Enhanced PDF Functionality

Functionality of the PDF version of this document has been enhanced in the following ways:

- **Bookmarks**: Enabled PDF reader applications (i.e., Adobe Acrobat) can navigate this document using the Bookmark feature.

- **Embedded Links**: The Table of Contents has been linked to the appropriate sections of the document.

- **Control + F / Command + F**: As always, one can navigate through the document in the Windows environment by searching for specific words or phrases by pressing the “Control” and “F” keys simultaneously; in a Mac environment use the “Command” and “F” keys simultaneously.
Roadmaps are the publically-articulated research agenda for communicating the Bonneville Power Administration’s (BPA) technology research, development, and demonstration (RD&D) needs to the research community. They are one of the four key components of the BPA Technology Innovation (TO) Office’s “system of systems” in providing a “One BPA” approach to managing technology RD&D.¹ These documents are prepared as part of BPA TI’s annual funding opportunity announcement.

Readers will find that the March 2017 version of the BPA’s roadmaps differ in fundamental ways from documents published since 2006. These changes are a result of maturation work conducted in 2015–2016 that identified a number of opportunities to improve how we implement roadmapping as a process and how we communicate the results of this process more effectively in our deliverables.² Highlights of these changes include:

- **Clearer focus on Agency priorities:** Roadmaps for both our Power and Transmission Services organizations reflect a convergence among internal BPA staff and management upon higher-priority technology domains and research needs. This enabled the March 2017 roadmaps to communicate a fraction of the content that existed in earlier versions, thereby making priority topics clearer to external proposers.

- **Easier-to-interpret narratives and diagrams:** Adopting the Cambridge University Institute for Manufacturing’s “Fast Start” roadmapping process enabled the creation of time-sequenced roadmap diagrams to communicate Agency RD&D needs in a more intuitive text-based and visual format.³ This was done to
 - convey priorities more effectively, and
 - reflect a meaningful narrative articulating change over time from the current state to a desired future state.

As with previous iterations of Agency technology roadmaps, we consider these live, working documents and are always seeking ways to improve our process and deliverables. We welcome all feedback and comments. We are also happy to share details of our process, templates, tools, and techniques.

For more information contact:
James V. Hillegas-Elting
Project Manager | BPA Technology Innovation
jvhillegas@bpa.gov | 503.230.5327

LETTER OF INTRODUCTION

A disciplined approach to technology research and development helps the Bonneville Power Administration (BPA) respond proactively to the rapidly-changing utility industry environment. Through effective research management practices, BPA’s Technology Innovation (TI) Office brings tangible benefits to BPA’s transmission system operations, the power operations of thirty-one federally-owned hydroelectric dams in the region, and to BPA’s energy efficiency and demand response teams.

BPA funds an RD&D program with an annual budget of approximately $15 million (U.S.), which is about .05 percent of Agency revenues. While short of the 3.5 percent average across all U.S. industries, this amount is significantly higher than the electric utility average for such investments. With these funds BPA is demonstrating how a disciplined approach involving a well-articulated “system of systems” can deliver value. These systems—roadmapping, portfolio management, project management, and technology transfer—are fundamental, but equally important is collaboration with other innovators such as electric utilities, national laboratories, technology developers, research universities, nonprofits, and vendors. This collaboration has led to millions of dollars in savings to BPA through avoided costs, operational improvements, and increased efficiencies.

At the front-end of these achievements are technology roadmaps—including the present document—which distill input from a diverse range of internal and external experts. These documents identify and link business challenges and opportunities with potential technical solutions, and then articulate these needs to the research community during the BPA TI Office’s annual funding opportunity announcements each March. Since 2009, more than 430 people representing nearly 170 organizations have contributed to Agency technology roadmaps for energy efficiency, demand response, transmission, and hydropower asset management.

These many contributors—and the many organizations that have submitted proposals over the years—will find some substantial improvements in the current roadmap. The most obvious will be the organization and graphics, which have been modified significantly to help convey Agency priorities more clearly and concisely. A corollary to this is that the page count has been reduced markedly, reflecting more effective prioritization based on Agency needs.

We are indebted to the many earlier contributors to this roadmap for the insightful original content; we are, perhaps, even more indebted to the discipline exhibited by members of the BPA Technology Confirmation and Innovation Council, who reflected upon the various Agency strategic efforts in late 2016 and arrived at a sub-set of critical content from previous roadmap versions to carry forward and update for this current version.

We create roadmaps is to articulate pressing Agency technology RD&D needs to the research community: We endeavor to make our needs comprehensible to the creative minds at national laboratories, universities, vendors, and other organizations so we can continue to help drive regional innovation, energy security, and economic prosperity. We think we have matured in this regard in publishing this roadmap document, but we also recognize this is always a work-in-progress and welcome any and all input and suggestions.

Sincerely,

Terry Oliver
Chief Technology Innovation Officer
Bonneville Power Administration

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Note</td>
<td>2</td>
</tr>
<tr>
<td>Letter of Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>4</td>
</tr>
<tr>
<td>Executive Summary</td>
<td>5</td>
</tr>
<tr>
<td>BPA Generation Asset Management</td>
<td>5</td>
</tr>
<tr>
<td>BPA Energy Efficiency</td>
<td>5</td>
</tr>
<tr>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>BPA Generation Asset Management</td>
<td>6</td>
</tr>
<tr>
<td>BPA Energy Efficiency</td>
<td>6</td>
</tr>
<tr>
<td>Agency Priorities</td>
<td>6</td>
</tr>
<tr>
<td>What Is Technology Roadmapping?</td>
<td>8</td>
</tr>
<tr>
<td>Technology Roadmapping at BPA</td>
<td>9</td>
</tr>
<tr>
<td>BPA Technology Innovation’s Approach to RD&D</td>
<td>10</td>
</tr>
<tr>
<td>How to Use this Roadmap</td>
<td>11</td>
</tr>
<tr>
<td>Generation Asset Management (PG)</td>
<td>13</td>
</tr>
<tr>
<td>Hydropower Reliability and Life Extension</td>
<td>15</td>
</tr>
<tr>
<td>Hydropower Equipment Environmental Risk Reduction</td>
<td>19</td>
</tr>
<tr>
<td>Hydropower Facility Optimization</td>
<td>25</td>
</tr>
<tr>
<td>Variable Resource Forecasting</td>
<td>29</td>
</tr>
<tr>
<td>Energy Efficiency (PE)</td>
<td>33</td>
</tr>
<tr>
<td>Heat Pumps</td>
<td>40</td>
</tr>
<tr>
<td>Lighting</td>
<td>54</td>
</tr>
<tr>
<td>Energy Management & Control Systems</td>
<td>83</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>136</td>
</tr>
<tr>
<td>Contributors</td>
<td>138</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

The Bonneville Power Administration’s (BPA) mission as a public service organization is to work in concert with others to create and deliver the best value for our regional customers and constituents. As part of this work, roadmaps are the publically-articulated research agenda for communicating the BPA’s technology research, development, and demonstration (RD&D) needs. Roadmaps are one of four key components of the BPA Technology Innovation (TI) Office’s “system of systems” in managing technology RD&D. These documents are prepared as part of BPA TI’s annual funding opportunity announcement.

The BPA TI Office herein identifies research priorities for two operational groups within the Agency’s Power Services Business Line: Generation Asset Management and Energy Efficiency.

BPA Generation Asset Management

The BPA Generation Asset Management organization partners with the U.S. Army Corps of Engineers and U.S. Bureau of Reclamation to operate, maintain, and reinvest in the thirty-one dams comprising the Federal Columbia River Power System (FCRPS). The organization also oversees FCRPS planning and power scheduling. Research needs of the BPA Generation Asset Management organization are arranged in the following sections of this document:

1) Hydropower Reliability and Life Extension
2) Hydropower Equipment Environmental Risk Reduction
3) Hydropower Facility Optimization
4) Variable Resource Forecasting

BPA Energy Efficiency

The BPA and its public power utility customers have been a leading force in promoting energy efficiency (EE) in the Pacific Northwest since Congress passed the Pacific Northwest Electric Power Planning and Conservation Act, (Northwest Power Act) in 1980. A guiding principle in this work is that BPA will pursue cost-effective conservation within the service territories of and in partnership with the Agency’s regional customer utilities. Staff within the BPA Energy Efficiency organization work on a range of demand-side management activities in addition to energy efficiency, such as demand response (DR), distributed energy resources, and distributed storage.

Research needs of the BPA Energy Efficiency organization are arranged in the following sections of this document:

1) Heat Pumps
 a. CO2 Heat Pumps
 b. Air Source Heat Pumps
 c. Mini-Split Heat Pumps
2) Lighting
 a. General Lighting
 b. Solid State Lighting
 c. Lighting Controls
 d. Luminaires
 e. Daylighting
 f. Non-Residential Sector: Advanced Controls
3) Energy Management & Control Systems
 b. Building Design/Envelope: Retrofit and New Construction Labeling
 c. Electronics: Power Management Control and Communication
 d. HVAC Motor-Driven Systems
 e. Commercial Integrated Buildings
 f. Residential HVAC
 g. Easy / Simple User Interface Controls
 h. Energy Management Services
 i. Enterprise Energy and Maintenance Management Systems
 j. Low-Cost Savings Verification Techniques
 k. Real-Time Smart Electric Power Measurement of Facilities
 l. Smart Device-Level Controls Responsive to User and Environment
The Bonneville Power Administration (BPA) is a nonprofit federal power marketing administration based in the Pacific Northwest. Although BPA is part of the U.S. Department of Energy, it is self-funding and covers its costs by selling its products and services. BPA markets wholesale electrical power from thirty-one federal hydroelectric projects in the Northwest, one nonfederal nuclear plant, and several small nonfederal power plants. BPA also operates and maintains about three-fourths of the high-voltage transmission in its service territory, which includes Idaho, Oregon, Washington, western Montana and small parts of eastern Montana, California, Nevada, Utah and Wyoming.5

The Agency pursues its mission, vision, and values in the context of rapidly evolving industry and environmental issues. The Agency regularly assesses the drivers of change in its operating environment and establishes long-term direction and near-term targets to focus efforts and resources.6

One manifestation of this commitment to regional stakeholders is the proactive management of a technology research, development, and demonstration (RD&D) portfolio focused on bringing into operations technological solutions that meet critical drivers and respond to key opportunities, challenges, and risks. The Agency’s Technology Innovation (TI) Office facilitates the processes of soliciting input from internal and external experts to clarify needs, generate research ideas, solicit and review proposals addressing these needs, and manage the resulting project portfolio.

The production and maintenance of technology roadmaps is a critical part of this process. Evolving primarily out of product development firms beginning in the 1960s and 1970s, since the 1990s roadmapping is no longer limited to its original application; it is now a highly customizable business process applicable to a wide array of tactical and strategic planning topics.

Maturing its use of the roadmapping process, the BPA TI Office herein identifies research priorities for two operational groups within the Agency’s Power Services Business Line: Generation Asset Management and Energy Efficiency.

BPA Generation Asset Management

The BPA Generation Asset Management organization partners with the U.S. Army Corps of Engineers and U.S. Bureau of Reclamation to operate, maintain, and reinvest in the thirty-one dams comprising the Federal Columbia River Power System (FCRPS). The organization also oversees FCRPS planning and power scheduling.

BPA Energy Efficiency

The Bonneville Power Administration (BPA) and its public power utility customers have been a leading force in promoting energy efficiency (EE) in the Pacific Northwest since Congress passed the Pacific Northwest Electric Power Planning and Conservation Act, (Northwest Power Act) in 1980. A guiding principle in this work is that BPA will pursue cost-effective conservation within the service territories of and in partnership with the Agency’s regional customer utilities. Staff within the BPA Energy Efficiency organization work on a range of demand-side management activities in addition to energy efficiency, such as demand response (DR), distributed energy resources, and distributed storage.

Agency Priorities

The BPA’s mission as a public service organization is to create and deliver the best value for our customers and constituents acting in concert with others to assure the Pacific Northwest:

- an adequate, efficient, economical and reliable power supply;
- a transmission system that is adequate to the task of integrating and transmitting power from federal and non-federal generating units, providing service to BPA’s customers, providing interregional interconnections, and maintaining electrical reliability and stability; and
- mitigation of the impacts on fish and wildlife from the federally-owned hydroelectric projects from which BPA markets power.7

BPA achieves its mission by focusing on five priorities (see Figure 1), guided

by key strategic initiatives and measured by key performance indicators. The Agency has a unique position as a major motivating force of the Pacific Northwest economy and way of life. Through the talent of Our People, we are maintaining and enhancing the region’s investments in federal Physical Assets that we own or in which we have a significant stake. As an economic engine, we understand that our actions have impacts to our customers and their communities, so we are striving to accomplish our overall mission while also delivering Sustainable Finances and Rates. We also recognize that the dynamics of our industry are evolving faster than ever before, and so we continue to advance policies and investments that result in Reliable, Efficient, and Flexible operations. As well, the Natural Environment of the Northwest is inherently connected to both our economy and our way of life, and BPA remains committed to mitigation actions and environmental enhancements that will continue to add value for years to come.8

The technology RD&D needs articulated in this roadmap align with one or more of the Agency’s five priorities. This alignment cascades down from the level of broad Agency-wide priorities, through increasingly more specific priorities and key strategic initiatives (KSIs) nested within these for the Power and Transmission business lines, and, finally, down into the applicable departments, groups, and teams within each business line. These interconnections and interdependencies are visualized in Figure 2.

Drivers prioritized in this roadmap are those that can be defined as “utility enabling”: drivers for which technology-based solutions and apply and that enable BPA to achieve its mission. Drivers relying upon on-technology solutions (such as policies, business processes, and workforce training) may also be important to the Agency and its stakeholders, but have not been featured in this technology roadmap. Further, technology-focused drivers that are outside the purview of BPA’s core areas of responsibility are also not featured in this roadmap. These might include consumer preferences—primarily the purview of product manufacturers—and non-energy benefits such as health and comfort which often are important but not what primarily drives Agency decisions.

What Is Technology Roadmapping?9

Clear, concise, and actionable definitions for “roadmap” and “roadmapping” may seem intuitive, but beyond the obvious cartographical reference, they are not. An Internet search quickly turns up a wide array of implicit and explicit definitions, many of which lack substance and specificity. Turning to the academic literature for guidance may not always be as helpful as one might hope. The practice of roadmapping grew out of technology manufacturing firms in the 1960s and 1970s and continues to evolve within the academic discipline of engineering and technology management, but a survey of this literature uncovers definitions that often do more to obfuscate than clarify.

To avoid confusion, it is necessary to differentiate between similar terms used in the literature to distinguish process from artifact. Roadmapping is the process of creating an artifact or deliverable—the roadmap document itself. Kerr \textit{et al.} call this the “dyadic nature of roadmapping” because it involves the complementarity of “method, tool, workshop, template, image, and document” required to achieve desired results from the process.10

Cambridge University IfM faculty offer succinct definitions that draw upon literature and extensive practical experience. Unlike many definitions focused on technology-centric “traditional” roadmaps produced by Motorola, IBM, SEMATECH, and others, theirs is inclusive of the wide variety of other kinds of roadmaps that have proliferated over the decades:

\begin{quote}
A roadmap is a structured visual narrative of strategic intent. It supports comprehension, dialogue, and communication to enable strategic decision making, planning, and implementation.
\end{quote}

\begin{quote}
Roadmapping processes use roadmap principles to support integration, alignment, and synchronization for strategy, innovation, and other management purposes, often (but not necessarily always) leading to the development of roadmaps.
\end{quote}

Thus, roadmaps are the deliverables produced as an outcome of the roadmapping process. Roadmapping is a scalable planning process in which key stakeholders collaborate to brainstorm, organize, and prioritize actions as a way to motivate collective efforts toward a future state of mutual interest. Often (but not always necessarily) resulting from this process is a deliverable documenting and summarizing the collaboratively-developed plan.

\begin{flushright}
9 Content in this section excerpted from: James V. Hillegas-Elting, “Roadmapping & Maturity Models: Coming to a View of the Forest” (white paper) (Portland, Oreg.: Bonneville Power Administration Technology Innovation Office, Aug. 19, 2016).
\end{flushright}

\begin{flushright}
\end{flushright}
Technology Roadmapping at BPA

The Agency created a TI Office in 2005 to centralize technology RD&D efforts to help BPA continue its mission of providing safe, reliable, and cost-effective electricity. In doing so it has led the utility industry in applying technology management best practices to develop a “system of systems” guiding the management of the Agency’s RD&D portfolio. Roadmapping is one of four core “systems,” the others being project management, portfolio management, and technology transfer (see Figure 3).

BPA TI’s roadmaps are the publically-articulated research agenda for communicating the Agency’s technology RD&D needs to the research community. They contribute to the Agency’s innovation agenda by documenting needs in such areas as energy efficiency, demand response, transmission, and hydropower, and linking these to strategic goals, critical business drivers, and emerging opportunities. Further, roadmaps guide the BPA TI Office’s annual solicitation for RD&D project proposals and help sustain the agency’s role as stewards of ratepayer funds by ensuring due diligence.

Research needs are articulated by way of a narrative linking the following key elements:

- **Current State:** Where the Agency stands at present in relation to the given technology domain.
- **Future State:** Where the Agency would like to be at some point in the future.
- **Drivers:** Needs, assumptions, trends, opportunities, threats, etc. motivating change; why the Agency cares about a particular issue or topic.
- **What needs to happen:** Sequential steps to proceed from the current state to the desired future state, with corresponding milestones to denote progress along this path.
 - **Capability Gaps:** Milestones expressed as barriers standing in the way of responding to Drivers; Capability Gaps are linked to one or more Drivers.
 - **Technology Characteristics:** Technological solutions with the potential to overcome the barriers and reach the milestones expressed through linked Capability Gaps.
- **RD&D Program Descriptions:** Research programs and some Key Research Questions to pursue to develop technological solutions expressed in the form of linked Technology Characteristics; suggestions about how the work could be done to proceed from the Current State to the Future State.

This roadmap communicates technology RD&D opportunities where subject matter experts have determined that such research is needed to enable business processes, achieve cost-savings and reliability targets, support new and evolving market structures, and otherwise foster the Agency’s mission, vision, values, and strategic priorities. These subject matter experts have represented two complementary (and not always mutually exclusive) categories, convened during two sequential workshops:

- **Workshop 1—Articulate Drivers and Capability Gaps:** Senior-level leaders and operations managers involved in developing and / or implementing corporate strategy (such as public policy, regulatory

12 Hillegas-Elting et al., “Opening the Door to Breakthroughs That Address Strategic Organizational Needs.”
compliance, and business development), as well as having some familiarity with the role played by technologies to achieve strategic goals. These experts framed the “strategic” level of the roadmap by linking Drivers with Capability Gaps.

- **Workshop 2—Articulate Technology Characteristics and RD&D Program Descriptions:** Subject matter experts from utilities, national laboratories, universities, non-governmental organizations, and the private sector develop “tactical” roadmap content—the Technology Characteristics and RD&D Programs—that can help meet “strategic” Drivers and Capability Gaps. These experts included engineers, operators, researchers, academics, and others with direct and deep knowledge and experience in envisioning, developing, and analyzing technologies, models, algorithms, systems, etc.

To date, the TI Office has facilitated roadmap development projects that have brought together subject matter experts from within BPA; from beyond the Agency to include regional stakeholders; and from beyond the region to involve specialists throughout North America. In the aggregate, since 2009 BPA’s technology roadmaps for energy efficiency, transmission, demand response, and power generation asset management have benefitted from the input of more than 430 people representing nearly 170 organizations.

BPA Technology Innovation’s Approach to RD&D

BPA TI strives to manage the Agency’s RD&D portfolio in a way that not only balances needs articulated by its Transmission and Power Business Lines, but also based on the different types of research—Breakthrough, Incremental, and Confirmational—and technology readiness levels.

Types of research

- **Breakthrough:** High-risk projects to deliver significant improvements in efficiency, effectiveness, and/or usability but that take longer to bring out of the RD&D realm and into full market implementation.

- **Incremental:** Lower-risk projects offering step-by-step improvements in efficiency, effectiveness, and/or usability in new applications and likely to be ready for full market implantation in no more than three years.

- **Confirmational:** Lower-risk projects to ratify or corroborate efficiency, effectiveness, and/or usability in new applications, within different climate conditions, or by proving something not yet used at BPA and likely to be ready for full market implementation in no more than three years.

Technology Readiness Levels (TRLs)

TRLs establish an objective scale for evaluating the relative developmental stages of a technology. This methodology allows for consistent comparisons between different types of technologies across a range of maturity levels, from low maturity or basic research (TRL 1) to the high maturity of a ready-to-implement technology (TRL 9).

The National Aeronautic and Space Administration (NASA) originally developed TRLs in the 1970s and the concept has since been adopted in other industries. In the electric utility industry, for example, the U.S. Department of Energy’s Advanced Manufacturing Office (AMO) applies TRLs to “guide disciplined decision-making throughout the technology development pipeline” and to provide a “rigorous approach . . . to track the progression of each project and activity, from applied research to commercialization.”13 Adapted from NASA’s scale, the DOE AMO’s stages are represented in Table 1.

<table>
<thead>
<tr>
<th>Table 1: Technology Readiness Levels (TRLs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
</tr>
<tr>
<td>Innovation</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Emerging Technologies</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>Systems Integration</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>Market Penetration</td>
</tr>
</tbody>
</table>

The design of this roadmap is based on the reference process developed by faculty and students at the Cambridge University Institute for Manufacturing (IfM). They call it the “Fast Start” or “S-Plan/T-Plan” process, and it provides a scalable, highly modular, and eminently tailorable process that readily accommodates any kind of planning topic. The fundamental architecture of this process is a series of questions asked of experts within a structured brainstorming workshop environment to arrive at answers to five key questions:

1) Where are we now; what is our current state?
2) Why do we want to take some kind of action; why do we need to change?
3) Where do we want to go at some point in the future?
4) What are the sequential steps needed to proceed from our current state to our desired future state, and corresponding milestones to denote progress along this path?
5) How will we achieve our sequential steps—who will do the work and what resources are needed?

Figure 4 shows how these questions would generate content for a summary visual representation in graphical format—the roadmap deliverable produced through the roadmaping process. This content is represented using three “swim lanes” corresponding to the “Why,” “What?,” and “How?” categories.14

As applied in the current document, rather than being represented in a single visual diagram, “Why?,” “What?,” and “How?” content is arrayed on separate pages. This is done to simplify diagrams that users found to be confusing and cluttered in previous iterations of BPA TI’s roadmaps. Thus, within each technology area addressed in the pages that follow, the following sections correspond to Cambridge IfM’s reference process:

- Why: “Key Drivers” section conveying the needs, assumptions, trends, opportunities, threats, etc. motivating change. This section includes a grid linking each Driver with one or more Capability Gaps, thereby identifying why the Gap is important to address.
- What: Important actions—“Technology Characteristics”—and milestones—“Capability Gaps”—are arrayed sequentially along a timeline to help communicate the steps needed to progress from the current state to the desired future state.
- How: “Research, Development, & Demonstration Summaries” section providing titles, descriptions, key research questions, and any known ongoing research on this topic. Each summary shows its linkage to one or more Technology Characteristic.

Grid showing linkages between Drivers and Capability Gaps, thereby identifying why the Gap is important to address.

Green shading denotes linkages.

Important actions and milestones arrayed sequentially along a timeline to help communicate the steps needed to progress from the current state to the desired future state.

Technology Characteristic-Available
Technology Characteristic-Unavailable
Milestone: Capability Gaps

Provides titles, descriptions, key research questions, and any known ongoing research on this topic.

Each summary shows its linkage to one or more Technology Characteristic.
The BPA Generation Asset Management organization (code “PG”) partners with the U.S. Army Corps of Engineers and U.S. Bureau of Reclamation to operate, maintain, and reinvest in the thirty-one dams comprising the Federal Columbia River Power System (FCRPS). The organization also oversees FCRPS planning and power scheduling.

Within BPA Generation Asset Management are the following sub-organizations:

- Generating Assets (PGA)
- Fish Operations Policy & Planning (PGB)
- Slice Operations & Management (PGL)
- Power & Operations Planning (PGP)
- Generation Scheduling (PGS)

Overall capacity of the FCRPS is 22,060 MW and the system produces 76 million megawatt-hours of electricity in an average water year. The Corps of Engineers operates twenty-one hydroelectric plants within the FCRPS and the Bureau of Reclamation ten. The FCRPS has a mandate to provide low cost, reliable power and effective resource stewardship to the Pacific Northwest region. It delivers energy worth $1.9 billion annually (valued at 5-year average Mid-Columbia market prices) to the people of the Pacific Northwest in addition to providing system balancing and voltage support as well as protection, mitigation, and enhancement of fish and wildlife. It also provides an avoided carbon dioxide emission benefit of $1.4 billion annually by displacing fossil-fired generation that would result in emissions in excess of 40 million tons of carbon dioxide per year.15

To help sustain the FCRPS and continue to deliver value to the region by providing low-cost, reliable power and trusted stewardship of environmental resources, the current edition of the roadmap contains content addressing needs articulated by the Generating Assets (PGA) and Generation Scheduling (PGS) groups. Research needs of the BPA Generation Asset Management organization are arranged in the following sections of this document:

- Hydropower Reliability and Life Extension
- Hydropower Equipment Environmental Risk Reduction
- Hydropower Facility Optimization
- Variable Resource Forecasting

Why this is Important to BPA: Key Opportunities, Challenges, and Risks16

Key opportunities provided by the FCRPS include:

- **Low, stable costs.** Provides a low and relatively stable cost of power, with a cost of generation of less than $10 per megawatt-hour.
- **Energy storage and peak energy.** With a maximum useable storage of 10.5 thousand second-foot-days (ksfd) providing flood damage reduction, irrigation, fish and wildlife benefits, recreation opportunities, and increased value from the power system by storing water to be used when it is more valuable for generation.
- **Ancillary services and resource integration.** Provides all voltage support, load following, spinning and non-spinning reserves, and

other ancillary services for BPA’s transmission system, as well as the primary mechanism for integrating wind resources.

- **Climatic risk.** Produces zero carbon dioxide emissions, which are recognized as a primary contributor affecting climate change.
- **Energy payback.** Hydropower, with an energy payback ratio of 205, has the highest ratio of all generation sources—by comparison, the ratio for wind is 23 (without backup), nuclear fission (16), coal (11), and natural gas (4).
- **Skilled workforce.** Dedicated and skilled workforce with a keen understanding of the operations and maintenance needs of the hydro system.

Key challenges facing BPA and its partners with respect to the FCRPS include:

- **Weather and water supply.** Changing weather conditions and the resulting changes in water supply increase uncertainty in hydropower production.
- **Environmental costs.** High environmental costs for mitigating the impact of developing the Columbia River Basin.
- **Aging workforce.** The power industry as a whole is now facing a retirement eligibility bubble that poses significant risk to maintaining the workforce needed to operate and maintain facilities.
- **Aging infrastructure.** While many more years of valuable production can be expected from hydro system assets that are approaching an average age of fifty years, it faces significant challenges associated with maintenance and replacement demands to preserve this value.
- **Politically unpopular.** Unlike some other nations, in the United States hydropower is often perceived more negatively despite the trends to look at hydropower as a renewable resource.
GENERATING ASSET MANAGEMENT (PGA): HYDROPOWER RELIABILITY AND LIFE EXTENSION

Section Definition

As hydropower facilities age and conditions degrade, additional maintenance is required and likelihood of equipment damage or failure increases. Failures and additional maintenance can result in unit outages that can hamper BPA’s ability to meet demand, the dam’s ability to meet other operating constraints, and force additional spill. Failures can also pose safety risks and outages can prove costly. As equipment ages, the least-risk approach is to plan replacements after equipment has exceeded its design life and failure risk has increased beyond the cost of replacement; however, resources are limited and this is not always possible. Therefore it is critical to find new tools to predict failure or damage and technologies to extend equipment life in a safe and cost effective manner.17

Summary

Current State

FCRPS hydropower equipment availability is declining and forced outages persist. Equipment faces wear and tear from cavitation, cracking, corrosion, chemical and thermal degradation, and other stresses.

- Uncertain physical condition of equipment. Current monitoring tools are limited and therefore outages for routine inspections and maintenance are required to assure reliable operation. This routine work does not eliminate problems that creep up between inspection cycles.
- Uncertain effect of operating conditions. Whether a given operating condition is damaging or safe is not always understood, particularly for old equipment with minimal manufacturer test data.
- Uncertain failure. When a problem is detected it is not always known when it must be addressed before failure occurs.

Future State

The critical availability and longevity of hydro equipment is increasing in part through cost effective monitoring tools, repair techniques, and more in-depth understanding of the equipment, assuring reliable, renewable, and low cost hydropower is available to the Northwest region in perpetuity.

Research Opportunities

New technologies for online monitoring, condition assessment, and failure prediction to enable predictive maintenance. For example: crack and stress monitoring; non-destructive examination techniques; cavitation detection and prediction of damage; and noise and vibration monitoring.

New repair techniques that expedite, simplify, and improve longevity of repairs. Cavitation repair techniques and non-invasive techniques (i.e. no disassembly required) for sealing oil leaks in transformers, turbines, and other equipment.

Tools for assessing equipment failure risk, including an understanding of failure mechanisms and likelihood of failure. Tools that quantify the financial value risk from equipment outages.

Looking farther into the future, there are three additional capability gaps that BPA and its partners will likely need to address. Though the research program requirements for these gaps have not yet been clarified, for future roadmapping and strategic planning efforts these gaps are:

- Typical failure mode statistics to inform maintenance and replacement decisions.
- Comprehensive real-time assessment of value of availability at each plant to inform maintenance and outage practices.
- Understand future power system operational requirements to inform project investments.

Hydropower Reliability and Life Extension

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

<table>
<thead>
<tr>
<th>HYDROPOWER RELIABILITY AND LIFE EXTENSION</th>
<th>Drivers</th>
<th>CG1</th>
<th>CG2</th>
<th>CG3</th>
<th>CG4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reliability: As the facilities age, the equipment degrades, and the likelihood of outages increases. Outages can hamper BPA’s ability to meet customer power demand and other operational constraints.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life Extension: Funding is not always available to replace equipment when near the end of its design life. The equipment must continue to operate safely and to meet operations goals.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biological Opinion (BiOp) and other Operational Objectives: Forced outages can hamper BPA’s ability to meet BiOp and other high priority operational objectives.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rates and Revenue: Outages can increase spill and reduce energy production, reducing power revenue. Reduced revenue translates to increased power rates to cover routine and reinvestment costs necessary to continue reliable power production. Extending the life of equipment can reduce costs and reduce rate impacts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flexibility: Additional variable resources being built in the BPA Balancing Authority will increase the demand for flexible resources to provide balancing reserves. The FCRPS requires adequate availability to provide sufficient balancing reserves.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The critical availability and longevity of hydro equipment is increasing in part through cost effective monitoring tools, repair techniques and more in depth understanding of the equipment, assuring reliable, renewable, and low cost hydropower is available to the Northwest region in perpetuity.

FCRPS hydropower equipment availability is declining and forced outages persist. The equipment faces wear and tear from cavitation, cracking, corrosion, chemical and thermal degradation, and other stresses. Operating equipment physical condition, effect of operating conditions, failure likelihood and timing are uncertain. Repair longevity could be improved.

Current Short Term Long Term Future State
Technology Area

<table>
<thead>
<tr>
<th>Technology Area</th>
<th>HYDROPOWER RELIABILITY AND LIFE EXTENSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Short Term</td>
<td></td>
</tr>
<tr>
<td>Long Term</td>
<td></td>
</tr>
<tr>
<td>Future State</td>
<td></td>
</tr>
</tbody>
</table>

Key:
- CG: Commercially available
- TC: Commercially Unavailable
- MG: Milestone: Capability Gap Addressed
- GS: Predict failure
- FCRPS: Hydroelectric power equipment
- H Y D R O P O W E R R E L I A B I L I T Y A N D L I F E E X T E N S I O N
- Real-time condition monitoring and predictive maintenance
- Online monitoring of physical condition
- Online monitoring of operational conditions and estimate of equipment damage
- Online and non-destructive methods to monitor penstocks and gates
- Measure residual stress to determine fatigue life
- Fast crack detection in runners, shafts, or rotors
- Analyze oil to detect component degradation
- Acoustic or other characterization of cavitation and online identification of damaging cavitation, including location measurement & visualization
- Cold spray deposition, for cavitation repair and protection of new turbines
- Explosive cladding as a technique for cavitation damage repair on large runner blade surfaces
- Long lasting repairs and new equipment
- Sequential Connection Between Roadmap Elements
Research, Development, & Demonstration Summaries

RD1 New techniques for cavitation damage repair

<table>
<thead>
<tr>
<th>TC8</th>
<th>TC9</th>
</tr>
</thead>
</table>

Use cold spray deposition to quickly and effectively repair cavitation in place or to overlay cavitation resistant metals. Use explosive cladding to apply a pre-cut and shaped “patch” to a large surface area of a cavitation-damaged blade. Envisioned steps: (1) remove damage by grinding; (2) measure x, y, z coordinates of excavated area; (3) manufacture a patch to match x, y, z coordinates; and (4) explosively clad patch to blade.

Key Research Questions
1. Can the repair be done safely without disassembly of the unit?
2. What are the costs/economics of this approach vs. traditional weld overlay and grind?
3. What are the positioning and accuracy limits?
4. Can exotic materials such as stellite be used?

Existing Research
- PNNL - Cold Spray Deposition for Improved Service Life of New and Repaired Hydroelectric Turbines.

RD2 Advanced online monitoring of operational conditions

<table>
<thead>
<tr>
<th>TC6</th>
<th>TC7</th>
</tr>
</thead>
</table>

Identify location and intensity of cavitation. Use acoustics to locate the cavitation in x, y, z, t domains within the rotating runner field. Determine if the cavitation is “touching” metal surfaces or if it is damaging. Determine if changes should be made to historical operating ranges.

Key Research Questions
1. Is the cavitation occurring in the free stream or contacting metal surfaces?
2. What is the location of the origins: leading edge, channel vortices, cone torch?
3. How “intense” is the cavitation? Is it damaging?
4. Could operating ranges be expanded?
5. How well do previously model tested cavitation ranges match actual observed ranges in the prototype scale?
6. Can noise (audio sensors) be used to predict degradation of components?
7. Can new or existing monitoring equipment, online, be used for all or part of WECC system modeling requirements?

Existing Research
- GE – Enhancing Hydropower Reliability Through Cavitation Monitoring and Noise Condition Assessment.

RD3 Advancing the state of art for hydropower condition assessment

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC2</th>
<th>TC3</th>
<th>TC4</th>
<th>TC5</th>
</tr>
</thead>
</table>

A variety of efforts to improve condition assessment methodologies and technologies.

Key Research Questions
1. Can an online oil analysis system be developed and applied to degradation of equipment?
2. Can an online tool, using non-destructive methods, be used to monitor penstocks and gates?
3. Can measurement of residual stress determine fatigue life?
4. Is there a way to quickly find cracks on blades when they are un-watered?

Existing Research
- GE – In Situ Residual Stress Measurement for Accurate Fatigue Lifetime Assessment.
Generating Asset Management (PGA): Hydropower Equipment Environmental Risk Reduction

Section Definition

Hydropower equipment can present certain hazards to the environment, including risk of oil leakage, oil spill, or fish injury. Reducing fish injury from hydro equipment and reducing oil leakage and spills are primary goals. Presently these risks are minimized within the constraints of existing technologies, but new technological improvements would further mitigate risks. As the facilities age and the conditions degrade the existing equipment becomes more likely to suffer an environmental event. In addition to the remediation and repair costs, these events can result in outages that can hamper BPA’s ability to meet power demand, the dam’s ability to meet other operating constraints, and can force additional spill.18

Summary

Current State

Hydro equipment within the FCRPS is predominately conventional in design, utilizing turbines which were not designed for fish passage and turbines, governors, generators, transformers, and other equipment contain environmentally unacceptable lubricants (i.e. lubricants that are not safe to be released to the environment). Specific challenges include:

- Minimally available and unproven environmentally acceptable lubricants.
- Low penetration of oil-free or oil-less technologies within the US market and minimal expected life information.
- Developing understanding of turbine design techniques and models to minimize fish injury and minimal full scale test data to correlate real world to models.
- Uncertain impacts of turbine and powerhouse bypass passage to many affected fish species.

Future State

Industry wide and region wide environmentally acceptable lubricants are readily available, proven, and deployed in hydro equipment when appropriate. Oil-free and oil-less hydro equipment is well vetted and is the norm when equipment is replaced. Fish survival is maximized through turbines whenever equipment is replaced, through modern design techniques and a better understanding of effects of turbine passage on a variety of critical species. Environmentally improved hydropower is available to the Northwest region in perpetuity.19

Research Opportunities

Research and development, including: oil-free and oil-less Kaplan turbines and turbine bearings; reducing environmental risk from other oil filled hydro equipment; and accelerated life testing of environmentally acceptable lubricants.

Ester oil filled and other environmentally-friendly transformers.

Testing of turbine impacts on Endangered Species Act (ESA)-listed and other fish species, including laboratory and prototype-scale testing of new turbines designed for improved fish passage.

Hydropower Equipment Environmental Risk Reduction

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

| HYDROPOWER EQUIPMENT ENVIRONMENTAL RISK REDUCTION |
D1	Reliability: New environmentally enhanced equipment must be reliable and long lived.
D2	Life Extension: Funding is not always available to replace equipment when near the end of its design life. The equipment must continue to operate safely and to meet operations goals. Minimizing environmental risk of existing equipment will extend its life.
D3	Biological Opinion (BiOp) and other Operational Objectives: Forced outages from environmental releases can hamper BPA’s ability to meet BiOp and other high priority operational objectives. Better turbine biological performance would enhance dam fish survival.
D4	Rates and Revenue: Outages from oil leaks can increase spill and reduce energy production, reducing power revenue. Reduced revenue translates to increased power rates to cover routine and reinvestment costs necessary to continue reliable power production.
D5	Flexibility: Additional variable resources being built in the BPA Balancing Authority will increase the demand for flexible resources to provide balancing reserves. The FCRPS requires adequate availability to provide sufficient balancing reserves.
Hydro Equipment - Environmental Risk Reduction

Current
- **TC1**: Load modeling for oil-less Kaplan turbines
- **TC2**: Lab testing of Kaplan turbine internal hub components – bushings, corrosion resistant materials
- **TC3**: Research suitability of existing and/or develop new environmentally acceptable lubricants
- **TC4**: CFD modeling development, including experiments to validate models and to model fish as particles and/or model fish behavior, and exposures
- **TC5**: Sensor fish development and application to measure biological performance conditions during turbine passage
- **TC6**: Development of fish tagging and long term tracking tools

Nearer Term
- **TG1**: Test and evaluate oil-less Kaplan technology, including accelerated life testing.
- **TG2**: Test and evaluate environmentally acceptable lubricants
- **TG3**: CFD derived fish survival estimates, and calibrate to test data
- **TG4**: Improved design and physical modeling techniques for safe fish passage through turbines
- **TG5**: Develop and test effects of turbine passage on critical fish species that have not yet been tested

Longer Term
- **TG6**: Long term monitoring and condition evaluation of oil-less technology
- **TG7**: Long term monitoring and condition evaluation of dam passed fish
- **TG8**: Long term monitoring and condition evaluation of dam passed fish
- **TG9**: Complete design parameters for oil-free and oil-less hydro power equipment
- **TG10**: Known life expectancy of oil free and oil less Kaplan turbines

Future State
- **CG1**: Complete design parameters for oil-free and oil-less Kaplan turbines
- **CG2**: Known life expectancy of oil free and oil less Kaplan turbines
- **CG3**: Proven environmentally acceptable lubricants (EALs) for dam and hydropower equipment
- **CG4**: Fast, affordable, validated and commonly usable design and/or evaluation tools for turbine fish survival improvements
- **CG5**: Using state of the art design and evaluation tools to minimize turbine impacts on all critical species of fish
- **CG6**: Long term, indirect turbine passage effects, i.e. egress

Hydro equipment within the FCRPS is predominately conventional in design, utilizing turbines which were not designed for fish passage and turbines, governors, generators, transformers, and other equipment contain environmentally unacceptable lubricants.

Industry wide and region wide environmentally acceptable lubricants are readily available, proven, and deployed in hydro equipment.

Oil-free and oil-less hydro equipment is proven and is the norm when equipment is replaced.

Fish survival is maximized through turbines whenever equipment is replaced, through modern design techniques, informed by known impacts to critical species.
Research, Development, & Demonstration Summaries

RD1 Oil-free Kaplan turbine technology development and confirmation

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC2</th>
<th>TC3</th>
<th>TC4</th>
<th>TC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce risk to the environment by further developing oil-free Kaplan turbine technology. Improve industry knowledge of optimal corrosion resistant materials and bushing materials to best accommodate the trunnion loads and minimize wear. Vet materials and design parameters through laboratory testing and long term monitoring.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1. What are the fundamental challenges with oil-free Kaplan designs that diverge from conventional oil-filled Kaplan designs?
2. Are there industry standards for oil-less hub, linkage, and bushing materials?
3. Do self-lubricating or water lubricated bushing materials perform adequately under Kaplan trunnion loads?
4. Are there tools available or could they be developed to easily model trunnion loads, cycles, bushing wear, and predict expected life?
5. How do wear rates of conventional Kaplan components compare to those of oil-less Kaplans?
6. How does corrosion affect wear rates and expected life of oil-free Kaplans?
7. Could operational and physical condition history of existing oil-free Kaplans be data mined to determine superior materials and design parameters, to estimate degradation/wear rates, and to predict expected life?

Existing Research

- Oil-free turbines have been installed around the world, but their adoption on North America has been limited. Industry research is largely proprietary.

RD2 Environmentally acceptable lubricants (EALs)

<table>
<thead>
<tr>
<th>TC6</th>
<th>TC7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improve understanding of safety and suitability of environmentally acceptable lubricants for dam and hydropower equipment. The primary focus is on oil-filled hydropower equipment, but environmentally acceptable greases are also of interest.</td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1. Could new environmentally acceptable lubricants be developed for the dam and hydropower industry, which specifically address the challenges of that application? Previous PNNL research has shown that EALs could be developed for this application. Based on the USACE's reported data, some evaluated greases only fell short in 1-2 tests or were not reported; however, these results only pertained to grease performance, not fluid lubricants. While the same design principles should apply, the test criteria must be different.

2. Of the existing EALs, how would they affect the performance and longevity of dam and hydropower equipment? PNNL staff experience indicates there are very few EALs, as the U.S. Environmental Protection Agency distinguishes between EALs and environmentally friendly lubricants (EFLs), which are more prevalent. It would be difficult to predict long term effects of these, however.

3. Could laboratory, accelerated life, or field testing provide confidence in the long term suitability of EALs in dam and hydro equipment? PNNL staff have found that laboratory testing provides a good guide for fresh lubricant/grease performance, but not long term suitability. Long-term feasibility could be ascertained through accelerated testing and in-field testing, but protocols for the former kind of testing would need to be developed.

4. Could ester oils be safely utilized to retro-fill transformers and under what conditions would that be acceptable? This may be more of an engineering question than a chemistry question. From a chemistry standpoint, yes, ester oils can be safely utilized in this way if the previous oil/grease is compatible with what is being replaced, and there are lab tests to determine compatibility. One parameter to clarify in any testing is the temperature range lubricant in the transformers will experience—particularly the upper range. PNNL has conducted research on grease for water gates, but these conditions were at the same temperatures as the water.

5. Would ester oil retro-fills affect the transformer expected life or performance? PNNL staff has found that ester oils are being supplemented with additives to ensure anti-friction, anti-wear, detergency, anti-corrosion, and anti-oxidation, so additives will play a role in the overall lifetime of the oil. To pursue this question, it would be helpful to know the tests or performance requirements for oils.

Existing Research

- None identified.
RD3 - Modeling, testing, and monitoring turbine fish passage performance

<table>
<thead>
<tr>
<th>TC8</th>
<th>TC9</th>
<th>TC10</th>
<th>TC11</th>
<th>TC12</th>
<th>TC13</th>
<th>TC14</th>
</tr>
</thead>
</table>

Test effects of turbine conditions on fish or simulated fish. Develop tools to model and predict fish passage performance of hydro equipment, especially turbines. Develop technology to more easily and cost effectively test fish passage performance, including tools for long term monitoring to assess effects of egress conditions.

Key Research Questions

1) Is there more that we should understand about the effects of turbine conditions on fish, or are there key species and stressors that are not yet tested?
2) Could CFD models be developed further to model fish passage through turbines, including particle trajectories and fish behavior models?
3) Could CFD models be employed to predict or index fish survival through turbines, including calibration/validation to field scale data?
4) How could physical modeling techniques be improved to expedite data collection and analysis?
5) How could the cost and long term viability of tagging, tracking/monitoring systems be improved?
6) Could sensor fish be developed and applied to provide cost effective and accurate estimation of fish survival in field scale or model scale turbines?

Existing Research

- DOE-PNNL CFD modeling development. USACE-ERDC physical modeling. DOE-PNNL tag development and sensor fish development.
GENERATING ASSET MANAGEMENT (PGA): HYDROPOWER FACILITY OPTIMIZATION

Section Definition
Existing hydropower facilities may not be fully optimized for energy efficiency. This is partly due to antiquated equipment but also unknown performance of old equipment.

Summary

Current State
FCRPS hydropower facilities include both Type 1 (Unit) and Type 2 (Plant) optimization tools. However, these tools are not fully utilized for several reasons:

- Individual unit performance is not well known or recently tested. In most cases, families of units are assumed to be identical. This could lead to sub-optimal dispatch.
- Slow, expensive, and sometimes not absolute performance testing techniques.
- The tools available do not track actual plant performance vs. optimal performance.

Future State
Plant performance is optimized to provide maximum benefit to power rate payers and to maintain low cost power to the Northwest region. Individual unit performance is well understood and routinely tested when appropriate, to allow full deployment of Type 2 (Plant) optimization. Optimization tools provide tracking of feedback to operators to inform and encourage dispatch at maximum efficiency.²⁰

Research Opportunities
New tools and techniques to optimize energy production are needed. Possible tools could include:

- performance testing technology to allow cost effective characterization of each individual unit’s performance characteristics;
- cost effective tools to inform and track plant-wide performance; or
- real-time flexibility estimation.

Hydropower Facility Optimization

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

<table>
<thead>
<tr>
<th>HYDROPOWER FACILITY OPTIMIZATION</th>
<th>Drivers</th>
<th>CG1</th>
<th>CG2</th>
<th>CG3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2</td>
<td>Life Extension: Operating units as efficiently as possible can extend life expectancy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>Biological Opinion (BiOp) and other Operational Objectives: BiOp requires operation within 1% efficiency for many FCRPS facilities.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>Rates and Revenue: Inefficient operations can reduce energy production, reducing power revenue. Reduced revenue translates to increased power rates to cover routine and reinvestment costs necessary to continue reliable power production.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capability Gaps

- Cost effective tools to determine unit specific performance characteristics
- Cost effective online performance monitoring
- Optimization tools for hydro operators
Hydropower Facility Optimization

Current

Evaluate benefits of performance testing multiple hydropower machines in a family to inform improved operational / dispatch decisions.

Nearer Term

Develop cost effective turbine performance testing techniques and equipment.

Longer Term

Known unit specific performance characteristics.

Future State

Plant performance is optimized to provide maximum benefit to power rate payers and to maintain low cost power to the Northwest region.

Individual unit performance is well understood and routinely tested when appropriate, to allow full deployment of Type 2 (Plant) optimization.

Optimization tools provide tracking of feedback to operators to inform and encourage dispatch at maximum efficiency.

Key

TC Commercially available Technology Characteristic

CG Commercially Unavailable Technology Characteristic

GGA Milestone: Capability Gap Addressed

Sequential Connection Between Roadmap Elements

Existing hydropower facilities may not be fully optimized for energy efficiency. This is partly due to antiquated equipment but also unknown performance of old equipment.
Research, Development, & Demonstration Summaries

RD1 Improved performance testing technology

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research and evaluate benefits of performance testing each individual unit in a family of units at a powerhouse so that type 2 plant optimization could be fully utilized. Develop innovative and cost effective techniques, equipment, and/or software to performance test each individual unit at a powerhouse. This research area is generally focused on turbines.</td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions
1. Are there sufficient differences in performance between each unit in a family of units?
2. Does performance change over time and is there value in re-testing units periodically?
3. Are there new techniques, equipment, sensors, etc that can be leveraged to perform cost effective testing on each turbine unit periodically?

Existing Research
- None identified.

RD2 Performance monitoring, tracking, and visualization tools

<table>
<thead>
<tr>
<th>TC3</th>
<th>TC4</th>
<th>TC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real time information about plant efficiency, including hydro equipment and station loads, is challenging to collect, understand, and visualize. Existing monitoring and software tools do not record performance relative to ideal performance. Development of software and other tools would yield efficiency dividends and provide operators and managers with needed tools to inform decisions.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions
1. Are there new technologies for monitoring equipment efficiencies?
2. Can better visualization and informational tools for facility operators be developed?

Existing Research
- None identified.

RD3 Real-time flexibility estimation tools

<table>
<thead>
<tr>
<th>TC6</th>
</tr>
</thead>
<tbody>
<tr>
<td>The operating envelope of each plant is often constrained to a much narrower range than the design capabilities of the equipment dictate. Constraints can be dynamic and interdependent, as is the case with total dissolved gas criteria. System operators have developed expertise that enables them to avoid violating those constraints, but their expertise could be enhance if precise, real-time information and feedback signals were available to exercise the full capabilities of the system within those constraints. Development of software and monitoring tools would provide operators and managers with needed information to respond more effectively to demand.</td>
</tr>
</tbody>
</table>

Key Research Questions
1. Can dynamic constraints be estimated and projected over short time periods?
2. Can better tools and feedback help system operators respond more effectively to demand?
3. Can the timing of upstream releases be simulated to optimize flexibility for future operations?

Existing Research
- None identified.
Section Definition

Variable resources are generators that produce electricity intermittently because of the nature of the fuel being used. One example is wind generation, which has expanded in the Pacific Northwest over the past fifteen years. Another example is photovoltaic (PV) solar, which is expected to grow significantly in the region in the coming years.

Summary

Current State

Currently within the BPA balancing area authority (BAA) there is very little solar PV penetration. There is about 10 MW of utility-scale interconnected generation and about 25 MW of distributed solar PV generation among BPA’s Load Following customers. Presently there is a lack of accurate solar PV forecasting for the Pacific Northwest.

Future State

There are several thousand MWs worth of utility-scale solar PV generation in the queue to integrate into the BPA Transmission System over the next several years, and distributed solar PV generation is on a steady increase. By 2020 BPA anticipates solar PV generation to be a significant part of the generation portfolio of the Pacific Northwest. To understand how the increased penetration of utility-scale and distributed solar PV generation will effect Agency power and transmission operations, BPA staff require reliable and region-specific data on the profile of this type of resource.

Research Opportunities

The primary knowledge gap for anticipated solar PV generation growth in the northwest is the lack of information about the likely impact solar PV generation will have on BPA’s load and energy balancing. The profile of solar PV generation is not well understood in the Pacific Northwest, considering both the clear sky seasonal generation pattern and within-day variability. To address this gap, BPA is looking to assemble a data set of solar PV generation forecasts that could be used by the Agency and regional stakeholders in conducting impact studies. Researchers will be tasked with providing solar PV forecasts from a number of theoretical generation points within the BPA balancing area authority (BAA) over a two year period. Assuming a certain generation capacity, researchers will create solar forecasts using the best state-of-the-art solar PV generation forecasting tools and methods.
Variable Resource Forecasting

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

<table>
<thead>
<tr>
<th>VARIABLE RESOURCE FORECASTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drivers</td>
</tr>
<tr>
<td>D1 Balancing Reserves for Variable Resource Integration: Additional variable resources being built in the BPA Balancing Authority Area (BAA) will increase the demand for flexible resources to provide balancing reserves.</td>
</tr>
</tbody>
</table>

CG4 | CG5
Currently within the BPA balancing area authority (BAA) there is very little solar PV penetration. There is about 10 MW of utility-scale interconnected generation and about 25 MW of distributed solar PV generation among BPA’s Load Following customers. Presently there is a lack of accurate solar PV forecasting for the Pacific Northwest.

To understand how the increased penetration of utility-scale and distributed solar PV generation will effect Agency power and transmission operations, BPA staff require reliable and region-specific data on the profile of this type of resource.
Research, Development, & Demonstration Summaries

<table>
<thead>
<tr>
<th>RD1</th>
<th>Information about the likely impact of solar photovoltaic (PV) generation on BPA's load and energy balancing</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC3</td>
<td>TC4</td>
</tr>
</tbody>
</table>

The primary knowledge gap for anticipated solar PV generation growth in the northwest is the lack of information about the likely impact solar PV generation will have on BPA's load and energy balancing. The profile of solar PV generation is not well understood in the Pacific Northwest, considering both the clear sky seasonal generation pattern and within-day variability. To address this gap, BPA is looking to assemble a data set of solar PV generation forecasts that could be used by the Agency and regional stakeholders in conducting impact studies. Researchers will be tasked with providing solar PV forecasts from a number of theoretical generation points within the BPA balancing area authority (BAA) over a two year period. Assuming a certain generation capacity, researchers will create solar forecasts using the best state-of-the-art solar PV generation forecasting tools and methods.

Key Research Questions
1) How does the solar PV energy profile vary across the BPA BAA—i.e., the coastal area, high desert, southern Oregon, and northern Washington?
 a. Are there significant cloud formation zones and typical cloud paths?
 b. Are there cloud dead zones, ideal for solar sighting?
2) How significant is aerosol dust in the east and smog in the west?
3) How well do solar PV forecasts respond to the incidence of forest fires?
4) Is there a sufficient amount of data available to provide this information?

Existing Research
- None identified.
The Bonneville Power Administration (BPA) and its public power utility customers have been a leading force in promoting energy efficiency (EE) in the Pacific Northwest since Congress passed the Pacific Northwest Electric Power Planning and Conservation Act, (Northwest Power Act) in 1980. A guiding principle in this work is that BPA will pursue cost-effective conservation within the service territories of and in partnership with the Agency’s regional customer utilities. Since the early 1980s, BPA and its customers have acquired more than 1,700 average megawatts (aMW) in electricity savings through EE efforts.

To meet savings forecasts, BPA budgets for EE program reimbursements, performance payments, program implementation, research, evaluation, contract support, Northwest Energy Efficiency Alliance (NEEA) support, and emerging technology development.21

Staff within the BPA Energy Efficiency organization work on a range of demand-side management activities in addition to energy efficiency, such as demand response (DR), distributed energy resources, and distributed storage. The Agency’s Distributed Energy Resources (DER) Team manages this work within the Energy Efficiency organization. The DER Team’s vision is to provide leadership in Agency-wide research, development, and design while being a valued strategic partner in planning and implementing DER solutions into the operational environment. The team also contributes expertise and helps manage vendor relationships as DER products become commercialized within BPA’s system.22

Within BPA Energy Efficiency are teams specializing in both EE and DR, arranged within the following sub-organizations:

- Planning & Evaluation (PEH)
- Program Implementation (PEI)
- Contract Administration (PEK)
- Distributed Energy Resources (PES)

The current edition of the roadmap contains content addressing needs articulated by the Engineering Services group (PEJD) within Program Implementation (PEJ) and the Distributed Energy Resources (PES) group. Research needs of the BPA Energy Efficiency organization are arranged in the following sections of this document

1) Heat Pumps
 a. CO2 Heat Pumps
 b. Air Source Heat Pumps
 c. Mini-Split Heat Pumps

2) Lighting
 a. General Lighting
 b. Solid State Lighting
 c. Lighting Controls
 d. Luminaires
 e. Daylighting
 f. Non-Residential Sector: Advanced Controls

3) Energy Management & Control Systems
 b. Building Design/Envelope: Retrofit and New Construction Labeling
 c. Electronics: Power Management Control and Communication
 d. HVAC Motor-Driven Systems
 e. Commercial Integrated Buildings

Summary

Why this is Important to BPA: Key Opportunities, Challenges, and Risks

BPA's Energy Efficiency organization operates within a dynamic business environment. This environment presents opportunities, challenges, and risks that drive Agency decisions. These include:

1. Need to develop conservation programs that both align with the interests of customer utilities and that can be implemented successfully by them.
2. Trends in national and state policy that directly or indirectly foster energy conservation and distributed energy resources.
3. Market and business environment factors contributing to decreased interest in energy efficiency, such as low fuel prices for natural gas and low or zero load growth.
4. Development within the Agency of an integrated demand-side management (IDSM) strategy that brings together tools, assets, policies, and processes needed within BPA's Power and Transmission business lines to plan for and deploy EE, DR, distributed generation (DG), and distributed storage (DS) solutions in a unified manner.

Complementing these drivers are the following important considerations more specific to equipment, appliances, systems, tools, and other technologies:

1. Driver: Loads are changing, impacting power supply needs, forecasting, and transmission system reliability.
2. Driver: Power supply and demand is becoming more diverse, with controllable loads and distributed power supply (including renewables and storage).
3. Driver: BPA system needs and business practices are changing.
5. Opportunity: Technology solutions for distribution utilities that enable them to provide demand-side solutions to support the BPA transmission system and utility cost reductions.
6. Risk: Some equipment designs react to faults in a way that can cause instability (i.e., fault-induced delayed voltage recovery (FIDVR)).
7. Risk: Uncertainty in modeling assumptions can result in overbuilding infrastructure and unnecessary power supply costs.

Current State

Annual energy savings are well understood. However, BPA does not have tools or policies to target the savings for maximum benefit to the Agency (as measured by decreased loads or increased capacity) with the confidence of staff and management in BPA Power and Transmission Services. This applies to the following four areas:

1. kWh savings from efficient equipment and programs
 a. Demonstrated reliable implementation to acquire kWh
 b. Limited understanding of end use load shapes
2. kW savings from efficient equipment and programs to provide seasonal capacity (peak) savings when loads are on
 a. Can quantify only the simplest equipment retrofits (e.g., lighting watt reduction) and have not demonstrated program delivery at scale or proven costs and benefits
3. kW savings from DR (i.e., turn off loads)
 a. DR pilots have tested some technologies and contractual arrangements for a variety of Power and Transmission products, and have begun control system changes that can operationalize DR
4. Distributed generation and storage
 a. BPA TI projects have demonstrated technical feasibility of both utility- and residential-scale storage
 b. BPA's South of Allston (SOA) solicitation in 2016 did not choose storage because it was too costly for a two-year agreement

Future State

BPA helps deliver energy-efficient regional loads that provide grid benefits. This applies to the following four areas:

1. kWh savings from efficient equipment and programs
1. Able to target for best value to BPA
2. Able to quantify savings via different means (e.g., whole building analysis); Pipeline for future savings is robust

2) kW savings from efficient equipment and programs to provide seasonal capacity (peak) savings when loads are on
 a. Able to measure; Have menu of implementation options for various seasons
 b. Demonstrated ability to acquire kW reduction as non-wires needs are identified

3) kW savings from DR (i.e., turn off loads)
 a. Clear understanding of capacity needs and value streams
 b. Commercial use of DR for multiple purposes where competitive, with utilities as capable business partners

4) Distributed generation and storage
 a. Cost-effective options for Power and Transmission Services
 b. Integrated grid where customers can connect easily, reliably and efficiently and their devices can work with other devices and systems as needed for positive customer experience and reliable grid

Research Opportunities

Though the purpose of this roadmap is to articulate the Agency’s technology research, development, and demonstration (RD&D) needs, at the highest level opportunities for advancement exist in the three complementary areas of Technologies, Load Analytics, and Business Integration:

Technologies. Participate in collaborative technology RD&D activities to help influence project scope and be positioned to benefit from results. This falls into three areas:

1) Energy Savings. Energy efficiency technology potential savings research focused on the following three technology areas:
 a. Heat pumps
 b. Lighting
 c. Energy management & control systems

2) Equipment Characteristics. Within these three technology areas, a further focus is upon equipment characteristics, particularly:
 a. “Grid-friendliness,” such as understanding how new loads and electronic control systems respond to faults and influence designs and standards (such as for electric vehicle chargers).
 b. Storage, particularly focused on understanding the effect of storage regionally installed throughout the distribution system in comparison to utility-scale installations connected directly to the transmission grid; this also includes supporting research to make storage more effective and lower-cost.
 c. Interoperability, such as influencing communications protocols and helping develop technologies that promote equipment and systems working together effectively (for example, the Internet of things (IoT), connected devices and buildings, and DR management systems).

3) Measurement Methods. Further within the three technology areas of interest, greater understanding is sought regarding the following measurement methods:
 a. Sensors and meters.
 b. Whole building analysis such as developing tools to verify savings at the level of whole buildings rather than the level equipment or appliances within the building.
 c. Reducing the cost of research through such means as integrating non-intrusive load monitoring (NILM) with analytics.

Load Analytics. Apply knowledge of end use loads (and relevant load shape data) to planners in Power and Transmission Services. There are two broad categories:

1) Forecasting to support BPA Power and Transmission Services:
 a. Identify changes compared to old data (e.g., changed size and shape of water heating loads) and trends expected (e.g., new types of loads, electrification of loads, and the cumulative effect of conservation on loads).
 b. Characterize end use load shapes for BPA Power Forecasting’s use, and characterize load components (such as inductive motors compared to electronic controls) for BPA Transmission Planning’s reliability models.

2) Capacity (peak) effect of end-use technologies:
 a. Enhance ability to quantify peak impact as measured by kW—not merely kWh conservation—of energy-efficient equipment.

Business Integration. Contribute to evolution of business systems and arrangements. This centers on systems that may or may not be eligible for inclusion within BPA TI’s research portfolio, and the evolution of business arrangements that—while critical, and enabled by technologies—may fall outside the purview of technology RD&D and more within policy, business

relationships, organizational administration, change management, etc. These include such things as:

1) Integrating demand-side solutions into grid operations.
2) Preparing for an energy imbalance market or other regional market structures.
3) Preparing for potential peer-to-peer grid operations, such as might be achieved through the interaction of smart appliances, solar panels, and electric vehicle charging stations transacting through distributed peer-to-peer blockchain or similar architecture.

While all three of these areas are important to BPA both individually and in their enabling and complementary interactions, current Agency priorities have been applied to focus BPA TI’s efforts for the upcoming solicitation. Thus, the current roadmap treats these three areas in Table 2.

Table 2: BPA Energy Efficiency Research Areas

<table>
<thead>
<tr>
<th>Technologies</th>
<th>Technology RD&D opportunities are the primary focus of this roadmap. In the pages that follow are sections dedicated to further detailing BPA’s needs in the technology areas of heat pumps, lighting, and energy management & control systems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Analytics</td>
<td>Regarding the capacity (peak) effect of end-use technologies, where applicable this roadmap identifies RD&D Program needs or Key Research Questions to help address this need. At this time BPA is not interested in Load Analytics research outside the technology domains of Heat Pumps, Lighting, and Energy Management & Control Systems. BPA Energy Efficiency is working with the Northwest Energy Efficiency Alliance and other regional partners to fund and conduct studies to update end-use load data and better characterize end use load shapes. Such efforts may bring to light opportunities for future TI-funded research to help the Agency process, visualize, and make full use of this data.</td>
</tr>
<tr>
<td>Business Integration</td>
<td>BPA is not currently interested in external proposals that address Business Integration; therefore, Business Integration is not directly addressed in this roadmap. Efforts are underway within the Agency to articulate, align, and prioritize Agency needs in this area through such initiatives as Integrated Demand-Side Management (IDSM), Focus 2028, and Commercial Operations. With future clarity in these areas will come further guidance about the role for technology RD&D, either through TI-funded projects, external collaborations, or a mix of these approaches.</td>
</tr>
</tbody>
</table>
Technology RD&D within BPA Energy Efficiency

BPA’s Energy Efficiency Emerging Technology (E3T) team and the Northwest Energy Efficiency Alliance lead the Pacific Northwest’s efforts to coordinate regional emerging technology research. This collaboration was a recommendation of the Northwest Energy Efficiency Taskforce in 2009 and is also done in collaboration with national organizations such as the Consortium for Energy Efficiency and the California Emerging Technologies Coordinating Council.24 These groups research and analyze products and services with the potential to deliver significant energy savings but that may be facing market, behavioral, regulatory, or other barriers to large-scale introduction. Thus, for BPA Energy Efficiency, emerging technology is defined as any technology that is already available in the marketplace but that is facing one or more barriers to widespread adoption.25

BPA’s collaborative RD&D work strives to bridge “chasms” that exist between an idea and its implementation within utility programs as a proven energy-efficient product or service. Figure 4 on the following page illustrates how these efforts are complementary to help “fill the pipeline” of energy-efficient products and services for utility programs implementation. This diagram also correlates this process with the Department of Energy’s Technology Readiness Levels (TRLs) and identifies two potential “chasms” that can be barriers to implementing energy-efficient technologies.

Figure 4. Energy Efficient Technology Commercialization Process: The "Pipeline." Simplified schematic illustrating a broadly representative example of the process of bringing an idea for an energy-efficient product or service through the phases of research, development, design, testing, evaluation, pilot-scale implementation, and commercial introduction and maturity. For comparative purposes, this general process is roughly correlated with the phases of emerging technologies initiatives, the U.S. Department of Energy’s Technology Readiness Levels, and an ongoing effort at the Bonneville Power Administration to define a system of Measure Readiness Levels to guide the transition of products and services into full-scale utility programs implementation. (Adapted from a number of sources including: Institute for Building Efficiency, "Advancing Energy Efficiency: California Helps Blaze the Trail: Insights from the Emerging Technologies Coordinating Council 2010 Summit," n.d. (ca. Nov. 2010), http://www.institutebe.com/Building-Efficiency-Events/etc-summit-2010.aspx; BC Hydro "Shaping the ET Future: Innovation in ET Programs," n.d.; U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, "Technology Readiness Levels (TRLs)," http://www1.eere.energy.gov/manufacturing/financialtrlsls.html.)
Heat pumps are “Heating and/or cooling equipment that, during the heating season, draws heat into a building from outside and, during the cooling season, ejects heat from the building to the outside. Heat pumps are vapor-compression refrigeration systems whose indoor/outdoor coils are used reversibly as condensers or evaporators, depending on the need for heating or cooling.”26

This section includes the following technology domains:
- Low Global Warming Potential (GWP) Heat Pumps
- Air Source Heat Pumps
- Single and Multi-Zone Mini-Split Heat Pumps

Summary

Key Drivers, Opportunities, and Risks

1) The residential sector in the Pacific Northwest has a large proportion of electric resistance (ER) equipment for water and space heating.
2) The 7th Power Plan estimates that there is 290 MWa of potential savings in replacing ER zonal heat and electric forced air furnaces.
3) The most significant area of residential savings is in water heating with an achievable technical potential of 323 MWa for heat pump water heaters (HPWHs).
4) The region needs better information on how the increased penetration of heat pumps will affect generation needs and distribution loads.

Current State

Multiple manufacturers have entered the U.S. market in recent years with innovative heat pump products. These include heat pump water heaters, variable capacity air source heat pumps, and multi-zone mini-splits. Although they have a high technical potential for energy savings, their market penetration has been inhibited by high first cost, consumer unfamiliarity, and—for utilities—a lack of certainty over real world energy savings and “grid friendliness.”

Current hydrofluorocarbon (HFC) refrigerants have significant global warming potential (GWP) when leaked to the atmosphere. While BPA does not have specific goals around low GWP refrigerants, it is recognized as a societal benefit. The region has invested in CO2 HPWH research which resulted in a new Underwriters Laboratories (UL) listed product introduced to the U.S. market in 2016. Japanese manufacturers have created lines of mini-split heat pumps with low GWP refrigerants sold in Japan and Australia.

At this time multi-family housing developers in the Pacific Northwest often choose packaged terminal air conditioners (PTACs) with strip heat or relatively low efficiency PTAC heat pumps. Ductless heat pumps (DHPs) are at best marginally cost effective in this market.

Future State

Low GWP heat pumps are offered by several manufacturers. Energy savings have been validated in all regional climate zones and the savings load shapes and demand response (DR) potential are well understood. There are cost effective solutions available for multi-family buildings and other low-load conditions. Most equipment is manufactured with integral Consumer Technology Association (CTA) 2045 communication ports and is DR ready. Inverter-driven heat pumps have market penetration of at least 90 percent, similar to other technologically advanced countries.

Research Opportunities

BPA is interested in research involving one or more of the three technology domains in the pages that follow: Low Global Warming Potential (GWP) Heat Pumps; Air Source Heat Pumps; and Single and Multi-Zone Mini-Split Heat Pumps, such as:
- Adaptation of low GWP and energy efficient heat pumps for the U.S. market.
- Field testing of innovative concepts such as non-vapor compression heat pumps.

- Lower-cost heat pumps.
- Climate-optimized heat pumps.
- Heat pumps optimized for multiple end uses.
- Commercial HPWHs able to meet base load, peak load, and recovery time requirements.
- Applications that increase the cost effectiveness of CO2 HPWHs, such as combined space and water heating.
Low Global Warming Potential (GWP) Heat Pumps

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

<table>
<thead>
<tr>
<th>Drivers</th>
<th>CG1</th>
<th>CG2</th>
<th>CG3</th>
<th>CG4</th>
<th>CG5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 Need to identify conservation opportunities, confirm technology performance, and validate energy savings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2 Reduced first cost to design and install new systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3 Regulatory mandates for transition to more environmentally sustainable refrigerants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capability Gaps

- Demonstrated cost effective system performance in appropriate residential and commercial market niches
- CO2 HPWH are integrated into a combined DWH and space heating product
- Low GWP HPWH are valued as a grid-friendly product and DR resource
- Multiple manufacturers offer split system HPWH with low GWP refrigerant
- Non vapor compression heat pumps field tested and commercially available

HEAT PUMPS:

LOW GLOBAL WARMING POTENTIAL (GWP) HEAT PUMPS
Heat Pumps: Low Global Warming Potential (GWP) Heat Pumps

<table>
<thead>
<tr>
<th>Current</th>
<th>Nearer Term</th>
<th>Longer Term</th>
<th>Future State</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC1</td>
<td>1. Low GWP HPWHs are cost competitive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC2</td>
<td>2. CO2 HPWH optimized for performance in combination systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC3</td>
<td>3. Water heaters are factory equipped with the capability to communicate with the grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC4</td>
<td>4. Energy Savings load shape is well understood and predictable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC5</td>
<td>5. Basic research in non-vapor compression heat pumps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC6</td>
<td>6. Split system CO2 HPWH is available in the US from one manufacturer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG1</td>
<td>Demonstrated cost effective system performance in appropriate residential and commercial market niches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG2</td>
<td>CO2HPWH are integrated into a combined DWH and space heating product</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG3</td>
<td>Low GWP HPWH are valued as a grid friendly product and DR resource</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG4</td>
<td>Multiple manufacturers offer split system HPWH with low GWP refrigerant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG5</td>
<td>Non-vapor compression heat pumps field tested and commercially available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG6</td>
<td>Demonstrated cost effective system performance in appropriate residential and commercial market niches</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key
- **TC**: Commercially-available Technology Characteristic
- **CG**: Milestone: Capability Gap Addressed
- **Sequential Connection**: Between Roadmap Elements

While innovative HP products with high energy savings potential are available, market penetration is inhibited by high first cost, consumer unfamiliarity, and lack of certainty over real world energy savings and "grid friendliness."

While BPA does not have specific goals around low GWP refrigerants, it is recognized as a societal benefit.

Multi-family housing developers often choose less-efficient air conditioners.

DHPs are at best marginally cost effective in this market.

Low GWP heat pumps widely available.

Energy savings validated in all regional climate zones, with load shapes and DR potential well understood.

Cost effective solutions available for multi-family and other low-load conditions.

Most equipment manufactured with integral CTA 2045 ports and is DR ready.

Inverter-driven HPs have market penetration of at least 90%.
Research, Development, & Demonstration Summaries

<table>
<thead>
<tr>
<th>RD1</th>
<th>HPWHs for multiple applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC1</td>
<td></td>
</tr>
<tr>
<td>TC2</td>
<td></td>
</tr>
</tbody>
</table>

To overcome the barrier of high first cost, identify applications that maximize the use of the full equipment capacity.

Key Research Questions

1. What kind of control technologies can be offered on the tank for specific application?
2. How can loads be clustered?

Existing Research

- BPA, CO₂ HPWH for space and water heating in retrofit and new construction; CO₂ HPWH for unit clusters in multi-family buildings.

<table>
<thead>
<tr>
<th>RD2</th>
<th>Advanced heat pumps using low GWP refrigerants</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC3</td>
<td></td>
</tr>
<tr>
<td>TC4</td>
<td></td>
</tr>
</tbody>
</table>

Advanced HP for all climates. High COP to provide services to the grid (ancillary services) while also using low GWP refrigerants.

Key Research Questions

1. With grid connectivity effect of cycling compressor impact to HP efficiency.
2. Trade-offs of HP vs system (grid) efficiency.

Existing Research

- Electric Power Research Institute (EPRI), Bonneville Power Administration (BPA) CTA 2045 for water heaters field testing.
Air Source Heat Pumps

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

HEAT PUMPS:

AIR SOURCE HEAT PUMPS

<table>
<thead>
<tr>
<th>Drivers</th>
<th>CG1</th>
<th>CG2</th>
<th>CG3</th>
<th>CG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Need to identify conservation opportunities, confirm technology performance, and validate energy savings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>Reduced first cost to design and install new systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>Utilities need to manage demand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>Reduce/eliminate refrigerants of high global warming potential</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capability Gaps
- ASHPs become an integral component of regional load shifting strategies
- DR strategies do not impact building occupants
- ASHP default performance is optimized to real world operating conditions in the climate zone in which it is installed
- Multiple manufacturers offer split system HPWH with low GWP refrigerant
<table>
<thead>
<tr>
<th>Technology Domain</th>
<th>Heat Pumps: Air Source Heat Pumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>Nearer Term</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key

- TC: Commercially-available Technology Characteristic
- UC: Commercially-Unavailable Technology Characteristic
- CG: Milestone: Capability Gap Addressed
- HE: Sequential Connection Between Roadmap Elements

While innovative HP products with high energy savings potential are available, market penetration is inhibited by high first cost, consumer unfamiliarity, and lack of certainty over real world energy savings and “grid friendliness.”

While BPA does not have specific goals around low GWP refrigerants, it is recognized as a societal benefit.

Multi-family housing developers often choose less-efficient air conditioners.

DHPs are at best marginally cost effective in this market.
Research, Development, & Demonstration Summaries

Advanced heat pumps

<table>
<thead>
<tr>
<th>RD1</th>
<th>Advanced heat pumps</th>
<th>TC1</th>
<th>TCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advanced heat pumps for all climates.

Key Research Questions

1. Which elements of the heat pump cycle can be made more efficient?
2. Can the new technology be scaled?
3. How can low GWP refrigerants be used in ASHPs?

Existing Research

- BPA, Optimized Thermal Systems, Improved defrost performance.

Grid friendly heat pumps

<table>
<thead>
<tr>
<th>RD2</th>
<th>Grid friendly heat pumps</th>
<th>TC2</th>
<th>TC3</th>
<th>TC4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Energy-efficient heat pump technologies that are “grid friendly,” meaning they conserve energy while concurrently helping support grid reliability.

Key Research Questions

1. With grid connectivity effect of cycling compressor impact to HP efficiency.
2. Trade-offs of HP vs system (grid) efficiency
3. What is the savings load shape?

Existing Research

Single and Multi-Zone Mini-Split Heat Pumps

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

HEAT PUMPS: SINGLE AND MULTI-ZONE MINI SPLIT HEAT PUMPS

<table>
<thead>
<tr>
<th>Drivers</th>
<th>CG1</th>
<th>CG2</th>
<th>CG3</th>
<th>CG4</th>
<th>CG5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Need to identify conservation opportunities, confirm technology performance, and validate energy savings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>Reduced first cost to design and install new systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>Utility need to manage increasingly more complex grid conditions (i.e., demand, storage, distributed generation, “smart grid,” etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>Regulatory mandates for transition to more environmentally sustainable refrigerants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capability Gaps

- MSHP are an integral part of PNW load shifting strategies
- DR strategies do not impact building occupants
- Integrated controllers for multiple pieces of equipment minimize the use of back-up heating
- Multiple manufacturers offer MSHP with low GWP refrigerant
- Proven cost effective and energy efficient solutions for small and low load homes
Heat Pumps: Single and Multi-Zone Mini Split Heat Pumps

Technology Domain

<table>
<thead>
<tr>
<th>Current</th>
<th>Nearer Term</th>
<th>Longer Term</th>
<th>Future State</th>
</tr>
</thead>
<tbody>
<tr>
<td>While innovative HP products with high energy savings potential are available, market penetration is inhibited by high first cost, consumer unfamiliarity, and lack of certainty over real world energy savings and "grid friendliness."</td>
<td>Thermostat control coordinating DHP with ER back up heating</td>
<td>Integrated controllers for multiple pieces of equipment minimize the use of back-up heating</td>
<td>Low GWP heat pumps widely available.</td>
</tr>
<tr>
<td>MSHP can perform well in cold climates</td>
<td></td>
<td>MSHP are an integral part of PNW load shifting strategies</td>
<td>Energy savings validated in all regional climate zones, with load shapes and DR potential well understood.</td>
</tr>
<tr>
<td>Energy savings load shapes are well understood and predictable</td>
<td></td>
<td>DR strategies do not impact building occupants</td>
<td>Cost effective solutions available for multi-family and other low-load conditions.</td>
</tr>
<tr>
<td>MSHP are factory equipped with the capability to communicate with the grid</td>
<td></td>
<td></td>
<td>Most equipment manufactured with integral CTA 2045 ports and is DR ready.</td>
</tr>
<tr>
<td>DR strategies and technologies are simple to implement and maintain comfort</td>
<td></td>
<td></td>
<td>Inverter-driven HPs have market penetration of at least 90%.</td>
</tr>
<tr>
<td>No MSHP with Low GWP refrigerants are in the U.S. market</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHP can operate effectively with low GWP refrigerants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limited availability of inverter driven equipment for low-load conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key

- **TC**: Commercially Available Technology Characteristic
- **CG**: Commercially Unavailable Technology Characteristic
- **CG**: Milestone: Capability Gap Addressed
- **H E A T P U M P S**: Sequential Connection Between Roadmap Elements
Research, Development, & Demonstration Summaries

RD1 Integrated controls for heat pumps

<table>
<thead>
<tr>
<th>TC</th>
<th>TC2</th>
<th>TC3</th>
<th>TC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated controllers for multiple pieces of equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1. How can heat pumps be controlled to minimize back-up system use?
2. How can DR strategies be implemented to minimize impact on occupants?

Existing Research

- None identified.

RD2 Mini split heat pumps using low GWP refrigerants

<table>
<thead>
<tr>
<th>TC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy-efficient mini-split heat pumps with low GWP refrigerants.</td>
</tr>
</tbody>
</table>

Key Research Questions

1. How do low GWP refrigerants affect performance?

Existing Research

- Electric Power Research Institute (EPRI) ; Oak Ridge National Laboratory (ORNL).

RD3 Heat pumps for low-load conditions

<table>
<thead>
<tr>
<th>TC8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proven cost effective and energy efficient solutions for small and low load homes.</td>
</tr>
</tbody>
</table>

Key Research Questions

1. How can low capacity equipment be made more efficient and lower cost?

Existing Research

- None identified.
Section Definition

For BPA Energy Efficiency, “lighting” pertains to the equipment and components of electric-powered illumination; technologies and building design features that enable the use of natural light to complement or replace electric lights; and controls and sensors that make illumination more efficient, efficacious, cost-effective, and capable of responding to demand-side signals. Such advancements can occur in the residential, commercial, industrial, agricultural, or other sectors in which BPA Energy Efficiency works.

The Lighting section of this roadmap is composed of the following technology domains:

- General Lighting
- Solid State Lighting
- Lighting Controls
- Luminaires
- Daylighting
- Non-Residential Sector: Advanced Controls

More specific definitions of these technology domains are as follows:

General Lighting

Technologies and strategies to optimize the use of lighting fixtures, components, cabling (e.g., DC wiring or Ethernet), and controls for general illumination and building integration.

Solid State Lighting

More affordable, efficacious, and reliable light emitting diode (LED) lighting system, using technologies and techniques that take full advantage of LED’s characteristics, such as directionality, long life, and controllability while mitigating concerns such as heat management, lumen maintenance, and color shift. Applying Universal Lumen metric to compare SSL with other light sources as a means to justify lower energy use to meet application requirements.

Residential Lighting Controls

Technologies and design approaches to improve the effectiveness and usability of lighting controls in the residential sector to minimize energy use while maintaining good lighting quality. Integration of lighting controls with home energy management systems (e.g., occupancy or natural light).

Luminaires

Materials and designs to improve the optical efficiency of luminaires and components such as body, ballast, reflector, and lens; also includes controls that are integral to luminaires.

Daylighting

Daylight harvesting is essential in most completed Zero Net Energy (ZNE) buildings. Color tuning, daylighting, and integration with other building systems. (See also the “Building Design/Envelope: Zero Net Energy Buildings” technology domain in the Energy Management & Control Systems section of this roadmap.)

Non-Residential: Advanced Controls

Technologies and design approaches to improve the effectiveness and usability of lighting controls to minimize electric power use while maintaining good lighting quality; also includes integration of lighting controls with other building management systems.

Summary

Key Drivers, Opportunities, and Risks

LED lighting quality improvements and cost reduction is happening at an accelerated pace. LED lighting works well with advanced controls, but improvements are necessary to achieve adoption and quantify energy savings.
Current State

LED lights are transforming the lighting market. Most lights still have manual controls, or simple controls required by code. Lighting technology is integrating controls for both non-energy and energy saving benefits.

Future State

Lighting controls that are easy to install, commission, and operation. Daylight harvesting is essential in most completed Zero Net Energy (ZNE) buildings. Many commercial spaces have minimal daylight access. Non-energy benefits will be the primary driver of advanced controls, but energy savings will often times accompany the use of advanced controls.

Retrofit lighting alternatives that include sensors and controls. Energy use and performance data will be summarized and provided to customer and utility. A common standard for measuring universal lumens that considers human light perception.

Research Opportunities

There are many organizations conducting technology RD&D on lighting, lighting controls, and related topics. These include the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, Illuminating Engineering Society, Rensselaer Polytechnic Institute's Lighting Research Center, and Lighting Design Lab, among others. BPA recognizes this and with its relatively limited amount of RD&D funds focuses on lighting research where there are significant regional benefits, where a utility perspective is important in ensuring both energy savings and grid friendliness, and where BPA's targeted funds offer significant potential for advancing a particular technology in a direction that benefits regional stakeholders. To do so, BPA actively seeks to partner with these and other organizations conducting lighting technology RD&D.

To optimize RD&D investments, broadly BPA is interested in lighting research that demonstrates electric power savings or cost reductions in energy-saving technologies. BPA-funded research that includes non-energy benefits (e.g., health and other applications), while important for market development and customer adoption, must be accompanied by quantifiable energy and/or capacity savings. BPA encourages projects that include partners with non-energy benefits. Research that combines lighting with other building demand side management (DSM) technology research is also encouraged.
General Lighting

Key Drivers

The priorities setting the Agency's strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

<table>
<thead>
<tr>
<th>LIGHTING GENERAL LIGHTING</th>
<th>Drivers</th>
<th>CG1</th>
<th>CG2</th>
<th>CG3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Professional design and more accurate modeling tools enable better and more efficient lighting designs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>Federal, state, and local regulations and policies to reduce energy use as a way to achieve carbon and greenhouse gas reduction goals</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capability Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Need for better, cheaper software to model and help people visualize a new lighting design</td>
</tr>
<tr>
<td>Need to develop tools that help designers and contractors optimize use of solid state lighting (SSL) technologies by application, and design luminaire layout</td>
</tr>
<tr>
<td>Consistently optimized power factor correction in lighting power electronics</td>
</tr>
</tbody>
</table>
Technology Domain: General Lighting

<table>
<thead>
<tr>
<th>Energy Savings</th>
<th>Nearer Term</th>
<th>Longer Term</th>
<th>Future State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy savings are well understood, but BPA lacks tools and policies to target savings for maximum regional benefit while meeting BPA Power and Transmission reliability requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technology Domain

<table>
<thead>
<tr>
<th>Technology Characteristic</th>
<th>CG#</th>
</tr>
</thead>
<tbody>
<tr>
<td>A recognized visual acuity metric which accounts for eye response characteristics with regards to spectrum and light level (exterior, further than current Illuminating Engineering Society of North America (IESNA))</td>
<td>CG1</td>
</tr>
<tr>
<td>Need for better, cheaper software to model and help people visualize a new lighting design</td>
<td>CG2</td>
</tr>
<tr>
<td>Need to develop tools that help designers and contractors optimize use of solid state lighting (SSL) technologies by application, and design luminaire layout</td>
<td>CG3</td>
</tr>
<tr>
<td>Consistently optimized power factor correction in lighting power electronics</td>
<td></td>
</tr>
</tbody>
</table>

Key

- **CG**: Commercially Unavailable Technology Characteristic
- **TC**: Commercially Available Technology Characteristic
- **CG#**: Milestone: Capability Gap Addressed
- **Sequential Connection Between Roadmap Elements**
Research, Development, & Demonstration Summaries

RD1 Lighting product evaluation

TC1

Evaluate characteristics of new lighting technologies and disseminate result to lighting specifiers.

Key Research Questions

1. What are photometric and dimming characterizations of light-emitting diodes (LEDs)?

Existing Research

Rensselaer Polytechnic Institute Lighting Research Center (LRC) National Lighting Product Information Program (NLPIP).

RD2 Unified lighting standard and measurement

TC1

Explore a more intricate visual acuity standard and its measurement.

Key Research Questions

1. Can an inexpensive easy to use tool be developed that offers contractors / designers / auditors the ability to measure the correct characteristics for visual acuity (photopic, mesopic, scotopic, correlated color temperature (CCT), color rendering index (CRI))?
2. Can existing research be synthesized to create a user friendly, unified standard for lighting?
3. Can a tool be created to display visual acuity performance and expected benefit?

Existing Research

Rensselaer Polytechnic Institute Lighting Research Center (LRC).

RD3 Power conversion technology

TC2

Summary not yet provided.

Key Research Questions

1. What substrates are best?
2. What semiconductor technology best performance voltage range?
3. How to accelerate deployment basic research into applications?

Existing Research

EPRI; Finelite; Pacific Energy Center (PEC) forthcoming with Sylvania and Emerge Alliance.

RD4 Ultrahigh efficiency power conversion products

TC2

Ultrahigh efficiency power conversion products.

Key Research Questions

1. Which technology can achieve switching frequencies on the order of 10-20 MHz?
2. Can function be incorporated into integrated circuits (ICs) (switching devices control, etc)?
3. Can efficiency of 97%+ be achieved?
4. Can a firm factor [form factor?] reduction of 2X or more be achieved?
5. Products should include AC-DC, DC-DC, and DC-AC conversion.
6. Can Power over Ethernet to lighting provide energy savings and energy monitoring?

Existing Research

None identified.
Solid State Lighting

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

<table>
<thead>
<tr>
<th>Drivers</th>
<th>CG1</th>
<th>CG2</th>
<th>CG3</th>
<th>CG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Need to deliver systems that work and avoid callbacks for maintenance or re-commissioning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>Consumer desire for third-party product evaluation to ensure quality and efficacy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>Utilities are mandated to produce more energy with renewable sources and energy efficiency measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>OLED applications are multiplying, and research needs to continue that focuses on energy-saving designs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>Need to define Universal Lumens metric that better captures perception of lighting</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capability Gaps

- Need to improve lumen maintenance
- Need to improve lighting reliability over time
- Need SSL devices that can operate on AC power without rectification, or an ultra-efficient AC-to-DC converter well-suited to SSL driver applications
- Need to reduce cost

LIGHTING

SOLID STATE LIGHTING

- CG1
- CG2
- CG3
- CG4
Energy savings are well understood, but BPA lacks tools and policies to target savings for maximum regional benefit while meeting BPA Power and Transmission reliability requirements.

Energy-efficient loads that provide grid benefits

Lighting: Solid State Lighting

<table>
<thead>
<tr>
<th>Current</th>
<th>Nearer Term</th>
<th>Longer Term</th>
<th>Future State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Domain</td>
<td>Lighting</td>
<td>Solid State Lighting</td>
<td></td>
</tr>
</tbody>
</table>

Milestone: Capability Gap Addressed

<table>
<thead>
<tr>
<th>TC#</th>
<th>Technology Characteristic</th>
<th>TC#</th>
<th>Technology Characteristic</th>
<th>TC#</th>
<th>Technology Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC1</td>
<td>Methods to better characterize the life and reliability of SSL luminaries</td>
<td>TC2</td>
<td>Methodology for forecasting chromaticity maintenance using LM-80</td>
<td>TC3</td>
<td>Limited power quality effects of SSL devices</td>
</tr>
</tbody>
</table>

CG#

<table>
<thead>
<tr>
<th>CG#</th>
<th>Milestone: Capability Gap Addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG1</td>
<td>Need to improve lumen maintenance</td>
</tr>
<tr>
<td>CG2</td>
<td>Need to improve lighting reliability over time</td>
</tr>
<tr>
<td>CG3</td>
<td>Need SSL devices that can operate on AC power without rectification, or an ultra-efficient AC-to-DC converter well-suited to SSL driver applications</td>
</tr>
<tr>
<td>CG4</td>
<td>Need to reduce cost</td>
</tr>
</tbody>
</table>
Research, Development, & Demonstration Summaries

RD1 Establish a Universal Lumens metric that better compares LED brightness with other light sources

TC1
Can research establish LED Equivalency for perceived brightness? Universal Lumens is a term that considers the perceived brightness of LED lighting compared to other light sources.

Key Research Questions
1) Is it possible to develop a unified metric that captures a universal lumen metric that considers user perception? At equal lumens LEDs often appear brighter and power is reduced to dim.
2) How much energy is saved if LEDs were used at appropriate light levels using a Universal Lumens metric?

Existing Research
- Mark Rae from Lighting Research Center.

RD2 Methods for predicting chromaticity maintenance using LM-80 data

TC2
There are no consensus methods for predicting long-term chromaticity maintenance. Better understanding of the factors that cause changes in chromaticity over time might allow development of models that could be used to predict chromaticity maintenance.

Key Research Questions
1) What are the degradation factors in phosphors and what are their dependent variables?
2) What are the degradation factors in LEDs that cause changes in the wavelength of emissions, and what are their dependent variables?

Existing Research
None identified.

RD3 Less expensive product testing

TC2
Cheaper equipment and methods for product performance testing is needed as approach for reducing overall product costs. Are there alternatives to LM-80, LM-79, etc. for validating performance?

Key Research Questions
1) What equipment and methods are less expensive and accurate enough?
2) What is accurate enough?
3) What portion of total product cost is for testing?
4) What impact does the current testing needs have on time to market?
5) What accurate methods can be developed to project luminaire performance on similar luminaires in the product family?

Existing Research

RD4 Power quality effects of SSL

TC3
We do not know what the effects of solid state lighting are on building power quality and, by extension, impacts on the grid. We need to study effects and mitigation strategies.

Grid-friendly performance mimics a resistive load such as an incandescent lamp: As the peak AC input voltage level decreases, the peak AC current decreases proportionally. Not grid-unfriendly performance, where as the peak AC input voltage decreases, the peak AC current rises proportionally until it drops abruptly to zero.

Key Research Questions
1) How does SSL operation affect building-level power quality (partial building: system effects)?
2) What would be the impact on building power quality of full building SSL lighting strategy?
3) What are possible mitigation strategies of power quality problems from SSL?

Existing Research
Pacific Northwest National Laboratory (PNNL); Finelite, University of Colorado.
OLED Energy Saving Applications

<table>
<thead>
<tr>
<th>TC3</th>
</tr>
</thead>
</table>

We know OLED provides higher value lighting products. We however need industry research to continue improving the lumens/Watt for OLEDs.

Key Research Questions

1. How can EE industry contribute to reducing OLED cost?
2. How much energy is saved with High Efficacy OLED, or Quantum Dots?

Existing Research

Lighting Controls

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.
Lighting: Lighting Controls

<table>
<thead>
<tr>
<th>Current</th>
<th>Nearer Term</th>
<th>Longer Term</th>
<th>Future State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Luminaire, control protocols and communication</td>
<td>Need integration of task ambient, precision daylighting</td>
<td>Need better user interfaces</td>
<td></td>
</tr>
<tr>
<td>Smart controls for lighting technologies</td>
<td>Need less expensive and more reliable controls</td>
<td>Need for plug and forget controls that work without commissioning, tuning, or user action</td>
<td></td>
</tr>
<tr>
<td>Verification of luminaire demand response</td>
<td>Need to support color shifting and control of other new lighting capabilities</td>
<td>Need to support demand response</td>
<td></td>
</tr>
<tr>
<td>Cheaper, simpler self-calibration</td>
<td>Need adaptive lighting guidance, best practices (IES), and performance requirement for standards</td>
<td>Need integration with building automation / management systems</td>
<td></td>
</tr>
<tr>
<td>Easy to change and reporting sensor settings</td>
<td>Need to support color tuning</td>
<td>Need a unified software and visualization / controls tool for utilities that are manufacturer-agnostic to explore, tweak, set up, and optimize control to sensor and device lighting mappings</td>
<td></td>
</tr>
<tr>
<td>Minimal impact and maximal compatibility on existing infrastructure</td>
<td>Need to improve capability of controls to work with a diversified product range</td>
<td>Need controls and sensors that are flexible for retrofit and with existing wiring, switches, pole spacing, etc.</td>
<td></td>
</tr>
<tr>
<td>Intuitive operation, ease of use and commissioning</td>
<td>Need to balance energy efficiency features with reliability, low cost, ease of use</td>
<td>Need to balance energy efficiency features with reliability, low cost, ease of use</td>
<td></td>
</tr>
<tr>
<td>Reliable, ongoing occupancy sensing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space sensing beyond occupancy, e.g., task, location in room, traffic, population</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Need adjustable lighting levels based on the time of the day</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Energy Savings

Energy savings are well understood, but BPA lacks tools and policies to target savings for maximum regional benefit while meeting BPA Power and Transmission reliability requirements.

Key

- TC: Commercially Available Technology Characteristic
- TG: Commercially Unavailable Technology Characteristic
- CG: Milestone: Capability Gap Addressed
- Sequential Connection Between Roadmap Elements
RD1 | Lighting controls and verification of small load demand

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC2</th>
<th>TC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide research to quantify magnitude of demand response (DR) associated with lighting modification relative to DR call or event.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1. In response to a DR event, quantify and report amount of demand directly associated with DR call provided by lighting.
2. Define standard methodology for command, control and data exchange between lighting control systems and supplier?

Existing Research

University of California Davis California Lighting Technology Center (CLTC).

RD2 | Define and develop virtual sensors

<table>
<thead>
<tr>
<th>TC4</th>
<th>TC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some controls try to adjust settings according to the habits of the user. Cheaper, simpler, and more effective ways of doing this will be helpful. This will likely take advantage of better predictive modeling.</td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1. Determine/identify space characterization needs above and beyond basic occupancy.
2. Generate higher level sensor data to mitigate identified capability gaps. Example: use occupancy sensor and camera data to produce “traffic” information.
3. How to extract general context from virtual sensor data?

Existing Research

Massachusetts Institute of Technology’s (MIT), National Renewable Energy Laboratory (NREL) with the Bonneville Power Administration (BPA), Enlighted, University of California Davis California Lighting Technology Center (CLTC).

- The MIT Media Lab is currently researching feedback controlled solid state lighting, with a specific focus on low-cost solutions that sense and respond to human factors including user context, circadian rhythms, and productivity, and integrating these responses with atypical environmental factors.
- NREL is working on a project funded by the BPA Technology Innovation (TI) Office to develop an enhanced Image Processing Occupancy Sensor (IPOS) prototype. This is BPA TI Project #247, “Image Processing Occupancy Sensor (IPOS) Prototype Enhancement and Testing”; see Appendix B for more information.
- Enlighted (enlightedinc.com).

RD3 | Advanced lighting control systems for new and retrofit applications

<table>
<thead>
<tr>
<th>TC4</th>
<th>TC6</th>
<th>TC7</th>
<th>TC8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leverage existing infrastructure (or legacy building system) rather than having to undertake a major retrofit/upgrade.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1. How do the advanced systems for retrofit tie into existing infrastructure?
2. What is the cost energy savings vs. energy left on the table comparisons?

Existing Research

University of California Davis California Lighting Technology Center (CLTC), Finelight.

RD5 | Performance and commissioning characteristics requirements of advanced lighting systems

<table>
<thead>
<tr>
<th>TC6</th>
<th>TC8</th>
<th>TC9</th>
<th>TC10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ties back to research project on failed controls installations and learning what not to do, developing performance standards and using these standards to assess lighting systems.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1. What are the steps needed to develop assessment protocols? Are there any protocols in place today?
2. How can assessment tools be integrated as part of user controls?

Existing Research

Electric Power Research Institute (EPRI); Design Lights Consortium Commercial Advanced Lighting Controls (CALC).
RD4 | Predictive modeling for dynamic lighting needs

<table>
<thead>
<tr>
<th>TC6</th>
<th>TC8</th>
<th>TC9</th>
<th>TC10</th>
</tr>
</thead>
</table>

Research on modeling that will better predict lighting needs by taking into account the time of day and day of the week will make lighting controls more useful and more acceptable to users. Likely using predictive modeling developed from research being done at Massachusetts Institute of Technology’s (MIT) Media Lab and possibly other institutions, integrate controls that predict lighting needs dynamically by taking into account the time of day and day of the week for the user will make lighting controls more useful and more acceptable to users.

Key Research Questions

1. How can predictive modeling for dynamic lighting needs help to create simpler calibration of systems?
2. When it comes to occupancy sensing, are we detecting people in the most optimal method?
3. How can spaces use knowledge of:
 - Available luminaires?
 - Available sensors?
 - Pre-informed or determined via calibration) to produce optimal illumination automatically?

Existing Research

Researchers at Massachusetts Institute of Technology’s (MIT) Media Lab, the University of California Davis California Lighting Technology Center (CLTC), the Lawrence Berkeley National Laboratory (LBNL), the Northwest Energy Efficiency Alliance (NEEA), and Southern California Edison (SCE) are among those doing work in this area. Subject matter experts have also indicated that RD&D in this area may be ongoing at Watt Stopper and/or Lithonia Lighting.

- The MIT Media Lab is currently researching feedback controlled solid state lighting, with a specific focus on low-cost solutions that sense and respond to human factors including user context, circadian rhythms, and productivity, and integrating these responses with atypical environmental factors.
- Lithonia Lighting: http://www.lithonia.com/
- CLTC work in this area includes researching exterior occupancy sensor networks to predict the direction and speed of pedestrians, cyclists and vehicles.
Luminaires

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

<table>
<thead>
<tr>
<th>LIGHTING LUMINAIRES</th>
<th>Drivers</th>
<th>CG1</th>
<th>CG2</th>
<th>CG3</th>
<th>CG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Increased availability of new technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>Majority of energy efficiency potential is in retrofit applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>Need to identify conservation opportunities, confirm technology performance, and validate energy savings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capability Gaps

- Need standardized affordable and reliable SSL components allowing fixture designers wide freedom to innovate and meet consumer needs
- Need ability to retrofit an existing luminaire and achieve good optics
- Need to change common metrics from source efficacy to luminaire efficacy
- Need Luminaires with lighting controls to be easy to install, commission, and control to avoid installer callbacks
Energy savings are well understood, but BPA lacks tools and policies to target savings for maximum regional benefit while meeting BPA Power and Transmission reliability requirements.
RD1 Retrofit best practice guide

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC2</th>
<th>TC3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Methodology for designing whether to replace luminaires, relamp, or retrofit components decision tree (flow chart).

Key Research Questions
1. Key performance criteria.
2. What to do, when to do it, how to do it?

Existing Research
- Sustainability Victoria, Energy Star, Pacific NW National Laboratory (PNNL).

RD2 Next generation bi-level luminaires based on percent of visual light delivered

<table>
<thead>
<tr>
<th>TC2</th>
<th>TC3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Determine if 15% light-level is sufficient for non-occupied stairwells and corridors. 15% is estimate of lowest “acceptable” light-level combined with lowest-cost / easiest to deliver light level. Research could set a different level.

Key Research Questions
1. Will people accept a “bi-level” stairwell and corridor lighting approach where occupancy motion = 100% light level non occupancy no-motion = 15% light level? If so, SSL luminaires should need only 3% - 5% power when space is not occupied.
2. Integrate this research with fire code requirements.

Existing Research
- University of California Davis California Lighting Technology Center (CLTC), Southern California Edison (SCE), Finelight.

RD3 Legitimize Universal Lumens

<table>
<thead>
<tr>
<th>TC2</th>
<th>TC3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For Universal Lumens to be fully accepted by the market, needs to have standards changed to legitimize it. Provide data to support Illuminating Engineering Society (IES) standards modifications.

Key Research Questions
1. The BPA / LRC project (TIP 329) consists of a full-scale outdoor lighting demonstration at a parking lot facility. It is based on a proposed specification method for maximizing perceptions of safety and security by occupants, taking advantage of the differential spectral (color) sensitivity of the human visual system for brightness perception at nighttime light levels. Sensations of brightness are in turn strongly related to perceptions of personal safety and security in outdoor locations. It is anticipated that using "white" light sources such as light emitting diode (LED) illumination, in place of conventional high pressure sodium (HPS) illumination, that energy savings of 40%-50% will be possible while maintaining perceptions of brightness, safety and security.

Existing Research
- Bonneville Power Administration (BPA), Rensselaer Polytechnic Institute Lighting Research Center (LRC), Southern California Edison (SCE).
 - BPA and LRC are collaborating on research in this area during 2015-2016 in a project titled “Demonstration of Outdoor Lighting for Maximizing Perceptions of Safety and Security” (BPA designation Technology Innovation Project (TIP) # 329).

RD4 Review of failed controls installations

<table>
<thead>
<tr>
<th>TC4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Review failed controls projects to learn what not to do to enable end user comfort and satisfaction. Leverage information to help develop performance standards for control systems.

Key Research Questions
1. How many failed controls projects are there?
2. Why did they fail?
3. What could have been done to prevent the failure?
4. How can this information be leveraged for technology?

Existing Research
- Southern California Edison (SCE), Pacific Gas & Electric (PG&E), Northwest Energy Efficiency Alliance (NEEA), BC Hydro, and manufacturers.
Daylighting

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

<table>
<thead>
<tr>
<th>Lights</th>
<th>Drivers</th>
<th>Capability Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daylighting</td>
<td>Reg. and policies to address climate change</td>
<td>Need to have applications easier to design, commission and operate</td>
</tr>
<tr>
<td></td>
<td>Reg. and policies to energy security</td>
<td>Need affordable, widely available daylighting options</td>
</tr>
<tr>
<td></td>
<td>Increased interest among legislators in efficiency and renewable energy</td>
<td>Need applications that can utilize natural light</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Need responsive and reliable controls and photo sensors for daylighting</td>
</tr>
</tbody>
</table>
Lighting: Daylighting

<table>
<thead>
<tr>
<th>Technology Domain</th>
<th>Current</th>
<th>Nearer Term</th>
<th>Longer Term</th>
<th>Future State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Energy savings are well understood, but BPA lacks tools and policies to target savings for maximum regional benefit while meeting BPA Power and Transmission reliability requirements.
Research, Development, & Demonstration Summaries

RD1 Improved control systems and sensors for daylighting technology

<table>
<thead>
<tr>
<th>TC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explore alternative ways of sensing daylight and adjust the electric lights accordingly. (Separate paths for top lighting from side lighting).</td>
</tr>
</tbody>
</table>

Key Research Questions
1) How do we improve reliability and cost in daylighting sensing?
2) How do we automate calibration and account for occupant needs and desires?
3) How do we integrate lighting, fenestration and HVAC controls?

Existing Research
University of California Davis California Lighting Technology Center (CLTC), National Renewable Energy Laboratory (NREL) Research Support Facility (RSF), industry research.

RD2 Cheaper, cost effective, self-calibrating daylighting controls

<table>
<thead>
<tr>
<th>TC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Making daylighting cost-effective continues to be a challenge. Easier to use, and self-calibrating controls can help to make daylighting more attractive.</td>
</tr>
</tbody>
</table>

Key Research Questions
1) How do we develop integrated sensor and control systems for plug and play daylight harvesting with skylights and windows?

Existing Research
Subject matter experts indicated that research was ongoing at the Lighting Research Center (LRC), and possibly at Watt Stopper and under the aegis of the Lighting Controls Section of the Association of Electrical Equipment and Medical Imaging Manufacturers (NEMA); RD&D is also ongoing at the California Lighting Technology Center (CLTC).

- Watt Stopper is researching dual-loop daylight control systems that self commission and offer continual calibration (http://cltc.ucdavis.edu/content/view/142/164/).
- The Lighting Research Center’s (LRC) Capturing the Daylight Dividend program has completed RD&D on daylighting systems and controls, and has also worked on a number of case studies. (http://www.lrc.rpi.edu/researchAreas/daylighting.asp).

RD3 Integrated lighting simulation tools

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop high quality, validated lighting tools for daylighting design. Tools should be capable of simulating daylight, electric light, lighting controls, complex fenestration systems, and inform a whole building energy model.</td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions
1) How can we characterize complex fenestration devices at a resolution fine enough to accurately capture daylight redirection devices?
2) How can we improve existing simulation tools to improve accuracy and speed of execution?
3) How can we scale existing control simulation tools (e.g. DAYSIM, OpenStudio, SPOT) to the whole building level?
4) How can we improve the capture, delivery, and dissemination of materials and systems performance to simulation engineers?
5) How can tools be leveraged for large scale, sector-wide daylighting analyses?

Existing Research
None identified.

RD4 Daylighting system field testing, measurement, and verification

<table>
<thead>
<tr>
<th>TC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Need to develop and agree upon measurement protocols to fairly and consistently evaluate daylighting strategies and components.</td>
</tr>
</tbody>
</table>

Key Research Questions
1) How can we leverage HDRI to characterize daylighting systems?
2) How can we capture the occupant experience?

Existing Research
Research ongoing at the Swiss École Polytechnique Fédérale de Lausanne (EPFL), UC Davis California Lighting Technology Center (CLTC), National Renewable Energy Laboratory (NREL), and Finelight.

Daylighting has traditionally concentrated on perimeter zones (near windows). Bringing daylighting into the core of buildings i.e. areas away from windows and skylights.

Key Research Questions

1) How do we collect?
2) How do we transport?
3) How do we deliver?
4) How do we integrate with electric lighting?

Existing Research

There is an ongoing research partnership between the University of British Columbia (UBC) and the California Lighting Technology Center (CLTC) to provide daylighting in core zones, but more research is needed to find more affordable and effective ways of doing this. Firms in the industry are conducting research also, as is the Lawrence Berkeley National Laboratory (LBNL).

- The CLTC is currently working on an RD&D project to evaluate the application of UBC’s Core Sunlighting System to the climate and topography of California’s Central Valley.
Lighting
Non-Residential Sector: Advanced Lighting Controls

Current State
Light-emitting diode (LED) technology is on a path to become ubiquitous in the non-residential sector. Advanced lighting controls complement this diffusion in a number of ways, such as:

- Non-energy benefits that may soon relegate energy savings considerations to the sidelines.
- Opportunities for low-cost energy performance metering to provide robust energy savings verification.

From a utility perspective, energy saving incentives for simple standalone LED lights currently exist in an extremely dynamic market and are unlikely to last forever, because prices are dropping so fast. Advanced lighting controls will offer additional opportunities for energy savings, beyond simple LED lights. However, current products have very low market penetration and need further improvements.

Future State
In the non-residential sector within the Pacific Northwest, the long-term (10+ year) vision for lighting and advanced controls is that most new construction and major renovation projects will use Zero Net Energy (ZNE) design & construction as the obvious, least-cost, least-risk choice. Advanced lighting controls and daylight harvesting appear to be essential components of most ZNE buildings built to date. Many non-residential spaces in the Pacific Northwest have minimal daylight access, so the alternative energy-saving strategy of task / ambient / vertical / dynamic-color lighting may be needed in some spaces. This vision will develop from a foundation of short-term and medium-term goals.

Research Opportunities
Utility demand side management (DSM) efforts can contribute to progress toward this long-term vision through strategic technology research, development, and demonstration to achieve the following short- and medium-term visions:

- **Short-term (0-5 years):** Incentivizing, specifying, purchasing, installing, programming, commissioning, operating, and verifying advanced lighting controls that save energy is “as easy as screwing in a light bulb.”

- **Medium-term (5-10 years):** Interoperability enables non-energy benefits that drive market adoption. To ensure that utilities can verify energy savings, performance metering becomes a simple solution to multiple challenges.

Investing in technology research based on these short- and medium-term goals will be of value to BPA and regional stakeholders whether or not the long-term vision articulated above is fully realized. The market is extremely dynamic, which means that today’s research decisions to achieve the 10+ year vision will need to be adjusted as new information is learned, but progress generally toward this longer-term vision will foster technology advancements best suited to serve utility and rate payer needs in the Pacific Northwest.
Non-Residential Sector: Advanced Lighting Controls

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

<table>
<thead>
<tr>
<th>Drivers</th>
<th>Capability Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 Old ways to estimate savings are becoming more difficult, expensive, & error-prone</td>
<td>Advanced controls have minimal market penetration, due to: High cost for owners; numerous callbacks for contractors; Confusion for occupants; and Questionable savings for utilities</td>
</tr>
<tr>
<td>D2 New digital flexibility makes the old ways harder, but offers a new solution</td>
<td>To incentivize, specify, sell, purchase, install, program, commission, operate & verify advanced lighting controls that save energy is too hard. It should be “as easy as screwing in a light bulb”</td>
</tr>
<tr>
<td>D3 Adoption of advanced lighting controls will be driven by non energy benefits (NEBs), but nobody knows which ones will win; utility support for interoperability will help make space for development of NEBs</td>
<td></td>
</tr>
<tr>
<td>D4 Daylight harvest appears to be an essential component of most ZNE buildings built to date</td>
<td></td>
</tr>
<tr>
<td>D5 Many non-residential spaces in the Pacific NW have minimal daylight access</td>
<td></td>
</tr>
</tbody>
</table>
Lighting: Non-Residential Sector: Advanced Controls

Current

- Easier products: Specifications and lab tests for usability
 - TC1

Nearer Term

- Easier products: Integrated controls
 - TC2

- Easier products: Autocommissioning
 - TC3

- Performance metering reports energy use and savings
 - TC4

- Interoperability provides a platform for development of Non-Energy Benefits
 - TC5

Longer Term

- Advanced controls have minimal market penetration, due to: High cost for owners; Numerous callbacks for contractors; Confusion for occupants; and Questionable savings for utilities
 - CG2

Future State

- To incentivize, specify, sell, purchase, install, program, commission, operate & verify advanced lighting controls that save energy is too hard. It should be “as easy as screwing in a light bulb”
 - CG3

Key

- **TC**: Commercially-available Technology Characteristic
- **CG**: Commercially Unavailable Technology Characteristic
- **GC**: Milestone: Capability Gap Addressed
- **SC**: Sequential Connection Between Roadmap Elements

LED lights are transforming the lighting market. Most lights have manual controls, or simple controls required by code. This wastes energy.!

Advanced lighting controls and daylight harvesting are integral components of zero net energy buildings. Because many commercial spaces in the Pacific Northwest have minimal daylight access, the alternative energy-saving strategy of task / ambient / vertical / dynamic-color lighting may be needed in some spaces.

LED lights are transforming the lighting market. Most lights have manual controls, or simple controls required by code. This wastes energy.!

Advanced lighting controls and daylight harvesting are integral components of zero net energy buildings. Because many commercial spaces in the Pacific Northwest have minimal daylight access, the alternative energy-saving strategy of task / ambient / vertical / dynamic-color lighting may be needed in some spaces.
Research, Development, & Demonstration Summaries

RD1 Usability Evaluation

| TC1 | Shorten the feedback loop for product release/evaluation/revision that currently depends on multi-year field tests of new Advanced Lighting Control products. |

Key Research Questions

1. How can new products be evaluated for satisfaction of various stakeholders (design/specify, install, commission, occupants, operations & maintenance, IT, energy efficiency programs), quickly and at minimal expense?
2. How can test results be made available to a broad range of users?
3. As one example of an evaluation criterion, how can firmware be updated quickly, easily, automatically in large and small installations?

Existing Research

Research ongoing at Design Lights Consortium (DLC); Pacific Northwest National Laboratory (PNNL); Lawrence Berkeley National Laboratory (LBNL); California Lighting Technology Center (CLTC); Rensselaer Polytechnic Institute Lighting Research Center (LRC); and National Renewable Energy Laboratory (NREL).

- DLC CALC Specification: https://www.designlights.org/content/CALC/SpecificationAndQPL.
- LBNL FLEXLAB: https://flexlab.lbl.gov/.

RD2 Integrated Controls

| TC2 | When multiple components of a lighting system are integrated into a single package at the factory, this lowers the cost of installation. |

Key Research Questions

1. How best can sensor/control/communication/performance-metering packages be integrated in luminaires at low unit cost with high value added?
2. How best can new sensors or communication modules be added in the future to existing luminaires, perhaps through a peripheral bus standard?

Existing Research

RD3 Autocommissioning

| TC3 | In non-residential spaces under 50,000 sf, where support by highly trained technicians is not affordable, make Advanced Lighting Controls “Plug and Play”, to deliver appropriate light when and where needed, while saving energy. |

Key Research Questions

1. How can initialization/commissioning occur automatically over the first few weeks of operation, with minimal installer/operator expertise?
2. How can product performance adapt to changing operational needs & system capabilities, without operator expertise?
3. How can any remaining needs for expertise be met remotely or with minimal training?
4. Will the residential consumer market drive innovation that migrates into small/medium commercial spaces?

Existing Research

Research ongoing at manufacturers Cree (lighting.cree.com), LG (www.lglightingus.com), Orama (www.oramainc.com), Organic Response (organicresponse.com), and Philips (www.usa.lighting.philips.com).
Performance metering

1. The energy saved by Advanced Lighting Controls varies widely by application, product, site, and parametric settings. Efficiency programs need reliable data about energy savings from incented products, without expensive and disruptive site visits for datalogging.

Key Research Questions

1. How best can accurate, reliable & useful data about energy savings be collected and transferred from luminaires to efficiency programs, at low cost to all participants, while addressing concerns about privacy & security?
2. How best can embedded meters self-calibrate, and maintain calibration over luminaire lifetime, at minimal cost?

Existing Research

- The National Electrical Manufacturers Association (NEMA) sponsors the work of the American National Standards Institute’s (ANSI) Committee 137.
 - NEMA’s Lighting Systems Division sponsors the work of the Lighting Systems Committee (C137) developing standards and specifications for indoor and outdoor lighting systems that considers human health and comfort, personal security, the physical environment, energy consumption, and daylight integration; see https://www.nema.org/Technical/Pages/ANSI-C137-Lighting-Systems-Committee.aspx.

Interoperability

1. When a lighting system product line, designed for a 10+ year lifetime, is discontinued 2 years after purchase, how can the system be maintained and augmented for the next 8+ years? When many hardware vendors share a small nascent market, how can application developers achieve a critical mass of users?

Key Research Questions

1. How best can open standards support a combination of future extensibility & backwards compatibility (multi-generational interoperability)?
2. How best can open standard test compliance ensure multi-vendor product interoperability?
3. How best can open standards support development of third party applications?
4. How best can open APIs support third party application development?

Existing Research

None identified.
Section Definition

For BPA, Energy Management and Control Systems denote technologies that help enable effective energy conservation, demand response, renewables integration, and other demand-side management functions. They do so by improving load control, measurement and verification, communication, and market participation. Such systems apply to all sectors: residential, commercial, industrial, and agriculture. The broad category of Energy Management and Control Systems can include such technologies as sensors, meters, device controllers, networking hardware, data storage and retrieval algorithms, communications hardware and software, and user interfaces.

The Energy Management and Control Systems section in this roadmap document consolidates content that was distributed across multiple volumes of previous BPA Energy Efficiency Technology Roadmaps. These include:

- Building Design and Envelope (Volume 2)
- Electronics (Volume 4)
- Heating, Ventilation, and Air Conditioning (HVAC) (Volume 5)
- Sensors, Meters, and Energy Management Systems (Volume 6)

The Lighting section in this roadmap retains content of particular relevance to lighting controls. However, projects that integrate lighting with other building management controls are encouraged.

Sub-sections within the Energy Management and Control Systems section in the pages that follow are listed below, with their definitions:

Building Design/Envelope: Zero Net Energy Buildings

An energy-efficient building where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy.27 (See also the “Daylighting” technology domain in the Lighting section of this roadmap.)

Building Design/Envelope: Retrofit and New Construction Labeling

A program that provides the general public, building owners and tenants, potential owners and tenants, and building operations and maintenance staff an overview of the energy performance of a building so that they can make more informed decisions about purchasing, renting, leasing, and upgrading buildings.

Electronics: Power Management Control and Communication

Reducing energy use through “sleep modes” that minimize standby losses of consumer electronics while not interfering with the user experience. Also includes automated technologies to reduce energy use of plug loads according to occupants’ needs, preferably convenient to users and affordable to building owners.

HVAC Motor-Driven Systems

Energy efficient motors and drives, primarily adjustable speed drives, used in heating and cooling equipment, along their motor control systems.

Commercial and Multi-Family Integrated Buildings

Products and services developed from a holistic systems perspective to provide for complementary and integrated heating, ventilation, and air conditioning tailored to the requirements of commercial, multi-family residential, and high-rise office buildings.

Residential HVAC

Products and services developed from a holistic systems perspective to provide for complementary and integrated heating, ventilation, and air conditioning tailored to the requirements of residential buildings.

Easy / Simple User Interface Controls

An energy management system that is easy to use and understand.

Energy Management Services

Home energy management systems integrated with a service to help

consumers understand and reduce their energy use.

Enterprise Energy and Maintenance Management Systems

Energy management systems for large organizations with multiple buildings, such as a corporate or university campus.

Low-Cost Savings Verification Techniques

Devices and software used to verify energy savings from implementation of measures without the significant time and expense of a conventional measurement and verification study.

Real-Time Smart Electric Power Measurement of Facilities

Devices and systems to gather data on building operation schedules as well as energy use and demand in real time so users or an energy management system can respond effectively.

Smart Device-Level Controls Responsive to User and Environment

Automated energy management systems that responds effectively to input from users and the environmental conditions.

Summary

Current State

Annual energy savings are well understood. However, BPA does not have tools or policies to target the savings for maximum benefit to the Agency (as measured by decreased loads or increased capacity) with the confidence of staff and management in BPA Power and Transmission Services.

Future State

BPA helps deliver energy-efficient regional loads that provide grid benefits.

Research Opportunities

Building Design/Envelope: Zero Net Energy Buildings

Whereas BPA views research opportunities in this area as not necessarily critical in the short-term, industry trends suggest advancement toward the zero net energy goal offers synergistic energy conservation opportunities involving complementary design, furnishing, commissioning, energy management, and other considerations. BPA therefore is interested in proposals focused on new construction (rather than building retrofits) involving:

- Design and analysis tools to optimize contributions of integrated energy efficiency measures and renewable generation sources.

- Test beds to assess the efficiency of products and systems, particularly those controlling plug loads such as work stations and entertainment centers.

Building Design/Envelope: Retrofit and New Construction Labeling

BPA has interest in consistent and interoperable databases with open access—such as U.S. DOE Building Performance Database—to enable consistency among labels and tools and to demonstrate the benefits of combining building database content with other data such as energy use.

Electronics: Power Management Control and Communication

A cross-cutting barrier in this area is the need for low cost, effective systems that foster quick adoption. Other barriers include the need for devices providing integral interactivity and communications functionalities rather than having to add these on later, and a need for peer-to-peer communication to control power levels. To achieve one or both of these, the following technology characteristics seem to offer promise:

- Standard communicating systems and components available to original equipment manufacturers (OEMs) for their products.

- Monitoring devices for new construction applications such as end-use monitoring and algorithms for load disaggregation.

- Standard protocols to get device to calculate energy use and communicate that out—especially relevant for new utility conservation measures where it is potentially easier to calculate unit energy savings (UES).

- Optimizing behavior-based conservation measures by establishing standards for user interfaces and displays involving such areas as control, price response, scheduling, occupancy, display interaction, lighting, and HVAC.

HVAC Motor-Driven Systems

Variable-speed motors are becoming increasingly more prevalent, particularly in new construction applications. Because of this, there appear to be many barriers that variable speed motors with low cost and high reliability might be able to address, such as:

- Integration with building, sensors, and HVAC production and delivery systems.

- Establishing variable speed control on all systems, fans, compressors, pumps, etc., while recognizing where inappropriate due to variable frequency drive (VFD) efficiency penalty at full speed.

- More turn down ratio capability for operating efficiently at low load conditions.
- Lack of cost-effective technology, case studies, education, and application standards.
- Cost and size limitations for currently available electronically commutated motors (ECMs)

Developing lower-cost electronically commutated motors (ECMs) in larger sizes suitable for drop-in replacement also offers promise in addressing the lack of cost-effective technology, case studies, education, and application standards.

A potentially promising way to address the need for case studies and field tests of electronically-commutated motors (ECMs) seems to be low-cost basic sub-metering systems (for HVAC, lights, and plug loads) with communication links and data collection software to enable easier and less-costly access to performance data.

Commercial and Multi-Family Integrated Buildings

Technologies offering simple ways to report energy use to occupants and building operators to influence energy use and guide building maintenance decisions could help overcome the following gaps:
- Lack of adequate benchmarking and mechanisms for markets to internalize the value of low-energy buildings.
- Providing ongoing operations support for continuous commissioning.

Residential HVAC

Cross-technology controls integration is the primary current need within the residential HVAC area. A promising technology characteristic to meet this need seems to be integrated controls for different types of heating and cooling systems.

Easy / Simple User Interface Controls

Research to help develop user-friendly energy management systems that are inexpensive or free can help overcome the following gaps:
- Need to develop user-friendly Interfaces that recognize different levels of user sophistication.
- Need to establish truly universal, simple, seamless plug-and-play interoperability.

Developing technologies to enable user-initiated demand response (DR) capability to shift peak loads can help overcome the lack of design for user-enabled DR (based on load controls and response to pricing signals).

Energy Management Services

Whole-house energy monitoring and disaggregated device-level monitoring from meter data would help address the need for consumers need to know how and where to manage energy.

Technologies providing the ability to control energy costs in response to changing utility rate structures in the residential and small-to-medium commercial sectors would help enable occupants and owners to do so.

Two kinds of technology characteristics can contribute to optimizing and automating control system responses:
- Open source code and standard communication protocols for energy management systems (EMS) to enhance cost effectiveness and accessibility.
- Self-learning control systems that provide action-oriented communication and maintenance alerts.

Enterprise Energy and Maintenance Management Systems

Many opportunities exist in this research area. Key capability gaps include:
- Standard protocols for performance metrics and data.
- Need to integrate formal energy management practices into consumer services and business processes
- Need to transform raw data and implement feedback loops into actionable insights through improve data analytics.
- Establish truly universal, simple, seamless plug-and-play interoperability
- Need better and more accurate data from systems and submeters to support proper building commissioning.
- Business model development and cost-effectiveness calculations.

To help overcome one or more of these gaps, technology RD&D is needed in the following areas:
- Enterprise energy management software.
- Integrated tools to identify conservation opportunities, provide measurement and verification (M&V), enable DR control, and support maintenance management systems (MMS).
- Automation of data collection analytics and commissioning process.
- Energy Management Information Systems (EMIS) cost / benefit analysis to support utility operations.
- Easily consumed data / metrics presentation format, such as user-friendly dashboards.
- Standard communication protocol for enterprise energy management system (EMS) data.
- Determining the reliability of existing EMIS tools.

In addition to the above, RD&D involving Tools turning data into action can
Many opportunities exist in this research area. Key capability gaps include:

- Need to transform raw data and implement feedback loops into actionable insights through improved data analytics.
- Need to be able to attribute energy performance improvements and effects.
- Need to leverage building management systems and analytics to measure and verify system performance.
- Need to improve standardization and specificity of M&V protocols and tools.
- Lack of large datasets of building characteristics and energy use.
- Need public domain, low-cost transparent "reference" algorithms for M&V for different conservations measures and contexts.

To help overcome one or more of these gaps, technology RD&D is needed in the following areas:

- Software tools to implement International Performance Measurement and Verification Protocols (IPMVP) and other more specific M&V protocols.
- Analytics tools that can take database of building psychometrics and related energy use profiles to produce standardized signatures.
- Transparent automation of measure-specific, measurement based, direct digital control (DDC) system, energy saving calculations.
- Low-cost metering that can meet full International Performance Measurement and Verification Protocol (IPMVP) specifications.
- Software and analytics to use smart meter data for monitoring and verification.
- Large "big data" databases and applications to store energy use, building data for buildings.
- Very low cost embedded and networked energy use sensors.

Low-Cost Savings Verification Techniques

Many opportunities exist in this research area. Key capability gaps include:

- Need standard protocols and systems to aggregate low-level data into high-level actionable knowledge.
- How layout sensors and distribution circuits to align with energy management system (EMS) algorithm layer and physical layout.
- Need better designed distribution panels.
- Need cost-effective, accurate load metering to drive instantaneous and long-term energy saving opportunities.

To help overcome one or more of these gaps, technology RD&D is needed in the following areas:

- Data collection, analysis, and customer feedback systems to optimize whole system energy performance.
- Interval data analysis tools.
- Standardized panels with integrated current transformers (CTs) with low voltage / plug-and-play / standardized output.
- Gateway to extract high frequency usage data directly from smart meters for local use to enable shorter intervals not limited by utility's smart meter bandwidth and delays.
- Low-cost reliable data collection and feedback system for small- to medium-sized businesses.

Smart Device-Level Controls Responsive to User and Environment

Many opportunities exist in this research area. Key capability gaps include:

- Need sufficient intelligence somewhere in the system to integrate stand-alone devices and manage conflicting inputs and data gaps.
- Need stand-alone systems that connect to whole system to enable optimum energy use and facilitate automated environment adaptability.
- Need to address many stand-alone devices that run uncontrolled with no occupant present and deliver too much heating, lighting, etc.
- Need multifunctional, modular generic control / sensor packages that are available at low cost (10% of device cost or less).
- Need standardization of protocols.
- Consumer-oriented solutions which combine multiple needs, energy savings and security, convenience, and other consumer uses.
- Analyze building system physics with interacting cyber-physical components and associated integrated controls.

To help overcome one or more of these gaps, technology RD&D is needed in the following areas:
• Cheap, standardized, user aware, modular control sensor packages responding to occupancy temperature light level, air quality, and user input.
• Open license sensor technologies.
• Standardized wireless communication systems (i.e. Wifi, Zigbee, Home plug, Z wave).
• Sensors that integrate with other control systems (i.e., lighting, DHPs with backup resistance heat, other HVAC).
• System to get user input / feedback on comfort at local area.
• Technology improvement to enable coarse graining of sensed information and analysis to provide actionable items in priority order.
Building Design/Envelope: Zero Net Energy Buildings

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

<table>
<thead>
<tr>
<th>Drivers</th>
<th>CG1</th>
<th>CG2</th>
<th>CG3</th>
<th>CG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **D1**: Grid integration that enhances reliability and enables resiliency and disaster mitigation
- **D2**: Requirements and opportunities spurred by federal, national, and local policies and codes

Energy Management & Control Systems

Building Design/Envelope: Zero Net Energy Buildings

<table>
<thead>
<tr>
<th>Capability Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Need easy-to-use tools and techniques to optimize contributions of energy efficiency and renewable generation on multiple scales</td>
</tr>
<tr>
<td>Need new appliance, standards, installation techniques, and supporting technologies</td>
</tr>
<tr>
<td>Need control of plug loads, especially for workstations and entertainment centers, electric cars</td>
</tr>
<tr>
<td>Need for ZNE design practices</td>
</tr>
</tbody>
</table>

88
<table>
<thead>
<tr>
<th>Current</th>
<th>Nearer Term</th>
<th>Longer Term</th>
<th>Future State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Domain</td>
<td>ENERGY MANAGEMENT AND CONTROL SYSTEMS</td>
<td>BUILDING DESIGN/ENVELOPE: ZERO NET ENERGY BUILDINGS</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>Nearer Term</td>
<td>Longer Term</td>
<td>Future State</td>
</tr>
<tr>
<td>Energy savings are well understood, but BPA lacks tools and policies to target savings for maximum regional benefit while meeting BPA Power and Transmission reliability requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercially Unavailable Technology Characteristic</td>
<td>Commercially Available Technology Characteristic</td>
<td>Milestone: Capability Gap Addressed</td>
<td>Sequential Connection Between Roadmap Elements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design & analysis tools to integrate components and predict whole-system energy performance</td>
<td>Need easy-to-use tools and techniques to optimize contributions of energy efficiency and renewable generation on multitude scales</td>
<td>Need control of plug loads especially for work stations and entertainment centers electric cars</td>
<td>Pending</td>
</tr>
<tr>
<td>New analytical tools, e.g., finite element analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test beds to assess new energy efficiency products systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Research, Development, & Demonstration Summaries

RD1 Technologies used to integrate and diagnose building controls in order to improve energy performance

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building controls can be used to improve building performance but often are unable to dynamically change with the changes in the building causing increase building’s energy consumption.</td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1. What are the key operational failure points and how easy are they to fix? What technologies can fix these issues?
2. What other industries use diagnostics and how does that apply to building?
3. How can control be standardized to make installation easier?

Existing Research

National Renewable Energy Laboratory (NREL), Cornell University, Pacific Northwest National Laboratory (PNNL).

RD2 Predictive modeling for controls

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrating and operating the variety of energy technologies required to achieve Net Zero Energy requires advanced modeling and controls.</td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1. Understand how the design decisions are made.
2. Identify how to shift the decision process toward energy-driven design.
3. Identify how to incorporate building science in the design process.
4. Identify how to make design teams more interdisciplinary rather than just multidisciplinary.
5. Understand how the procurement process can drive performance based design.

Existing Research

Research is ongoing at Cornell University, the Lawrence Berkeley National Laboratory (LBNL), the University of California Santa Barbara (UCSB) Institute for Energy Efficiency (IEEE), the National Institute for Standards and Technology (NIST), and the National Renewable Energy Laboratory (NREL).

- The Buildings & Design Solutions Group of UCSB's Institute for Energy Efficiency is doing research into economically viable Zero Net Energy building systems.
- A team within the Cornell University Program of Computer Graphics is working on a three-year grant funded by the Department of Energy (using American Recovery and Reinvestment Act (ARRA) funds) to use computer building simulations to streamline green design, the Green Building Design Computer Simulation Software project.
Building Design/Envelope: Retrofit and New Construction Labeling

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

<table>
<thead>
<tr>
<th>Drivers</th>
<th>Capability Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2</td>
<td>National (or regional) consistency among labels and tools</td>
</tr>
<tr>
<td>D3</td>
<td>Demonstrate database of buildings with energy use, tax data, other</td>
</tr>
<tr>
<td>D4</td>
<td>ENERGY MANAGEMENT & CONTROL SYSTEMS</td>
</tr>
<tr>
<td></td>
<td>BUILDING DESIGN/ENVELOPE: RETROFIT AND NEW CONSTRUCTION LABELING</td>
</tr>
</tbody>
</table>

<p>| D2 | Regulator and investor desire for confirmation of product quality and efficacy to justify conservation investments |
| D3 | Federal, state, and local regulations and policies to reduce energy use as a way to achieve carbon and greenhouse gas reduction goals |
| D4 | Federal, state, and local mandates for building labeling |</p>
<table>
<thead>
<tr>
<th>Current</th>
<th>Nearer Term</th>
<th>Longer Term</th>
<th>Future State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Domain</td>
<td>ENERGY MANAGEMENT AND CONTROL SYSTEMS</td>
<td>BUILDING DESIGN/ENVELOPE: RETROFIT AND NEW CONSTRUCTION LABELING</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consistent and interoperable databases with open access, such as U.S. DOE Building Performance Database</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CG3 National (or regional) consistency among labels and tools</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CG4 Demonstrate database of buildings with energy use, tax data, other</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commercially Available Technology Characteristic</td>
<td>Commercially Unavailable Technology Characteristic</td>
<td>Milestone: Capability Gap Addressed</td>
</tr>
</tbody>
</table>

Energy savings are well understood, but BPA lacks tools and policies to target savings for maximum regional benefit while meeting BPA Power and Transmission reliability requirements.

Energy-efficient loads that provide grid benefits.

Sequential Connection Between Roadmap Elements.
RD1: Comparative data/populate databases

<table>
<thead>
<tr>
<th>TC1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significantly expand data availability for comparisons for benchmarking, model calibration, financing. Scope: supplement existing data collection, add new data projects.</td>
</tr>
</tbody>
</table>

Key Research Questions

1. What are the characteristics of state of art retrofits?
2. What are the cost, performances, and loads?
3. What components contribute to performance?
4. How can multiple data sources be aggregated?
5. What are the common characteristics?
6. Combine databases from disclosure programs.

Existing Research

Subject matter experts reported in September 2012 of the potential of expanding existing databases such as the Commercial Buildings Energy Consumption Survey (CBECS), Commercial Building Stock Assessment (CBSA), Residential Building Stock Assessment (RBSA), and Department of Energy (DOE) databases. They also referenced the National Renewable Energy Laboratory’s (NREL) work in this area.

- **CBECS**: http://www.eia.gov/consumption/commercial/.
Electronics: Power Management Control and Communication

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

<table>
<thead>
<tr>
<th>Drivers</th>
<th>CG1</th>
<th>CG2</th>
<th>CG5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 Increased availability of new technologies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2 Diffusion of common communication protocols into energy consuming devices</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Energy Management & Control Systems

Electronics: Power Management Control and Communication

Capability Gaps

- Need interactive / communicating devices that are designed in, not added on systems (less hardware)
- Low cost, effective systems that foster quick adoption
- Need peer-to-peer communication to control power levels
<table>
<thead>
<tr>
<th>Technology Domain</th>
<th>ENERGY MANAGEMENT AND CONTROL SYSTEMS: ELECTRONICS: POWER MANAGEMENT CONTROL AND COMMUNICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>Nearer Term</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TC1</td>
<td>Standard protocols to get device to calculate energy use and communicate that out-especially relevant for new utility conservation measures where it is potentially easier to calculate unit energy savings (UES)</td>
</tr>
<tr>
<td>TC1</td>
<td>Standard communicating systems & components available to original equipment manufactures (OEMs) for their products</td>
</tr>
<tr>
<td>TC3</td>
<td>Monitoring devices for new construction applications such as end-use monitoring and algorithms for load disaggregation</td>
</tr>
<tr>
<td>TC5</td>
<td>Optimizing behavior-based conservation measures by establishing standards for user interfaces and displays involving such areas as control, price response, scheduling, occupancy, display interaction, lighting, and HVAC</td>
</tr>
</tbody>
</table>

Key
- **TC**: Commercially available Technology Characteristic
- **TC**: Commercially Unavailable Technology Characteristic
- **CG**: Milestone: Capability Gap Addressed
- **Sequential Connection Between Roadmap Elements**

Text
- Energy savings are well understood, but BPA lacks tools and policies to target savings for maximum regional benefit while meeting BPA Power and Transmission reliability requirements.

Diagram
- The diagram illustrates the relationship between energy management and control systems, electronics, power management, control, and communication. It highlights key technologies and milestones in the current, nearer term, longer term, and future state. The diagram uses arrows to indicate sequential connections between roadmap elements.
RD1 | End-use disaggregation of loads

<table>
<thead>
<tr>
<th>TC2</th>
<th>TC4</th>
</tr>
</thead>
</table>

Development of non-intrusive load monitoring (NILM) methods and tools.

Key Research Questions

1. Applience end-use disaggregation (based on circuit – or building – level measurement) algorithm development.
2. Define accuracy and sample interval requirements for various inventory, control, and M&V needs to evaluate available NILM technology against.

Existing Research

University of Washington, Massachusetts Institute of Technology (MIT), Carnegie Mellon University, University of Texas.

RD2 | Demonstrate price-responsive devices

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC2</th>
<th>TC5</th>
</tr>
</thead>
</table>

Modify electronic devices (e.g. PC, monitor, printer, etc) to be able to receive dynamic price signals over network and alter behavior in response. Also, do other devices such as refrigerator, lights.

Key Research Questions

1. How can price signals be relayed within a building?
2. What can different price signals do to alter their energy use patterns?
3. What algorithms work well to determine operator?
4. Does it work?
5. Does it add hardware cost to the product?

Existing Research

Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC), General Electric (GE), Powerhouse Dynamics, Energy Hub with General Electric (GE), BC Hydro, MelRok, Futuredash.

RD4 | Low cost accurate measurement capabilities by load, circuit level and whole building

<table>
<thead>
<tr>
<th>TC2</th>
<th>TC4</th>
</tr>
</thead>
</table>

Simple (to the customer) method of measuring unit energy use is needed to aid our understanding of the device’s significance in building energy use. Measurement must be non-intrusive and reasonably accurate. This also serves as a signal to manufacturers.

Key Research Questions

1. Determine what is needed via computation capabilities and monitoring of device’s state to calculate energy use over time. Protocol for manufactures.
2. Would a standard serve to provide manufactures with what they need to embed capability within device?
3. What software/app requirements are needed to capture device’s energy use?
4. How can advanced measurement be used for evaluation of energy efficiency programs in this area?

Existing Research

Powerhouse Dynamics, Energy Hub with General Electric (GE), BC Hydro, MelRok, Futuredash.

- MelRok: http://www.melrok.com/.
RD5 Existing networks

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC4</th>
</tr>
</thead>
</table>

Hardware presented in buildings today—network equipment and devices connected to networks—can provide information useful for energy purposes. Examples include status, occupancy, temperature, etc. This data is rarely utilized. Explore what could be gleaned from existing hardware and demonstrate how to do it. Includes data delivered to other devices as well as to people.

Key Research Questions
1. What information is or could be available?
2. What could small additional investments bring (e.g. USB temp-sensor or wireless access point)?
3. How do we get info out to be useful?
4. How could software / firmware upgrades make this work even better?

Existing Research
Lawrence Berkeley National Laboratory (LBNL).

RD6 Future building network architecture

<table>
<thead>
<tr>
<th>TC4</th>
<th>TCS</th>
</tr>
</thead>
</table>

Describe possible approaches to overall structure of networking among all energy-using devices in buildings. Consider all layers of communication. Consider centralized, distributed, and hybrid architecture. Can a standardized protocol be agreed upon?

Key Research Questions
1. What are system designs to consider?
2. What are advantages and disadvantages of each?
3. What pieces of this already exist?
4. What is “ideal” architecture?

Existing Research
Panduit, Honeywell, Cisco.
HVAC Motor-Driven Systems

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

ENERGY MANAGEMENT & CONTROL SYSTEMS

HVAC MOTOR-DRIVEN SYSTEMS

<table>
<thead>
<tr>
<th>Drivers</th>
<th>CG1</th>
<th>CG2</th>
<th>CG3</th>
<th>CG4</th>
<th>CG5</th>
<th>CG6</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capability Gaps

- Need systems integration with building, sensors, and HVAC production and delivery
- Need to establish variable speed control on all systems, fans, compressors, pumps, etc., while recognizing where in appropriate due to VFD efficiency penalty at full speed
- Need more turn down ratio capability for operating at low load conditions with efficiency
- Need to overcome lack of cost-effective technology, case studies, education, and application standards
- Need to overcome lack of cost and size limitations for currently available electronically commutated motors (ECMs)
- Need for case studies and field tests for electronically commutated motors (ECMs)
Energy savings are well understood, but BPA lacks tools and policies to target savings for maximum regional benefit while meeting BPA Power and Transmission reliability requirements.

Current
- **Variable speed everything with low cost, high reliability**
- **Electronically commutated motors (ECMs) in larger sizes, lower cost, suitable for drop-in replacement**
- **Low-cost basic sub-metering system (for HVAC, lights, and plug loads) with communication links and data collection software to enable easier and less-costly access to performance data**

Nearer Term
- **Need systems integration with building, sensors, and HVAC production and delivery**
- **Need to establish variable speed control on all systems, fans, compressors, pumps, etc., while recognizing where inappropriate due to VFD efficiency penalty at full speed**
- **Need more turn down ratio capability for operating at low load conditions with efficiency**

Longer Term
- **Need to overcome cost and size limitations for currently available electronically commutated motors (ECMs)**
- **Need to overcome lack of cost-effective technology, case studies, education, and application standards**
- **Need for case studies and field tests for electronically commutated motors (ECMs)**

Future State
- **Energy-efficient loads that provide grid benefits**
Research, Development, & Demonstration Summaries

RD1

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of electronically commutated motors (ECMs) for small motors could decrease energy use and increase ease of speed control significantly. A line of ECMs that would drop-in easily for retrofits would make implementation easier and more widespread. BPA is also interested in how ECMs could be used in demand response applications.</td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1. What electrical or control modifications are required?
2. What are actual savings achievable for various replacements?
3. What applications are the best for variable speed retrofit i.e. can a variable speed ECM motor be used without having to make modifications to many other components?
4. What applications are the best for constant speed retrofit only, i.e. systems not really capable of variable speed operation, but would benefit from a more efficient ECM motor running at constant speed?
5. How much energy can be saved by doing balancing with the ECM motor in use of closing all the dampers?
6. How can this technology be used in residential demand response applications?

Existing Research

McMillian Electric Co., Genteq Motors, Emerson Climate Technologies, Proctor Engineering. As of January 2011, E Source reported that there were at least three commercially-available options for drop-in replacement brushless permanent magnets (BPM, a.k.a., electronically commutated motors) for furnace and/or air conditioning motors (see http://www.esource.com/node/27096); these included:

- Genteq Motors (http://genteqmotors.com/) offers the Evergreen IM high-efficiency ECM designed to replace HVAC system blower motors. (http://genteqmotors.com/products/genteq/evergreen-im/).
- Emerson Climate Technologies (http://www.emersonclimate.com/en-US/Pages/Home.aspx) offers the Rescue Ecotech® is designed to drop-in to existing permanent split capacitor blower applications, and does not require complex wiring modifications or system control changes (http://www.emersonclimate.com/en-US/products/motors/variable_speed_ecm/rescue_ecotech/Pages/rescue_ecotech.aspx).

RD2

<table>
<thead>
<tr>
<th>TC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assess actual energy use vs predicted for various energy conservation measures and whole buildings.</td>
</tr>
</tbody>
</table>

Key Research Questions

1. How do individual measures perform compared to predictions?
2. What are interaction between measures and impact on whole building energy use?
3. How does whole building energy use compare to projections?
4. Can plug and play sub metering systems be developed that will communicate via internet with data storage and analysis capability standardized?
5. What is a standardized approach to “truing up” a building simulation model to actual building energy use?
6. How should building electrical systems be designed to lower the cost of sub metering?

Existing Research

Pacific Energy Center (PEC) Tool Lending Library (TLL). Bonneville Power Administration (BPA), U.S. Department of Energy (DOE), and Pacific Northwest National Laboratory (PNNL) are collaborating on tests of the Catalyst rooftop unit (RTU).

- The Catalyst RTU research project includes validating the control package and quantifying the Catalyst savings including breaking out fan savings and comparing the savings to PNNL’s modeled savings. BPA is supporting a second year of data collection for the project which began in 2012 with other funders. A final report is expected late in 2013. see http://www.bpa.gov/energy/n/emerging_technology/pdf/E3T_Current_Projects.pdf
Commercial and Multi-Family Integrated Buildings

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

Energy Management & Control Systems

<table>
<thead>
<tr>
<th>Drivers</th>
<th>CG3</th>
<th>CG5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **D1**: Utility need to manage increasingly more complex grid conditions (i.e., demand, storage, distributed generation, “smart grid,” etc.)
- **D2**: Consumer demand for reduced utility rates

Capability Gaps

<table>
<thead>
<tr>
<th>Drivers</th>
<th>CG3</th>
<th>CG5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Lack of adequate benchmarking and mechanisms for market internalization of value of low energy buildings
- Ongoing operations support for continuous commissioning
Energy savings are well understood, but BPA lacks tools and policies to target savings for maximum regional benefit while meeting BPA Power and Transmission reliability requirements.
Research, Development, & Demonstration Summaries

<table>
<thead>
<tr>
<th>RD1</th>
<th>Auto DR: Development standards and protocols for easy installation of utility / customer demand control systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC2</td>
<td>At present, there are many different types of energy management systems. These systems are not designed for taking utility rates in real-time and control the loads to reduce peak demand (i.e., demand response (DR)). Development of standards and protocols are needed.</td>
</tr>
</tbody>
</table>

Key Research Questions

1) How can we link grid with commercial building management systems to implement DR programs to handle peak demands, renewable, etc.?
2) What kind of software tools are needed for ease of installation, quantification of benefits, etc.?
3) What kind of education and training is needed?

Existing Research

Honeywell, Electric Power Research Institute (EPRI), and many others.

<table>
<thead>
<tr>
<th>RD3</th>
<th>Evaluate and communicate EE and DR capabilities of variable speed HVAC systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC2</td>
<td>Study EE and demand response (DR) capabilities of variable speed rooftop and chiller HVAC systems. Quantify energy savings and peak load reduction capabilities of variable speed HVAC equipment compared to fixed speed systems. Determine economic values to utilities.</td>
</tr>
</tbody>
</table>

Key Research Questions

1) What are the full year energy savings profiles of variable speed systems compared to fixed speed systems?
2) How much reduction in cooling output is required to produce a given power input reduction?
3) How should utility DR programs be structured to best utilize the capability of variable speed equipment—for example variable speed reduction or thermostat setback? How to optimize?
4) What is the DR potential of variable speed HVAC systems?
5) Can a building management system (BMS) platform be used to coordinate multiple end uses of DR?

Existing Research

Subject matter experts indicated that research was ongoing at Enerfit, Catalyst, and DigiRTU. Bonneville Power Administration (BPA), U.S. Department of Energy (DOE), and Pacific Northwest National Laboratory (PNNL) are also collaborating on tests of the Catalyst rooftop unit (RTU).

- The Catalyst RTU research project includes validating the control package and quantifying the Catalyst savings including breaking out fan savings and comparing the savings to PNNL’s modeled savings. BPA is supporting a second year of data collection for the project which began in 2012 with other funders. A final report is expected late in 2013. see http://www.bpa.gov/energy/n/emerging_technology/pdf/E3T_Current_Projects.pdf
Residential HVAC
Key Drivers

The priorities setting the Agency's strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

Energy Management & Control Systems

<table>
<thead>
<tr>
<th>Drivers</th>
<th>Capability Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 Diffusion of common communication protocols into energy-consuming devices</td>
<td>CG1</td>
</tr>
</tbody>
</table>
Energy Management and Control Systems: Residential HVAC

<table>
<thead>
<tr>
<th>Technology Domain</th>
<th>Current</th>
<th>Nearer Term</th>
<th>Longer Term</th>
<th>Future State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy savings</td>
<td>Energy savings are well understood, but BPA lacks tools and policies to target savings for maximum regional benefit while meeting BPA Power and Transmission reliability requirements</td>
<td>Integrated controls for different types of heating and cooling systems</td>
<td>Cross-technology controls integration</td>
<td>Energy-efficient loads that provide grid benefits</td>
</tr>
</tbody>
</table>

Key
- **TC**: Commercially-available Technology Characteristic
- **CG**: Commercially Unavailable Technology Characteristic
- **CGG**: Milestone: Capability Gap Addressed
- **Sequential Connection**: Between Roadmap Elements
RD1: Control of electric resistance zonal heaters in conjunction with ductless mini-split heat pumps

<table>
<thead>
<tr>
<th>TC1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>With the installation of ductless heat pumps (DHPs) in homes with zonal electric heat there is no control of the interaction of the two systems. Occupants do not get clear signals when the electric resistance system is operating when it is not needed (i.e. when DHP is cooling on or when DHP could handle the load if not being out powered by electric resistance).</td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1) Are there commercial available controllers of electric resistance heaters that can communicate with other controls?
2) Are there commercial available controllers the clearly indicate when they are on and have to turn the electric resistance heat off at the controller?
3) What is the energy savings penalty when electric resistance and DHP system compete?
4) What control strategies produce the most energy saving?
5) What is technically possible?

Existing Research
None identified.
Easy / Simple User Interface Controls

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

ENERGY MANAGEMENT & CONTROL SYSTEMS

EASY / SIMPLE USER INTERFACE CONTROLS

<table>
<thead>
<tr>
<th>Drivers</th>
<th>CG1</th>
<th>CG2</th>
<th>CG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of customer engagement and interest in energy efficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diffusion of common communication protocols into energy-consuming devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart grid technology development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability of cross-cutting, low-cost technology building blocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integration of energy management, security, and building management systems</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Energy savings are well understood, but BPA lacks tools and policies to target savings for maximum regional benefit while meeting BPA Power and Transmission reliability requirements.

Energy-efficient loads that provide grid benefits

Current

Nearer Term

Longer Term

Future State

<table>
<thead>
<tr>
<th>Technology Domain</th>
<th>ENERGY MANAGEMENT AND CONTROL SYSTEMS: EASY / SIMPLE USER INTERFACE CONTROLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>Energy savings are well understood, but BPA lacks tools and policies to target savings for maximum regional benefit while meeting BPA Power and Transmission reliability requirements</td>
</tr>
<tr>
<td>Nearer Term</td>
<td>Need to develop user-friendly Interfaces that recognize different levels of user sophistication</td>
</tr>
<tr>
<td>Long Term</td>
<td>Need to establish truly universal, simple, seamless plug and play interoperability</td>
</tr>
<tr>
<td>Future State</td>
<td>Lack of design for user-enabled DR (load controls, pricing)</td>
</tr>
</tbody>
</table>

Key

- TC: Commercially-available Technology Characteristic
- CG: Capability Gap Addressed
- SE: Sequential Connection Between Roadmap Elements

User-friendly energy management systems that are inexpensive or free

User initiated DR capability (peak load shifting)
RD2 | Study / determine what energy management devices people actually use

TC1

E Source reported in February 2011 that, to date, there has been much more research about which energy management devices (EMDs) people do not use, and little positive research relating to which EMDs people actually do use. This research suggests that consumers’ good intentions in buying programmable thermostats, ECM furnaces, and other products do not often lead to overall energy savings because many consumers do not use take full advantage of the products’ features or use the features.

Key Research Questions
1) Why don’t consumer use the feature?
2) What is buyer’s motivation to purchase?

Existing Research
Pike, BestBuy and Fraunhofer.

RD3 | Determine customer needs for controls adoption

TC1

Conduct RD&D to determine customer needs for easy/simple GUI for controls and then design RD&D profile to develop a comprehensive/integrated user interface system that customer can understand and use and test it in customer sites.

Key Research Questions
1) Which type of GUI’s the customer will mostly likely prefer?
2) How does the integrated system, feedback and protocols act as sub system in a manner to enable simple customer experience?
3) What will be the behavior change and how to quantify and evaluate the change?

Existing Research
Manufacturers like Nest; EcoFactor; EnergyHub; Honeywell and EcoBee.

RD4 | User controls compared to smart systems

TC1

As system become smarter and learn to improve efficiency, what level of user override should be allowed?

Key Research Questions
1) In what circumstances should user override be allowed? How should this parameters be incorporated into user interface?

Existing Research
Fraunhofer; National Energy Leadership Corps (NELC).

RD5 | Learning algorithm

TC1

User inputs and outputs with smart/learning EMs systems.

Key Research Questions
1) What are the variables and parameters that a learning systems need to utilize?
2) How much guidance along those lines can/should the user provide either when setting up or during usage of the system?
3) How much output of “smart” system should be shared with user and to what end?

Existing Research
San Diego State University, Institute of Electrical and Electronics Engineers (IEEE) with the University of Macedonia, Nest, EcoFactor, EnergyHub.
<table>
<thead>
<tr>
<th>RD7</th>
<th>User interface for demand response and load shifting</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCS</td>
<td></td>
</tr>
</tbody>
</table>

Demand response (DR), in some instances, faces barriers to consumer acceptance due to perceived inconvenience. User interfaces can learn occupant preferences and provide "seamless demand response" and add value to EMS. Applications can be in any sector (Residential, Commercial, Industrial, Agriculture), and applications could be in any category, e.g., HVAC, or EV charging.

Key Research Questions

1) How can we program devices for DR?
2) How can customer feedback mitigate perceived inconvenience of demand response?
3) How can two-way communication enable better DR program?
4) How can DR feature be used for site renewables integration?

Existing Research

EcoFactor, EnergyHub, Honeywell, and Ecobee
Energy Management Services

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

Drivers

<table>
<thead>
<tr>
<th>Driver</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Changing utility price structures that incentivize efficiency (i.e., peak pricing)</td>
</tr>
<tr>
<td>D2</td>
<td>Incremental efficiency gains at product & equipment level</td>
</tr>
<tr>
<td>D3</td>
<td>Smart grid technology development</td>
</tr>
</tbody>
</table>

Capability Gaps

<table>
<thead>
<tr>
<th>Capability Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumers (residential, small, medium business) need to control energy costs and be able to respond to higher rates and changing rate standards</td>
</tr>
<tr>
<td>Optimization and automation of control system responses</td>
</tr>
<tr>
<td>Consumers need to know how and where to manage energy</td>
</tr>
</tbody>
</table>

ENERGY MANAGEMENT & CONTROL SYSTEMS

ENERGY MANAGEMENT SERVICES

<table>
<thead>
<tr>
<th>Drivers</th>
<th>CG4</th>
<th>CG6</th>
<th>CG7</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current</th>
<th>Nearer Term</th>
<th>Longer Term</th>
<th>Future State</th>
</tr>
</thead>
<tbody>
<tr>
<td>TQ: Whole-house energy monitoring and disaggregated device-level monitoring from meter data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TQ: Enable the ability to control energy costs in response to changing utility rate structures in the residential and small-to-medium commercial sectors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TQ: Open source code and standard communication protocols for EMS to enhance cost effectiveness and accessibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TQ: Self-learning control systems that provide action-oriented communication and maintenance alerts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC6: Consumers need to know how and where to manage energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC6: Optimization and automation of control system responses</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Energy savings are well understood, but BPA lacks tools and policies to target savings for maximum regional benefit while meeting BPA Power and Transmission reliability requirements.

Key:
- TC: Commercially-available Technology Characteristic
- CG: Commercially-Unavailable Technology Characteristic
- CG#: Milestone: Capability Gap Addressed
- Sequential Connection Between Roadmap Elements

Bonneville Power Administration | Power Services Technology Roadmap | March 2017 (version 3)
Research, Development, & Demonstration Summaries

RD2 Residential energy disaggregation

<table>
<thead>
<tr>
<th>TC2</th>
<th>TC7</th>
<th>TC8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disaggregate whole house energy consumption by device level. Use smart meters or CTC lamps to read load. Use software to disaggregate load and inform homeowners of energy use with suggestions to save energy.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1. How much energy do homeowners save by knowing their energy use?
2. Which level of granularity is necessary to achieve significant savings? (1 kHz, 1Hz, 1min, 1hr)?
3. What suggestions will the software provide?
4. How can the utility provide a rebate for these tools?
5. What is the cost per home?

Existing Research

Belkin, Massachusetts Institute of Technology (MIT), Stanford University, Bidgely, Verdigris, Green Button.

RD3 Home energy management demonstration projects: Lessons-learned

<table>
<thead>
<tr>
<th>TC2</th>
<th>TC6</th>
<th>TC7</th>
</tr>
</thead>
<tbody>
<tr>
<td>One of the foci of the federal stimulus package (American Recovery and Reinvestment Act (ARRA) of 2009, Public Law 111-5) was to foster energy efficiency by promoting and/or funding good home energy management http://www.recovery.gov/Pages/default.aspx.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1. Finding and synchronizing learnings across funded projects?

Existing Research

Fraunhofer demo lab; Japanese field demos (Toyota, Hitachi, Kyocera).

RD5 Self learning smart building controls for small buildings

<table>
<thead>
<tr>
<th>TC2</th>
<th>TC6</th>
<th>TC7</th>
<th>TC8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop, test and deploy technology that allows customers, utilities and service providers to optimize building operation with little if any technical expertise and engagement.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1. What human interface is needed?
2. What types of sensors are needed?
3. What are the analytic protocols to make learning work?
4. What level of automation is needed now and in the future?
5. How is optimization achieved?
6. Notification protocols?

Existing Research

New Buildings Institute (NBI), Lawrence Berkeley National Laboratory (LBNL).
Enterprise Energy and Maintenance Management Systems

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

<table>
<thead>
<tr>
<th>Drivers</th>
<th>CG1</th>
<th>CG2</th>
<th>CG3</th>
<th>CG4</th>
<th>CG5</th>
<th>CG6</th>
<th>CG7</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 Policies requiring energy disclosure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2 Performance-based procurement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3 Lack of customer engagement and interest in energy efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4 Increasing development and availability of analytics & intelligent systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D5 Availability of cross-cutting, low-cost technology building blocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6 Market-driven communication interface standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D7 Smart grid technology development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D8 Diffusion of common communication protocols into energy-consuming devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capability Gaps

- Standard protocols for performance metrics and data
- Need to transform raw data into actionable insights through improved data analytics
- Establish truly universal, simple, seamless plug-and-play interoperability
- Need better and more accurate data from systems and submeters to support proper commissioning
- Need to integrate formal energy management practices into consumers’ services and business processes
- Data ownership and security issues
- Business model and cost-effectiveness

Energy Management & Control Systems

Enterprise Energy and Maintenance Management Systems
Energy savings are well understood, but BPA lacks tools and policies to target savings for maximum regional benefit while meeting BPA Power and Transmission reliability requirements.

- **Current**
 - Determine reliability of existing EMIS tools
 - Automation of data collection analytics, and commissioning process
 - Easily consumed data / metrics presentation format, such as user-friendly dashboards
 - Integrated tools to identify conservation opportunities, provide measurement and verification (M&V), enable DR control, and support maintenance management systems (MMS)
 - Standard communication protocol for enterprise EMS data
 - Enterprise energy management software
 - Energy Management Information Systems (EMIS) cost / benefit analysis to support utility operations
 - Tools turning data into action

- **Nearer Term**
 - Standard protocols for performance metrics and data
 - Establish truly universal, simple, seamless plug-and-play interoperability

- **Longer Term**
 - Need to transform raw data and implement feedback loops into actionable insights through improve data analytics
 - Need to integrate formal energy management practices into consumers services and business processes
 - Need better and more accurate data from systems and submeters to support proper commissioning

- **Future State**
 - Business model and cost-effectiveness
 - Data ownership and security issues
 - Energy-efficient loads that provide grid benefits

- **Key**
 - TC: Technology Characteristic
 - CG: Capability Gap
 - RE: Reliability
 - SU: Sustainability
Research, Development, & Demonstration Summaries

RD1 Demonstration energy management information systems (EMIS) of tool integration: prototypes, testing, and validation

<table>
<thead>
<tr>
<th>TC4</th>
<th>TC5</th>
<th>TC7</th>
<th>TC8</th>
<th>TC9</th>
<th>TC11</th>
</tr>
</thead>
</table>

In commercial energy management and information system software market, there are many functionalities available currently. The future will require integrated solutions that combine EMIS with enabling functions for energy savings, demand response, building control, and M&V. This research project will test integrated prototypes propose by industry (key that research does not need to develop the approaches, but test what is already commercialized), validating the accuracy of the algorithms and capability of approach.

Key Research Questions

1) How accurate are rapid building assessment techniques (low-touch audits using interval data), and how specifically can these techniques identify building EE and RD opportunities?

2) How accurate are fault detection and diagnostic algorithms (using system-level data) and how actionable are the recommendations?

3) What energy-savings opportunities can automatically be addressed through automated system optimization and which require human analysis and intervention?

4) How can tools with integrated M&V be used to quantify savings at whole building level? What bar for rigor must be met?

Existing Research

RD2 Targeted market segment validation

<table>
<thead>
<tr>
<th>TC4</th>
<th>TC5</th>
<th>TC6</th>
<th>TC7</th>
</tr>
</thead>
</table>

Prioritize key building type/market segments to test and validate energy analytic tools. Focus on limited building types will allow focused analytic development rather than trying to do everything.

Key Research Questions

1) How well does analytics model actual building energy use/performance?

2) How well does model identify savings opportunities?

3) How well do predicted savings match forecasted?

Existing Research

Manufacturers.

RD3 Turning data into action: testing and demonstrating results of leveraging energy management information systems (EMIS) for energy savings and demand reductions

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC4</th>
<th>TC5</th>
<th>TC6</th>
<th>TC7</th>
</tr>
</thead>
</table>

Utilities across the country are interested in achieving O&M and behavioral savings for commercial buildings through utilizing technology. But no one really knows which approaches are the most effective in turning ubiquitous data into action. This research project will examine average savings from case studies and demonstrations of different EMIS applications to more specifically determine expected energy saving results.

Key Research Questions

1) What percentage savings can we expect from different applications of Energy Management Information Systems (EMIS) and do these savings persist (or how can we ensure they persist)?

 a. Behavior / competition (behavior only).

 b. Monitoring-based commissioning (operations and maintenance plus retrofit).

 c. Energy coaching.

Existing Research

Portland General Electric (PGE), Northwest Energy Efficiency Alliance (NEEA), utilities across country.

RD6 Automated point mapping

<table>
<thead>
<tr>
<th>TC9</th>
</tr>
</thead>
</table>

Inaction often results from data provided by enterprise energy and maintenance systems because the gathered data and inaccurate. This data is incorrect because point mapping (assign a variable name and description to a measurement point methods an enterprise energy and maintenance management system) is manual, tedious and error prone process.

Key Research Questions

1) Are there semi-automated process to improve point mapping?

2) Are there semi-automated pathways to perform quality assurance (QA) / quality control (QC) steps for the point mapping process?

3) Are there ways to automate point mapping?

Existing Research

ASHRAE, SSPC 135.
RD7 Automated QA/QC of meter- and sensor-measured values

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC5</th>
<th>TC7</th>
<th>TC9</th>
<th>TC11</th>
</tr>
</thead>
</table>

Inaction often results from data provided by enterprise energy and maintenance management systems because the captured data and inaccurate. This data is incorrect because meters and sensors are often installed and configured incorrectly.

Key Research Questions

1. Are there ways to automate quality assurance (QA) / quality control (QC) of installation and configuration of meters and sensors?
2. Are there ways to semi-automate quality assurance (QA) / quality control (QC) of installations and configuration of meters and sensors?
3. Are there effective guidance documents for implementing quality assurance (QA) / quality control (QC) of meters and sensors?

Existing Research

Manufacturers.

RD8 Identify good EMS data presentation methods

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC4</th>
<th>TC8</th>
<th>TC9</th>
</tr>
</thead>
</table>

Data and form of presentations (user interface design).

Key Research Questions

1. What data is most relevant for an energy management?
2. What forms should EMS data and analytics be presented to user?
3. What data expression forms are best suited for identifying?
4. Review current market and tools.
5. Relate presentation form/data to target actions.
6. Energy savings outcomes of different programs designs.

Existing Research

Lawrence Berkeley National Laboratory (LBNL).

RD9 Enhance development of standard enterprise level communication protocols for building ad facility information

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC9</th>
</tr>
</thead>
</table>

Bacnet, Obix and other communication effort are improving greatly, but there are key aspects that are not being addressed by these standards bodies.

Key Research Questions

1. Can details, satirized point mapping (Assign a variable name and description to a measurement point within an enterprise energy and maintenance management system) occur and be supported by existing enterprise level communication standards for building and facility information?

Existing Research

American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), LONworks, BacNet.
Low-Cost Savings Verification Techniques

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

<table>
<thead>
<tr>
<th>Drivers</th>
<th>CG1</th>
<th>CG2</th>
<th>CG3</th>
<th>CG4</th>
<th>CG5</th>
<th>CG6</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Energy Management & Control Systems

Low-Cost Savings Verification Techniques

Capability Gaps

- Need to transform raw data and implement feedback loops into actionable insights through improved data analytics
- Need to be able to attribute energy performance improvements and effects
- Need to leverage building management systems and analytics to verify system performance for M&V
- Need to improve standardization and specificity of M&V protocols and tools
- Lack of large datasets of building characteristics and energy use
- Need public domain, low-cost transparent "reference" algorithms for M&V for different measures/contexts

- Increasing development and availability of analytics & intelligent systems
- Push for performance-based procurement
- Increased interest among legislators in efficiency and renewable energy
- Concerns about cost of measurement and verification
- Need to justify investment in demand-side management
- Demand by utilities and owner for measurement based verification
Energy savings are well understood, but BPA lacks tools and policies to target savings for maximum regional benefit while meeting BPA Power and Transmission reliability requirements.
Research, Development, & Demonstration Summaries

RD1 Measuring and using independent variables

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC3</th>
</tr>
</thead>
</table>

Develop methods to better utilize independent variable.

Key Research Questions

1) What independent variables can be used as proxies for energy (e.g. variable frequency drive (VFD) speed as proxy for KW)?
2) What are the key independent variables for important energy efficiency measures?
3) Can these independent variables be monitored independently in the field and then combined with lab test (of energy use as a function of these field measured independent variables)?

Existing Research

None identified.

RD2 Transparency in automated M&V integrated with automated retro commissioning

<table>
<thead>
<tr>
<th>TC3</th>
<th>TC5</th>
</tr>
</thead>
</table>

Identify DDC system points to monitor efficiency increase to valc [?].

Key Research Questions

1) How to quantify system based on baseline and past installation direct digital controller (DDC) building automation systems (BAS) trends?
2) How to create permanent efficiency index?
3) How to provide online documentation?
4) How to trend data without slowing down control?

Existing Research

California monitoring-based commissioning program, Pacific Northwest National Laboratory (PNL) returning projects,

RD3 Characterizing buildings for energy analysis

<table>
<thead>
<tr>
<th>TC2</th>
<th>TC6</th>
</tr>
</thead>
</table>

Naked energy data without context has limited value. Need to understand building and usage characteristics and do this at very low cost.

Key Research Questions

1) What information could be gathered with the "ideal" meter?
2) How do we affordably characterized buildings in term of construction HVAC so we can design smart retrofit program?
3) Can we create standard taxonomy for building system and components?

Existing Research

RD4 Whole building regression analysis validation

<table>
<thead>
<tr>
<th>TC2</th>
<th>TC4</th>
</tr>
</thead>
</table>

Validation of multi fuel engineering based regression analysis to show whole building energy use by end-use. The primary target is commercial buildings. Focus is on standardization of signatures of routine and non-routine changes.

Key Research Questions

1) What level of accuracy can be achieved by this method?
2) How well can routine and non-routine changes in buildings be identified and quantified?
3) Can the method achieve the 10x reduction in M&V cost needed to open the market?
4) What is being done currently and by whom?
5) How much is the RD&D is public domain Vs. private?

Existing Research

New Buildings Institute (NBI), Retrofficiency, First Fuel, Energy RM, Opower.
RD5 Comparison of low-cost whole building metering with high-cost true M&V compliant devices and statistical analysis tools

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC4</th>
</tr>
</thead>
</table>

There are numerous approaches electric bill disaggregation with varying cost and accuracy.

Key Research Questions

1. What approaches or hybrid methods can be used for different contexts?
2. Is amp only metering drastically different from true power metering?
3. Is true cost of International Performance Measurement and Verification (IPMVP) compliance worth it?
4. Comparison of measuring/modelling tools:
 - Low cost data logging;
 - Statistical analysis;
 - Revenue quality metering;
 - Variance in accuracy; and
 - Cost effectiveness.

Existing Research
None identified.

RD6 Low cost embedded energy use sensors and communication for real time monitoring of finely disaggregated end uses

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC5</th>
<th>TC7</th>
</tr>
</thead>
</table>

Embedding energy use sensors and communication into all energy using equipment by OEMS will provide the scale to drive down the price of end use metering, utilizing real time communications enables as needed low cost monitoring (for example, non-intrusive load monitoring (NILM)).

Key Research Questions

1. Develop low cost, small kw sensors with integrated communication chips.
2. Develop communication systems and protocols for standardized reporting.
3. Can we drive the equipment and transaction cost so low that OEMs will want to integrate into their products?
4. How does this energy info system integrate into building controls?
5. What standards and protocols are needed to communicate, what the devise is, where it is.
6. Are the advantages to including other sensors such as pressure temp occupancy etc?
7. Should higher level efficiency metrics be incorporated into sensor bundle?

Existing Research

RD8 Innovative end-use metering equipment and practices

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC5</th>
<th>TC7</th>
</tr>
</thead>
</table>

Need for innovative end-use metering and data management equipment and approaches that can dramatically reduce costs and time requirements for installation, configuration, communication, and data management during field studies. Approaches could include nonintrusive load monitoring–digital signal based load disaggregation and low cost end use sensors and communications.

Key Research Questions

1. Are there options for low cost sensors, data loggers, and communications?
2. Are there intrinsically safe, easy to install, self configuring sensors and meters?
3. Are there integrated sensor-logger-communication-web site-analysis-presentation systems?
4. Can powerful low cost consumer and IT technology be applied to field studies?
5. Can public networks and software services be leveraged?
6. Is there simple sensor-data logging equipment that can be installed by untrained homeowners?
7. Are there innovative low cost sensors that can be leveraged?

Existing Research
Electric Power Research Institute (EPRI), U.S. Department of Energy (DOE).
- EPRI is researching nonintrusive load monitoring.

RD9 Wireless metering

<table>
<thead>
<tr>
<th>TC7</th>
</tr>
</thead>
</table>

According to a 2006 Federal Energy Management Program study, energy costs can be reduced by taking action to resolve problems identified by examining metered data. While metering systems do not directly improve energy efficiency, they do enable focused, energy efficiency actions and upgrades. It is estimated that using systems results in energy efficient actions that deliver electricity energy savings of at least 2%.

Key Research Questions

1. Questions to address include development of wireless meters with low costs, essential requirements for electrical energy measurement, and wireless data transmission to an onsite collection point.

Existing Research
Real-Time Smart Electric Power Measurement of Facilities

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

ENERGY MANAGEMENT & CONTROL SYSTEMS

REAL-TIME SMART ELECTRIC POWER MEASUREMENT OF FACILITIES

<table>
<thead>
<tr>
<th>Drivers</th>
<th>CG1</th>
<th>CG2</th>
<th>CG3</th>
<th>CG4</th>
<th>CG5</th>
<th>CG6</th>
<th>CG7</th>
<th>CG8</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capability Gaps

- Lack of low-cost power measurement options for new or retrofit
- End-use hardware with feedback from gas and energy usage
- Many existing software analysis tools require specialized expert operators
- Need standards benchmarking and comparisons to inform decisions
- Need standard protocols and systems to aggregate low-level data into high-level actionable knowledge
- How layout sensors and distribution circuits to align with EMS algorithm layer and physical layout
- Need better designed distribution panels
- Need cost-effective, accurate load metering to drive instantaneous and long-term energy saving opportunities

<table>
<thead>
<tr>
<th>Current</th>
<th>Nearer Term</th>
<th>Longer Term</th>
<th>Future State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Domain</td>
<td>Gateway to extract high frequency usage data directly from smart meters for local use to enable shorter intervals not limited by utility's smart meter bandwidth and delays</td>
<td>Lack of low-cost power measurement options for new or retrofit</td>
<td>CG1</td>
</tr>
<tr>
<td>TC4</td>
<td>Standardized panels with integrated CTs with low voltage / plug-and-play / standardized output</td>
<td>Need standard protocols and systems to aggregate low level data into high-level actionable knowledge</td>
<td>CG5</td>
</tr>
<tr>
<td>TC3</td>
<td>Data collection, analysis, and customer feedback systems to optimize whole system energy performance</td>
<td>Need better designed distribution panels</td>
<td>CG7</td>
</tr>
<tr>
<td>TC1</td>
<td>Interval data analysis tools</td>
<td>How layout sensors and distribution circuits to align with EMS algorithm layer and physical layout</td>
<td>CG6</td>
</tr>
<tr>
<td>TC2</td>
<td>Low-cost reliable data collection and feedback system for small- to medium-sized businesses</td>
<td>Need cost-effective, accurate load metering to drive instantaneous and long-term energy saving opportunities</td>
<td>CG8</td>
</tr>
<tr>
<td>TC5</td>
<td>Energy savings are well understood, but BPA lacks tools and policies to target savings for maximum regional benefit while meeting BPA Power and Transmission reliability requirements</td>
<td>Need standards benchmarking and comparisons to inform decisions</td>
<td>CG4</td>
</tr>
</tbody>
</table>

Key:
- **CG**: Commercially Unavailable Technology Characteristic
- **TC**: Commercially Available Technology Characteristic
- **CG8**: Milestone: Capability Gap Addressed
- **Sequential Connection Between Roadmap Elements**

Energy-efficient loads that provide grid benefits
RD1: Market screening and development of gateway standards and hardware for high frequency local smart meter usage

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC2</th>
<th>TC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>This program will enable customers to capture and react to high frequency data from existing utility smart meters by accessing local channels rather than going through the utility cloud.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1. Screen existing smart meter market and identify availability and protocols for local ports / channels that can provide smart meter interval data directly to the customer.
2. Develop standards for communicating and organizing this data.
3. Develop hardware that will access, store and present this data to customers directly.
4. Provide access to this database for third parties (e.g. disaggregators, auditors) to use this data for analytics.

Existing Research

Grid2Home.

RD2: Develop metrics for interval data. Related to significant drivers such as: time of day, weather, etc. high low ratios

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related to significant drivers such as time of day, weather etc., high/low ratios. The first step to analyzing energy use is good data. Developing standardized metrics will help make the information more accessible and make it easier for more people to be able to analyze the data.</td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1. What type of meter sensing is needed for what size businesses?
2. How can this information be shared and leveraged?
3. Who is responsible and what quality data is required?

Existing Research

Regional Climate Center.

RD3: User-installable sensors for commercial buildings

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC3</th>
<th>TC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>M&V diagnostics and efficiency require monitoring that is load specific and inexpensive to install. Research is needed for systems that can be safely and quickly installed to collect critical metrics.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1. What sensing technology would be suitable as a low/no cost add-on for circuit breaker panels?
2. How can voltage be measures on multiple phases without needing an electrician to install loads?
3. Can a low voltage connector be added to new breakers or meters that allow for high bandwidth metering (8kHz) for fault diagnostics and load disaggregation?

Existing Research

Schneider, University of California Berkeley.

RD4: Automated fault diagnostics detection

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault diagnostics to auto detect opportunities by leveraging existing data collection.</td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1. Can we help end use customers (by way of evaluation tools) to gauge which fault detection (FD) products are suited for their needs?
2. Guide sophistication of fault detection (FD) products to get to the point where they pin-point a problem and recommend a fix action?
3. Can fault detection (FD) product performance be standardized?

Existing Research

BC Hydro, Regional Climate Center, Commonwealth Scientific and Industrial Research Organisation (CSIRO).
Smart Device-Level Controls Responsive to User and Environment

Key Drivers

The priorities setting the Agency’s strategic direction are identified on pages 6-7. Under these priorities are the following key drivers of particular relevance to this technology domain.

Capability Gaps

<table>
<thead>
<tr>
<th>Drivers</th>
<th>CG1</th>
<th>CG2</th>
<th>CG3</th>
<th>CG4</th>
<th>CG5</th>
<th>CG6</th>
<th>CG7</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Changing utility price structures that incentivize efficiency (i.e., peak pricing)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>Increasing development and availability of analytics & intelligent systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>Utility tariffs and energy efficiency programs to pay for performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENERGY MANAGEMENT & CONTROL SYSTEMS

SMART DEVICE-LEVEL CONTROLS RESPONSIVE TO USER AND ENVIRONMENT

- Need sufficient intelligence somewhere in the system to integrate stand-alone devices and manage conflicting inputs and data gaps.
- Need stand-alone systems that connect to whole system to enable optimum energy use and facilitate automated environment adaptability.
- Need to address many stand-alone devices that run uncontrolled with no occupant present and deliver too much heating, lighting, etc.
- Need multifunctional, modular generic control / sensor packages that are available at low cost (10% of device cost or less).
- Need standardization of protocols.
- Consumer-oriented solutions which combine multiple needs, energy savings and security, convenience, and other consumer uses.
- Analyze building system physics with interacting cyber-physical components and associated integrated controls.

Bonneville Power Administration | Power Services Technology Roadmap | March 2017 (version 3) 132
Energy Management and Control Systems: Smart Device-Level Controls Responsive to User and Environment

<table>
<thead>
<tr>
<th>Current</th>
<th>Nearer Term</th>
<th>Longer Term</th>
<th>Future State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology improvement to enable coarse graining of sensed information and analysis to provide actionable items in priority order</td>
<td>CG2</td>
<td>Analyze building system physics with interacting cyber-physical components and associated integrated controls</td>
<td></td>
</tr>
<tr>
<td>Cheap, standardized, user aware, modular control sensor packages responding to occupancy temperature light level, air quality, and user input</td>
<td>CG3</td>
<td>Need sufficient intelligence somewhere in the system to integrate stand-alone devices and manage conflicting inputs and data gaps</td>
<td></td>
</tr>
<tr>
<td>System to get user input / feedback on comfort at local area</td>
<td>CG4</td>
<td>Need stand-alone systems that connect to whole system to enable optimum energy use and facilitate automated environment adaptability</td>
<td></td>
</tr>
<tr>
<td>Open license sensor technologies</td>
<td>CG5</td>
<td>Need to address many stand-alone devices that run uncontrolled with no occupant present and deliver too much heating, lighting, etc.</td>
<td></td>
</tr>
<tr>
<td>Standardized wireless communication systems [i.e. Wifi, Zigbee, Home plug, Z wave]</td>
<td>CG6</td>
<td>Need multifunctional, modular generic control / sensor packages that are available at low cost (10% of device cost or less)</td>
<td></td>
</tr>
<tr>
<td>Sensors that integrate with other control systems [i.e., lighting, DHPs with backup resistance heat, other HVAC]</td>
<td>CG7</td>
<td>Need standardization of protocols</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consumer-oriented solutions which combine multiple needs, energy savings and security, convenience, and other consumer uses</td>
<td></td>
</tr>
</tbody>
</table>

Key

- **TC**: Commercially-available Technology Characteristic
- **CG**: Commercially Unavailable Technology Characteristic
- **CG**: Milestone: Capability Gap Addressed
- **S M A R T D E V I C E - L E V E L C O N T R O L S**: Sequential Connection Between Roadmap Elements

Energy savings are well understood, but BPA lacks tools and policies to target savings for maximum regional benefit while meeting BPA Power and Transmission reliability requirements.

Energy-efficient loads that provide grid benefits.
Research, Development, & Demonstration Summaries

RD1 Web enabled programmable thermostat research for enhancing whole building energy savings

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC2</th>
<th>TC3</th>
<th>TC6</th>
<th>TC8</th>
<th>TC9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web enabled programmable thermostats that control HVAC equipment and integrate with other systems can help deliver significant reductions in energy use and improve occupant comfort and convenience.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1) What is the minimum dataset needed to be collected?
2) How much energy is existing web based systems saving?
3) How can / is data being used / processed to save energy?
4) What additional opportunities to save more energy with all systems?
5) What level of control / automation is needed?

Existing Research

Bonneville Power Administration (BPA) Energy Efficiency Emerging Technologies (E3T), QuEST, Ecobee, Nest, EcoFactor.

- Bonneville Power Administration’s Energy Efficiency Emerging Technology (E3T) team is working with Quantum Energy Services (QuEST) and the Clark Public Utilities District to evaluate WEPT systems in modular classroom buildings at Several Washington State School Districts and develop a whole-building regression analysis tool to estimate and verify HVAC savings; see http://www.bpa.gov/energy/n/emerging_technology/WEPT.cfm.

RD2 Scan existing technology from cell phones for transformation to new uses with standardized wireless communication systems

<table>
<thead>
<tr>
<th>TC3</th>
<th>TC8</th>
<th>TC9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell phones are now ubiquitous and versatile. Cell phones and buildings can exchange information. Cell phones are mobile sensors and remote interface / communication devices. Operators can require alarms or change control settings remotely, and occupants can send preferences to the central system. One example of such a system is the iPhone app for General Motors’ Chevrolet Volt electric vehicle that allows users to monitor charging status and can be notified when charging ends (either on-schedule or prematurely). This system seems like it could easily lend itself to vehicle controllability via GM’s On Star system. See http://gm-volt.com/2009/12/10/chevy-volt-will-connect-to-blackberry-iphone-and-apps/, http://www.chevrolet.com/volt-electric-car/. E Source reported in February 2011 that this application of cell phone technology appeared to be the only such project currently in development.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions

1) What is an effective system architecture for using cell phones in commercial applications?
2) What are the opportunities for integrating cell phones into energy management and building control systems?
3) How can location information be used by energy management and building control systems?
4) What sensors could be added/built in to cell phones to make them more useful as part of building energy management systems?

Existing Research

None identified.
RD3 Possibility of using power line carrier to distribute control signals over low transmission voltage lines

<table>
<thead>
<tr>
<th>TC1</th>
<th>TC6</th>
</tr>
</thead>
<tbody>
<tr>
<td>The attraction of power line carrier signals for controls is compelling. Power lines are available virtually wherever control is needed. This eliminates the need for installing an additional set of wires or more expensive wireless equipment. If barriers to implementing this in commercial applications could be removed, it could simplify and reduce the cost of installation of controls, especially for retrofit.</td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions
1) Is it cheaper or cost effective?
2) What are the full characterizations of data transfer capabilities (e.g. bandwidth, security) compared to wireless protocols?
3) What are current roadblocks for large scale implementation?

Existing Research
Echelon.

RD4 Integration of smart appliances with building system and other end use loads, as well as the grid

<table>
<thead>
<tr>
<th>TC2</th>
<th>TC3</th>
<th>TC6</th>
</tr>
</thead>
<tbody>
<tr>
<td>To maximize benefits of small appliances for grid and energy savings and deliver value to both utility and building users.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions
1) What are the practical limits for load shifting in an effective way without interfering with comfort or service (power, duration, frequency)?
2) What are the potential energy savings at the end use level (not just load shifting) as a result of smart communicating appliances?
3) Can we leverage safety, security, and convenience benefits to get consumers interested in smart appliances?

Existing Research
General Electric (GE), Whirlpool, National Renewable Energy Laboratory (NREL), Lawrence Berkeley National Laboratory (LBNL).

RD5 Open communication protocols for enabling integrated devices

<table>
<thead>
<tr>
<th>TC2</th>
<th>TC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lots of building systems cannot communicate to each other. This obstacle to communication limits interoperability and effective integrated building controls.</td>
<td></td>
</tr>
</tbody>
</table>

Key Research Questions
1) What kind of universal performance specification could be developed to motivate OEMs to interoperate open communication protocols into their products?

Existing Research
Lawrence Berkeley National Laboratory (LBNL), National Institute of Standards and Technology (NIST)[ZigBee and WiFi]; American National Standards Institute (ANSI).
ACKNOWLEDGEMENTS

Strategic Guidance and Support
Terry Oliver, Chief Technology Innovation Officer, BPA

Project Manager
James V. Hillegas-Elting, BPA (Nov. 2012–Present)

Content Reviewers & Contributors
BPA Energy Efficiency (PE) chapter: Erik Boyer, Tom Brim, Frank Brown, Ryan Fedie, Jennifer McMaster, Ken Nichols, Janice Peterson, & Robert Weber (BPA)
BPA Generation Asset Management (PG) chapter: George Brown, Kim Johnson, & Scott Winner (BPA); Erin Foraker (U.S. Bureau of Reclamation); James Calnon, Andrew Long, Don Ramirez, and John Yen (U.S. Army Corps of Engineers); Richard Brown, Zhiqun Deng, Gary Johnson, Ken Ham, Rebecca O’Neil, & Marshall Richmond (Pacific Northwest National Laboratory)

Process Consultant
Robert Phaal and Clare Farrukh, Cambridge University Institute for Manufacturing

Document Production
Content, design, graphics, and editing: James V. Hillegas-Elting, BPA (Nov. 2012–Present)
Photographs: BPA Public Relations

Previous Agency Technology Roadmaps for Power Services Organizations

Strategic Guidance and Support
Terry Oliver, Chief Technology Innovation Officer, BPA
Kim Thompson, BPA (2013-2015)

BPA Demand Response Executive Sponsor Team
Mark Gendron, Senior Vice President, Power Services
Richard Shaheen, Senior Vice President, Transmission Services
Cathy Ehil, Executive Vice President, Corporate Strategy
Suzanne Cooper, Vice President, Bulk Marketing
Richard Génécé, Vice President, Energy Efficiency
Robert King, Vice President, Transmission Marketing and Sales (Acting)
Larry Kitchen, Director, Long Term Sales and Purchases

Project Managers
Joshua Binus, BPA (2009–Nov. 2012)
Jisun Kim, Volt Workforce Solutions (under contract to BPA) (2014)

Process Consultant
Tugrul Daim, Portland State Univ. Engineering and Technology Mgmt. Dept. (2006-2014)

Workshop Facilitation
James V. Hillegas-Elting, BPA (Sep. 2012–Present)
Jisun Kim, Volt Workforce Solutions (under contract to BPA) (2014)
Ellen Petrill, Electric Power Research Institute (Sep. 2012)
Jan Brinch, Energetics Incorporated (2009)

Technical Support
Ibrahim Iskin, Portland State Univ. Engineering and Technology Mgmt. Dept. (2010-2013)
Jonathan Livingston, Livingston Energy Innovations (2010-2011)

Facilitation & Logistics Support
Thor Hinckley, BPA (2014)
Mark Rehley, Northwest Energy Efficiency Alliance (2011-2012)
Maggie Bagan, BPA (2012)
R&D Program Research & Analysis

Sarah Inwood & Ben Clarin, Electric Power Research Institute (2012)
James V. Hillegas-Elting, BPA (2012)
Ibrahim Iskin, Portland State Univ. Engineering and Technology Mgmt. Dept. (2011)

Transcription, Fact Checking, & Content Review

Portland State Univ. Engineering and Technology Mgmt. Dept. (Ibrahim Iskin, Edwin Garces, Yulianto Suharto, Kelly Cowan, Yonghee Cho, Momtaj Khanam, João Lavoie, Kevin van Blommestein) (2010-2014)
Livingston Energy Innovations (Jonathan Livingston, Katie Elliot) (2010-2011)
E Source (Peter Criscione, Katie Elliott, Mary Horsey, Bryan Jungers, Leland Keller, Ira Krepchin, Andrea Patterson, Essie Snell, Jay Stein, Tim Stout) (2010-2011)

Original Graphic Design

Cover design/style sheet: David Moody, BPA (2012-2013); Carol Lindstrom, BPA (2010-2011)
CONTRIBUTORS

The BPA Technology Innovation Office thanks the following experts from throughout North America who have contributed to this roadmap through participation in BPA’s technology roadmapping workshops for energy efficiency, demand response, and hydropower asset management since 2009.

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmed Abdullah</td>
<td>San Diego Gas & Electric</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Brad Acker</td>
<td>University of Idaho Integrated Design Lab</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Jerine Ahmed</td>
<td>Southern California Edison Company</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Farrokh Albuyeh</td>
<td>Open Access Technology International, Inc.</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Christopher Allen</td>
<td>Bonneville Power Administration</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Charlie Allen</td>
<td>U.S. Army Corps of Engineers</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Ammi Amarnath</td>
<td>Electric Power Research Institute</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Todd Amundson</td>
<td>Bonneville Power Administration</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Gregg Ander</td>
<td>Southern California Edison Company</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Ren Anderson</td>
<td>National Renewable Energy Laboratory</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Sarah Arison</td>
<td>Bonneville Power Administration</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Doug Avery</td>
<td>Southern California Edison Company</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Amanda Ayoub</td>
<td>Portland Energy Conservation, Inc.</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Bruce Baechler</td>
<td>Sacramento Municipal Utility District</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Michael Baechler</td>
<td>Pacific Northwest National Laboratory</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Mike Bailey</td>
<td>Ecova</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Joe Barra</td>
<td>Portland General Electric Company</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Pam Barrow</td>
<td>Northwest Food Processors Association</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Steve Barton</td>
<td>Bonneville Power Administration</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Dave Baylon</td>
<td>Ecotope, Inc.</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Steve Belcoff</td>
<td>Bonneville Power Administration</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Johanna Brickman</td>
<td>Oregon Built Environ. & Sustainable Technol. Ctr</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Tom Brim</td>
<td>Bonneville Power Administration</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Diane Broad</td>
<td>Oregon Department of Energy</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Frank Brown</td>
<td>Bonneville Power Administration</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>George Brown</td>
<td>Bonneville Power Administration</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>G.Z. (Charlie) Brown</td>
<td>University of Oregon</td>
<td>University of Oregon</td>
</tr>
<tr>
<td>Mark Brune</td>
<td>PAE Consulting Engineers</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Jack Callahan</td>
<td>Bonneville Power Administration</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Phoebe Carner Warren</td>
<td>Seattle City Light</td>
<td>Seattle City Light</td>
</tr>
<tr>
<td>Lauren Casentini</td>
<td>Resource Solutions Group</td>
<td>Resource Solutions Group</td>
</tr>
<tr>
<td>Shawn Chandler</td>
<td>Bonneville Power Administration</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Chen Chen</td>
<td>Argonne National Laboratory</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Mark Cherniak</td>
<td>New Buildings Institute</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Kwok Cheung</td>
<td>Alstom Grid</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Angela Chuang</td>
<td>Electric Power Research Institute</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Craig Ciranny</td>
<td>Bonneville Power Administration</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Terry Clark</td>
<td>Finelite</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Dan Colbert</td>
<td>Univ. of Calif. Santa Barbara, Inst. for Energy Efficiency</td>
<td>Univ. of Calif. Santa Barbara, Inst. for Energy Efficiency</td>
</tr>
<tr>
<td>Whitney Colella</td>
<td>Pacific Northwest National Laboratory</td>
<td>Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td>Chuck Collins</td>
<td>Cascade Power Group</td>
<td>Cascade Power Group</td>
</tr>
<tr>
<td>Corey Corbett</td>
<td>Puget Sound Energy</td>
<td>Cascade Power Group</td>
</tr>
<tr>
<td>Chad Corbin</td>
<td>Tendril</td>
<td>Cascade Power Group</td>
</tr>
<tr>
<td>Ken Corum</td>
<td>Northwest Power and Conservation Council</td>
<td>Cascade Power Group</td>
</tr>
<tr>
<td>Scott Cotner</td>
<td>U.S. Army Corps of Engineers</td>
<td>Cascade Power Group</td>
</tr>
<tr>
<td>Charlie Curčija</td>
<td>Lawrence Berkeley National Laboratory</td>
<td>Lawrence Berkeley National Laboratory</td>
</tr>
<tr>
<td>Todd Currier</td>
<td>Washington State University Energy Program</td>
<td>Washington State University Energy Program</td>
</tr>
<tr>
<td>Reed Davis</td>
<td>Bonneville Power Administration</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Phil</td>
<td>Degens Energy Trust of Oregon</td>
<td></td>
</tr>
<tr>
<td>David</td>
<td>Dernovsek Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>André</td>
<td>Desjarlais Oak Ridge National Laboratory</td>
<td></td>
</tr>
<tr>
<td>Tyler</td>
<td>Dillavou Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Ron</td>
<td>Domitrovic Electric Power Research Institute</td>
<td></td>
</tr>
<tr>
<td>Hannah</td>
<td>Dondy-Kaplan Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Peter</td>
<td>Douglas New York State Energy Research and Dev. Authority</td>
<td></td>
</tr>
<tr>
<td>Ken</td>
<td>Dragoon Ecofys</td>
<td></td>
</tr>
<tr>
<td>Mike</td>
<td>Eagen Trident Seafoods</td>
<td></td>
</tr>
<tr>
<td>Lieko</td>
<td>Earle National Renewable Energy Laboratory</td>
<td></td>
</tr>
<tr>
<td>Joan</td>
<td>Effinger Portland Energy Conservation, Inc.</td>
<td></td>
</tr>
<tr>
<td>Terry</td>
<td>Egnor MicroGrid Inc.</td>
<td></td>
</tr>
<tr>
<td>Paul</td>
<td>Ehrlich Building Intelligence Group</td>
<td></td>
</tr>
<tr>
<td>Erin</td>
<td>Erben Eugene Water & Electric Board</td>
<td></td>
</tr>
<tr>
<td>Jennifer</td>
<td>Eskil Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Eric</td>
<td>Federovitch Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Ryan</td>
<td>Fedie Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Mark</td>
<td>Firestone PAE Consulting Engineers</td>
<td></td>
</tr>
<tr>
<td>Erin K.</td>
<td>Foraker U.S. Bureau of Reclamation</td>
<td></td>
</tr>
<tr>
<td>Suzanne</td>
<td>Frew Snohomish County PUD</td>
<td></td>
</tr>
<tr>
<td>Mark</td>
<td>Fuchs Washington State Department of Ecology</td>
<td></td>
</tr>
<tr>
<td>Wenzhong</td>
<td>David Gao University of Denver</td>
<td></td>
</tr>
<tr>
<td>David</td>
<td>Geary StarLine DC Solutions</td>
<td></td>
</tr>
<tr>
<td>Richard</td>
<td>Génécé Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Nathan</td>
<td>Gibson Oregon State University</td>
<td></td>
</tr>
<tr>
<td>Erik</td>
<td>Gilbert Navigant</td>
<td></td>
</tr>
<tr>
<td>Jeff</td>
<td>Gleeson Pacific Gas and Electric Company</td>
<td></td>
</tr>
<tr>
<td>Kyle</td>
<td>Glesenkamp University of Maryland</td>
<td></td>
</tr>
<tr>
<td>John</td>
<td>Goodin California Independent System Operator</td>
<td></td>
</tr>
<tr>
<td>Fred</td>
<td>Gordon Energy Trust of Oregon</td>
<td></td>
</tr>
<tr>
<td>Grant</td>
<td>Grable SunOptics</td>
<td></td>
</tr>
<tr>
<td>Todd</td>
<td>Greenwell Idaho Power Company</td>
<td></td>
</tr>
<tr>
<td>Charlie</td>
<td>Grist Northwest Power and Conservation Council</td>
<td></td>
</tr>
<tr>
<td>Robert</td>
<td>Guglielmetti National Renewable Energy Laboratory</td>
<td></td>
</tr>
<tr>
<td>Lee</td>
<td>Hall Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Francis</td>
<td>Halpin Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Gary</td>
<td>Hamer BC Hydro</td>
<td></td>
</tr>
<tr>
<td>Debbie</td>
<td>Hammack Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Rob</td>
<td>Hammon Consol Energy, Inc.</td>
<td></td>
</tr>
<tr>
<td>Gregg</td>
<td>Hardy Ecova</td>
<td></td>
</tr>
<tr>
<td>Lew</td>
<td>Harriman Mason-Grant Consulting</td>
<td></td>
</tr>
<tr>
<td>Jeff</td>
<td>Harris Northwest Energy Efficiency Alliance</td>
<td></td>
</tr>
<tr>
<td>Reid</td>
<td>Hart Pacific Northwest National Laboratory</td>
<td></td>
</tr>
<tr>
<td>Ray</td>
<td>Hartwell Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Ifty</td>
<td>Hasan Entouch Controls</td>
<td></td>
</tr>
<tr>
<td>Philip</td>
<td>Hayes Lawrence Berkeley National Laboratory</td>
<td></td>
</tr>
<tr>
<td>Christopher</td>
<td>Hayes DNV GL</td>
<td></td>
</tr>
<tr>
<td>Kristin</td>
<td>Heinemeier Univ. of Cali. Davis Western Cooling Efficiency Ctr.</td>
<td></td>
</tr>
<tr>
<td>John</td>
<td>Heller Ecotope, Inc.</td>
<td></td>
</tr>
<tr>
<td>Mike</td>
<td>Henderson ConAgra Foods</td>
<td></td>
</tr>
<tr>
<td>Dave</td>
<td>Hewitt New Buildings Institute</td>
<td></td>
</tr>
<tr>
<td>Cathy</td>
<td>Higgins New Buildings Institute</td>
<td></td>
</tr>
<tr>
<td>Mike</td>
<td>Hoffman Pacific Northwest National Laboratory</td>
<td></td>
</tr>
<tr>
<td>Gregg</td>
<td>Hollingsworth Topanga</td>
<td></td>
</tr>
<tr>
<td>Dave</td>
<td>Holmes Avista Corporation</td>
<td></td>
</tr>
<tr>
<td>Tom</td>
<td>Hootman RNL Design</td>
<td></td>
</tr>
<tr>
<td>A.J.</td>
<td>Howard Energy Market Innovations</td>
<td></td>
</tr>
<tr>
<td>Bryan</td>
<td>Hulsizer Optimal Energy</td>
<td></td>
</tr>
<tr>
<td>Marshall</td>
<td>Hunt Pacific Gas and Electric Company</td>
<td></td>
</tr>
<tr>
<td>Rem</td>
<td>Husted Puget Sound Energy</td>
<td></td>
</tr>
<tr>
<td>J. J.</td>
<td>Jamieson Versify Solutions, Inc.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>John Jennings</td>
<td>Northwest Energy Efficiency Alliance</td>
<td></td>
</tr>
<tr>
<td>Mark Johnson</td>
<td>Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Anders Johnson</td>
<td>Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Karl Johnson</td>
<td>California Institute for Energy and Environment at the University of California, Davis</td>
<td></td>
</tr>
<tr>
<td>Gray Johnson</td>
<td>Oregon Freeze Dry, Inc.</td>
<td></td>
</tr>
<tr>
<td>Ryan Jones</td>
<td>Energy and Environmental Economics, Inc.</td>
<td></td>
</tr>
<tr>
<td>Rick Jones</td>
<td>HDR Engineering, Inc.</td>
<td></td>
</tr>
<tr>
<td>Karanjit Kalsi</td>
<td>Pacific Northwest National Laboratory</td>
<td></td>
</tr>
<tr>
<td>John Karasaki</td>
<td>Portland General Electric Company</td>
<td></td>
</tr>
<tr>
<td>Srinivas Katipamula</td>
<td>Pacific Northwest National Laboratory</td>
<td></td>
</tr>
<tr>
<td>Gregg Kelleher</td>
<td>Eugene Water & Electric Board</td>
<td></td>
</tr>
<tr>
<td>Emily Kenney</td>
<td>Oregon Built Environ. & Sustainable Technologies Ctr.</td>
<td></td>
</tr>
<tr>
<td>David Kenney</td>
<td>Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Gary Keyes</td>
<td>PCS UtiliData</td>
<td></td>
</tr>
<tr>
<td>Mukesh Khattar</td>
<td>Oracle Corporation</td>
<td></td>
</tr>
<tr>
<td>Sila Kiliccote</td>
<td>Lawrence Berkeley National Laboratory</td>
<td></td>
</tr>
<tr>
<td>Jess Kincaid</td>
<td>Oregon Department of Energy</td>
<td></td>
</tr>
<tr>
<td>Daniel S. Kirschen</td>
<td>University of Washington</td>
<td></td>
</tr>
<tr>
<td>Steve Knudsen</td>
<td>Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Jack Kolze</td>
<td>Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Bill Koran</td>
<td>Quest</td>
<td></td>
</tr>
<tr>
<td>Branko Kosovic</td>
<td>National Center for Atmospheric Research</td>
<td></td>
</tr>
<tr>
<td>Hanna Kramer</td>
<td>Portland Energy Conservation, Inc.</td>
<td></td>
</tr>
<tr>
<td>Hampden Kuhns</td>
<td>LoadIQ, LLC</td>
<td></td>
</tr>
<tr>
<td>Ben Kujala</td>
<td>Northwest Power and Conservation Council</td>
<td></td>
</tr>
<tr>
<td>Tony Lai</td>
<td>Delta Electronics</td>
<td></td>
</tr>
<tr>
<td>Michael Lane</td>
<td>Puget Sound Energy</td>
<td></td>
</tr>
<tr>
<td>Christopher Lang</td>
<td>Voith</td>
<td></td>
</tr>
<tr>
<td>Jim Larsen</td>
<td>Cardinal Glass Industries</td>
<td></td>
</tr>
<tr>
<td>Jeff Leahey</td>
<td>National Hydro Power Association</td>
<td></td>
</tr>
<tr>
<td>Mark Ledbetter</td>
<td>Pacific Northwest National Laboratory</td>
<td></td>
</tr>
<tr>
<td>Pete Lepschat</td>
<td>Henningsen Cold Storage Co.</td>
<td></td>
</tr>
<tr>
<td>Jeff Lerner</td>
<td>Vaisala, Inc.</td>
<td></td>
</tr>
<tr>
<td>Carol Lindstrom</td>
<td>Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Qingyue Ling</td>
<td>Oregon State University</td>
<td></td>
</tr>
<tr>
<td>Jon Linn</td>
<td>Northeast Energy Efficiency Partnerships</td>
<td></td>
</tr>
<tr>
<td>Carl Linville</td>
<td>Regulatory Assistance Project</td>
<td></td>
</tr>
<tr>
<td>Michael Little</td>
<td>Seattle City Light</td>
<td></td>
</tr>
<tr>
<td>Bill Livingood</td>
<td>National Renewable Energy Laboratory</td>
<td></td>
</tr>
<tr>
<td>Jonathan Livingston</td>
<td>Livingston Energy Innovations</td>
<td></td>
</tr>
<tr>
<td>Nicholas Long</td>
<td>National Renewable Energy Laboratory</td>
<td></td>
</tr>
<tr>
<td>Richard Lord</td>
<td>Carrier Corp.</td>
<td></td>
</tr>
<tr>
<td>Steven Low</td>
<td>California Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>Diane Lozovoy</td>
<td>Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Ning Lu</td>
<td>North Carolina State University</td>
<td></td>
</tr>
<tr>
<td>Shuai Lu</td>
<td>Pacific Northwest National Laboratory</td>
<td></td>
</tr>
<tr>
<td>Yung-Hsiang Lu</td>
<td>Purdue University</td>
<td></td>
</tr>
<tr>
<td>Michael Lubliner</td>
<td>Washington State University Energy Program</td>
<td></td>
</tr>
<tr>
<td>Mark Lynn</td>
<td>Simplot</td>
<td></td>
</tr>
<tr>
<td>Allie Mace</td>
<td>Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Yuri Makarov</td>
<td>Pacific Northwest National Laboratory</td>
<td></td>
</tr>
<tr>
<td>Bruce Manclark</td>
<td>Fluid Marketing Strategies</td>
<td></td>
</tr>
<tr>
<td>Jorge Marques</td>
<td>BC Hydro</td>
<td></td>
</tr>
<tr>
<td>John Marshall</td>
<td>Northwest Food Processors Association</td>
<td></td>
</tr>
<tr>
<td>Shawn Martin</td>
<td>Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Eric Martinez</td>
<td>San Diego Gas & Electric</td>
<td></td>
</tr>
<tr>
<td>Paul Mathew</td>
<td>Lawrence Berkeley National Laboratory</td>
<td></td>
</tr>
<tr>
<td>Ebony Mayhorn</td>
<td>Pacific Northwest National Laboratory</td>
<td></td>
</tr>
<tr>
<td>Chris McCalib</td>
<td>Lakehaven (WA) Utility District</td>
<td></td>
</tr>
<tr>
<td>Jim McMahon</td>
<td>Better Climate</td>
<td></td>
</tr>
<tr>
<td>Stephen Meicke</td>
<td>HDR Engineering, Inc.</td>
<td></td>
</tr>
<tr>
<td>Dave</td>
<td>Sjoding</td>
<td>Washington State University Energy Program</td>
</tr>
<tr>
<td>Paul</td>
<td>Sklar</td>
<td>Energy Trust of Oregon</td>
</tr>
<tr>
<td>Kaj</td>
<td>Skov Nielsen</td>
<td>Siemens</td>
</tr>
<tr>
<td>Mary</td>
<td>Smith</td>
<td>Snohomish County PUD</td>
</tr>
<tr>
<td>Bill</td>
<td>Snavely</td>
<td>Primate Technologies, Inc.</td>
</tr>
<tr>
<td>Jeremy</td>
<td>Snyder</td>
<td>Rensselaer Polytechnic Institute Lighting Research Ctr.</td>
</tr>
<tr>
<td>Sriram</td>
<td>Somasundaram</td>
<td>Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td>B.J.</td>
<td>Sonnenberg</td>
<td>Emerson Network Power Energy Systems, USA</td>
</tr>
<tr>
<td>Anurag</td>
<td>Srivastava</td>
<td>Washington State University</td>
</tr>
<tr>
<td>Mark</td>
<td>Steele</td>
<td>NORPAC Foods, Inc.</td>
</tr>
<tr>
<td>Jay</td>
<td>Stein</td>
<td>E Source</td>
</tr>
<tr>
<td>Charlie</td>
<td>Stephens</td>
<td>Northwest Energy Efficiency Alliance</td>
</tr>
<tr>
<td>Eric</td>
<td>Strandberg</td>
<td>Lighting Design Laboratory</td>
</tr>
<tr>
<td>Megan</td>
<td>Stratman</td>
<td>Northwest Requirements Utilities</td>
</tr>
<tr>
<td>Don</td>
<td>Sturtevant</td>
<td>J.R. Simplot, Co.</td>
</tr>
<tr>
<td>Alva</td>
<td>Svoboda</td>
<td>Pacific Gas and Electric Company</td>
</tr>
<tr>
<td>Dennis</td>
<td>Symanski</td>
<td>Electric Power Research Institute</td>
</tr>
<tr>
<td>Juming</td>
<td>Tang</td>
<td>Washington State University</td>
</tr>
<tr>
<td>Nate</td>
<td>Taylor</td>
<td>San Diego Gas & Electric</td>
</tr>
<tr>
<td>Judy</td>
<td>Thoet</td>
<td>Washington Association of Wine Grape Growers</td>
</tr>
<tr>
<td>Brinda</td>
<td>Thomas</td>
<td>Carnegie Mellon University</td>
</tr>
<tr>
<td>James</td>
<td>Thomas</td>
<td>Glumac</td>
</tr>
<tr>
<td>David</td>
<td>Thompson</td>
<td>Avista Corporation</td>
</tr>
<tr>
<td>Kim</td>
<td>Thompson</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Randy</td>
<td>Thorn</td>
<td>Idaho Power Company</td>
</tr>
<tr>
<td>John</td>
<td>Thornton</td>
<td>Northwest Food Processors Association</td>
</tr>
<tr>
<td>Wayne</td>
<td>Todd</td>
<td>U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>My</td>
<td>Ton</td>
<td>Collaborative Labeling and Appliance Sds Program</td>
</tr>
<tr>
<td>Paul</td>
<td>Torcellini</td>
<td>National Renewable Energy Laboratory</td>
</tr>
<tr>
<td>Greg</td>
<td>Towsley</td>
<td>Grundfos</td>
</tr>
<tr>
<td>Aidan</td>
<td>Tuohy</td>
<td>Electric Power Research Institute</td>
</tr>
<tr>
<td>Joe</td>
<td>Vaccher</td>
<td>Eugene Water & Electric Board</td>
</tr>
<tr>
<td>Pamela</td>
<td>Van Calcar</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Cory</td>
<td>Vanderpool</td>
<td>EnOcean Alliance</td>
</tr>
<tr>
<td>Michelle</td>
<td>Vargo</td>
<td>Seattle City Light</td>
</tr>
<tr>
<td>Stephanie</td>
<td>Vasquez</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Bruce</td>
<td>Verhei</td>
<td>Mountain Logic, Inc.</td>
</tr>
<tr>
<td>Pradeep</td>
<td>Vitta</td>
<td>Southern Company</td>
</tr>
<tr>
<td>Jim</td>
<td>Volkman</td>
<td>Strategic Energy Group</td>
</tr>
<tr>
<td>Mira</td>
<td>Vowles</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>John</td>
<td>Wang</td>
<td>ABB</td>
</tr>
<tr>
<td>Jianhui</td>
<td>Wang</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>Jiu</td>
<td>Wang</td>
<td>Ohio State University</td>
</tr>
<tr>
<td>Xudong</td>
<td>Wang</td>
<td>Air Conditioning, Heating, and Refrigeration Institute</td>
</tr>
<tr>
<td>Alecia</td>
<td>Ward</td>
<td>Weidt Group</td>
</tr>
<tr>
<td>Don</td>
<td>Watkins</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Carolyn</td>
<td>Weiner</td>
<td>Pacific Gas and Electric Company</td>
</tr>
<tr>
<td>Eric</td>
<td>Werling</td>
<td>U.S. Department of Energy Building America Program</td>
</tr>
<tr>
<td>Theresa</td>
<td>Weston</td>
<td>Dupont Innovations</td>
</tr>
<tr>
<td>Mark</td>
<td>Whitney</td>
<td>Portland General Electric Company</td>
</tr>
<tr>
<td>Geoff</td>
<td>Wickes</td>
<td>Northwest Energy Efficiency Alliance</td>
</tr>
<tr>
<td>Sarah</td>
<td>Widder</td>
<td>Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td>Marcus</td>
<td>Wilcox</td>
<td>Cascade Energy, Inc.</td>
</tr>
<tr>
<td>Robert</td>
<td>Wilkins</td>
<td>Danfoss</td>
</tr>
<tr>
<td>Heather</td>
<td>Williams</td>
<td>Opower</td>
</tr>
<tr>
<td>Juliana</td>
<td>Williams</td>
<td>Cascade Power Group</td>
</tr>
<tr>
<td>Jennifer</td>
<td>Williamson</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Jeremy</td>
<td>Wilson</td>
<td>PCS UtiliData</td>
</tr>
<tr>
<td>Bill</td>
<td>Wilson</td>
<td>Washington State University Energy Program</td>
</tr>
<tr>
<td>Scott</td>
<td>Winner</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Chris</td>
<td>Wolgamott</td>
<td>Eugene Water & Electric Board</td>
</tr>
<tr>
<td>Cheryl</td>
<td>Woodall</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Jerry Wright</td>
<td>Seattle City Light</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>Le Xie</td>
<td>Texas A & M University</td>
<td></td>
</tr>
<tr>
<td>John Zack</td>
<td>AWS TruePower</td>
<td></td>
</tr>
<tr>
<td>Jack Zeiger</td>
<td>Washington State University Energy Program</td>
<td></td>
</tr>
<tr>
<td>Zhi Zhou</td>
<td>Argonne National Laboratory</td>
<td></td>
</tr>
<tr>
<td>Nita Zimmerman</td>
<td>Bonneville Power Administration</td>
<td></td>
</tr>
<tr>
<td>Brian Zoeller</td>
<td>Bonneville Power Administration</td>
<td></td>
</tr>
</tbody>
</table>