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ABSTRACT

Forecasts of available wind power are critical in key electric power systems operations planning problems, including

economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost-

effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach

to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of

wind power production, with associated probability. We present and analyze a novel method for generating probabilistic

wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed

wind power time series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions,

allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then

describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to

which extreme errors are captured. We compare the performance of our approach to the current state-of-the-art considering

publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number

of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific

power systems operations planning problems: stochastic unit commitment and economic dispatch. Our methodology is

embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing

stochastic operations strategies. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last decade, models of power systems operations problems, such as unit commitment and economic dispatch,

have increased in complexity and fidelity, driven both by improvements in algorithms and computational platforms and

also out of necessity. An example of the latter is the rapid increase in the deployment of renewable resources over the

last decade, particularly wind power [1]. In response to the inherent and often significant uncertainty associated with wind
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power production, researchers have introduced a variety of advanced operations planning models that attempt to directly

address this aspect of renewables integration. One exemplar is stochastic unit commitment, in which probabilistic scenarios

of projected wind power serve as a key input [2]. While such stochastic operations planning models offer the potential for

higher degrees of reliability and cost-effectiveness, their advantages cannot be realized without high-quality probabilistic

wind power scenarios, which in turn must be extracted from high-accuracy stochastic process models. Specifically, the

probabilistic scenarios used as input to stochastic operations planning models must represent the full range of potential

outcomes as accurately as possible. If probabilistic wind power scenarios can be constructed in such a manner, a power

system can be operated to minimize overall expected costs for the whole range of scenarios, while maintaining system

reliability and ensuring maximal utilization (i.e., no curtailment) of available wind power. Including scenarios that are

far outside the realm of likely realizations unnecessarily inflates operational costs, while exclusion of relevant scenarios

impacts reliability.

Due in part to their central role in realizing the potential benefits of stochastic operations planning models, the

construction of probabilistic wind power scenarios has recently gained significant attention from the research community,

e.g., see [3]. However, a number of challenges remain, particularly as stochastic operations planning models are

approaching the point where they may be ultimately deployed, due to recent advances in mitigating computational

concerns, e.g., see [4, 5, 6].

Probabilistic wind power scenario generation methods commonly rely on the availability of a deterministic or “point”

forecast – typically the output of a numerical weather prediction (NWP) model – which specifies a single trajectory of wind

power over an operational time horizon. Probabilistic scenarios are then constructed by either sampling from parametric

forms of assumed forecast error distributions or by analyzing and characterizing historical wind conditions, dynamics,

and forecast errors. Realized wind power and forecast errors depend significantly on geographic location and local wind

conditions, as well as the characteristics of the farm or set of farms being evaluated. Probabilistic wind power scenarios

should be generated in such a way that they capture known relationships present in local wind patterns, such as temporal

dependencies, forecast biases, or correlations among farms. Further, they should capture low-probability “tail” events, so

that operations planning can address such events should they occur. On the other hand, probabilistic wind power scenario

sets should not contain unrealistic behaviors, e.g., extreme and cyclic ramping events not seen in real data. A balance is

difficult to achieve, as a set of scenarios should represent low-probability events, but not extremely unlikely events. One

can address this balance by selecting scenarios that capture the range of wind behaviors, e.g., steep ramps, that have been

historically observed.

In this paper, we present a novel method for generating probabilistic wind power scenarios, focusing on issues

related to the use of such scenarios in stochastic power systems operations planning models. Our scenarios are based

on non-parametric density estimates of forecast errors, as real-world data does not typically track parametric forms. For

characterizing forecast error, we specifically rely on the recently introduced epi-spline basis functions [7]. Epi-splines

are piecewise polynomial functions that facilitate non-parametric density estimation and allow the use of exogenous

information concerning the qualitative behavior of a problem of interest. Epi-splines can and have been used in a number

of applications, and are applicable as long as historical error data is available for estimation. These methods can be

applied to probabilistic solar and load scenario generation, as well as to problems where the calculation of the error

distribution is critical, such as the task of sizing electric power reserve requirements. We then construct probabilistic

scenarios by specifying particular quantiles in the forecast error distributions. This approach allows for careful user control

of the degree to which low-probability or “extreme” scenarios are represented. In contrast, sampling-based approaches

require significantly more scenarios to capture the same behaviors, significantly inflating the difficulty of any associated

stochastic power systems operations planning problem. Our proposed method also relies extensively on data segmentation.

Segmentation approaches are typically highly application-specific, and we introduce non-trivial segmentation methods for

wind power forecast data. These methods are described briefly in Section 3 and in detail in the Supplementary Material.

We begin in Section 2 by surveying prior efforts on probabilistic wind power forecasting, scenario generation, and

associated evaluation metrics. In Section 3, we present our methodology for generating probabilistic wind power scenarios.
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We compare the performance of our method with the current state-of-the-art method in Section 4, using a number of

statistical evaluation metrics considering publicly available real-world wind power data obtained from the Bonneville

Power Administration (BPA) in the US. Finally, we conclude in Section 5 by summarizing our contributions and offering

thoughts and directions for future research. We note that our scenario construction methodology is embodied in the jointly

developed Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic power

systems operations strategies; please contact authors for details regarding acquisition and use of this software. Similarly,

the probabilistic scenario sets and the input data used in their construction are available for unrestricted public use from

the authors.

2. BACKGROUND

Standard practice in power systems operations planning is to use a point forecast (often interpreted as the expected value

forecast) for estimating future available wind power and to allocate thermal generator reserves to account for deviations

of realized wind power from the forecast. The point forecast serves as input to deterministic optimization models, which

are solved to obtain recommendations for operational decisions, including thermal generator on/off statuses and dispatch

levels [8]. Similarly, point forecasts are commonly used in power systems simulations, e.g., production cost models and

reliability analyses [9]. Despite their widespread use, there are well-known problems with the use of point forecasts in these

and related contexts. In particular, available wind power is often the most uncertain quantity in power systems operation;

ignoring this uncertainty results in higher costs and potentially unreliable operations. One approach to representing wind

power forecast uncertainty is through the use of probabilistic scenarios, which collectively represent a range of potential

wind power trajectories over the near term, with associated probabilities. These probabilistic scenarios can then serve as

input to power systems operations planning models that explicitly address input parameter uncertainty, such as stochastic

unit commitment [2], and Monte Carlo production cost and reliability simulations. Probabilistic scenarios can also serve

as the basis of advanced visualizations regarding system operational risk, for presentation to system operators in the role

of decision support.

One widespread approach to constructing probabilistic wind power scenarios involves fitting models based strictly on

historical, observed wind power characteristics. For example, Morales et al. propose a methodology based on a time series

analysis of historical wind power, while also maintaining spatial correlation across distinct wind farms [10]. However, in

order for probabilistic scenarios to be truly effective in power system operations planning contexts, they must be based in at

least part on short-term forecasts of available wind power, which provide the best information about near-term conditions.

Early attempts at creating probabilistic wind power scenarios from forecasts were fairly simple. For example, Wang et

al. assume a normal distribution for available wind power, with the point forecast taken as the distribution mean and a

chosen percentage of the mean representing the standard deviation [11]. Pinson et al. proposed a greatly improved method

that accounts for both the interdependence of wind power prediction errors and the predictive distributions [3]. Their

method considers a multivariate Gaussian random variable, with the covariance matrix of the prediction errors being used

to estimate the multivariate distribution. Although this method represents the current state-of-the-art in probabilistic wind

power scenario generation and performs well relative to all known quality metrics, it possesses some shortfalls that may

limit applicability and/or effectiveness in certain key practical settings. In particular, the sampling procedure employed can

result in very erratic forecasted wind power trajectories (as we discuss later in Section 4), more so than those observed in

reality. Further, while a single wind farm may exhibit very sharp ramp events on a regular basis, in an aggregated service

area (e.g., consisting of multiple states and a dozen or more wind farms) these ramps are smoothed to varying degrees.

Erratic trajectories can significantly impact the solutions obtained from a stochastic operations planning model, as the

solution ensures feasibility in all potential scenarios at the expense of increased costs. Further, the Pinson et al. approach

requires large numbers of samples to accurately represent low-probability “tail” events – and the computational difficulty

of stochastic operations models is proportional to the number of probabilistic scenarios considered.
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Here, we rely on non-parametric estimates of forecast error densities to construct probabilistic scenarios from the

resultant distributions. We perform density estimation using epi-spline basis functions, which have been successfully

demonstrated on a number of applications, ranging from financial planning to image reconstruction [7]. Rios et al. discuss

the general use of epi-splines for probabilistic scenario generation [12]. Feng et al. successfully apply this methodology

to probabilistic scenario generation for electricity load forecasts [13]. Probabilistic scenarios generated using this type of

approach have been analyzed previously in the context of statistical quality metrics for wind scenario applications [14].

Extending the Rios et al. and Feng et al. probabilistic scenario generation methodologies to the context of wind

power is the primary contribution of this paper, in addition to our analysis of the quality of the resulting scenarios

relative to competing state-of-the-art methods – specifically that of Pinson et al. There are necessarily strong conceptual

similarities to scenario generation for forecasted power of any kind, whether generated (e.g., wind and solar power) or

consumed (e.g., load). While our method can be implemented using any non-parametric density estimator (including

empirical PDFs), we have chosen to leverage epi-spline basis functions. Epi-splines can be highly constrained and highly

parameterized based on underlying knowledge or beliefs about the stochastic process being modeled. Royset and Wets refer

to such information as soft knowledge, which can include knowledge concerning the continuity, smoothness, unimodality,

monotonicity, and moments of the expected density [15]. Finally, we observe that data segmentation is critical to the

success of our methodology, and that the details are application-specific. Consequently, another contribution of this paper

is our description of our segmentation procedure for wind power forecast data.

3. NON-PARAMETRIC FORECAST ERROR DENSITY ESTIMATION AND SCENARIO
GENERATION

Our method for scenario generation consists of constructing non-parametric forecast error density estimates for some

number of hours in a day, following a detailed segmentation of historical forecast and actual wind power time series.

Scenarios are then constructed by (1) specifying quantiles from these error distributions and (2) forming forecasted wind

power trajectories by “connecting” (via a process described subsequently) specified quantiles. Because we employ user-

specified quantiles, our method results in scenarios that target specific partitions of the error distribution. For example,

the resulting scenario sets may focus heavily on low-probability tail events, which are crucial for many applications,

including power system unit commitment. Parameters and constraints can be adjusted based on the nature of the specific

application, as wind conditions, wind variability, and forecast errors can vary drastically. The spread of the scenarios can

be systematically adjusted to achieve sufficient coverage of the expected domain of local wind conditions. Our approach

is based on the general scenario generation methodology introduced by [12], with the major difference being that we do

not use leading indicators (because they are not readily available). Instead, we make use of exogenously supplied next-

day forecasts. Further, we describe segmentation techniques specific to wind power, based on both the magnitude of the

forecasted wind power and the pattern of local first derivatives. Finally, we note that although we focus on hourly time

resolution and day-ahead scheduling in the presentation below, our methodology is generic with respect to time resolution.

Our general process involves first choosing a set of specific hours in the day-ahead forecast and computing the estimated

forecast error densities for those hours in the next-day forecast horizon. The next step involves choosing a set of probability

values at which to partition the cumulative distribution function (CDF) of the error density. Within each partition of the

distribution, we calculate the representative forecast error based on the probability-weighted error values. These error

values are then applied to next-day forecast for the specified hours with all combinations of hour and probability values

used to represent the different scenarios. Intra-hour values are interpolated to form full, 24-hour scenarios. Therefore, our

method is highly flexible due to the choices made with respect to these parameters.
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3.1. Terminology

We begin by introducing key terms associated with our non-parametric forecast error density estimation and associated

scenario generation processes:

• Day Part Separators (DPSs): The set of specific hours of the forecast horizon for which we compute forecast

error densities, e.g., {1, 12, 24}. As described below, we perform interpolation for hours between DPSs. Given K

DPSs, the set of DPSs is denoted by {t1, t2, . . . , tK}. The specific choice of hours should depend at least in part

on the correlation structure of the forecast error, which is generally low (e.g., on the order of hours) for wind [16].

We discuss the issue of wind power forecast error correlation further in Section 4, and provide an analysis of such

correlation for BPA data in Figure 3.

• Cut or Break Point Sets: Values in the domain of the inverse of a (cumulative) forecast error density, specified as

probabilities or quantiles. Every cut point set contains the values 0 and 1. For notational convenience, we typically

assume that there is at least one point in the set other than 0 and 1, although this is not strictly required. Generally,

we can define a cut point set for each DPS time tk, denoted as the ordered set Ck = {c1 = 0, . . . , c|Ck| = 1}.
However, we often assume a special case in which there is a single set of cut points shared among the DPSs

{t1, . . . , tK}.
In general, cut points can be path dependent. For DPS t1, there is one set of cut points in all cases, but in general

there can be additional – and conditional – cut point sets for DPSs in {t2, . . . , tK}. For DPS t2, there can be one

cut point set for each of the cut points associated with DPS t1, and so on. Thus, for DPSs with index k > 1, we can

in general define the path dependent cut point sets

Ck,` = {c1,` = 0, . . . , c|Ck,`|,` = 1}, ∀` ∈ L

where L denotes the cross product (all possible combinations) of all cut point sets for all DPSs in {2, . . . ,K}.
While our methodology and associated Prescient software package support both standard and path-dependent cut

points, we focus strictly on the former in this paper.

• Skeleton Points: For each DPS tk, we define a set of skeleton points Nk, the individual members of which are

defined as those wind power values at time tk that are representative of the forecast error partition between two

adjacent cut points ci−1 and ci in Ck for k ≥ 1, with appropriate generalization for path-dependent cut points.

These values represent the mean of the distribution within the partition. For a skeleton point n ∈ Nk, we denote the

corresponding wind power and associated probability respectively by l(n) and π(n).

• Scenarios: A scenario is defined as a time series of forecasted wind power quantities. Quantities at hours associated

with skeleton points are computed using estimated error densities applied to forecasts, while values for hours

between skeleton points are computed by interpolating the difference between the bounding skeleton points and

the forecast.

• Historical Database: Our methodology assumes the availability of a historic databaseW of forecasted wind power

time series and associated observations, i.e., actuals.

• Cumulative Forecast Error Density: For each DPS tk, we denote the associated cumulative forecast error density

by ΦEk . Although not identified in the notation (for purposes of simplicity), ΦEk is conditional on the specific hour

for which a wind power forecast is issued.

3.2. Non-Parametric Forecast Error Density Estimation

While our approach is independent of the particular method used to fit the forecast error densities ΦEk , the accuracy of the

resulting scenarios is obviously dependent on the specifics. Based on our experience with BPA and other real-world data

sets, non-parametric estimators are critical in wind power applications. Specifically, wind power forecast errors are often

skewed, conditional on the power regime (e.g., low, medium, or high), and are even then not easily captured via standard
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Figure 1. Examples of wind power forecast error distributions within BPA, illustrating variations in skew, variance, and distribution
shape across hours.

parametric forms. Figure 1 shows two examples of the distribution of BPA forecast errors for two days, for each DPS. Both

the probability density function (PDF) and cumulative density function (CDF) are shown for hours 1, 12, and 24 on the

respective days.

In this work, we use exponential epi-splines to compute the ΦEk [7]. For details on this method, we defer to [12]. Our

choice was driven in large part due to the accuracy of exponential epi-splines in the face of limited data. However, we

observe that simpler, empirical error densities could also be employed. Clearly, the wind power generated cannot be below

zero or above the installed capacity, so when the error distributions imply power outside these values the distribution is

truncated and the probability outside the boundary is assigned to the boundary. The segmentation methods described in

Section 3.4 seek to minimize this effect.

3.3. Scenario Generation

To generate scenarios for a given day, we assume the availability of a wind power forecast (e.g., obtained via a NWP model)

l̂h for h ∈ {1, . . . , 24}. for the next day. For each DPS tk, we identify a set of historical forecast errors Ek relevant to l̂tk .

By “relevant”, we mean that we identify – through the segmentation process described below and in the supplementary

material – historical forecasts and associated realizations that are closely related (specifically in terms of wind power and

local derivative) to l̂tk . We then non-parametrically estimate the cumulative error densities ΦEk . In part through inversion

of the ΦEk , we finally compute the skeleton pointsNk.

Scenarios are formed by combining skeleton points at distinct times tk, forming a skeleton whose probability is

straightforward to compute under the reasonable assumption of uncorrelated forecast errors at different DPSs. For the

data from BPA used in our experiments, forecast errors are not significantly correlated beyond lags of approximately 4

hours (e.g., see Figure 3 and associated discussion in Section 4), so this assumption does not limit our choice of DPSs in

any meaningful way. One can imagine situations where the time lags needed for uncorrelated errors would be quite large,

in which case the probability calculations would need to be modified accordingly. One option for doing so is the use of

copulas to capture the dependence between random variables [17]. Finally, for hours not associated with a DPS, scenario

wind power values are computed by interpolating between the skeleton points using the forecast.

The choice of day part separators and cut points determines the number of scenarios and the extent to which they

represent the tails of the distribution. When the cut points are not path dependent, then for each DPS, the number of

skeleton points is one less than the number of cut points and the number of scenarios is the product of these numbers over

the day part separators. When the cut points are path dependent, there is simply one scenario per path (unless some paths

are coincident so they are combined to form one scenario).
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Figure 2. A graphical representation of the process for computing skeleton points.

For simplicity, we continue to assume that the cut points are not path dependent, in order to minimize the notational

burden. Our scenario generation process is then specified as follows, and is executed for each DPS indexed by k:

1. Inputs: DPSs indexed by k and corresponding cut point sets Ck.

2. Initialize the set of skeleton points:Nk ← ∅.
3. From the historic wind power databaseW , identify a set of forecast errors Ek appropriate for estimating the error

distribution around the next-day forecast l̂tk , by focusing on similar historical data. This segmentation process is

described in detail below, and in the supplementary material.

4. Non-parametrically estimate the error density φEk .

5. Integrate φEk to obtain the cumulative error density ΦEk .

6. For j ∈ {2, . . . , |Ck|}, add n toNk such that:

l(n) = l̂tk +

∫ vj

vj−1

xφEk (x)dx

π(n) = cj − cj−1

where vj = Φ−1
Ek (cj) for j ∈ {1, . . . , |Ck|}

We graphically illustrate the computation of the skeleton points l(n) ∈ Nk in Figure 2.

The skeleton points form the basis of scenario generation. Following [12], we combine skeleton points to form scenarios,

with associated probability p(n) taken as the product of the composite skeleton point probabilities. As indicated previously,

this computation explicitly assumes no correlation in forecast errors between DPSs – an issue that can be rectified through

the use of copulas, for example, if warranted. We denote the difference between the value of the scenario skeleton points

and the day-ahead forecast values by (dk)k∈1,...,K , such that dk = l(nk)− l̂tk . For each hour h ∈ [tk−1, tk] that is

not associated with a DPS, we compute the linear interpolation d(.) between the points (tk−1, dk−1) and (tk, dk). The

interpolated value of the scenario at hour h is then given by l(h) = d(h) + l̂h.

One advantage of our approach over the state-of-the-art multivariate method is that we do not rely on sampling to

generate probabilistic scenarios. Rather, through the use of cut points and our associated methodology, we are able to

provide parametric control to users over the quantiles of the forecast error distribution considered. We argue that this

capability is critical in the context of advanced power systems operations planning models, e.g., stochastic unit commitment

and dispatch, as we can carefully control for the degree to which low-probability or “extreme” events are considered –

without the need to generate large numbers of scenarios as a by-product.
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3.4. Data Segmentation

As indicated in the pseudo-code above, we perform segmentation or sub-selection of the historical forecast dataW prior

to estimating error densities φEk . We leverage a dynamic segmentation process that identifies, for a particular day-ahead

forecast ŵ and for each DPS tk of that day, those historical forecasts w ∈ W that are “close” in a certain sense to ŵ. We

define these measures in the supplementary material. Error density estimation is then performed using only similar, relevant

historical forecasts. Through segmentation, we attempt to explicitly capture the notion that error density structures can be

dependent on the nature of the forecast ŵ. In this work, we segment data inW based on two attributes: the magnitude of

the wind power forecast and the local derivative pattern.

We take wind power magnitude into account during segmentation by using only historical data whose forecasted values

are within a given window of the forecasted quantity ŵ. Our approach is a sliding window version of the segmentation

procedure proposed by [18, 19], who in turn cite [20] as the original work. The window width is controlled by a parameter

defined on the unit interval (typically 0.4 in our experiments) that specifies the fraction of the distribution of observed

historical forecasts to consider, centered around the forecast to the extent possible (e.g., for high or low forecasts, obtaining

0.4 of the data requires that the top or bottom 0.4 are used).

We account for derivative patterns in forecasted wind power by developing an approach to clustering forecasts

considering their “local shape”. Our approach is based on the empirical hypothesis that forecast errors are linked to the

qualitative, local “shape” of the time series. The heuristic idea is that the presence of weather fronts determines the local

shape of the time series and these fronts have an impact on forecast errors. Consider a wind power forecast vector for

“tomorrow”, denoted (l̂h)h∈H , where H = {1, . . . , 24} denotes the hours in a day. For each hour h ∈ H , our goal is to

determine the set of historical forecasts W̃ ⊆ W that have similar shapes at hour h. Our method for computing the W̃ for

relevant wind derivative patterns is detailed in the supplementary material.

4. APPLICATION AND EVALUATION

We now compare our method to a current state-of-the-art method – that of Pinson et al. We use publicly available data from

the Bonneville Power Administration (BPA) balancing authority in the US for evaluation, which consists of historical wind

power forecast and corresponding actual (measured) time series. BPA has over 4500 MW of installed wind capacity, with

most farms located along the Columbia River in Oregon and Washington [21]. This dataset differs from that seen in many

wind power forecasting applications and studies, in that we only consider the aggregated data, instead of that for individual

wind farms (e.g., see [3]). Specifically, forecasts and actuals represent the output of all wind farms within the balancing

authority area. Aggregated power forecasts are utilized in many power systems applications, specifically in day-ahead

and related reliability commitment processes executed by large system operators. We generate and evaluate probabilistic

scenarios of aggregated wind power, although the described method can be applied at any scale (both spatial and temporal),

depending on the availability of relevant data. The comparison of the two methods is specific to the aggregated dataset used.

We use data from June 2012 through September 2013. The results presented here consider daily probabilistic scenarios

over a nine month period, from January 2013 through September 2013. All 2012 data is used for training both methods

[22].

We generate probabilistic wind power scenarios using both our non-parametric method and a state-of-the-art multivariate

Gaussian method proposed by Pinson et al., which we subsequently refer to simply as the multivariate method [3]. For

each day, we use the official BPA forecast issued at 11AM local time to generate probabilistic wind power scenarios for the

next day (12am to 11pm). This results in forecast lead times ranging from 13 to 36 hours. We use a rolling-horizon training

window when assessing both methods, to represent a re-enactment of the data that would have been available to operators

in real time, i.e., no future data is used. We start with a minimum of seven months of training data (June through December

2012) to generate probabilistic scenarios for the next day, and then add an additional day of training data (from the current
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(a) Wind Power Correlation
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(b) Wind Forecast Error Correlation

Figure 3. Autocorrelation coefficients for actual values of wind power (3a) and for the associated forecast error (3b). Note that the
correlation of forecast errors is significantly lower than that of actual power.

day) for each subsequent day. Therefore, probabilistic scenarios for the most recent days are based on significantly more

training data than the earliest days. The computational run-time is negligible for both methods.

We compare the probabilistic scenarios resulting from the two methods using a selection of relevant scenario evaluation

metrics. The Energy score, the Brier score, and Minimum Spanning Tree (MST) rank histograms are established

methods for comparing sets of probabilistic scenarios [23]. However, these metrics are known to lack sufficient ability

to discriminate in some circumstances [24, 14]. For this reason, we also include the Variogram score of order p, which

can detect misspecified correlations and is applicable to multivariate, ensemble-based forecasts [25]. In addition to these

metrics, we consider a relatively simple measure, the Integrated Distance, discussed subsequently. With the exception of

the MST rank histogram, all metrics are probability-weighted. Each scenario has an assigned probability, which is used in

the metric evaluations so that higher-probability scenarios are given more weight. The multivariate scenarios are designed

to have equal probability, as they are randomly sampled from a distribution. Our non-parametric scenarios, on the other

hand, generally possess unequal probabilities. Here, the probability assigned to each scenario is based on forecast error

distributions and the probability of falling in a given interval of that distribution. The method is agnostic to where the error

distribution comes from and could be applied to distributions covering multiple areas and from multiple data sources.

We note that our non-parametric method is highly configurable. Our initial evaluation was conducted using several

distinct sets of scenarios that were created with different cut point sets. In our final evaluation, we chose the

parameterization that yielded the strongest and most consistent performance. Specifically, we use hours 1, 12, and 24 as the

DPSs, and a shared cut point set Ck = {0.0, 0.1, 0.9, 1.0}, resulting in sets of 27 scenarios for each day. We also generate

the same number of scenarios using the multivariate method for all comparisons presented here. Our choice for DPSs is

driven by the observation that there is negligible correlation between forecast errors for these time periods, allowing us to

assume that the errors are independent – which is particularly critical when computing scenario probabilities. We show the

empirical correlations for our BPA wind power data in Figure 3, which illustrates that the correlation in wind power errors

drops off more quickly than the correlation in wind power itself.

Regarding the choice of parameters for our non-parametric method, we believe there is still room for improvement, as

our experimentation was limited. Further, there are additional parameters that can be modified and constraints that could

be considered (specifically associated with fitting the epi-spline basis functions), providing additional degrees of freedom

for customization. We observe that different cut point sets result in scenarios that, when used in unit commitment contexts,
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yield solutions with varying reliability and cost. Analyses considering the relationship between cut point sets and unit

commitment or dispatch solution reliability and cost is beyond the present scope, but is ultimately critical for operational

environments.

4.1. Comparative Baseline

We compare our method to that of Pinson et al. [3]. We implemented their method following the description in their original

manuscript. We first calculate the covariance matrix for the 24-hour forecast horizon based on quantile regression of the

training data. To generate scenarios for a given day, we estimate the marginal distribution for each hour in the 24-hour

period and then follow the three main steps detailed by Pinson et al.: (i) sample from a multivariate Gaussian distribution

with µ = 0 and σ equal to the recursively estimated covariance matrix with a forgetting factor of λ = 0.95, (ii) apply the

inverse probit function to obtain the CDF, and (iii) take the inverse of the CDF to obtain forecasted wind power quantities.

During the course of our analysis, we expanded on the basic method of Pinson et al. by testing alternative formulas

for use in the quantile regression of the training data. Initially, we used the forecast issued for hour t+ k to predict hour

t+ k. Subsequently, we used all 24 forecast hours to predict hour t+ k, computing the first several principal components

for all 24 forecast hours, principal components for the slope of the forecast data, and for the extended forecast and slope

when using an additional 2 hours before and after the day being predicted. In addition, we used cubic spline formulations

of the above mentioned variations, with degrees of freedom ranging from 1 to 5. No notable performance difference was

observed in these alternatives relative to the basic method. Thus, all of our subsequent evaluations are based on the simplest

variant of the Pinson et al. method, with one degree of freedom.

4.2. Qualitative Assessment

We first consider a qualitative analysis of the probabilistic wind power scenarios generated by the two methods, focusing

on visual comparison of the results. In Figure 4, we show scenarios corresponding to June 20, 2013. The selection of this

particular day is arbitrary; the results are representative of those for other days analyzed. The graphics in Figure 4(a) and

Figure 4(b) respectively correspond to probabilistic scenarios generated by the multivariate and non-parametric methods.

Each graphic depicts 27 scenarios. Scenario trajectories are colored in blue, while forecasted and actual wind power

trajectories are respectively colored in black and red. To simplify the depictions, scenario probabilities are not captured

in the figures. We immediately observe that the scenarios generated by the two methods are visually very different from

each other. The most striking difference relates to the erratic nature of the multivariate scenarios. Specifically, they exhibit

ramping behavior that is not present in the non-parametric scenarios nor the actual wind power trajectories.

Multivariate scenarios are generated via random sampling from distribution models based on historical data. Although

the distributions account for error covariance, there is nothing that constrains the between-hour variation in the sampling.

Thus, the scenarios can proceed from anywhere along the distribution in consecutive hours, allowing for large and

occasionally cyclic ramps. This may be an accurate representation of actual wind conditions in some areas. However,

we are evaluating the two methods on an aggregated area with multiple farms, where such erratic behavior is unexpected

and unrealistic.

Standard evaluation metrics for probabilistic scenario sets are not always adept at detecting visually obvious differences,

and research advances continue to improve such metrics [24, 26, 14]. Nevertheless, existing evaluation metrics do provide

a means (if imperfect) to quantify the quality, accuracy, and skill of scenario sets – all of which are necessary qualities

of high-quality probabilistic scenarios. Thus, it is critical that the scenarios generated by our non-parametric method

achieve state-of-the-art performance levels relative to these metrics – even if the qualitative differences suggest that non-

parametric scenarios are qualitatively distinct and possibly superior. We use standard comparative metrics here and leave

the development of advanced metrics for scenario quality determination to future research. We note that such research can

include both investigations of new metrics that capture the qualitative differences observed in Figure 4 and metrics that

investigate quality in terms of their impact on specific power systems operations problems, e.g., stochastic unit commitment

and economic dispatch.
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(a) Multivariate probabilistic scenarios
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(b) Non-parametric probabilistic scenarios

Figure 4. Probabilistic scenarios constructed using both the multivariate method (4a) and the non-parametric method (4b) for June
20, 2013. The plots depict 27 scenarios apiece, in addition to the point forecast and actual wind power.

4.3. Behavior Matching

Any probabilistic wind power scenario set should possess similar statistical properties to that of actual wind data. Thus, the

qualitative structure of scenarios associated with a wind farm that routinely sees large fluctuations would not be appropriate

when considering an aggregated set of wind farms, in which the fluctuations are somewhat smoothed by virtue of spatial

distribution. As discussed previously, the sampling process used to generate multivariate scenarios introduces some large

ramps and other erratic behavior. Deviations of this magnitude are not representative of the actual wind characteristics

for the BPA balancing authority area. While multivariate scenarios may be better suited to a single wind farm, they

introduce unrealistic probabilistic scenarios for BPA applications. In our non-parametric method, we emphasize the need

for application-specific segmentation, and only train on data with similar wind conditions to the present forecast. Lacking

the random sampling that is integral to the multivariate method, our approximation method for constructing scenarios from

non-parametric error density estimates yields smoother wind power trajectories, with more gradual ramps.

Scenarios that better match the behavioral properties of local wind are more appropriate for use when operating a

specific power system. Of course, heuristic methods exist that could be used to filter the multivariate scenarios based

on information about the historic wind conditions and what is deemed to be realistic wind behavior. However, our non-

parametric scenarios better and inherently match the behavioral characteristics of the actual wind, without resorting to

heuristics to filter out unwanted scenarios. Information regarding the behavior of probabilistic scenario sets and actual

wind observations is reported in Table I. We compare the ramp events occurring in the actual observations and the ramp

events found in probabilistic scenarios. The multivariate scenarios tend to have steeper ramps than the actuals. Our non-

parametric scenarios do not exactly match the behavior of the actual observations, but more closely match the expected

percentages of ramp events, especially for small ramps of 1 or 2%. The multivariate scenarios additionally have more

frequent large ramp events. For example, in the actual observations 93.2% of the hourly deviations fall within ± 10% of

the total wind power capacity. The multivariate scenarios, in contrast, have only 89.9% of ramps within± 10%, indicating

the relative frequency of larger ramps. Our non-parametric scenarios might prove to be slightly smooth in contrast, over-

estimating the proportion of these modest ramps, thus decreasing the frequency of very large ramps. Finally, we note

that the multivariate scenarios have significantly more extreme ramps (greater than ± 20%), which is consistent with the

depictions in Figure 4.
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Event Actuals Multivariate Non-Parametric
Ramps within ± 1% 37.8% 33.3% 37.5%
Ramps within ± 2% 52.3% 47.9% 54.2%
Ramps within ± 5% 76.7% 72.8% 83.5%
Ramps within ± 10% 93.2% 89.9% 98.1%
Ramps within ± 20% 99.4% 97.1% 99.9%

Table I. Proportion of hourly ramp events within specified wind capacity thresholds, for both actual observations and the probabilistic
wind scenario sets. The results for the non-parametric scenarios are based only on one set of cutpoints.

Method Energy score (std. dev.)
Multivariate 0.321 (0.171)
Non-Parametric 0.330 (0.196)
Paired t-test p-value 0.0067

Table II. Energy score means and standard deviations for probabilistic scenarios generated for January through September 2013.
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Figure 5. Daily Energy scores for days from February through April 2013.

4.4. Energy Score

The Energy score or metric is a proper (i.e., a perfect forecast will result in the best score), negatively-oriented (i.e., lower

is better) score that quantifies both the skill (accuracy) and sharpness (spread) of a scenario set [27, 28]. The Energy score

is computed as

ES =
J∑

j=1

pj

∥∥∥z − ẑ(j)∥∥∥
2
− 1

2

J∑
i=1

J∑
j=1

pipj

∥∥∥ẑ(i) − ẑ(j)∥∥∥
2

(1)

where J denotes the number of scenarios (J = 27 for all comparisons presented here), pj denotes the probability of

scenario j, ẑ denotes the set of probabilistic scenarios, and z denotes the actual wind power trajectory. Finally, ‖.‖2
denotes the Euclidean norm of the 24-hour vectors. Here, we evaluate the Energy score for each of our test days in 2013

and compare the daily scores of the multivariate and non-parametric methods. The mean and standard deviation of the

Energy scores are reported in Table II, while Figure 5 depicts the Energy score over a period of three months. The Energy

scores of probabilistic scenarios generated by the two methods are very similar, despite large visual differences. Further,

all scenario sets achieve low Energy scores on average, and even the day-to-day variation tracks very closely between

scenario sets. Fundamentally, the results indicate that probabilistic scenarios generated by both methods perform well, and

identify limitations associated with the Energy score metric in terms of discrimination ability.
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Event h Threshold ξ Multivariate Non-Parametric Paired t-test p-value
Gradient 3 20% 0.087 0.088 0.5057
Gradient 2 20% 0.046 0.046 0.9321
Ramp Up 1 10% 0.039 0.044 9.79E-07
Ramp Up 2 20% 0.027 0.030 0.0001

Ramp Down 1 10% 0.029 0.027 0.0133
Ramp Down 2 20% 0.015 0.014 0.0818

Table III. Average daily Brier scores from January 2013 through September 2013, for 6 predefined reference events.

4.5. Brier Score

The Brier score is also proper and negatively-oriented. It is an event-based evaluation metric, which assesses scenario sets

based on how well they perform with respect to a pre-defined event [29]. In the case of probabilistic wind scenarios, events

of interest include ramps (up or down) and the simple gradient over a given time period. The Brier score for a given set of

probabilistic scenarios is calculated as

BS =
1

T

T∑
t=1

(Pt[g(ẑ; θ)]− g(z; θ))2 (2)

where T denotes the number of time periods evaluated, θ denotes a parameter set that defines the reference event, and z

denotes the observed wind power trajectory. The quantity g(z; θ) indicates whether the defined event occurs in the observed

wind power trajectory, while Pt[g(ẑ; θ)] denotes the probability of the same event occurring in a set of probabilistic

scenarios. For example, in the case of a reference event with a parameter set consisting of the overall gradient threshold

(ξ) in a given time window (k hours) starting from a given time step (t), the respective formulas are given as

g(z; θ) = 1

{(
max

i∈{t,...,t+k}
yi − min

i∈{t,...,t+k}
yi

)
≥ ξ
}

(3)

Pt[g(ẑ; θ)] =

J∑
j=1

pjg(ẑ(j); θ) (4)

where J denotes the number of scenarios and ẑ denotes the probabilistic scenario set. In addition to overall gradient, other

events can be evaluated using the Brier score. Table III reports mean Brier scores of our BPA test data for several different

events of interest. The Brier score can change drastically based on how an event is defined, and a probabilistic scenario

set with very low scores for one event may have very high scores for a different event. Therefore it is important to identify

events that are relevant to the problem at hand. In the case of wind power, large ramps in small time frames are often

the most critical events for power systems operations planning. In this context, we consider both up- and down-ramps for

two different windows and thresholds: a 10% change (relative to capacity) in 1 hour and 20% change in 2 hours. We also

consider overall gradient events, which evaluate the difference between the highest and lowest wind power quantity in a

given time window. This event definition provides an indicator of variability, but is not confined to the strict definition

of a monotonic ramp. In general, we observe neither consistent nor significant overall differences in the Brier scores of

the multivariate and non-parametric scenarios. Finally, we show the time series of Brier scores for a gradient event and

a ramp down event in Figure 6. While there are rare large daily differences, neither of the methods consistently out- or

under-performs the other.

4.6. Rank Histograms

A Minimum Spanning Tree (MST) rank histogram is a visual metric for assessing the quality of probabilistic scenarios

[30]. To create the histogram, we first calculate the MST lengths for the set of all scenarios (measuring the distances among

all scenarios). We then calculate the MST lengths for each set of scenarios again, except that we substitute in the observed
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(a) Significant Gradient: 20% over 2 hours
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(b) Ramp Down: 20% over 2 hours

Figure 6. Brier scores for probabilistic wind power scenarios from February 2013 through April 2013, for events of a significant
gradient of 20% over 2 hours (6a) and a ramp down of 20% over 2 hours (6b).

trajectory for one of the scenarios and repeat this until we have calculated the MST length for the observed trajectory

taking the place of each scenario individually. This results in a set of MST lengths equal to the number of scenarios plus

one. We then order these MST lengths and identify the position of the length that corresponds to the scenario-only tree.

The value of interest is the rank (position) of the tree length containing only the scenarios among the lengths of all other

trees, which include the observation in place of each scenario in turn. The histogram then shows the distribution of these

ranks over all of the days being assessed. If the scenarios are drawn from the same distribution as the observation, the

histogram should be uniform, since the observation should be indistinguishable, on average, from any one of the scenarios.

Deviations from uniformity in the histogram can indicate problems of bias, underdispersion, or overdispersion. MST rank

histograms are useful in that they provide this additional information.

Figure 7 shows the MST rank histograms for the multivariate method and the non-parametric method. The multivariate

histogram has a slight peak towards the center of the distribution, which may indicate a slight overdispersion, but in

general, the histogram looks reasonable. In the case of the non-parametric method, the scenarios are not sampled from a

distribution. Since a ‘good’ rank histogram expects to see samples drawn from the same distribution, the non-parametric

scenarios perform poorly when put to this test. The non-parametric scenarios follow similar trajectories and are grouped

together through specified cut-points. For this reason, MST rank histograms for the non-parametric scenarios show large

underdispersion, indicated by the large spikes for the highest and lowest ranks. In most cases, the scenarios are much more
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Figure 7. Minimum Spanning Tree (MST) rank histograms. Note the different y-axis scales. The horizontal dotted line represents the
height of the ideal uniform histogram.

similar to each other than they are to the observed trajectory, and this results in the within-scenario tree having the shortest

length on average.

There has been considerable work done to improve and understand histogram-based metrics for multivariate quantities

[31]. Despite improvements, histogram methods are not appropriate evaluation metrics for our scenarios presented here,

as they are not designed to capture the range of a distribution and can instead be parameterized to target certain ranges of

a distribution.

4.7. Variogram Score

The Variogram score of order p is a proper, negatively oriented multivariate score based on pairwise differences between

components [25]. In general, a variogram describes the dependence of data across space and/or time. Thus, in contrast

to the Energy score, the Variogram score captures correlations between multivariate components. The Variagram score

is analyzed in [25], in the context of probabilistic wind speed forecasts. Later, [32] analyzes the Variagram score in the

context of probabilistic solar power scenarios.

The Variogram score metric is formally defined as

V S =

d∑
m,n=1

wmn

(
|zm − zn|p − E|Ẑm − Ẑn|p

)2
(5)

where z denotes the observation (i.e., actual) vector of length d, Ẑm and Ẑn denote the m-th and n-th component of a

random vector Ẑ (which here represents the scenario set), wmn denotes non-negative weights, and p denotes the order of

the variogram. Given a set of J scenarios ẑ(1), . . . , ẑ(J), the forecast variogram E|Ẑm − Ẑn|p can be approximated by

E|Ẑm − Ẑn|p ≈ pj
J∑

j=1

|ẑ(j)m − ẑ(j)n |p (6)

for m,n ∈ {1, . . . , d} and where pj denotes the probability of scenario j ∈ J . We evaluate the Variogram score using

values of p ∈ {0.5, 1, 2}. We also use two choices for the value of the weights, wmn: (1) equal weights across all hours of

the day and (2) weights set to the normalized average correlation of the actual wind production values between hours m

and n.
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Variogram score (std. dev.) Correlated Weights Equal Weights
p = 0.5 p = 1 p = 2 p = 0.5 p = 1 p = 2

Multivariate 0.355 (0.216) 0.211 (0.171) 0.074 (0.104) 0.379 (0.239) 0.237 (0.195) 0.088 (0.122)
Non-Parametric 0.351 (0.242) 0.192 (0.189) 0.064 (0.104) 0.372 (0.264) 0.217 (0.215) 0.077 (0.121)

Paired t-test p-values 6.32E-01 1.39E-04 3.20E-06 3.65E-01 2.11E-04 2.61E-05

Table IV. Average daily Variogram scores and standard deviations for both correlated and equal weights, evaluated for p ∈ {0.5, 1, 2}.
The evaluation period covers January 2013 through September 2013.
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Figure 8. Variogram scores for probabilistic wind power scenarios from February 2013 through April 2013, using order p = 2 and
correlated weights.

We report statistics for the daily Variogram scores for both the multivariate and non-parametric scenarios in Table IV,

using both weighting schemes and a range of p. Figure 8 depicts the Variogram score over a three-month period for

both methods using correlated weights and an order p = 2. The results demonstrate that the non-parametric scenarios are

qualitatively and statistically better (for p = 1 and p = 2) than the multivariate scenarios, indicating their strength in better

capturing temporal correlations presented in real wind power data.

4.8. Integrated Distance

Finally, we consider the Integrated Distance metric, a very simple method to compare probabilistic scenarios with an

observed trajectory. Informally, the Integrated Distance metric sums the absolute value of the difference between each

observed wind power quantity and the corresponding quantity in a particular probabilistic scenario. The resulting sum is

then weighted by probability, and the probability-weighted sums for all scenarios are aggregated. Like the Energy score,

the Integrated Distance metric is both proper and negatively oriented. The Integrated Distance metric is formally defined

as

ID =

J∑
j=1

pj

(
24∑
1

|ẑ(j) − z|

)
(7)

where J denotes the number of scenarios and pj denotes the probability of scenario j. Although this metric is not standard

in the literature, it does provide a straightforward and intuitive method to evaluate the distance between a probabilistic

scenario set and a corresponding observed trajectory. We report the mean and standard deviation of the Integrated Distance

metric for both methods in Table V, while Figure 9 depicts the Integrated Distance metric over a period of three months of

data. Under the Integrated Distance metric, the non-parametric scenarios perform noticeably better than the multivariate

scenarios. The large spikes that are often seen in the multivariate scenarios contribute to higher Integrated Distance
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Method Integrated Distance Metric (std. dev.)
Multivariate 2.29 (1.16)
Non-Parametric 1.89 (1.00)
Paired t-test p-value 2.56E-65

Table V. Integrated Distance averages and standard deviations for probabilistic wind power scenarios from February 2013 through
APril 2013.
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Figure 9. Integrated Distance plotted from February through April, 2013.

quantities, such that the metric is better able to differentiate the performance of the two types of probabilistic scenario

sets.

5. CONCLUSION

The non-parametric method we detail here generates high quality probabilistic wind power scenarios that perform well

when compared to the current state-of-the-art method, considering both qualitative features and quantitative quality

metrics. In contrast to the current state-of-the-art method, our non-parametric scenario generation method is designed

specifically for use with stochastic power systems operations planning models, e.g., unit commitment and economic

dispatch, which are executed by power system operators hours to days in advance. Specifically, we emphasize the ability

to specify scenarios in terms of forecast error distribution quantiles, allowing us to generate scenario sets of minimal size

by avoiding sampling. This feature is critical when solving stochastic operations planning models, as their computational

difficulty scales in proportion to the number of scenarios considered. Depending on the application, the errors from multiple

regions or facilities could be incorporated as well, with appropriate correlation structures captured if needed.

Our non-parametric scenarios perform well in comparison to the multivariate scenarios generated using a state-of-

the-art method when assessed using Energy score, Brier score, Variogram score, and Integrated Distance metrics. The

MST rank histogram is not an applicable measure for assessing our non-parametric scenarios, as they are not drawn from

a distribution. Additionally, we argue that our non-parametric scenarios are visually more appealing and realistic than

multivariate scenarios, although these differences are not well-captured by all quantitative metrics. Our non-parametric

method does not produce the sharp spikes and large deviations often found in multivariate scenarios, and the resulting time

series more closely resemble the behavior of actual wind power observations. The application presented here considers an

aggregated set of wind farms, with sharp ramps frequently smoothed out across farms due to geographic dispersion. For

this application, our non-parametric scenarios are smoother and more realistic-looking, and more closely match the ramp

characteristics of actual wind power. A qualitative difference is that our method produces scenarios that are naturally tree
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structured, a feature that could be exploited in multi-stage stochastic optimization – which is central in advanced stochastic

unit commitment and economic dispatch models.

In summary, our method offers a fundamentally different approach to probabilistic scenario generation for short-term

wind power. We emphasize the critical role of domain-specific segmentation when fitting our forecast error distributions

and the need for non-parametric distribution estimates. Our methodology is such that (1) parameters and constraints of the

underlying optimization models can be adjusted based on qualitative knowledge of local wind conditions, (2) cut points

and scenario “spread” can be adjusted systematically, without sampling, to achieve sufficient coverage of expected wind

conditions, and (3) specific knowledge of local-area wind can be taken into account. Ultimately, our probabilistic scenarios

are designed for use in stochastic power systems operations planning problems, and the real test of their value will be their

performance – in terms of both operations cost and system reliability – in such settings. This analysis is computationally

intensive, and the results are beyond the present scope. Thus, we leave this particular assessment to future work.
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