is the firm capacity reserved for confirmed Point-to-Point Transmission Service.

289 In BPA's calculations for 1:1 paths, PTP_F is equal to the sum of the MW Demands of PTP_F
290 reservations or schedules.

291 For BPA's flow-based paths, BPA accounts for PTP_F obligations with a combination of base
292 ETC and interim ETC calculations, as described further in this document.

293 For Redirects from conditional short-term firm parent reservations, BPA's ETC accounts
294 for the parent reservation until the Redirect is confirmed on OASIS. Once the Redirect is
295 confirmed, BPA's ETC only accounts for the Redirect.

296 For Redirects from long-term firm parent reservations or unconditional short-term firm
297 parent reservations, BPA's ETC accounts for both the parent reservation and the Redirect
298 reservation until the Redirect itself is unconditional. Once the Redirect is unconditional,
299 BPA's ETC only accounts for the Redirect.

300 In some cases, BPA has PTP_F contracts that give customers the right to schedule between
301 multiple Points of Receipt (PORs) and Points of Delivery (PODs).⁷ However, the customer
302 can only schedule up to the MW amount specified in their contract. Multiple reservations
303 are created for these special cases to allow BPA to model each POR-to-POD combination.
304 The amount encumbered for these cases does not exceed the total PTP_F rights specified in
305 the contracts.

306 ROR_F is the firm capacity reserved for roll-over rights for contracts granting Transmission
307 Customers the right of first refusal to take or continue to take Transmission Service when the
308 Transmission Customer's Transmission Service contract expires or is eligible for renewal.

309 BPA assumes that all of its Transmission Service Agreements eligible to roll-over in the
310 future will be rolled over. If a Transmission Customer chooses not to exercise its roll-over
311 rights by the required deadline, BPA no longer encumbers capacity for roll-over rights for
312 that Transmission Customer.

313 OS_F is the firm capacity reserved for any other service(s), contract(s), or agreement(s) not
314 specified above using Firm Transmission Service as specified in the ATCID.

315 BPA has no OS_F and thus sets OS_F at zero for all of its paths for all time periods. All of
316 BPA's firm Transmission obligations are captured in the NITS_F, PTP_F, GF_F and ROR_F
317 components of the ETC_F algorithm.

318 Although BPA uses the above algorithm to calculate ETC_F for all of its paths, BPA's ETC_F
319 calculation methodology differs between its 1:1 and flow-based paths. For 1:1 paths, BPA
320 calculates ETC_F by assuming that 1 MW of reserved firm capacity equals 1 MW of ETC_F across
321 that path. The POR/POD combinations for 1:1 ATC paths that impact ETC_F can be found under
322 the Transmission Availability section of BPA's website. For the flow-based paths, BPA
323 calculates ETC_F by summing the base ETC from power-flow ETC studies with interim ETC_F
324 calculated using PTDFs.

325 Determining base ETC for Flow-Based Paths

326 Use of WECC Base Cases to Determine Base ETC

327 BPA uses the WECC seasonal base cases and modifies them to calculate the base ETC
328 for its flow-based paths. BPA refers to these base cases as ETC cases.

⁷ On July 12th, 2004, BPA implemented a moratorium on multiple POR/POD requests requiring that requests for Long-Term Firm Point-to-Point Transmission Service must specify a single POR and a single POD. Current multiple-to-multiple contracts must be converted to single POR and single POD upon renewal of service.

329 **Determining Base ETC for Heavy Load ETC Cases**
330 BPA creates monthly heavy load ETC cases to calculate base ETC values. BPA's ETC
331 cases are produced using a power flow model that computes how much power will
332 flow over each flow-based path for the assumed Load and generation levels for each
333 time period studied. Counterflows are inherently modeled in ETC cases.

334 BPA uses the following assumptions to create heavy load ETC cases for its base ETC
335 calculations:

336 **System topology:** Normal operating conditions are used. BPA uses the WECC Winter
337 seasonal case for its November through March ETC cases, the WECC Spring seasonal
338 case for its April and May ETC cases, and the WECC Summer seasonal case for its June
339 through October ETC cases.

340 **Load:** BPA uses Loads contained in the WECC seasonal base cases for the time periods
341 being studied, along with any updates to those Loads BPA may have made after the
342 WECC base cases were received from WECC.

345 **Generation:** For the generators in BPA's BAA or directly interconnected to BPA, BPA
346 uses the following generation assumptions:

347 **FCRPS:** For the FCRPS resources serving NITS_F, PTP_F, and GF_F Long-Term Reservations,
348 generation levels are set using a multiple-step process. For all time periods studied,
349 BPA uses the following process:

350 • The Columbia Generating Station is assumed to be on-line at full load in the ETC
351 cases. Generation levels at the Libby, Hungry Horse, Dworshak, and Albeni Falls
352 projects are based on the 90th percentile rate case generation values for these
353 projects. The generation levels at the Willamette Valley projects⁸ are set at a
354 monthly fleet-aggregate lower 10th percentile of Heavy Load Hour block
355 generation from the planning period of record and adjusted as needed to
356 accurately reflect operations that BPA knows are in place. **Nameplate Adjusted**
357 **Method:** When creating heavy load ETC cases, generation levels for all other
358 federal hydro projects⁹ are set by first determining the nameplate for each project
359 and then adjusting such nameplates by outages forecasted for the particular

⁸ Willamette Valley projects include: Big Cliff, Cougar, Detroit, Dexter, Foster, Green Peter, Hills Creek, Lookout Point, and Lost Creek.

⁹ Federal hydro projects include: Grand Coulee, Chief Joseph, Lower Granite, Lower Monumental, Little Goose, Ice Harbor, McNary, John Day, The Dalles, Bonneville.

360 plants. Next in the month of August, the Lower Snake plants (Lower Granite,
361 Lower Monumental, Little Goose, and Ice Harbor) are capped at the observed
362 project outflow over the past ten Augusts. Then multiple generation scenarios are
363 modelled by stressing one of three different “zones” of Federal hydro resources to
364 the nameplate adjusted generation levels described above and scaling the
365 generation at the remaining Federal hydro projects to match the sum of the
366 demands for all contracts that call out non-specific Federal hydroelectric projects
367 as PORs after adjusting these demands for the portion served by Columbia
368 Generating Station, Libby, Hungry Horse, Dworshak, Albeni Falls, and the
369 Willamette Valley projects. The Federal PTP demands at each project are then
370 added to this result to obtain the final assumed generation level for each Federal
371 hydro project.

372 **Non-Federal Thermal Generators:** Non-federal thermal generators associated with
373 PTP_F, GF_F and NITS_F Transmission Service for BPA’s area and all adjacent TSP areas are
374 set at up to the contract Demand.

375 **Wind Generators:**

- 376 • **PTP_F:** Wind generators associated with PTP_F Long-Term Reservations are set at
377 the following depending on the scenarios being run:
 - 378 ○ Modeled on at 100 percent of the contract demand for the wind
379 generator; or
 - 380 ○ Modeled off
- 381 • **NITS_F:** The flow-based path impacts of wind generators identified as
382 designated network resources in NITS_F contracts or in the NT Resources
383 Memorandum of Agreement in BPA’s area are determined on a flow-based
384 path-by-flow-based path basis and set at the greater of the following:
 - 385 ○ The wind generators modeled on at the designated amount of the wind
386 generators; or,
 - 387 ○ The wind generators modeled off and replaced by increasing the FCRPS
388 generation level by the designated amount of the wind generators using
389 the Nameplate Adjusted Method for all ETC cases described above.
- 390 Wind generators designated as network resources in NITS_F contracts for all
391 adjacent TSPs are modeled up to the designated amount.
- 392 • **GF_F:** BPA and all of BPA’s adjacent TSPs have no GF_F contracts for wind
393 generators.

394 **Behind the Meter Generators:** Non-federal resources that do not require
395 Transmission Service over the FCRTS and that are behind the meter are set up to
396 levels used in BPA’s process for power system planning studies.

397 **Mid-Columbia Hydro Projects:** Generation levels at the non-federal Mid-Columbia
398 hydro projects are set up to 90 percent of their historical output by season.

399 When creating heavy load ETC cases, if there is more generation than Load plus
400 committed exports in the base case, BPA reduces excess generation to bring
401 generation and Load into balance in order to solve the power flow model. BPA
402 reduces all excess generation by aggregating generators by fuel type and scaling the
403 aggregated fuel type groups. Generation is then reduced based on how each
404 generator participates as part of the scaled generation fleet, with the exception of the
405 stressed FCRPS zone. The Columbia Generation Station is not scaled, as this generator
406 is always modeled on.

407 When creating heavy load ETC cases, if there is more Load and committed exports
408 than generation in the ETC case, BPA reduces exports on the AC Intertie and Pacific DC
409 Intertie in the ETC case. This is done to solve the power flow model.

410 **Sensitivity Studies for Heavy Load ETC Cases**

411 In calculating its base ETC values, BPA runs ETC case scenarios for three different
412 sensitivities: the Canadian Entitlement Return (CER) obligation modeled on or off,
413 wind resources designated to serve PTP_F and NITS_F on or off, and stressing the three
414 different zones of the FCRPS.

415 For the FCRPS scenarios, the three “zones” that are stressed individually in the
416 scenarios are made up of the following projects: (i) Upper Columbia zone includes
417 Grand Coulee and Chief Joseph; (ii) Lower Snake zone includes Lower Monumental,
418 Lower Granite, Little Goose, and Ice Harbor; and (iii) Lower Columbia zone includes
419 McNary, John Day, The Dalles and Bonneville.

420 For the CER Scenarios, BPA models the FCRPS generators delivering or not delivering
421 energy to Canada in the amount specified in the Canadian Entitlement Agreement.

422 In the CER on scenarios, BPA models the exports to Canada at the long-term firm
423 contract rights that customers have across the Northern Intertie S>N. The FCRPS
424 generation is modeled using the Nameplate Adjusted Method. Starting with the
425 November 2025 base case studies, BPA models imports from California on the AC S>N
426 and DC S>N per customers’ long-term firm contract rights on these paths.

427 In the CER off scenarios, BPA models imports from Canada at the long-term firm
428 contract rights that customers have across the Northern Intertie N>S. The FCRPS
429 generation is also modeled using the Nameplate Adjusted Method. BPA models AC N>S
430 and DC N>S exports to California per customers’ long-term firm contract rights on
431 these paths.

432 For the wind resource scenarios, see above for a description of the base ETC
433 assumptions for wind generators serving PTP_F and NITS_F.

434 Therefore, in its heavy load base ETC sensitivity analysis, BPA models the following 6
435 scenarios:

- 436 1. Wind modeled off/Upper Columbia stressed
- 437 2. Wind modeled off/Lower Snake stressed
- 438 3. Wind modeled off/Lower Columbia stressed
- 439 4. Wind modeled on/Upper Columbia stressed

440 5. Wind modeled on/Lower Snake stressed
441 6. Wind modeled on/Lower Columbia stressed

442 All scenarios are run with CER modeled on and off for all months.

443 BPA uses the highest base ETC value calculated from these scenarios in its firm ATC
444 calculations across the flow-based paths. BPA uses the lowest base ETC value from
445 these scenarios in its non-firm ATC calculations across the flow-based paths.

446 **Determining Base ETC and Sensitivities for Light Load ETC Cases**

447 BPA uses the WECC Winter seasonal light load case as the starting point for its Winter
448 seasonal light load ETC case. The ETC from this case is used as the base ETC for the
449 months of November through March.

450 BPA uses the WECC Summer seasonal light load case as the starting point for its
451 Summer light load ETC case. The ETC from the Summer case is used as the base ETC
452 for the months of June through October.

453 If a WECC Spring seasonal light load case is available, BPA uses that case as the
454 starting point for its Spring seasonal light load ETC case. The ETC from this case is
455 used as the base ETC for the months of April and May. If the WECC Spring seasonal
456 light load case is not available, the higher of the base ETCs from either the Winter or
457 Summer case are used as the base ETC for April and May.

458 BPA uses the following assumptions in light load ETC cases:

- 459 a. System topology: Normal operating conditions are used.
- 460 b. Loads: Loads from the WECC light load cases are used. For Montana Loads
461 only, BPA compares the Loads in the WECC seasonal light load case with the
462 seasonal light Loads supplied by Montana Power, and uses the lowest of the two
463 values in order to properly stress the light load case.
- 464 c. Generation: BPA uses generation assumptions from historical data. Canadian
465 Entitlement is modeled as delivering energy to Canada in the amount specified
466 in the Canadian Entitlement Agreement.

467 There are two sensitivity studies performed for the light load ETC cases:

- 468 a. Federal generation east of the path is increased, and a corresponding amount
469 of federal generation west of the path is reduced
- 470 b. Federal generation east of the path is reduced, and a corresponding amount of
471 federal generation west of the path is increased

472 BPA uses the highest base ETC value calculated from these scenarios in its firm ATC
473 calculations across the flow-based paths where light load cases are utilized. BPA uses
474 the lowest base ETC value from these scenarios in its non-firm ATC calculations across
475 the flow-based paths where light load cases are utilized.

476 **Calculating Interim ETC_F for Flow-based Paths**

477 To calculate the impacts for all NITS_F and PTP_F reservations that were not modeled in the
478 ETC cases, BPA uses PTDF analysis on the demand in each reservation. PTDF analysis is
479 the fraction of energy (expressed as a percentage or as a decimal) that will flow across
480 BPA's monitored flow-based paths as that energy is injected at a POR (or source) relative
481 to a slack bus, and withdrawn at a POD (or sink) relative to a slack bus, for each flow-
482 based path.

483 PTDF impacts are calculated as per BPA's Transmission Service Requests Evaluation
484 business practice. If a reservation's impact on a flow-based path is determined to be *de*
485 *minimis* per the Transmission Service Requests Evaluation business practice, then BPA
486 deems the impact of the reservation to be zero when calculating ETC_F used in the ATC_F
487 calculation.

488 The sum of these positive impacts is referred to as the interim ETC_F value, and is added to
489 the base ETC values to produce a final ETC_F value for each time period for each flow-
490 based path.

491 **Outages in PTDF Calculations**

492 BPA calculates PTDFs by adjusting the WECC base cases to include transmission
493 outages from BPA's outage system. Transmission outages for Transmission Lines,
494 sections of Transmission Lines, transformers and taps are used to set branches as *open*
495 in the appropriate base case for the hour being calculated.

496 When the Raver-Paul 500-kV line is out of service, the PTDFs that BPA calculates and
497 uses for the Raver-Paul path are based on the monitored lines for this path that are
498 outlined in Table 2. This allows BPA to properly manage the Raver-Paul path in this
499 outage situation.

500 **Outage Criteria in ETC Calculations**

501 BPA uses the outage planning timeline described in the "Outages" section. The
502 following criteria determine which outages are incorporated into BPA's hourly, daily
503 and monthly ETC calculations:

504 **Hourly ETC Calculations**

505 For its hourly ETC calculations, BPA uses hourly PTDFs published at least once per
506 day.

507 **Daily ETC Calculations**

508 For its daily ETC calculations, BPA uses the most recent PTDFs published for the
509 hour ending 11 of each day, since hour ending 11 tends to have the highest
510 coincidence of outages. Therefore all Transmission outages scheduled to occur
511 during the hour ending 11, regardless of the duration of the outage, impact daily
512 ETC calculations.

513 BPA includes Transmission outages in daily ETC calculations beyond the 10- to 16-
514 day planned outage study period if the outage is officially scheduled in BPA's
515 outage system.

516 **Monthly ETC Calculations**

517 For its monthly ETC calculations, BPA uses the most recent daily PTDFs published
518 for the first Tuesday of that month. BPA includes Transmission outages in monthly
519 ETC calculations beyond the 10- to 16-day planned outage study period if the
520 outage is officially scheduled in BPA's outage system.

521 **Source/POR and Sink/POD Identification and Mapping**

522 In the ETC components of its flow-based path ATC calculations, BPA accounts for
523 source and sink for Transmission Service through the following processes:

524 BPA maps the source/POR and sink/POD to the WECC base cases. In this mapping, BPA
525 has assigned network bus points that represent the primary interface for
526 Interconnection with specific generation projects, adjacent electrical Systems or
527 Load-serving entities and trading hubs. Some adjacent electrical Systems have
528 multiple Interconnection points deemed as PORs/sources or PODs/sinks. The mapping
529 of these points is published in the Transmission Service Contract Points list on BPA's
530 OASIS homepage.

531 BPA calculates weighted PTDFs for Sources/PORs as follows:

1. The PTDF weighting for the FCRPS/BPA Power PTDF varies by time period and path based on stress scenarios. The PTDF weighting is derived from generation forecasts of the federal resources, for calculations for the next hour through approximately two weeks. Beyond this time frame, BPA derives the weighting of the PTDF by applying the generation dispatch determined in the ETC cases.
2. BPA derives the PTDF weighting for the Mid-Columbia bus point by applying the generation dispatch determined in the ETC cases.
3. BPA has grouped the generators in its adjacent BAAs based on the primary interface between each BAA and the generation projects within that BAA (excluding some remote generators that are scheduled via NERC e-Tag). These groupings are assigned weighted PTDFs that represent how the generators participate in the group and are used to evaluate transactions within and between adjacent BAAs that do not include BPA. BPA derives the PTDF weightings for these points from BAA-provided generation estimates or by applying the generation dispatch determined in the ETC cases if generation estimates are not available. In the ETC cases, these generators are modeled up to the long-term firm Transmission rights associated with the generators.

549 BPA calculates weighted PTDFs for Sinks/PODs as follows:

1. BPA has weighted PTDFs for Loads in its adjacent BAAs based on the primary interface between each BAA and the Load within that BAA. The weighting is based on how the Load is distributed in the BAA.
2. BPA calculates a weighted PTDF to account for unscheduled Network Integration Transmission Service Loads in BPA's BAA that are served from the FCRPS. The weighting is based on the individual Load forecasts for the time period being calculated.

557 3. BPA calculates a weighted Load for all of the BPA Power Services customers that
558 are served via Network Integration Transmission Service agreements. The
559 weighting is based on the individual Load forecasts for the time period being
560 calculated.

561 4. BPA calculates a weighted Load for PNGC Power, which is a Joint Operating Entity
562 made up of several cooperative utilities. The weighting is based on the individual
563 Load forecasts for the time period being calculated.

564 BPA calculates one weighted PTDF that applies to the following Source/POR and
565 Sink/POD:

566 1. BPA calculates a weighed PTDF for the Western Energy Imbalance Market. This
567 weighting is based on the percentage of Automatic Generation Control response
568 (which could be zero) carried by each plant in the FCRPS.

569 **Calculating Firm Available Transfer Capability (ATC_F)**

570 When calculating ATC_F for its paths for all time periods, BPA uses the following algorithm:

$$571 \quad \text{ATC}_F = \text{TTC} - \text{ETC}_F - \text{CBM} - \text{TRM} + \text{Postbacks}_F + \text{Counterflows}_F$$

572 **Where:**

573 **ATC_F** is the firm Available Transfer Capability for the ATC path for that period for which ATC_F
574 is being calculated.

575 **TTC** is the Total Transfer Capability of the ATC path for that period.

576 **ETC_F** is the sum of existing firm commitments for the ATC path as specified in WEQ-023 during
577 that period for which ATC_F is being calculated.

578 For ATC_F calculations for all time periods, BPA divides ETC_F into the following variables
579 within its ATC software:

$$580 \quad \text{ETC}_F = \text{LRES} + \text{SRES} + \text{LETC} - \text{SADJ/ETC Adjustments}$$

581 **Where:**

582 **LRES** is the sum of positive impacts of BPA's Long-Term Reservations.

583 **SRES** is the sum of positive impacts of BPA's Short-Term Reservations.

584 **LETC** is used to ensure that the amount of NITS_F, GF_F, PTP_F and ROR_F capacity BPA sets
585 aside in the LRES variable for contracts where BPA gives customers the right to schedule
586 the capacity reserved between multiple PORs and PODs does not exceed the total capacity
587 specified in those contracts.

588 LETC is also used to align the ETC calculated in the ETC cases with additional PTDF
589 calculations in order to balance to the standard OATI calculation. This adjustment is
590 derived by comparing two values: a) the impacts of the confirmed PTP_F, GF_F, NITS_F and
591 ROR_F Long-Term Reservations derived from the ETC cases and b) the impacts of the same
592 reservations calculated using PTDF Analysis for each flow-based path. The adjustment for
593 each flow-based path is equal to the difference of these two values.

594 **SADJ/ETC Adjustments** is the variable BPA uses to make adjustments to ETC_F not
595 captured in LRES or SRES.

596 BPA uses a SADJ/ETC Adjustment to account for a portion of the firm TRM that BPA
597 applies on the NI S>N.

598 BPA also uses SADJ/ETC Adjustments to ensure accurate accounting of ETC_F. These
599 adjustments may be performed to account for situations such as data modeling
600 corrections.

601 The following diagram illustrates how the variables in BPA's ATC software correspond to
602 the variables in the ETC_F algorithm.

ETC _F =	NITS _F	+	GF _F	+	PTP _F	+	ROR _F
	↓ LRES		↓ LRES		↓ LRES		↓ LRES
	+				+		
	SRES				SRES		
	+		+		+		+
	LETC		LETC		LETC		LETC
	-		-		-		-
	SADJ/ETC Adjustments		SADJ/ETC Adjustments		SADJ/ETC Adjustments		SADJ/ETC Adjustments

603 **CBM** is the Capacity Benefit Margin for the ATC path during that period.

604 BPA does not maintain CBM and thus sets CBM at zero for all of its paths for all time
605 periods.

606 **TRM** is the Transmission Reliability Margin for the ATC path during that period.

607 The description of how BPA implements TRM can be found in BPA's TRMID, which is posted
608 on BPAs website.

609 **Postbacks_F** are changes to firm Available Transfer Capability due to a change in the use of
610 Transmission Service, as defined in WEQ-023.

611 BPA automatically recalculates ETC_F to account for changes to Transmission Service
612 Requests (such as request types of Recall and Redirect and annulments). Since these
613 types of changes to Transmission Service Requests are captured in ETC_F, BPA treats
614 Postbacks_F as zero for all time periods when calculating ATC_F.

615 Counterflows_F are adjustments to firm Available Transfer Capability as determined by the
616 Transmission Service Provider and specified in their ATCID.

617 BPA does not include confirmed Transmission reservations, expected interchange or
618 internal flow counter to the direction of the path being calculated in its ATC_F calculations.
619 BPA's rationale is that it does not want to offer firm ATC due to counterflow that may not
620 be scheduled as this could lead to curtailments of Firm Transmission Service in the Real-
621 time horizon. Therefore BPA sets Counterflows_F at zero for all of its paths for all time
622 periods.

623 For flow-based paths, counterflows are automatically modeled in the ETC cases. In
624 instances where the power flow study results in a negative base ETC value, BPA uses zero
625 as the base ETC for purposes of calculating ATC_F. This is done to ensure that BPA does not
626 make capacity available as a result of counterflows that may or may not materialize in
627 real-time.

628 **Calculating Non-Firm Transmission Service for BPA's Paths**

629 BPA calculates ETC_{NF} and ATC_{NF} for each of its six non-firm Transmission products. The six
630 non-firm products are: Secondary Network (NITS_{NF6}), Monthly Non-Firm PTP (PTP_{NF5}), Weekly
631 Non-Firm PTP (PTP_{NF4}), Daily Non-Firm PTP (PTP_{NF3}), Hourly Non-Firm PTP (PTP_{NF2}) and
632 Secondary Non-Firm Hourly PTP (PTP_{NF1}).

633 **Calculating Non-Firm Existing Transmission Commitments (ETC_{NF})**

634 BPA calculates ETC_{NF} for all time periods and paths using the following algorithm:

635 $ETC_{NF} = NITS_{NF} + GF_{NF} + PTP_{NF} + OS_{NF}$

636 ETC_{NF} is calculated for each of BPA's six non-firm Transmission products as follows:

637 1. ETC_{NF6}: includes the NITS_{NF6} transmission product

638 2. ETC_{NF5}: includes the NITS_{NF6} and PTP_{NF5} transmission products

639 3. ETC_{NF4}: includes the NITS_{NF6}, PTP_{NF5} and PTP_{NF4} transmission products

640 4. ETC_{NF3}: includes the NITS_{NF6}, PTP_{NF5}, PTP_{NF4}, and PTP_{NF3} transmission products

641 5. ETC_{NF2}: includes the NITS_{NF6}, PTP_{NF5}, PTP_{NF4}, PTP_{NF3} and PTP_{NF2} transmission products

642 6. ETC_{NF1}: includes the NITS_{NF6}, PTP_{NF5}, PTP_{NF4}, PTP_{NF3}, PTP_{NF2} and PTP_{NF1} transmission products

643 **Where:**

644 ETC_{NF} is the non-firm ETC for the ATC path.

645 NITS_{NF} is the non-firm capacity reserved for Secondary Network Transmission Service, to
646 include losses, and Load growth not otherwise included in Transmission Reliability Margin or
647 Capacity Benefit Margin.

648 In BPA's calculations, this is comprised of the NITS_{NF6} Transmission product. BPA's NITS_{NF6}
649 calculation does not include losses or Load growth, since losses and Load growth are
650 already encumbered as firm capacity in NITS_F.

651 GF_{NF} is the non-firm capacity set aside for grandfathered contracts for energy and/or
652 Transmission Service, where executed prior to the effective date of a Transmission Service
653 Provider's Open Access Transmission Tariff or "safe harbor tariff."

654 BPA does not have any grandfathered non-firm Transmission Service obligations and thus
655 sets GF_{NF} at zero for all of its paths for all time periods.

656 PTP_{NF} is non-firm capacity reserved for confirmed Point-to-Point Transmission Service.

657 Depending on the ETC_{NF} being calculated, PTP_{NF} will include the PTP_{NF5}, PTP_{NF4}, PTP_{NF3},
658 PTP_{NF2} and PTP_{NF1} Transmission products.

659 OS_{NF} is the non-firm capacity reserved for any other service(s), contract(s), or agreement(s)
660 not specified above using non-firm transmission service as specified in the ATCID.

661 BPA has no OS_{NF} and thus sets OS_{NF} at zero for all of its paths for all time periods.

662 ETC_{NF} for 1:1 paths is calculated by assuming that 1 MW of reserved and/or scheduled capacity
663 results in 1 MW of impact across the 1:1 path. The POR/POD combinations for 1:1 ATC paths
664 that impact ETC_{NF} can be found under the Transmission Availability section of BPA's website.

665 When calculating ETC_{NF} for flow-based paths, BPA sums the positive impacts of reservations
666 and/or schedules as determined by PTDF analysis, per BPA's Transmission Service Requests
667 Evaluation business practice. The treatment of *de minimis* impacts in ETC_{NF} is covered within
668 the Calculating Non-Firm Available Transfer Capability section below.

669 Calculating Non-Firm Available Transfer Capability (ATC_{NF})

670 BPA calculates ATC_{NF} for its paths for two horizons: Real-time and Beyond Real-time. The
671 Real-time horizon begins at 10 p.m. each day for the 24 hours in the next day. The Beyond
672 Real-time horizon includes hourly for the hours after those included in the Real-time period
673 as well as daily and monthly calculations.

674 BPA calculates ATC_{NF} for all time periods and paths using the following algorithm:

$$675 \text{ATC}_{\text{NF}} = \text{TTC} - \text{ETC}_F - \text{ETC}_{\text{NF}} - \text{CBM}_S - \text{TRM}_U + \text{Postbacks}_{\text{NF}} + \text{Counterflows}_{\text{NF}}$$

676 ATC_{NF} is calculated for each of BPA's six non-firm Transmission products as follows:

$$677 1. \text{ATC}_{\text{NF6}} = \text{TTC} - \text{ETC}_F - \text{ETC}_{\text{NF6}} - \text{CBM}_S - \text{TRM}_U + \text{Postbacks}_{\text{NF}} + \text{Counterflows}_{\text{NF}}$$

$$678 2. \text{ATC}_{\text{NF5}} = \text{TTC} - \text{ETC}_F - \text{ETC}_{\text{NF5}} - \text{CBM}_S - \text{TRM}_U + \text{Postbacks}_{\text{NF}} + \text{Counterflows}_{\text{NF}}$$

$$679 3. \text{ATC}_{\text{NF4}} = \text{TTC} - \text{ETC}_F - \text{ETC}_{\text{NF4}} - \text{CBM}_S - \text{TRM}_U + \text{Postbacks}_{\text{NF}} + \text{Counterflows}_{\text{NF}}$$

680 4. $ATC_{NF3} = TTC - ETC_F - ETC_{NF3} - CBM_S - TRM_U + Postbacks_{NF} + Counterflows_{NF}$

681 5. $ATC_{NF2} = TTC - ETC_F - ETC_{NF2} - CBM_S - TRM_U + Postbacks_{NF} + Counterflows_{NF}$

682 6. $ATC_{NF1} = TTC - ETC_F - ETC_{NF1} - CBM_S - TRM_U + Postbacks_{NF} + Counterflows_{NF}$

683 Table 3 outlines the differences in how the ATC_{NF} algorithm components are calculated
684 between the Beyond Real-time and Real-time time horizons.

685 **Table 3, ATC_{NF} Calculation for Beyond Real-Time and Real-Time Horizons**

Algorithm Component	Beyond Real-time	Real-time
TTC	As described in TTC section in the ATCID	Same
ETC_F	Calculated using reservations and ETC cases for flow-based paths <ul style="list-style-type: none"> • <i>De minimis</i> impacts are treated as zero in ETC_F 	Calculated using schedules <ul style="list-style-type: none"> • <i>De minimis</i> impacts are included in ETC_F
ETC_{NF}	Calculated using reservations <ul style="list-style-type: none"> • <i>De minimis</i> impacts are treated as zero in ETC_{NF} 	Calculated using reservations until scheduled, then calculated using schedules <ul style="list-style-type: none"> • <i>De minimis</i> impacts are included in ETC_{NF} for both reservations and schedules
CBM_S	N/A	N/A
TRM_U	As described in the TRMID	Same
$Postbacks_{NF}$	Zero since ETC_{NF} is recalculated to capture changes to the Transmission Service Requests	Zero since ETC_{NF} is recalculated to capture changes to the Transmission Service Requests and/or schedules, with the exception of AC N>S
$Counterflows_{NF}$	Included with schedules	Same

686 **Where:**

687 ATC_{NF} is the non-firm Available Transfer Capability for the ATC path for that period for which
688 ATC_{NF} is being calculated.

689 BPA calculates six ATC_{NF} values as described above.

690 TTC is the Total Transfer Capability of the ATC path for that period.

691 ETC_F is the sum of existing firm commitments for the ATC path as specified in WEQ-023 during
692 that period for which ATC_{NF} is being calculated.

693 The section below outlines how BPA calculates ETC_F for all of its paths for the beyond
694 Real-time and the Real-time horizons.

695 **ETC_F for the Beyond Real-Time Horizon**

696 Reservations, and ETC cases for flow-based paths, are used to calculate ETC_F for the
697 Beyond Real-time horizon. When calculating ETC_F for this horizon, *de minimis* impacts of
698 reservations across flow-based paths are deemed to be zero.

699 For ATC_{NF} calculations for the beyond Real-time horizon, BPA utilizes the following
700 variables within its ATC software to calculate ETC_F:

701 **ETC_F = LRES + SRES - SADJ/ETC Adjustments + NFETC**

702 **Where:**

703 **LRES** is the sum of positive impacts of BPA's Long-Term Reservations.

704 **SRES** is the sum of positive impacts of BPA's Short-Term Reservations.

705 **SADJ/ETC Adjustments** is the variable used to make adjustments to ETC_F not captured
706 in LRES or SRES.

707 BPA uses SADJ/ETC Adjustments to ensure accurate accounting of ETC_F. These
708 adjustments may be performed to account for situations such as data modeling
709 corrections, and are noted in the descriptions of the adjustments.

710 **NFETC** is used to ensure that the amount of NITS_F, GF_F, PTP_F and ROR_F capacity BPA
711 sets aside in the LRES variable for contracts where BPA gives customers the right to
712 schedule the capacity reserved between multiple PORs and PODs does not exceed the
713 total capacity specified in those contracts.

714 NFETC is also used to align the ETC calculated in the ETC cases along with additional
715 PTDF calculations in order to balance to the standard OATI calculation.

716 This adjustment is derived by comparing two values: a) the impacts of the PTP_F, GF_F
717 and NITS_F Long-Term Reservations derived from the ETC cases and b) the impacts of
718 the same reservations calculated using PTDF Analysis for each flow-based path. The
719 adjustment for each flow-based path is equal to the difference of these two values.

720 The following diagram illustrates how the variables in BPA's ATC software correspond
721 to the variables in the ETC_F algorithm for the Beyond Real-time horizon.

ETC _F =	NITS _F	+	GF _F	+	PTP _F	+	ROR _F
	↓		↓		↓		↓
	LRES		LRES		LRES		LRES
	+				+		
	SRES				SRES		
	+		+		+		+
	NFETC		NFETC		NFETC		NFETC
	-		-		-		-
	SADJ/ETC Adjustments		SADJ/ETC Adjustments		SADJ/ETC Adjustments		SADJ/ETC Adjustments

722 **ETC_F for the Real-Time Horizon**

723 For ATC_{NF} calculations for the Real-time horizon, BPA divides ETC_F into the following
724 variables within its ATC software:

725
$$\text{ETC}_F = \text{SCH}^+ + \text{ASC}^+ + \text{RADJ/ETC Adjustment}$$

726 Schedules are used to calculate ETC_F for the Real-time horizon. When calculating ETC_F for
727 this horizon, *de minimis* impacts of schedules across flow-based paths are included in
728 ETC_F.

729 **Where:**

730 SCH^+ is the sum of the positive impacts of schedules that reference confirmed NITS_F,
731 GF_F and PTP_F reservations for the ATC path for that period. The energy profile of the
732 schedule is used except for the schedule types of Dynamic, Capacity and Pseudo-tie.

733 ASC^+ is the sum of the positive impacts of dynamic schedules that reference
734 confirmed NITS_F, GF_F and PTP_F reservations for the ATC path for that period. The
735 transmission profile of the schedule is used for the schedule types of Dynamic,
736 Capacity and Pseudo-tie.

737 **RADJ/ETC Adjustment:** BPA uses RADJ/ETC adjustments to ensure accurate
738 accounting of ETC_F. These adjustments may be performed to account for situations
739 such as data modeling corrections.

740 The following diagram illustrates how the variables in BPA's ATC software correspond
741 to the variables in the ETC_F algorithm for the Real-time horizon. ROR_F is not included
742 in ETC_F for the Real-time horizon because ROR_F is not relevant for the Real-time
743 horizon.

ETC _F =	NITS _F	+	GF _F	+	PTP _F
	↓		↓		↓
	SCH^+		SCH^+		SCH^+
	+		+		+
	ASC^+		ASC^+		ASC^+
	+		+		+
	RADJ/ETC Adjustment		RADJ/ETC Adjustment		RADJ/ETC Adjustment

744 ETC_{NF} is the sum of existing non-firm commitments for the ATC path as specified in WEQ-023
745 during that period for which ATC_{NF} is being calculated.

746 The section below outlines how BPA calculates ETC_{NF} for all of its paths for the beyond
747 Real-time and the Real-time horizons.

748 **ETC_{NF} for the Beyond Real-Time Horizon**

749 For ATC_{NF} calculations for the beyond Real-time horizon, ETC_{NF} is reflected as the
750 following variable within BPA's ATC software:

751 $ETC_{NF} = RRES_{6,5,4,3,2,1}$

752 Reservations are used to calculate ETC_{NF} for the Beyond Real-time horizon. When
 753 calculating ETC_{NF} for this horizon, *de minimis* impacts of reservations across flow-based
 754 paths are deemed to be zero.

755 **Where:**

756 $RRES_{6,5,4,3,2,1}$ is the sum of the positive impacts of all confirmed $NITS_{NF6}$, PTP_{NF5} , PTP_{NF4} ,
 757 PTP_{NF3} , PTP_{NF2} and PTP_{NF1} reservations.

758 The following diagram illustrates how the variables in BPA's ATC software correspond
 759 to the variables in the ETC_{NF} algorithm for the Beyond Real-time horizon.

$ETC_{NF} =$	$NITS_{NF}$	+	PTP_{NF}
	↓		↓
	$RRES_6$		$RRES_{5,4,3,2,1}$

760 **ETC_{NF} for the Real-Time Horizon**

761 For ATC_{NF} calculations in the Real-time horizon, ETC_{NF} is reflected as the following
 762 variables within BPA's ATC software:

763 $ETC_{NF} = SCH^+_{6,5,4,3,2,1} + ASC^+_{6,5,4,3,2,1}$

764 To calculate ETC_{NF} for the Real-time horizon, reservations are used until schedules are
 765 received, and then schedules are used. When calculating ETC_{NF} for this horizon, *de*
 766 *minimis* impacts across flow-based paths are included in ETC_{NF} , regardless of whether the
 767 reservation or schedule is being used in the calculation.

768 **Where:**

769 $SCH^+_{6,5,4,3,2,1}$ is the sum of the positive impacts of schedules referenced to confirmed
 770 $NITS_{NF6}$, PTP_{NF5} , PTP_{NF4} , PTP_{NF3} , PTP_{NF2} and PTP_{NF1} reservations, plus the sum of the
 771 positive impacts of pending and confirmed $NITS_{NF6}$, PTP_{NF5} , PTP_{NF4} , PTP_{NF3} , PTP_{NF2} and
 772 PTP_{NF1} reservations that have not yet been scheduled. Once these reservations are
 773 scheduled, the schedule is used for ETC_{NF} , thereby adding back the difference
 774 between the reservation and schedule amounts to ATC_{NF} . The energy profile of the
 775 schedule is used except for the schedule types of Dynamic, Capacity and Pseudo-tie.

776 $ASC^+_{6,5,4,3,2,1}$ is the sum of positive impacts of dynamic schedules referenced to
 777 confirmed $NITS_{NF6}$, PTP_{NF5} , PTP_{NF4} , PTP_{NF3} , PTP_{NF2} and PTP_{NF1} reservations, plus the sum of
 778 the positive impacts of pending and confirmed $NITS_{NF6}$, PTP_{NF5} , PTP_{NF4} , PTP_{NF3} , PTP_{NF2} and
 779 PTP_{NF1} reservations that have not yet been scheduled. Once these reservations are
 780 scheduled, the schedule is used for ETC_{NF} , thereby adding back the difference
 781 between the reservation and schedule amounts to ATC_{NF} . The transmission profile of
 782 the schedule is used for the schedule types of Dynamic, Capacity and Pseudo-tie.

783 The following diagram illustrates how the variables in BPA's ATC software correspond
784 to the variables in the ETC_{NF} algorithm for the Real-time horizon.

785

ETC_{NF}	$NITS_{NF}$	+	PTP_{NF}
	\downarrow		\downarrow
	SCH^+_6		$SCH^+_{5,4,3,2,1}$
	+		+
	ASC^+_6		$ASC^+_{5,4,3,2,1}$

786 **CBMs** is the Capacity Benefit Margin for the ATC path that has been scheduled during that
787 period.

788 BPA does not maintain CBM and thus sets CBMs at zero for all of its paths for all time
789 periods.

790 **TRMu** is the Transmission Reliability Margin for the ATC path that has not been released for
791 sale (unreleased) as non-firm capacity by the Transmission Service Provider during that
792 period.

793 The description of how BPA implements TRM can be found in BPA's TRMID, which is posted
794 on BPAs website.

795 **Postbacks_{NF}** are changes to non-firm Available Transfer Capability due to a change in the use
796 of Transmission Service, as defined in WEQ-023.

797 The section below outlines how BPA calculates Postbacks_{NF} for all of its paths for the
798 beyond Real-time and the Real-time horizons.

799 **Postbacks_{NF} for the Beyond Real-time horizon**

800 BPA automatically recalculates ETC_{NF} to account for changes to Transmission Service
801 Requests (such as request types of Recall and annulments) for the Beyond Real-time
802 horizon. Since these types of changes to Transmission Service Requests are captured in
803 ETC_{NF} , BPA treats Postbacks_{NF} as zero for this horizon.

804 **Postbacks_{NF} for the Real-time Horizon**

805 BPA automatically recalculates ETC_{NF} to account for changes to Transmission Service
806 Requests (such as request types of Recall and annulments) and/or schedules for the Real-
807 time Horizon. Since these types of changes to Transmission Service Requests and/or
808 schedules are captured in ETC_{NF} , BPA treats Postbacks_{NF} as zero for this horizon for all
809 paths with the exception of AC N>S.

810 For ATC_{NF} calculations for the AC N>S path in the Real-time horizon, BPA uses a
811 Postbacks_{NF}, expressed as RADJ/ETC. For its hourly AC N>S non-firm calculations, BPA
812 posts back any unused share of non-firm capacity that is available to BPA by capacity
813 ownership and other Agreements for the AC N>S, if needed to prevent Curtailments.

814 Counterflows_{NF} are adjustments to non-firm Available Transfer Capability as determined by
815 the Transmission Service Provider and specified in its ATCID.

816 Since a schedule provides assurance that the transaction will flow, all counterflows
817 resulting from firm and non-firm Transmission schedules, excluding tag types dynamic,
818 pseudo and capacity, are added back to ATC_{NF} in the Counterflows_{NF} component.

819 In BPA's ATC_{NF} calculations, Counterflows_{NF} is expressed as SCH^{7,6,5,4,3,2,1}, which is the sum
820 of schedules flowing in the direction counter to the direction of the path.

821 Counterflows are modeled in the ETC cases used to determine ETC_F for BPA's flow-based
822 paths. In instances where the power flow study results in a negative base ETC value, BPA
823 uses zero as the base ETC for purposes of calculating ATC_{NF}. This is done to ensure that
824 BPA does not make capacity available as a result of counterflows that may or may not
825 materialize in real-time

826 In some cases, the amount of Counterflows_{NF} exceeds the sum of the ETC_F and ETC_{NF},
827 which, when added to TTC, results in ATC_{NF} greater than TTC.

828 Note: The variable RADJ/ETC is also used to respond to a BPA dispatcher order to change ATC
829 values by a specified amount and thereby reduce schedules in-hour when the flow exceeds
830 the TTC.

831 **Adjustments to Flow-based Path ATC Values**

832 There may be instances where BPA needs to perform testing in the production environment of
833 BPA's ATC software, or add flow-based paths in advance of their effective date. In these
834 instances, BPA will adjust its ATC values across the flow-based paths to ensure that
835 Transmission Service Requests are not refused due to lack of ATC across the flow-based paths.
836 BPA will notify customers prior to events that require these types of adjustments to ATC
837 values.

838 **VIII. Responding to Methodology/Documentation Clarifications and/or 839 Data Requests**

840 BPA will respond to all written requests for clarification of its TTC/TFC methodology, ATCID,
841 CBMID, or TRMID from any registered entity that demonstrates a reliability need within 45
842 days of receiving the written request. Methodology and/or documentation clarification
843 requests should be sent to techforum@bpa.gov with "Methodology/Documentation
844 Clarification" in the subject line.

845 BPA will respond to written data requests from any Transmission Service Provider or
846 Transmission Operator, solely for use in the requestor's ATC or AFC calculations, within 45
847 calendar days of receiving the written request. For a Transmission Service Provider or
848 Transmission Operator to officially request data to use in ATC or AFC calculations, the
849 requestor must fill out the **Data Request Form** found on BPA's ATC Methodology website.
850 The completed request form must be sent to techforum@bpa.gov with "Data Request Form"
851 in the subject line.

852 **IX. ATCID Revisions**

853 BPA posts this ATCID in accordance with NAESB Business Practice Standard WEQ-001.