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ABSTRACT 

A new generation of smart and connected devices promises energy savings, but 
traditional participant/control group field trials taking 12 to 18 months are not in step with these 
rapidly evolving software-based products. To keep pace with these smart technologies, we 
believe it is important for electric utilities to develop methods for measurement and verification 
(M&V) that use data from Internet-connected systems. This paper explores new M&V 
approaches, including aggregating vendor’s anonymous data sets, post/post analysis approaches, 
and baseline estimation techniques. 

Results from analysis of field data from residential smart thermostats, digital lighting 
controls, and rooftop unit controllers are presented. Techniques and results for HVAC baseline 
emulation, survey-based lighting baselines, and thermostat metrics are presented. Issues explored 
include proprietary data, vendor-biased data, sampling protocols, and potential dramatic time and 
cost reduction for M&V. 

INTRODUCTION 

Some of the leading examples of the new generation of intelligent, Internet-connected 
devices include residential smart thermostats, advanced digital lighting controls, and commercial 
HVAC controllers. These emerging technologies promise energy savings but to date there has 
been limited verification by third-parties. As the number of installed devices is increasing, there 
are a number of utility-sponsored field studies in progress exploring both energy efficiency and 
demand response capabilities. Many of these pilots are using traditional methods for verifying 
energy savings, including utility whole-building smart meter analysis and end-use sub-metering. 
A typical experimental approach is to use large randomized field trails with participant and 
control groups. While these traditional methods can be effective, we believe the related costs and 
timelines are not the best match for these rapidly evolving, smart, Internet-connected devices.  

We further believe there is a key innovation that differentiates these smart, Internet-
connected devices: It is now possible to collect real-time, high-resolution performance data 
and use this data to measure and improve system performance. This data enables 
manufacturers to conduct rapid testing and improvement of algorithms and other control 
features, as well as enabling third-party performance monitoring. 

Our current efforts are focused on development of measurement and verification (M&V) 
approaches that leverage the self-reporting strength of these connected devices. At Bonneville 
Power Administration (BPA), our ongoing research is guided by roadmaps in the 2013 National 
Energy Efficiency Technology Roadmap Portfolio (pages 352 – 394), specifically: Smart Device 

http://www.bpa.gov/energy/n/emerging_technology/pdf/EE_Tech_RM_Portfolio.pdf
http://www.bpa.gov/energy/n/emerging_technology/pdf/EE_Tech_RM_Portfolio.pdf


Level-Controls Responsive to User and Environment, Easy/Simple Interface Controls, Energy 
Management Services, Low Cost Savings Verification Technique.  

Although there is considerable promise for leveraging these connected devices for rapid 
and low-cost measurement and verification of energy savings, there are some significant 
challenges, including: 

• Ownership and access rights that limit third-party use of data; 
• Concerns for personal privacy and intellectual property of service providers; 
• Lack of metrics and protocols for savings verification; 
• Obtaining baseline data for existing equipment. 
• Measurement accuracy of power and energy consumption. 

In this paper, we investigate three applications of self-reported data from connected 
devices: 1) Digital Lighting Controls, 2) Smart Thermostats, and 3) Advanced Roof Top Unit  
(RTU) Controller. Each of these three trials is described in separate sections below. 

DIGITAL LIGHTING CONTROLS 

Background 

As the Solid State Lighting (SSL) market expands, new opportunities are becoming 
available for energy savings with advanced controls. Meta-analysis by Williams et al. (2012) 
plus recent case studies (Mutmansky and Berkland 2013, Cortese and Scherba 2013) indicate 
that deep energy savings are available from lighting controls, but results vary broadly with 
product functionality, commissioning and application. In addition, the performance of software-
based products can change over time—positively with software upgrades and continuous 
commissioning, or negatively with manual overrides. In order for utilities to promote products 
such as this with variable energy savings, accurate data is needed about energy performance. 

BPA’s research need is to quantify energy savings from digital lighting control systems. 
We would like to know which control functions and which products provide reliable and 
quantifiable savings. The traditional approach for this research, and for site-based M&V to 
support performance-based incentives, would use electric submeters to monitor each luminaire or 
each lighting circuit. This “Digital Lighting Controls” section of this paper explores vendor-
reported data as an alternative to submeters, to evaluate energy savings from networked lighting 
control systems. 

Methods 

Before embarking on a research proposal to spend 3 years and over $300,000 on a few 
conventional submetered case studies of lighting control systems, BPA contacted some 
manufacturers of networked lighting controls, to explore the potential for collecting data to 
augment or replace data from case studies. Digital Lumens promptly responded with an 
anonymized spreadsheet with data from sites with their LightRules software application, a web-
based system for industrial facility managers to manage their lighting.  

The data from each site included fixture count, % occupancy detected for a month, kWh 
usage for a month, building type, etc. No data was included for time intervals of less than or 
more than a month. Prior controls, if any, were not described. Additional data describing the 
wattage of each new fixture was provided upon request for most sites. The average new fixture 
wattage from those sites, 163 Watts, was used to estimate the fixture wattage at remaining sites. 



At BPA, the baseline installed wattage for a typical retrofit incentive project is estimated 
using the fixture count and the nominal lamp wattage of each fixture. For large or research 
projects, more accurate estimates are based on measured wattage. For this study, nominal 
baseline wattage data was available for 10 of 36 sites. For these 10 sites, the average reduction in 
installed wattage by the LED lighting retrofit was 58%.  

Additional analysis focused on lighting controls, rather than installed wattage. To analyze 
the performance of controls, a baseline is needed for Hours of Use (HOU). For BPA's new 
performance-based incentive for advanced lighting controls, a site-specific baseline HOU is 
estimated with a site survey (RTF 2014). Alternatively, at some networked lighting control sites, 
the advanced control functions are disabled during the first few weeks of operation, to capture a 
site-specific baseline HOU. For this study, the baseline HOU was assumed to be the site-specific 
operating hours at each of 9 sites, with an average of 139 hours per week (range from 105 to 168 
hours). For the remaining sites where no operating hours were specified, the baseline HOU was 
estimated from a national survey of comparable buildings (Ashe et al, 2012): 78 hours per week 
for storage and misc. commercial, and 91 hours per week for manufacturing. The national HOU 
data was collected more than 10 years ago, and is lower than the HOU reported at the 9 sites. 

Results 

The dataset was analyzed for 3 applications: storage, manufacturing, and miscellaneous. 
Histograms are shown for occupancy and for energy savings from controls. Additional energy 
savings from fixture wattage reduction (average 58%, range from 37% to 65%) are not shown. 

 

     
Figure 1. Histograms of Occupancy, and of Controls-Based Energy Savings. Figure 1(A) on the left shows a 
histogram of occupancy for the miscellaneous, manufacturing, and storage buildings surveyed. Histogram buckets 
cover 0-9%, 10-19%, 20-29%, etc. Figure 1(B) on the right shows a histogram of controls-based lighting energy 
savings. The leftmost bin includes all estimated savings less than 0%. Source: BPA & Digital Lumens. 

Figure 1(A) shows that all but 2 of the buildings were occupied less than 40% of the time. 
This is considerably lower than the average 139 hours per week that 9 sites with records were 
open for business (139 hours are 83% of the total 168 hours in a week). Figure 1(B) shows that, 
based on the HOU baseline, the energy savings from lighting controls varied broadly, and 
savings were positive in most buildings. Eight of the buildings that were assigned the average 
HOU baseline from the national survey, had negative savings from controls, suggesting that their 
actual site-specific baseline HOU might have been higher than the average (however these actual 



baselines are unknown, so this hypothesis cannot be tested). Figure 1(B) indicates that in storage 
buildings, the lighting control systems saved more than 20% energy in 17 of 22 buildings, and 
saved more than 40% energy in 13 of 22 buildings. In miscellaineous and manufacturing 
applications, lighting controls saved more than 20% energy in 8 of 14 buildings, and saved more 
than 40% energy in 6 of 14 buildings. In one storage building plus one miscellaineous building, 
controls-based savings on lighting energy were over 90%. 

Discussion 

For energy-efficiency field research based on conventional submetering, BPA’s research 
budget often exceeds $15,000 per field site, and may range as high as $100,000 per site. For a 
study of 36 submetered sites, the budget would exceed $500,000, and the duration would be 
more than a year. In comparison, the only cost of this report was staff time, for a few weeks of 
analysis and review. Compared to a conventional research project of comparable 36-site scale, 
this trial yielded results 10x faster and 10x cheaper.  Compared to a conventional research 
project constrained by budget to 3 or 4 sites, this trial yielded 10x more sites. 

This trial does have some drawbacks.  Without complete baseline data, some conclusions 
may be incorrect, such as negative controls-based energy savings at 8 sites. A case study such as 
Mutmansky and Berkland (2013) could provide performance data for each control function, and 
interval data of higher resolution and/or longer duration than the 1-month data of this trial. 
Interval data may be available from some vendors, if it does not reveal proprietary algorithms. 

Concerns are sometimes raised about the potential for a vendor to introduce sampling 
bias, by “cherry picking” data from the best-performing projects. Note that a similar sampling 
bias is likely in a meta-analysis of case studies from diverse sources, because few project teams 
publish their failures. For vendor-reported data, the risk of sampling can be managed. For 
instance, access to data from newly commissioned sites, where the operational performance is 
not known yet, could be negotiated with a networked controls vendor. Some sites might even 
disable the advanced control functions for a few weeks, for site-specific baseline HOU.  

The accuracy of vendor-reported energy data presumably varies by product. For instance, 
some streetlight control vendors offer optional utility-grade meters for increased accuracy. 
Cortese and Scherba (2013) used individual luminaire-level submeters to validate the accuracy of 
three pilot installations of the Enlighted networked lighting control system. Future work is 
needed for third-party validation of the energy savings reported by other lighting control 
systems. This will validate (or discount) the usefulness of research such as this trial based on 
vendor-reported data.  Note that some alternatives to vendor-reported data about lighting energy 
are subject to their own inaccuracies, such as difficulties in excluding non-lighting loads from 
circuit-level submeters, nominal vs. actual fixture wattages, and unrecorded baseline HOU. 

Trials like this, with data from many sites, can help utilities and building owners see a 
range of possible outcomes before embarking on new programs or projects. The rapid speed and 
low cost of this trial offer hope of keeping up with innovations in this rapidly developing field. 
While this particular data set had limited resolution, incomplete information about pre-existing 
baselines, and limited information about performance differences between various energy-saving 
functions, these limitations do not necessarily apply to all vendor-reported data. 



SMART THERMOSTATS 

A new class of control system is emerging for residential HVAC equipment, from 
innovations in technology for electronic sensing, communicating, and computing. We call this 
new class of control system “smart thermostats.” Vendors of smart thermostats have reported 
their successful use to increase efficiency of space conditioning (Kerber 2013 and Nest 2013). 
Our objective for this research was to develop methods for evaluating efficiency of these control 
systems, using data collected from smart thermostats. In doing so, we hoped to replace site visits 
and instrumentation with lower-cost, Internet-based methods for data collection. 

Methods 

Through interview with industry stakeholders and other research, we created an inventory 
of data types that could be accessed by an analyst at an electric utility through the Internet. Of 
primary interest to a measurement of efficiency were indoor temperature set point, indoor 
temperature, run time of heating system(s), and outdoor temperature. Vendors of smart 
thermostats and service providers were asked to provide, by e-mail, data for these parameters. 
We requested a sample from systems heating single-family homes in climates similar to those 
found in the Pacific Northwest. From data acquired through those methods, an historical data set 
was compiled. 

A function, heating system run time = f(set point – outdoor temp), was fit to the data set 
for each home, using standard methods for linear regression in Microsoft Excel. The slope and 
intercepts of this function are understood to be unique to the thermal properties of the home and 
the performance of the furnace. 

Changes in efficiency of control logic are difficult to evaluate. We ruled out methods 
which required measuring system conditions, prior to installation of a smart thermostat. A 
prototypical set point schedule was derived from a recent survey of more than 1,400 single-
family homes in the Pacific Northwest (Baylon et al. 2012). Participants in that survey reported 
an average heating set point of 69°F. More than two thirds reported adjusting the set point down 
an average of 7°F at night. Hours of set back were assumed to be 10pm through 6am, leading to 
our assumption of a day-averaged set point of 67°F for baseline conditions. 

Results 

We interviewed with several vendors and industry participants. Those conversations 
revealed significant constraints on access and use of data. Most data is stored and collected by 
manufacturers of smart thermostats and service providers. Threats to security and privacy of 
personally-identifiable information were concerns that demanded extreme caution. Another 
barrier to accessing data appeared as intellectual property protection: one service provider 
claimed their proprietary control logic could be synthesized through analysis of raw data from 
the thermostat. Many of these issues were resolved through anonymity and aggregation of data to 
time intervals greater than ten minutes, to provide needed protection.  

An anonymous, historical account of data was acquired for ten smart thermostats, from a 
seven-day period in January 2013. This data set included, at hourly intervals, average indoor 
temperature set point, run time of a natural gas forced-air furnace, and average indoor air 
temperature. All data were believed to be produced by smart thermostats operating the primary 
heating system, in heating mode, for single-family homes with a single conditioned zone. The 



provider of data reported that outdoor dry-bulb air temperature was acquired from the nearest 
meteorological station to each site. Over the study period, hour-averaged outdoor temperature 
ranged from 7°F to 59°F.  

We selected a set of data for a single home, for testing of proposed methods. Figure 2 
illustrates that data set. Note how the set point changes throughout each day, indicating a 
schedule. 
 

 
Figure 2. Illustrative data from a single thermostat.  

A linear regression function, heating system run time = f(set point – outdoor temp), was 
fit to daily averages across the seven-day study period, with an R-squared value of 0.95, shown 
in Figure 3. 

 
Figure 3. Comparison of furnace run time (minutes) and average difference between indoor set point and outdoor air 
temperature (degrees F), for each of seven days during the study period. 



To estimate run time of the furnace under baseline conditions, we calculated delta-T, the 
difference between our baseline set point of 67°F and outdoor air temperature, for each day 
during the study period. Figure 4 illustrates the estimated run time under baseline conditions for 
the seven days in our study period. Table 1 provides a comparison of smart thermostat 
observations and estimated baseline. The smart thermostat is estimated to run the furnace 109 
minutes (8 percent) less than expected under baseline conditions. 

 

 

 
Figure 4. Estimated run time under baseline 
conditions, using the regression function constructed 
from smart thermostat data. 

 

    
 Modeled 

Baseline 
Smart 
Thermostat 

Day delta-
T (F) 

Run 
Time 
(min) 

delta-
T (F) 

Run 
Time 
(min) 

6 40 219 39 197 
7 39 213 38 226 
8 33 154 31 127 
9 28 105 26 76 
10 37 194 36 180 
11 41 225 39 213 
12 51 324 50 305 
Total   1433   1324 
Savings (109) 

 

Table 1. Comparison of observed run time and 
estimated run time under baseline conditions.

To further develop these methods, we hope to test against a set of data with a wider 
distribution of key variables, such as set point, outdoor air temperature, HVAC system type, and 
plug loads. One such data set may soon be available from a group of 140 single-family homes in 
the Pacific Northwest, which were extensively sub-metered (Larsen et al. 2014). The proposed 
methods may also be improved by constructing a unique baseline for each home. We envision 
several methods for doing so, the simplest of which seems to be a survey, similar to the one 
administered in Baylon (2012), in which a participant reports their preferred indoor air 
temperature during a commissioning period for the smart thermostat.  

ADVANCED ROOFTOP UNIT CONTROLLER 

Methods 

The Catalyst controller manufactured by Transformative Wave (TW) is a retrofit 
technology for constant speed commercial rooftop units (RTUs) providing cooling, heating and 
ventilation. It saves energy by decreasing the supply fan speed to 40% when the RTU is in 
ventilation-only mode, and to 75% and 90% in other modes. It also optimizes economizer control 
and implements demand control ventilation (DCV) with the addition of a CO2 sensor in the 
return air stream. There is no effect on occupant comfort since thermostat settings are not 
changed and interior thermal loads are fully met. Catalyst controllers can be wirelessly 



networked to TW’s eIQ platform, enabling web access for programming, real-time energy 
consumption monitoring and fault detection. Of particular interest to utilities is the ability to 
cycle between modes of operation, allowing savings verification with an emulated baseline that 
doesn’t require pre-monitoring.  

BPA co-funded a field-study of the Catalyst, conducted by the Pacific Northwest 
National Lab (PNNL) to determine the magnitude of kWh savings achievable by retrofitting 
constant volume RTUs with advanced control strategies not ordinarily used for this type of 
equipment (Wang et al. 2013). The study included 66 RTUs, with data from true-power meters 
and an array of sensors and control signals collected by the Catalyst eIQ platform. The energy 
savings ranged between 22-91% of total unit kWh, with an average of 56% ± 25%. The savings 
associated with economizers and DCV were difficult to isolate because they were relatively 
small. Data was collected by TW, and then independently analyzed by the researchers. 

BPA is seeking to define a methodology for Catalyst and similar controllers, to verify 
“post-post” savings using self-reported data, with acceptable certainty. (We define “post-post” as 
using only post installation data for M&V.) Once a methodology is established, savings can be 
evaluated after retrofits, rather than being metered before and after the project, streamlining 
program implementation and lowering program delivery costs. 

The Catalyst can simulate baseline operation, allowing the RTU to be cycled between 
baseline mode and Catalyst mode at a user-determined interval. This eliminates the need for 
baseline metering, allowing “post-post” savings verification, and nullifying the effects of other 
changes during the monitoring period. This has the disadvantage of not being able to discern the 
effects of O&M improvements, such as economizer repairs, coil cleaning or refrigerant charge 
correction. This does not affect the programmatic savings since the installation protocol for the 
controller calls for all repairs to be completed at that time. 

Daily cycling for a full year was used in the PNNL study, and several owners did not 
want to participate because they would only have half the energy savings. This concern can be 
addressed by using either by an abbreviated monitoring period or a generic baseline. Bonneville 
is researching a simplified data analysis method for program evaluation. In the PNNL study, 
most of the electrical savings were associated with fan speed reduction; so it is posited that fan 
kW alone can be used to estimate and evaluate RTU savings. If feasible, this greatly simplifies 
quantifying baseline energy, which would be the supply fan running at 100% speed during all 
scheduled operating hours. Since the controller adjusts the fan speed to fixed percentages 
according to the mode of operation, savings could be derived by monitoring only the system 
status, or only the fan speed. This assumes that the fan power is accurately measured for each 
operating mode. The final simplified method needs to meet an 80% confidence interval. Now the 
energy savings may be calculated by a simple equation such as: 

 
  Where:  n = number of fan operating modes 
     = fan power draw in mode n, kW 
     = time in mode n, hours 

Results 

Catalyst data is available through the optional eIQ platform, and TW has been 
cooperative in facilitating access. If required by incentive agreements, other manufacturers may 



also enable data access. With the owner’s permission, utility program evaluations can be done 
without publishing identifying information. Cleaned data sets rolled up to hourly values for the 
PNNL study were posted to the Regional Technical Forum (RTF) website. 

Catalyst comes with several sensors that can be replaced or augmented for savings 
verification purposes. Additional information is generated by the controller and variable speed 
drive. In the PNNL study, sensors were added for total RTU power, mixed air temperature and 
space temperature. The standard package includes unit power calculated from current measured 
in one leg of power and an assumed voltage. The standard sensors and a sampling of other 
available monitoring points are shown in Table 2. 

Table 2. Sample of Available Catalyst Monitoring Points 

Field Name Unit Notes 
Timestamp  Local time , yyyy-mm-dd hh:mm 

ESMMode True/ 
False 

True = Advanced control logic; 
False = Standard control logic 

FanSpeed; FanPower %, kW Supply fan speed and power from 
the variable speed drive 

OaTemp; RaTemp; DaTemp °F 
Dry-bulb temperature of the 
outdoor air, return air and 
discharge air  

VentMode; CoolCall1,2; CoolCmd1,2; Econ 
Mode, AdvanceCool; HeatCall1,2; HeatCmd1,2 

True 
/False Command and status signals 

UnitPower kW Total electric power for the unit  
 
Sampling rates can be set by the user. Since data is available as CSV files, the analysis 

method is left to the discretion of the utility engineer or researcher. For its own savings analysis, 
TW appears to rely on a standard change point regression. In at least one instance they published 
a case study with a link to the raw data (TW 2013). 

The dataset posted on the RTF website was used to test the validity of the proposed 
simple calculation, along with a table in the PNNL report that shows the percent time in each 
mode for each RTU in the study. Since the run time in a particular mode is represented by a 
fraction of total unit run time during the study period, the result is in units of average kWh/hour 
of RTU run time. The data used are shown in Table 3 and the results are in Table 4. Because the 
power measurement from the variable speed drive is a calculated value of power output to the 
fan, the final result from the equation was divided by the drive efficiency of .968. 

    Table 3. Fraction of Fan Runtime and Fan Power in Each Mode of Operation 

Fan Speed, % 40% 75% 90% 100% Baseline 
RTU 
ID Tons 

Time 
Fraction 

Fan 
kW 

Time 
Fraction 

Fan 
kW 

Time 
Fraction 

Fan 
kW 

Time 
Fraction 

Fan 
kW 

202 10 0.98 0.16 0.02 1.02 0 1.71 1 2.42 
212 25 0.57 0.45 0.38 2.67 0.05 4.58 1 6.49 



Table 4. Calculated Fan Savings 
vs. Measured RTU Savings 

  kWh/hour/ton 
RTU 
ID Calculated Measured 

202 0.255 0.258 
212 0.227 0.307 

 
 
 
 
 
 

   

 Figure 5. Fan Savings vs Unit Savings 

The calculated savings, which are fan-only savings, are less than the full measured 
savings in both instances. The shortfall is greater for unit 212 which was in ventilation-only 
mode at the lowest speed 57% of the time, while unit 202 was in ventilation mode for 98% of the 
time. This illustrates that, for individual units where there is a higher proportion of run time spent 
in cooling and heating, savings could be significantly underestimated by considering only the 
change in fan power. Figure 5 above shows the PNNL dataset of savings for all 61 RTUs in the 
study with fan savings plotted against total unit savings. While there is a good correlation 
between fan savings and total savings, it is easy to see that most points are above the dashed line 
where fan savings would equal the total savings.  

For this technology, the self-reported data is comprehensive, reliable and accurate. It 
allows for a simplified post-post methodology for savings estimation, although a utility would 
have to weigh the drawback of savings underestimation against M&V cost savings.  

CONCLUSIONS 

This paper set out to explore faster, cheaper, and better M&V for smart, Internet-
connected devices. In all three cases, digital lighting controls, smart thermostats, and the 
advanced RTU controller, we were able to get data from existing installations at no direct cost 
other than our staff time for outreach and analysis. The vendors we worked with all kept 
extensive historical data archives that were quickly aggregated and transferred to us for analysis. 
In comparison to traditional end-use submetering or large randomized field trials, M&V methods 
using data from connected devices was dramatically faster and cheaper.  

For digital lighting controls trial, data sets were available, but not standardized. Our trial 
data set had limited resolution and incomplete information about pre-existing baselines; 
however, these limitations do not necessarily apply to all vendor-reported data. When unbundled 
from lighting fixture retrofits, post/post methods appear valid for comparing advanced lighting 
controls with scheduled controls. 

For the advanced RTU controller trial, the self-reported data was comprehensive, reliable 
and accurate. It allows for a simplified post-post methodology for savings estimation, although a 
utility would have to weigh the drawback of savings underestimation against M&V cost savings. 



A desired method to eliminate the need for kW data was not achieved, so we plan future work 
for this. 

For the smart thermostats trial, the data we received included key variables (run time, set 
point, indoor temperature, outdoor temperature) for useful analysis of energy savings. Although 
we were lacking needed data for indoor temperatures during the pre-installation period, the 
method of combining post-installation run time regression with independently-obtained indoor 
temperature data appears promising from our very limited data set.  

We encountered challenges in connecting with vendors and did not obtain the extensive 
and robust data sets we desired. Intellectual property and barriers were generally not issues 
because key data was made anonymous, except for several smart thermostat vendors who cited 
these reasons for not providing any data for our trials. However, standardization of data points, 
recording intervals, and performance metrics were not solved with these trails and remain key 
challenges.  

Our central thesis that high-resolution real-time data will be used by vendors to improve 
product performance remains to be fully tested. Nevertheless, once agreements for sharing data 
were reached, the rapid speed, low cost, and easy scalability of these trials offer hope of utility 
M&V keeping up with innovations in this rapidly-developing field.  
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