TABLE OF CONTENTS

Introduction. .. 1

Variance Requests .. 2

HIP III BO Categories of Action. .. 3

ESA-Listed Species Covered Under HIPIII. ... 4

Action Area. .. 6

The HIPIII Approval Process .. 7

General Aquatic Conservation Measures Applicable to all Actions 8

 Project Design and Site Preparation. ... 8
 Work Area Isolation & Fish Salvage. .. 13
 Construction and Post-Construction Conservation Measures 16
 Staged Rewatering Plan ... 18

HIPIII Turbidity Monitoring Protocol. .. 19

Fish Passage Restoration (Profile Discontinuities). ... 20

 1a) Dams, Water Control Structures, or Legacy Structures Removal 21
 1b) Consolidate, or Replace Existing Irrigation Diversions 23
 1c) Headcut and Grade Stabilization ... 26
 1d) Low Flow Consolidation ... 28
 1e) Provide Fish Passage at an Existing Facility ... 29

Fish Passage Restoration (Transportation Infrastructure). 30

 1f) Bridge and Culvert Removal or Replacement .. 30
 Guidelines for Calculating General Scour Elevations .. 33
 1g) Bridge and Culvert Maintenance .. 35
 1h) Installation of Fords ... 36

River, Stream, Floodplain and Wetland Restoration. ... 38

 2a) Improve Secondary Channel and Wetland Habitats .. 39
 2b) Set-back or Removal of Existing Berms, Dikes, and Levees 41
 2c) Protect Streambanks Using Bioengineering Methods 43
 2d) Install Habitat-Forming Natural Material Instream Structures (Large Wood, Boulders, and Spawning Gravel) ... 46
 2e) Riparian Vegetation Planting .. 50
 2f) Channel Reconstruction .. 51
 Monitoring and Adaptive Management Plan .. 52
Invasive Plant Treatments

- Table 1. Allowable Herbicides under HIPIII
- Table 2. Allowable Adjuvants under HIPIII
- Table 3. Required Herbicide Buffer Widths (from Bankfull Width)
- Table 4. Required Adjuvant Buffer Widths (from Bankfull Width)
- Variances for Herbicides
- Process Flowchart for HIPIII Herbicide Application
- Manage Vegetation Using Physical Control
- Conservation Measures for USFWS ESA-Listed Terrestrial Species
- Table 5: Maximum Application Rates within 1 Mile of Habitat where ESA-listed Terrestrial Species Occur
- Conservation Measures for USFWS ESA-Listed Plants

General Project and Data Summary Requirements (GPDSR)

- Project Background
- Resource Inventory and Evaluation
- Technical Data
- Construction – Contract Documentation

HIPIII Forms

- HIPIII Forms – Project Notification Form (PNF)
- HIPIII Forms – Project Completion (PCF)
- HIPIII Forms – Herbicide Use Form
- Restoration Review Team Frequently Asked Questions
- The NMFS Hydro-Division Review Process
- Work Element by HIPIII Risk Category
Introduction.

This handbook represents a concise summary of the requirements of two biological opinions (BOs) issued by the United States Fish and Wildlife Service (USFWS) and the National Marine Fisheries Service (NMFS) on the effects of BPA’s Habitat Improvement Program (HIP III).

The fish and wildlife habitat improvement projects funded by BPA are the focus of these two biological opinions. The BPA funds these projects in fulfillment of its obligations under two auspices: The Northwest Power and Conservation Council’s Columbia River Basin Fish and Wildlife Program, and the various Biological Opinions issued to BPA including the 2008 opinion addressing the operation and maintenance of the Federal Columbia River Hydropower System (FCRPS).

With HIP III, BPA has formed an internal restoration review team (RRT) of technical experts who provide a design review of each medium to high-risk project in accordance with design complexity and significance. This is a new internal quality assurance/quality control (QA/QC) process at BPA, the role of which is to define high, medium, and low risk project types, and then provide additional review on medium and higher risk projects.

The categories of action presented in this handbook represent construction related activities within the Fish Passage Restoration and the River, Stream, Floodplain and Wetland Restoration activity categories in addition to Invasive Plant Treatments.

For USFWS terrestrial species, species-specific conservation measures may apply. Please contact your Environmental Compliance Lead (EC lead) for additional requirements.

If at any time there are uncertainties in implementing or interpreting the Conservation Measures listed in this document, the project sponsor, in conjunction with BPA staff, and if necessary the Restoration Review Team (RRT), will coordinate with the Services to address these concerns and resolve any outstanding issues.

Link to this document:

https://www.bpa.gov/efw/FishWildlife/InformationforContractors/Pages/default.aspx
Variance Requests.

Because of the wide range of proposed activities and the natural variability within and between stream systems, BPA (on behalf of the applicant) may require variances from criteria specified herein. The Services will consider granting variances, especially when there is a clear conservation benefit or there are no additional adverse effects (especially incidental take) beyond that analyzed in the BOs. Contact your EC lead for more information.

Variance requests shall be made on the Project Notification Form, which shall then be submitted to and approved by the Services via email correspondence.

1) Define the requested variance and the relevant criterion.
2) Environmental conditions during when the action takes place (flow and weather).
3) Biological justification as to why a variance is necessary and a brief rationale why the variance will either provide a conservation benefit or, at a minimum, not cause additional adverse effects beyond the scope of the Opinion
4) Include as attachments any necessary approvals by state agencies.

Variances must be authorized by both the NMFS Branch Chief and USFWS Field Office Supervisor. If the Services do not approve a request for variance, the project sponsor and BPA will initiate individual Section 7 consultation with USFWS and/or NMFS on the identified action.
HIP III BO Categories of Action.

1. Fish Passage Restoration.
 Profile Discontinuities.
 b. Consolidate, or Replace Existing Irrigation Diversions.
 c. Headcut and Grade Stabilization.
 d. Low Flow Consolidation.
 e. Providing Fish Passage at an Existing Facility.
 Transportation Infrastructure.
 f. Bridge and Culvert Removal or Replacement.
 g. Bridge and Culvert Maintenance.
 h. Installation of Fords.

2. River, Stream, Floodplain, and Wetland Restoration.
 a. Improve Secondary Channel and Wetland Habitats.
 b. Set-back or Removal of Existing, Berms, Dikes, and Levees.
 c. Protect Streambanks Using Bioengineering Methods.
 d. Install Habitat-Forming Natural Material Instream Structures (Large Wood, Boulders, and Spawning Gravel).
 e. Riparian Vegetation Planting.
 f. Channel Reconstruction.

3. Invasive and Non-Native Plant Control.
 a. Manage Vegetation using Physical Controls.
 b. Manage Vegetation using Herbicides.

4. Road and Trail Erosion Control, Maintenance, and Decommissioning.
 b. Decommission Roads.

5. Piling Removal.

6. In-channel Nutrient Enhancement.

7. Irrigation and Water Delivery/Management Actions.
 a. Convert Delivery System to Drip or Sprinkler Irrigation.
 b. Convert Water Conveyance from Open Ditch to Pipeline or Line Leaking Ditches or Canals.
 c. Convert from Instream Diversions to Groundwater Wells for Primary Water Sources.
 d. Install or Replace Return Flow Cooling Systems.
 e. Install Irrigation Water Siphon Beneath Waterway.
 f. Livestock Watering Facilities.
 g. Install New or Upgrade/Maintain Existing Fish Screens.

9. Special Actions (for Terrestrial Species).
 a. Install/develop Wildlife Structures.
 b. Fencing construction for Livestock Control
 c. Implement Erosion Control Practices.
 d. Plant Vegetation.
 e. Tree Removal for LW Projects.
ESA-Listed Species Covered Under HIPIII.

<table>
<thead>
<tr>
<th>ANADROMOUS SALMONIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Columbia River Chinook salmon</td>
</tr>
<tr>
<td>Upper Willamette River spring-run Chinook salmon</td>
</tr>
<tr>
<td>Upper Columbia River spring-run Chinook salmon</td>
</tr>
<tr>
<td>Snake River spring/summer-run Chinook salmon</td>
</tr>
<tr>
<td>Snake River fall-run Chinook salmon</td>
</tr>
<tr>
<td>Columbia River chum salmon</td>
</tr>
<tr>
<td>Lower Columbia River coho salmon</td>
</tr>
<tr>
<td>Oregon Coast coho salmon</td>
</tr>
<tr>
<td>Snake River sockeye salmon</td>
</tr>
<tr>
<td>Lower Columbia River steelhead</td>
</tr>
<tr>
<td>Upper Willamette River steelhead</td>
</tr>
<tr>
<td>Middle Columbia River steelhead</td>
</tr>
<tr>
<td>Upper Columbia River steelhead</td>
</tr>
<tr>
<td>Snake River Basin steelhead</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANADROMOUS FISHERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific Eulachon</td>
</tr>
<tr>
<td>Green Sturgeon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FRESHWATER FISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bull Trout</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAMMALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada lynx</td>
</tr>
<tr>
<td>Columbia White-tailed Deer</td>
</tr>
<tr>
<td>Gray wolf</td>
</tr>
<tr>
<td>Grizzly Bear</td>
</tr>
<tr>
<td>North American wolverine</td>
</tr>
<tr>
<td>Northern Idaho ground squirrel</td>
</tr>
<tr>
<td>Pygmy rabbit</td>
</tr>
<tr>
<td>Woodland caribou</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIRDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marbled murrelet</td>
</tr>
<tr>
<td>Northern spotted owl</td>
</tr>
<tr>
<td>Streaked horned lark</td>
</tr>
<tr>
<td>Western snowy plover</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INVERTEBRATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banbury Springs limpet</td>
</tr>
<tr>
<td>Bliss Rapids snail</td>
</tr>
<tr>
<td>Bruneau Hot springsnail</td>
</tr>
<tr>
<td>Snake River Physa snail</td>
</tr>
<tr>
<td>Fender's blue butterfly</td>
</tr>
<tr>
<td>Oregon silverspot butterfly</td>
</tr>
<tr>
<td>Taylor's checkerspot butterfly</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bradshaw's lomatium</td>
</tr>
<tr>
<td>Cook's lomatium</td>
</tr>
<tr>
<td>Common Name</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Gentner's fritillary</td>
</tr>
<tr>
<td>Golden paintbrush</td>
</tr>
<tr>
<td>Howell's spectacular thelypody</td>
</tr>
<tr>
<td>Kincaid's lupine</td>
</tr>
<tr>
<td>Large-flowered wooly meadowfoam</td>
</tr>
<tr>
<td>Malheur wire-lettuce</td>
</tr>
<tr>
<td>McFarlane's four o'clock</td>
</tr>
<tr>
<td>Nelson's checkermallow</td>
</tr>
<tr>
<td>Rough popcorn flower</td>
</tr>
<tr>
<td>Showy stickseed</td>
</tr>
<tr>
<td>Slickspot peppergrass</td>
</tr>
<tr>
<td>Spalding's catchfly</td>
</tr>
<tr>
<td>Umtanum Desert buckwheat</td>
</tr>
<tr>
<td>Ute ladies' tresses</td>
</tr>
<tr>
<td>Water howellia</td>
</tr>
<tr>
<td>Wenatchee Mountain checkermallow</td>
</tr>
<tr>
<td>Western lily</td>
</tr>
<tr>
<td>Willamette daisy</td>
</tr>
<tr>
<td>White Bluffs bladderpod</td>
</tr>
</tbody>
</table>
Action Area.

BPA widened the action area for HIP III beyond the Columbia River Basin in Oregon, Washington and Idaho to include western Montana and Oregon coastal river basins from the Columbia River south to Cape Blanco in southwestern Oregon, to reflect anticipated HIP III expenditures in these geographic areas.
The HIPIII Approval Process.

1) **Sponsor** provides conceptual designs to **EC Lead**.

2) **EC Lead** makes **Risk Determination**.
 a) If **Low** Risk, the **EC Lead** provides to **Sponsor** (then skip to step 7):
 i) Conservation Measures Checklist or CAD file.
 ii) HIPIII Project Notification Form (PNF, Page 72).
 b) If **Med/High** Risk, the **EC Lead** provides to **Sponsor**:
 i) Conservation Measures Checklist or CAD file.
 ii) General Project and Data Summary Requirements (GPDSR, Page 66).
 iii) HIPIII Project Notification Form (PNF).

3) **Sponsor** provides draft GPDSR and design plans to **EC Lead**.

4) **EC Lead** submits project to **RRT**.

5) **RRT Process** begins (once information requirements are complete).
 a) **RRT** Team member is assigned.
 b) Review schedule is determined (how many review junctures).
 c) Interagency Participation is solicited (for **High** risk projects).
 d) Site visit scheduled (if necessary).
 e) **RRT** conducts review at specified review junctures (15, 30, 80%):
 i) Functional review (for **Med/High** risk projects).
 ii) Technical review (for **Med/High** risk projects).
 iii) Interagency review (for **High** risk projects).
 f) **RRT** shall compile and submit comments from review, comments shall be either:
 i) Clarifications.
 ii) Recommendations.
 iii) Requirements.
 g) **Sponsor** addresses comments and resubmits design documentation (if necessary).
 h) **RRT** approves design:
 i) If **Med** Risk RRT member sends approval email to **EC Lead**.
 ii) If **High** Risk RRT member solicits final approval from **NMFS** branch chief
 and/or **USFWS** field office supervisor.

6) **RRT** review is complete.

7) **EC Lead** or sponsor gets **NMFS** Hydro approval (where needed, see Page 78). This can
 be concurrent with **RRT** review.

8) **Sponsor** submits Final Designs and PNF to **EC lead**.

9) **EC lead** submits completed PNF to Services (NMFS/USFWS).

10) HIPIII coverage is complete.
General Aquatic Conservation Measures Applicable to all Actions.

The activities covered under the HIP III are intended to protect and restore fish and wildlife habitat with long-term benefits to ESA-listed species. However, project construction may have short-term adverse effects on ESA-listed species and associated critical habitat. To minimize these short-term adverse effects and make them predictable for the purposes of programmatic analysis, the BPA will include in all projects implemented under this HIP III proposed action the following general conservation measures (developed in coordination with USFWS and NMFS).

Project Design and Site Preparation.

1) **Climate change.** Best available science regarding the future effects within the project area of climate change, such as changes in stream flows and water temperatures, will be considered during project design.

2) **State and Federal Permits.** All applicable regulatory permits and official project authorizations will be obtained before project implementation. These permits and authorizations include, but are not limited to, National Environmental Policy Act, National Historic Preservation Act, and the appropriate state agency removal and fill permit, USACE Clean Water Act (CWA) 404 permits, and CWA section 401 water quality certifications.

3) **Timing of in-water work.** Appropriate state (Oregon Department of Fish and Wildlife (ODFW), Washington Department of Fish and Wildlife (WDFW), Idaho Department of Fish and Game (IDFG), and Montana Fish Wildlife and Parks (MFWP)) guidelines for timing of in-water work windows (IWW) will be followed.
 a) Bull trout - While utilizing the appropriate State designated in-water work period will lessen the risk to bull trout, this alone may not be sufficient to adequately protect local bull trout populations. This is especially true if work is occurring in spawning and rearing areas because eggs, alevin, and fry are in the substrate or closely associated habitats nearly year round. Some areas may not have designated in-water work windows for bull trout or if they do, they may conflict with work windows for salmon and steelhead. If this is the case, or if proposed work is to occur within bull trout spawning and rearing habitats, project proponents will contact the appropriate USFWS Field Office to insure that all reasonable implementation measures are considered and an appropriate in-water work window is being used to minimize project effects.
 b) Lamprey – the project sponsor and/or their contractors will avoid working in stream or river channels that contain Pacific Lamprey from March 1 to July 1 in low to mid elevation reaches (<5,000 feet). In high elevation reaches (>5,000 feet), the project sponsor will avoid working in stream or river channels from March 1 to August 1. If either timeframe is incompatible with other objectives, the area will be surveyed for nests and lamprey presence, and avoided if possible. If lampreys are known to exist, the project...
sponsoring agency will utilize dewatering and salvage procedures outlined in US Fish and Wildlife Service (2010)\(^1\).

c) Exceptions to ODFW, WDFW, MFWP, or IDFG in-water work windows will be requested through the Variance process (Page 2).

4) **Contaminants.** The project sponsor will complete a site assessment with the following elements to identify the type, quantity, and extent of any potential contamination for any action that involves excavation of more than 20 cubic yards of material:
 a) A review of available records, such as former site use, building plans, and records of any prior contamination events;
 b) A site visit to inspect the areas used for various industrial processes and the condition of the property;
 c) Interviews with knowledgeable people, such as site owners, operators, and occupants, neighbors, or local government officials; and
 d) A summary, stored with the project file that includes an assessment of the likelihood that contaminants are present at the site, based on items 4(a) through 4(c).

5) **Site layout and flagging.** Prior to construction, the action area will be clearly flagged to identify the following:
 a) Sensitive resource areas, such as areas below ordinary high water, spawning areas, springs, and wetlands;
 b) Equipment entry and exit points;
 c) Road and stream crossing alignments;
 d) Staging, storage, and stockpile areas; and
 e) No-spray areas and buffers.

6) **Temporary access roads and paths.**
 a) Existing access roads and paths will be preferentially used whenever reasonable, and the number and length of temporary access roads and paths through riparian areas and floodplains will be minimized to lessen soil disturbance and compaction, and impacts to vegetation.
 b) Temporary access roads and paths will not be built on slopes where grade, soil, or other features suggest a likelihood of excessive erosion or failure. If slopes are steeper than 30\(^\circ\), then the road will be designed by a civil engineer with experience in steep road design.
 c) The removal of riparian vegetation during construction of temporary access roads will be minimized. When temporary vegetation removal is required, vegetation will be cut at ground level (not grubbed).
 d) At project completion, all temporary access roads and paths will be obliterated, and the soil will be stabilized and revegetated. Road and path obliteration refers to the most comprehensive degree of decommissioning and involves decompacting the surface and

ditch, pulling the fill material onto the running surface, and reshaping to match the original contour.

e) Temporary roads and paths in wet areas or areas prone to flooding will be obliterated by the end of the in-water work window.

7) **Temporary stream crossings.**
 a) Existing stream crossings will be preferentially used whenever reasonable, and the number of temporary stream crossings will be minimized.
 b) Temporary bridges and culverts will be installed to allow for equipment and vehicle crossing over perennial streams during construction. Treated wood shall not be used on temporary bridge crossings or in locations in contact with or over water.
 c) Equipment and vehicles will cross the stream in the wet only where:
 i. The streambed is bedrock; or
 ii. Mats or off-site logs are placed in the stream and used as a crossing.
 d) Vehicles and machinery will cross streams at right angles to the main channel wherever possible.
 e) The location of the temporary crossing will avoid areas that may increase the risk of channel re-routing or avulsion.
 f) Potential spawning habitat (i.e., pool tailouts) and pools will be avoided to the maximum extent possible.
 g) No stream crossings will occur at active spawning sites, when holding adult listed fish are present, or when eggs or alevins are in the gravel. The appropriate state fish and wildlife agency will be contacted for specific timing information.
 h) After project completion, temporary stream crossings will be obliterated and the stream channel and banks restored.

8) **Staging, storage, and stockpile areas.**
 a) Staging areas (used for construction equipment storage, vehicle storage, fueling, servicing, and hazardous material storage) will be 150 feet or more from any natural water body or wetland, or on an adjacent, established road area in a location and manner that will preclude erosion into or contamination of the stream or floodplain.
 b) Natural materials used for implementation of aquatic restoration, such as large wood, gravel, and boulders, may be staged within the 100-year floodplain.
 c) Any large wood, topsoil, and native channel material displaced by construction will be stockpiled for use during site restoration at a specifically identified and flagged area.
 d) Any material not used in restoration, and not native to the floodplain, will be removed to a location outside of the 100-year floodplain for disposal.

9) **Equipment.** Mechanized equipment and vehicles will be selected, operated, and maintained in a manner that minimizes adverse effects on the environment (e.g., minimally-sized, low pressure tires; minimal hard-turn paths for tracked vehicles; temporary mats or plates within wet areas or on sensitive soils). All vehicles and other mechanized equipment will be:
 a) Stored, fueled, and maintained in a vehicle staging area placed 150 feet or more from any natural water body or wetland or on an adjacent, established road area;
 b) Refueled in a vehicle staging area placed 150 feet or more from a natural waterbody or wetland, or in an isolated hard zone, such as a paved parking lot or adjacent, established
road (this measure applies only to gas-powered equipment with tanks larger than 5 gallons);
c) Biodegradable lubricants and fluids shall be used on equipment operating in and adjacent
to the stream channel and live water.
d) Inspected daily for fluid leaks before leaving the vehicle staging area for operation within
150 feet of any natural water body or wetland; and
e) Thoroughly cleaned before operation below ordinary high water, and as often as
necessary during operation, to remain grease free.

10) **Erosion control.** Erosion control measures will be prepared and carried out, commensurate
in scope with the action, that may include the following:
 a) Temporary erosion controls.
 i. Temporary erosion controls will be in place before any significant alteration of the
 action site and appropriately installed downslope of project activity within the
 riparian buffer area until site rehabilitation is complete.
 ii. If there is a potential for eroded sediment to enter the stream, sediment barriers will
 be installed and maintained for the duration of project implementation.
 iii. Temporary erosion control measures may include fiber wattles, silt fences, jute
 matting, wood fiber mulch and soil binder, or geotextiles and geosynthetic fabric.
 iv. Soil stabilization utilizing wood fiber mulch and tackifier (hydro-applied) may be
 used to reduce erosion of bare soil if the materials are noxious weed free and nontoxic
 to aquatic and terrestrial animals, soil microorganisms, and vegetation.
 v. Sediment will be removed from erosion controls once it has reached 1/3 of the
 exposed height of the control.
 vi. Once the site is stabilized after construction, temporary erosion control measures will
 be removed.
 b) Emergency erosion controls. The following materials for emergency erosion control will
 be available at the work site:
 i. A supply of sediment control materials; and
 ii. An oil-absorbing floating boom whenever surface water is present.

11) **Dust abatement.** The project sponsor will determine the appropriate dust control measures
 by considering soil type, equipment usage, prevailing wind direction, and the effects caused
 by other erosion and sediment control measures. In addition, the following criteria will be
 followed:
 a) Work will be sequenced and scheduled to reduce exposed bare soil subject to wind
 erosion.
 b) Dust-abatement additives and stabilization chemicals (typically magnesium chloride,
 calcium chloride salts, or ligninsulfonate) will not be applied within 25 feet of water or a
 stream channel and will be applied so as to minimize the likelihood that they will enter
 streams. Applications of ligninsulfonate will be limited to a maximum rate of 0.5 gallons
 per square yard of road surface, assuming a 50:50 (ligninsulfonate to water) solution.
 c) Application of dust abatement chemicals will be avoided during or just before wet
 weather, and at stream crossings or other areas that could result in unfiltered delivery of
 the dust abatement materials to a waterbody (typically these would be areas within 25
feet of a waterbody or stream channel; distances may be greater where vegetation is sparse or slopes are steep).
d) Spill containment equipment will be available during application of dust abatement chemicals.
e) Petroleum-based products will not be used for dust abatement.

13) **Spill prevention, control, and counter measures.** The use of mechanized machinery increases the risk for accidental spills of fuel, lubricants, hydraulic fluid, or other contaminants into the riparian zone or directly into the water. Additionally, uncured concrete and form materials adjacent to the active stream channel may result in accidental discharge into the water. These contaminants can degrade habitat, and injure or kill aquatic food organisms and ESA-listed species. The project sponsor will adhere to the following measures:
 a) A description of hazardous materials that will be used, including inventory, storage, and handling procedures will be available on-site.
 b) Written procedures for notifying environmental response agencies will be posted at the work site.
 c) Spill containment kits (including instructions for cleanup and disposal) adequate for the types and quantity of hazardous materials used at the site will be available at the work site.
 d) Workers will be trained in spill containment procedures and will be informed of the location of spill containment kits.
 e) Any waste liquids generated at the staging areas will be temporarily stored under an impervious cover, such as a tarpaulin, until they can be properly transported to and disposed of at a facility that is approved for receipt of hazardous materials.

14) **Invasive species control.** The following measures will be followed to avoid introduction of invasive plants and noxious weeds into project areas:
 a) Prior to entering the site, all vehicles and equipment will be power washed, allowed to fully dry, and inspected to make sure no plants, soil, or other organic material adheres to the surface.
 b) Watercraft, waders, boots, and any other gear to be used in or near water will be inspected for aquatic invasive species.
 c) Wading boots with felt soles are not to be used due to their propensity for aiding in the transfer of invasive species.
Work Area Isolation & Fish Salvage.

Any work area within the wetted channel will be isolated from the active stream whenever ESA-listed fish are reasonably certain to be present, or if the work area is less than 300-feet upstream from known spawning habitats. When work area isolation is required, design plans will include all isolation elements, fish release areas, and, when a pump is used to dewater the isolation area and fish are present, a fish screen that meets NMFS’s fish screen criteria (NMFS 2011\(^2\), or most current). Work area isolation and fish capture activities will occur during periods of the coolest air and water temperatures possible, normally early in the morning versus late in the day, and during conditions appropriate to minimize stress and death of species present.

For salvage operations in known bull trout spawning and rearing habitat, electrofishing shall only occur from May 1 to July 31. No electrofishing will occur in any bull trout occupied habitat after August 15. Bull trout are very temperature sensitive and generally should not be electroshocked or otherwise handled when temperatures exceed 15 degrees celsius. Salvage activities should take place during periods of the coolest air and water temperatures possible, normally early in the morning versus late in the day, and during conditions appropriate to minimize stress to fish species present.

Salvage operations will follow the ordering, methodologies, and conservation measures specified below in Steps 1 through 6. Steps 1 and 2 will be implemented for all projects where work area isolation is necessary according to conditions above. Electrofishing (Step 3) can be implemented to ensure all fish have been removed following Steps 1 and 2, or when other means of fish capture may not be feasible or effective. Dewatering and rewatering (Steps 4 and 5) will be implemented unless wetted in-stream work is deemed to be minimally harmful to fish, and is beneficial to other aquatic species. Dewatering will not be conducted in areas known to be occupied by lamprey, unless lampreys are salvaged using guidance set forth in US Fish and Wildlife Service (2010)\(^3\).

1) **Isolate.**

 a) Block nets will be installed at upstream and downstream locations and maintained in a secured position to exclude fish from entering the project area.

 b) Block nets will be secured to the stream channel bed and banks until fish capture and transport activities are complete. Block nets may be left in place for the duration of the project to exclude fish.

 c) If block nets remain in place more than one day, the nets will be monitored at least daily to ensure they are secured to the banks and free of organic accumulation. If the project is within bull trout spawning and rearing habitat, the block nets must be checked every four

hours for fish impingement on the net. Less frequent intervals must be approved through a variance request.

d) Net will be monitored hourly anytime there is instream disturbance.

2) **Salvage.** As described below, fish trapped within the isolated work area will be captured to minimize the risk of injury, then released at a safe site:

a) Remove as many fish as possible prior to dewatering.
b) During dewatering, any remaining fish will be collected by hand or dip nets.
c) Seines with a mesh size to ensure capture of the residing ESA-listed fish will be used.
d) Minnow traps will be left in place overnight and used in conjunction with seining.

e) If buckets are used to transport fish:
 i. The time fish are in a transport bucket will be limited, and will be released as quickly as possible;
 ii. The number of fish within a bucket will be limited based on size, and fish will be of relatively comparable size to minimize predation;
 iii. Aerators for buckets will be used or the bucket water will be frequently changed with cold clear water at 15 minute or more frequent intervals.
 iv. Buckets will be kept in shaded areas or will be covered by a canopy in exposed areas.
 v. Dead fish will not be stored in transport buckets, but will be left on the stream bank to avoid mortality counting errors.

f) As rapidly as possible (especially for temperature-sensitive bull trout), fish will be released in an area that provides adequate cover and flow refuge. Upstream release is generally preferred, but fish released downstream will be sufficiently outside of the influence of construction.

gh) Salvage will be supervised by a qualified fisheries biologist experienced with work area isolation and competent to ensure the safe handling of all fish.

3) **Electrofishing.** Electrofishing will be used only after other salvage methods have been employed or when other means of fish capture are determined to not be feasible or effective. If electrofishing will be used to capture fish for salvage, the salvage operation will be led by an experienced fisheries biologist and the following guidelines will be followed:

a) The NMFS’s electrofishing guidelines (NMFS 2000).
b) Only direct current (DC) or pulsed direct current (PDC) will be used and conductivity must be tested.
 i. If conductivity is less than 100 µs, voltage ranges from 900 to 1100 will be used.
 ii. For conductivity ranges between 100 to 300 µs, voltage ranges will be 500 to 800.
 iii. For conductivity greater than 300 µs, voltage will be less than 400.

c) Electrofishing will begin with a minimum pulse width and recommended voltage and then gradually increase to the point where fish are immobilized.

d) The anode will not intentionally contact fish.

e) Electrofishing shall not be conducted when the water conditions are turbid and visibility is poor. This condition may be experienced when the sampler cannot see the stream bottom in one foot of water.

f) If mortality or obvious injury (defined as dark bands on the body, spinal deformations, de-scaling of 25% or more of body, and torpidity or inability to maintain upright attitude after sufficient recovery time) occurs during electrofishing, operations will be
immediately discontinued, machine settings, water temperature and conductivity checked, and procedures adjusted or electrofishing postponed to reduce mortality.

4) **Dewater.** Dewatering, when necessary, will be conducted over a sufficient period of time to allow species to naturally migrate out of the work area and will be limited to the shortest linear extent practicable.

a) Diversion around the construction site may be accomplished with a coffer dam and a by-pass culvert or pipe, or a lined, non-erodible diversion ditch. Where gravity feed is not possible, a pump may be used, but must be operated in such a way as to avoid repetitive dewatering and rewatering of the site. Impoundment behind the cofferdam must occur slowly through the transition, while constant flow is delivered to the downstream reaches.

b) All pumps will have fish screens to avoid juvenile fish impingement or entrainment, and will be operated in accordance with NMFS’s current fish screen criteria (NMFS 2011\(^4\), or most recent version). If the pumping rate exceeds 3 cubic feet second (cfs), a NMFS Hydro fish passage review will be necessary.

c) Dissipation of flow energy at the bypass outflow will be provided to prevent damage to riparian vegetation or stream channel.

d) Safe reentry of fish into the stream channel will be provided, preferably into pool habitat with cover, if the diversion allows for downstream fish passage.

e) Seepage water will be pumped to a temporary storage and treatment site or into upland areas to allow water to percolate through soil or to filter through vegetation prior to reentering the stream channel.

5) **Salvage Notice.** Monitoring and recording of fish presence, handling, and mortality must occur during the duration of the isolation, salvage, electrofishing, dewatering, and rewatering operations. Once operations are completed, a salvage report will document procedures used, any fish injuries or deaths (including numbers of fish affected), and causes of any deaths.

Construction and Post-Construction Conservation Measures.

1) **Fish passage.** Fish passage will be provided for any adult or juvenile fish likely to be present in the action area during construction, unless passage did not exist before construction or the stream is naturally impassable at the time of construction. If the provision of temporary fish passage during construction will increase negative effects on aquatic species of interest or their habitat, a variance can be requested from the NMFS Branch Chief and the FWS Field Office Supervisor. Pertinent information, such as the species affected, length of stream reach affected, proposed time for the passage barrier, and alternatives considered, will be included in the variance request.

2) **Construction and discharge water.**
 a) Surface water may be diverted to meet construction needs, but only if developed sources are unavailable or inadequate.
 b) Diversions will not exceed 10% of the available flow.
 c) All construction discharge water will be collected and treated using the best available technology applicable to site conditions.
 d) Treatments to remove debris, nutrients, sediment, petroleum hydrocarbons, metals and other pollutants likely to be present will be provided.

3) **Minimize time and extent of disturbance.** Earthwork (including drilling, excavation, dredging, filling and compacting) in which mechanized equipment is in stream channels, riparian areas, and wetlands will be completed as quickly as possible. Mechanized equipment will be used in streams only when project specialists believe that such actions are the only reasonable alternative for implementation, or would result in less sediment in the stream channel or damage (short- or long-term) to the overall aquatic and riparian ecosystem relative to other alternatives. To the extent feasible, mechanized equipment will work from the top of the bank, unless work from another location would result in less habitat disturbance.

4) **Cessation of work.** Project operations will cease under the following conditions:
 a) High flow conditions that may result in inundation of the project area, except for efforts to avoid or minimize resource damage;
 b) When allowable water quality impacts, as defined by the state CWA section 401 water quality certification or HIPPII Turbidity Monitoring Protocol, have been exceeded; or
 c) When “incidental take” limitations have been reached or exceeded.

5) **Site restoration.** When construction is complete:
 a) All streambanks, soils, and vegetation will be cleaned up and restored as necessary using stockpiled large wood, topsoil, and native channel material.
 b) All project related waste will be removed.
 c) All temporary access roads, crossings, and staging areas will be obliterated. When necessary for revegetation and infiltration of water, compacted areas of soil will be loosened.
 d) All disturbed areas will be rehabilitated in a manner that results in similar or improved conditions relative to pre-project conditions. This will be achieved through redistribution of stockpiled materials, seeding, and/or planting with local native seed mixes or plants.
6) **Revegetation.** Long-term soil stabilization of disturbed sites will be accomplished with reestablishment of native vegetation using the following criteria:
 a) Planting and seeding will occur prior to or at the beginning of the first growing season after construction.
 b) An appropriate mix of species that will achieve establishment, shade, and erosion control objectives, preferably forb, grass, shrub, or tree species native to the project area or region and appropriate to the site will be used.
 c) Vegetation, such as willow, sedge and rush mats, will be salvaged from disturbed or abandoned floodplains, stream channels, or wetlands.
 d) Invasive species will not be used.
 e) Short-term stabilization measures may include the use of non-native sterile seed mix (when native seeds are not available), weed-free certified straw, jute matting, and other similar techniques.
 f) Surface fertilizer will not be applied within 50 feet of any stream channel, waterbody, or wetland.
 g) Fencing will be installed as necessary to prevent access to revegetated sites by livestock or unauthorized persons.
 h) Re-establishment of vegetation in disturbed areas will achieve at least 70% of pre-project conditions within 3 years.
 i) Invasive plants will be removed or controlled until native plant species are well-established (typically 3 years post-construction).

7) **Site access.** The project sponsor will retain the right of reasonable access to the site in order to monitor the success of the project over its life.

8) **Implementation monitoring.** Project sponsor staff or their designated representative will provide implementation monitoring by filling out the Project Completion Form (PCF) to ensure compliance with the applicable biological opinion, including:
 a) General conservation measures are adequately followed; and
 b) Effects to listed species are not greater than predicted and incidental take limitations are not exceeded.
 c) Turbidity monitoring shall be conducted in accordance with the HIPIII turbidity monitoring protocol outlined on the following page and recorded in the Project Completion Form (PCF).

9) **CWA section 401 water quality certification.** The project sponsor or designated representative will complete and record water quality observations to ensure that in-water work is not degrading water quality. During construction, CWA section 401 water quality certification provisions provided by the Oregon Department of Environmental Quality, Washington Department of Ecology, or Idaho Department of Environmental Quality will be followed.
Staged Rewatering Plan.

When appropriate, the project sponsor shall implement a staged rewatering plan for projects that involve introducing streamflow into recently excavated channels under the 2f) **Channel Reconstruction** or 2a) **Improve Secondary Channel and Wetland Habitat Activity category.**

1) Pre-wash the newly excavated channel before rewatering. Turbid wash water will be detained and pumped to the floodplain, rather than discharging to fish-bearing waters.

2) Prepare new channel for water by installing seine at upstream end to prevent fish from moving downstream into new channel until 2/3 of total stream flow is available in that channel. Starting in the early morning, introduce 1/3 of the flow into the new channel over a period of 1-2 hours.

3) Perform monitoring according to HIP III Turbidity Monitoring Protocol (Page 19).

 1) If turbidity exceeds 10% of background, modify the activity to reduce turbidity. In this case, this might mean decreasing the amount of flow entering the new channel and/or correcting any other issues that are causing turbidity (for example – correct a bank that is sloughing, install or correct a BMP, etc.).

 2) Monitor every 2 hours as long as the in stream activity is occurring.

 3) If exceedances occur for more than 2 monitoring intervals in a row (4 hours), then the activity must stop until turbidity reaches background levels. This means that the contractor may have to plug off water supply to the new meander until turbidity is within acceptable levels.

 4) Once turbidity is within 10% of background levels, move on to the next watering stage.

4) Prepare to introduce the second 1/3 of the flow (up to a total of 66%) to the new channel by installing seine at upstream end of old channel in order to prevent fish from moving into a partially dewatered channel. Introduce the second 1/3 of the flow over the next 1-2 hours. Salvage fish from the old channel at this time, so that the old channel is fish-free before dropping below 1/3 of the flow. (Note that fish will be temporarily blocked from moving downstream into either channel until 2/3 of the flow has been transitioned to the new channel. This blockage to downstream fish passage is expected to persist for roughly 12 to 14 hours, but fish will still be able to volitionally move out of the channel in the downstream direction.)

5) Perform monitoring as in #2 above.

6) After the second 1/3 of flow is introduced over 2 hours, and once turbidity meets is within 10% of background levels, then remove seine nets from the new channel and allow fish to move downstream into that channel.

7) Introduce the final 1/3 of flow. Once 100% of the flow is in the new channel, plug/pull nets from old channel.
HIPIII Turbidity Monitoring Protocol.

The Project Sponsor shall complete and record the following water quality observations to ensure that any increase in suspended sediment is not exceeding the limit for HIPIII compliance. Records shall be reported on the HIPIII Project Completion Form (PCF).

If the geomorphology of the project area (silty or claylike materials) or the nature of the action (large amounts of bare earth exposed below the bankfull) shall preclude the successful compliance with these triggers, notify your EC_Lead who shall pre-notify the Services of a likely exceedance.

1. Take a background turbidity sample using an appropriately and frequently calibrated turbidimeter in accordance with manufacturer’s instructions, or a visual turbidity observation, every 2 hours while work is being implemented, or more often if turbidity disturbances vary greatly, to ensure that the in-water work area is not contributing visible sediment to the water column. The background samples or observations should be taken at a relatively undisturbed area approximately 100 feet upstream from the project area. Record the observation, location, and time before monitoring at the downstream point.

2. Take a second sample or observation, immediately after each upstream sample or observation, approximately 50 feet downstream from the project area in streams that are 30 feet wide or less; 100 feet downstream from the project area for streams between 30 and 100 feet wide; 200 feet downstream from the project area for streams greater than 100 feet wide; and 300 feet from the discharge point or nonpoint source for areas subject to tidal or coastal scour. Record the downstream observation, location, and time.

3. Compare the upstream and downstream observations/samples. If observed or measured turbidity downstream is more than upstream observation or measurement (> 10%), the activity must be modified to reduce turbidity. If visual estimates are used, an obvious difference between upstream and downstream observations shall bear the assumption of a (> 10%) difference. Continue to monitor every 2 hours as long as instream activity continues.

4. If exceedances occur for more than two monitoring intervals in a row (after 4 hours), the activity must stop until the turbidity level returns to background, and the EC lead must be notified within 48 hours. The EC lead shall document the reasons for the exceedance, corrective measures taken, notify the local NMFS branch chief and/or USFWS field supervisor and seek recommendations.

5. If at any time, monitoring, inspections, or observations/samples show that the turbidity controls are ineffective, immediately mobilize work crews to repair, replace, or reinforce controls as necessary.
Fish Passage Restoration (Profile Discontinuities).

The BPA proposes to review and fund fish passage projects for ESA-listed salmon, steelhead and bull trout (hereafter salmonids). The objective of fish passage restoration is to allow all life stages of salmonids access to historical habitat from which they have been excluded and focuses on restoring safe upstream and downstream fish passage to stream reaches that have become isolated by obstructions, non-functioning structures, or instream profile discontinuities resulting from insufficient depth, or excessive jump heights and velocities.

Although passage actions are generally viewed as positive actions for native fish restoration, there may be occasions where restoring passage exposes native fish (isolated above or below a barrier) to negative influences (predation, competition, hybridization) from non-native species such as brook trout, brown trout and lake trout. Proposed passage projects that may increase bull trout to non-native species must be approved by the appropriate FWS Field Office Supervisor.

BPA grouped passage projects according the effects and review requirements in the following subcategories: Profile Discontinuities and Transportation Infrastructure. These subcategories represent a logical break between transportation related effects (transportation infrastructure) and effects due to physical fish barriers, classified by water velocity, water depth, and barrier height (profile discontinuities).

The BPA proposes the following activities to improve fish passage; (a) Dams, Water Control or Legacy Structure Removal; (b) Consolidate, or Replace Existing Irrigation Diversions; (c) Headcut and Grade Stabilization; (d) Low Flow Consolidation; and (e) Providing Fish passage at an existing facility.
1a) Dams, Water Control Structures, or Legacy Structures Removal.

Description. BPA proposes to fund and review fish passage projects, and restore more natural channel and flow conditions by removing small dams, channel-spanning weirs, earthen embankments, subsurface drainage features, spillway systems, tide gates, outfalls, pipes, instream flow redirection structures (e.g., drop structure, gabion, groin), or similar devices used to control, discharge, or maintain water levels.

Small dams” include instream structures that Structures (1) up to 10 feet in height for streams with an active channel width of less than 50-feet and a slope less than 4%, or (2) up to 16.4 feet in height for streams with an active channel width of less than 50-feet and a slope greater than 4%.

If the structure being removed contains material (i.e. large wood, boulders, etc.) that is typically found within the stream or floodplain at that site, the material can be reused to implement habitat improvements. Any such project must follow the design criteria outlined in the Install Habitat-Forming Natural Material Instream Structures (Large Wood, Boulders, and Spawning Gravel) activity category (Page 46).

Guidelines for Review.

Low Risk: Removal of subsurface drainage features, tide gates, outfalls, pipes, small dams with total head measurement equal to or less than 3 feet, instream flow redirection structures and drawings that demonstrate the incorporation of applicable conservation measures.

Medium Risk: Removal of channel spanning weirs, earthen embankments and spillway systems. Removal of dams, water-control, or legacy structures < 3 feet that do not meet all conservation measures will require both RRT and NMFS Hydro Review.

High Risk: Removal of small dams > 3 feet and <10 feet high in height for streams with active channel width of < 50 feet and a slope <4%, or >3 feet and < 16.4 feet in height with a slope greater than 4% and active channel width of <50 feet will require both RRT and NMFS Hydro Review.

Prior to going to the RRT, Medium or High Risk projects shall address the General Project and Data Summary Requirements (Page 66)

Conservation Measures.

1) Surveys must be taken of any downstream spawning areas that may be affected by sediment released by removal of the water control structure or dam.

2) Sediment characterization must demonstrate the proportion of coarse sediment (>2mm) in the reservoir area. Reservoirs with a d35 greater than 2 mm (i.e., 65% of the sediment by weight exceeds 2 mm in diameter) may be removed without excavation of stored material, if the
sediment contains no contaminants; reservoirs with a d35 less than 2 mm (i.e., 65% of the sediment by weight is less than 2 mm in diameter) will require partial removal of the fine sediments to create a pilot channel, in conjunction with stabilization of the newly exposed streambanks with native vegetation.

3) Restore all structure banklines and fill in holes with native materials to restore contours of stream bank and floodplain. Compact the fill material adequately to prevent washing out of the soil during over bank flooding. Do not mine material from the stream channel to fill in “key” holes. When removal of buried (keyed) structures could result in significant disruption to riparian vegetation and/or the floodplain, consider leaving the buried structure sections within the streambank.

4) If the legacy structures (log, rock, or gabion weirs) were placed to provide grade control, evaluate the site for potential headcutting and incision due to structure removal by using the appropriate guidance. If headcutting and channel incision are likely to occur due to structure removal, additional measures must be taken to reduce these impacts (see grade control options described under **Headcut and Grade Stabilization** activity category (Page 26)).

5) If the structure is being removed because it has caused an over-widening of the channel, consider implementing other HIP III restoration categories to decrease the width to depth ratio of the stream at that location to a level commensurate with representative upstream and downstream sections (within the same channel type).

6) Tide gates can only be removed not modified or replaced. Modification or replacement of tidegates are not covered under the HIPIII.

1b) Consolidate, or Replace Existing Irrigation Diversions.

Description. The BPA proposes to fund and review the consolidation or replacement of existing diversions with pump stations or engineered riffles (including cross vanes, “W” weirs, or “A” frame weirs) to reduce the number of diversions on streams and thereby conserve water and improve habitat for fish, improve the design of diversions to allow for fish passage and adequate screening, or reduce the annual instream construction of push-up dams and instream structures. Small instream rock structures that facilitate proper pump station operations are allowed when designed in association with the pump station. Periodic maintenance of irrigation diversions will be conducted to ensure their proper functioning, i.e., cleaning debris buildup, and replacement of parts. If low flow conditions coupled with diversion withdrawals result in impassable conditions for fish, then irrigation system efficiencies will be implemented with water savings committed to improve reach passage conditions.

The BPA HIP III will only cover irrigation efficiency actions within this activity category that use state approved regulatory mechanisms (e.g. Oregon ORS 537.455-.500, Washington RCW 90.42) for ensuring that water savings will be protected as instream water rights, or in cases where project implementers identify how the water conserved will remain instream to benefit fish without any significant loss of the instream flows to downstream diversions.

Unneeded or abandoned irrigation diversion structures will be removed where they are barriers to fish passage, have created wide shallow channels or simplified habitat, or are causing sediment concerns through deposition behind the structure or downstream scour according to Dams, Water Control Structures, or Legacy Structures Removal section.

Infiltration galleries and lay-flat stanchions are not covered under HIPIII.

Guidelines for Review.

Low Risk: Removal or replacement of Irrigation diversion structures less than 3 feet in height and drawings that demonstrate the incorporation of applicable conservation measures.

Medium Risk: Removal or replacement of irrigation diversion structures greater than 3 feet in height and/or any irrigation project that does not meet all of the conservation measures will require both RRT and NMFS Hydro Review.

Prior to going to the RRT, medium to high risk projects shall address the General Project and Data Summary Requirements (Page 66).
Conservation Measures

1) Diversion structures shall be designed to meet NMFS Anadromous Salmonid Passage Facility Design Guidelines (NMFS 2011 or more recent version)\(^6\).

2) Placement of rock structures or engineered riffles shall follow criteria outlined in the **Headcut and Grade Stabilization** activity category (Page 26).

3) Project design shall include the installation of a totalizing flow meter device on all diversions for which installation of this device is possible. A staff gauge or other device capable of measuring instantaneous flow will be utilized on all other diversions.

4) Multiple existing diversions may be consolidated into one diversion if the consolidated diversion is located at the most downstream existing diversion point unless sufficient low flow conditions are available to support unimpeded passage. The design will clearly identify the low flow conditions within the stream reach relative to the cumulative diverted water right. If instream flow conditions are proven favorable for fish passage and habitat use then diversion consolidation may occur at the upstream structure.

5) Diversions will be designed to incorporate Point of Diversion (POD) flow restrictions to limit the diverted flow to satisfy the irrigator’s water right at the 95% exceedance flow stage. Diversion flow restriction may be accomplished by any practical means available but must be supported by hydraulic calculations and a stage rating curve. POD flow restriction may be accomplished by:
 a) Incorporation of a restricted orifice plate or screen at the POD that provides at a maximum, the required area to pass the irrigators water right.
 b) Mechanically restricting the opening of a variable head gate to the maximum area required to pass the irrigator’s water right.
 c) Any other method that will satisfy the intent of the diversion flow governance requirement that can be justified by the design documents.

6) Treated wood and copper or zinc plated hardware shall not be used in the construction of irrigation diversions. Concrete must be sufficiently cured or dried (48-72 hours depending on temperature) before coming into contact with stream flow.

7) Irrigation diversion intake and return points will be designed or replaced to prevent fish and other aquatic organisms of all life stages from swimming or being entrained into the irrigation system.
 a) Fish screens for surface water that is diverted by gravity or by pumping at a rate that exceeds 3 cfs will be submitted to NMFS for review and approval.

b) Diversions equipped with a fish screen that utilizes an automated cleaning device will have a minimum effective surface area of 2.5 square feet per cfs, and a nominal maximum approach velocity of 0.4 feet per second (fps).

c) Diversions with no automated cleaning device shall have a minimum effective surface area of 5 square foot per cfs, and a nominal maximum approach rate of 0.2 fps; and a round or square screen mesh that is no larger than 2.38 mm (0.094”) in the narrow dimension, or any other shape that is no larger than 1.75 mm (0.069”) in the narrow dimension.

d) Each fish screen will be installed, operated, and maintained according to NMFS’ fish screen criteria (NMFS 2011).

e) Periodic maintenance, which may include temporary removal, of fish screens will be conducted to ensure their proper functioning, e.g., cleaning debris buildup, and replacement of parts.
1c) Headcut and Grade Stabilization.

Description. BPA proposes to fund and review the restoration of fish passage and grade control (i.e. headcut stabilization) with geomorphically appropriate structures constructed from rock or large wood (LW). Boulder weirs and roughened channels may be installed for grade control at culverts to mitigate headcuts, and to provide passage at small dams or other channel obstructions that cannot otherwise be removed. For wood dominated systems, grade control engineered log jams (ELJ)’s should be considered as an alternative.

Grade control ELJs are designed to arrest channel downcutting or incision and retain sediment, lower stream energy, and increase water elevations to reconnect floodplain habitat and diffuse downstream flood peaks. Grade control ELJs also serve to protect infrastructure that is exposed by channel incision and to stabilize over-steepened banks. Unlike hard weirs or rock grade control structures, a grade control ELJ is a complex broadcrested structure that dissipates energy more gradually.

If geomorphic conditions are appropriate, consideration should be given towards use of a roughened channel or constructed riffle to minimize the potential for future development of passage (jump height) barrier.

Construction of passage structures is limited to facilitate passage at existing diversion dams of less than seven feet in height, not in combination with new dams.

Guidelines for Review.

Low Risk: Boulder weirs and other grade control structures that address headcuts less than 18 inches in height (elevation differential across headcut from streambed) and drawings that demonstrate the incorporation of applicable conservation measures.

Medium Risk: Boulder weirs and other grade control structures that are above 18 inches in height (elevation differential across headcut from streambed) will require both RRT and NMFS Hydro Review. Roughened channels or constructed riffles are considered medium risk.

Prior to going to the RRT, medium to high risk projects shall address the General Project and Data Summary Requirements (Page 66).

Conservation Measures.

1) All structures will be designed to the design benchmarks set forth in (NMFS 2011 or most recent version).

2) Boulder weirs shall incorporate the following design features:
 a) Install boulder weirs low in relation to channel dimensions so that they are completely overtopped during channel-forming flow events (approximately a 1.5-year flow event).
b) Boulder weirs are to be placed diagonally across the channel or in upstream pointing “V” or “U” configurations with the apex oriented upstream. The apex should be lower than the structure wings to support low flow consolidation.

c) Boulder weirs are to be constructed to allow upstream and downstream passage of all native fish species and life stages that occur in the stream. This can be accomplished by providing plunges no greater than 6” in height, allowing for juvenile fish passage at all flows.

d) Key weirs into the stream bed to minimize structure undermining due to scour, preferably at least 2.5x their exposure height. The weir should also be keyed into both banks, if feasible greater than 8 feet.

e) Include fine material in the weir material mix to help seal the weir/channel bed, thereby preventing subsurface flow. Geotextile material can be used as an alternative approach to prevent subsurface flow.

f) Rock for boulder weirs shall be durable and of suitable quality to assure permanence in the climate in which it is to be used.

g) Full spanning boulder weir placement shall be coupled with measures to improve habitat complexity (LW placement etc.) and protection of riparian areas.

h) The use of gabions, cable or other means to prevent the movement of individual boulders in a boulder weir is not allowed.

3) Headcut stabilization shall incorporate the following design features:

a) Armor head-cut with sufficiently sized and amounts of material to prevent continued upstream movement. Materials can include both rock and organic materials which are native to the area.

b) Focus stabilization efforts in the plunge pool, the head cut, as well as a short distance of stream above the headcut.

c) Minimize lateral migration of channel around head cut (“flanking”) by placing rocks and organic material at a lower elevation in the center of the channel cross section to direct flows to the middle of channel.

d) Provide fish passage over a stabilized head-cut through a series of log or rock weir structures or a roughened channel.

e) Headcut stabilization structure will be constructed utilizing streambed simulation bed material, which will be pressure washed into place until there is apparent surface flow and minimal subsurface material to ensure fish passage immediately following construction if natural flows are sufficient. Successful washing will be determined by minimization of voids within placed matrix such that ponding occurs with little to no percolation losses.
1d) Low Flow Consolidation.

Description: BPA proposes to fund and review projects that; (a) modify diffused or braided flow conditions that impede fish passage; (b) modify dam aprons with shallow depth (less than 10 inches), or (c) utilize temporary placement of sandbags, hay bales, and ecology blocks to provide depths and velocities passable to upstream migrants.

Land use practices such as large scale agriculture, including irrigation, and urban and residential development have drastically changed the hydrology of affected watersheds. Reduced forest cover and increased impervious surface have resulted in increased runoff and peak flows and in less aquifer recharge, resulting in increased frequency, duration and magnitude of summer droughts. During recent droughts, temporary placement of sandbags, hay bales, and ecology blocks have been successful in providing short term fish passage through low flow consolidation measures.

Guidelines for Review.

Medium or High Risk: All of the sub-activities under the Low Flow Consolidation activity category will require both RRT and NMFS Hydro Review.

Conservation Measures.

1) Fish Passage will be designed to the design benchmarks set forth in (NMFS 2011 or most recent version). This shall be verified during NMFS Hydro Review.

2) All temporary material placed in the stream to aid low flow fish passage will be removed when stream flows increase, prior to anticipated high flows that could wash consolidation measures away or cause flow to go around them.

1e) Provide Fish Passage at an Existing Facility.

Description: BPA proposes to fund and review projects that; (a) re-engineer fish passage or fish collection facilities that are improperly designed; (b) periodic maintenance of fish passage or fish collection facilities to ensure proper functioning, e.g., cleaning debris buildup, replacement of parts; and (c) installation of a fish ladder at an existing facility.

Guidelines for Review.

Low Risk: Periodic Maintenance of Fish passage or Fish Collection Facilities.

Medium or High Risk: Re-engineering improperly designed fish passage or fish collection facilities, installation of a fish ladder at an existing facility, or other activities that are not upkeep or maintenance. Requires both RRT and NMFS Hydro Review.

Conservation Measures.

1) Fish Passage will be designed to the design benchmarks set forth in (NMFS 2011 or most recent version).8

2) Design consideration should be given for Pacific Lamprey passage.9 Fish ladders that are primarily designed for salmonids are usually impediments to lamprey passage as they do not have adequate surfaces for attachment, velocities are often too high and there are inadequate places for resting. Providing for rounded corners, resting areas or providing a natural stream channel (stream simulation) or wetted ramp for passage over the impediment have been effective in facilitating lamprey passage.

3) Treated wood and copper or zinc plated hardware shall not be used in the construction of fish ladders. Concrete must be sufficiently cured or dried10 before coming into contact with stream flow.

4)
Fish Passage Restoration (Transportation Infrastructure).

The BPA proposes to review and fund maintenance, removal, or replacement of bridges, culverts and fords to improve fish passage, prevent streambank and roadbed erosion, facilitate natural sediment and wood movement, and eliminate or reduce excess sediment loading. The BPA proposes the following activities to improve fish passage: (a) Bridge and Culvert Removal or Replacement; (b) Bridge and Culvert Maintenance; and (c) Installation of Fords.

1f) Bridge and Culvert Removal or Replacement.

Description. For unimpaired fish passage it is desirable to have a crossing that is a larger than the channel bankfull width, allows for a functional floodplain, allows for a natural variation in bed elevation, and provides bed and bank roughness similar to the upstream and downstream channel. In general, bridges will be implemented over culverts because they typically do not constrict a stream channel to as great a degree as culverts and usually allow for vertical movement of the streambed (see #3 below). Bottomless culverts may provide a good alternative for fish passage where foundation conditions allow their construction and width criteria can be met. Closed bottom or embedded pipes are the least preferred option and shall be at least nine feet in diameter to fulfill stream simulation requirements below.

Guidelines for Review.

Medium Risk: Culverts and bridges will require RRT Review.

Prior to going to the RRT, medium to high risk projects shall address the **General Project and Data Summary Requirements** (Page 66).

Conservation measures.

1) A crossing (utilizing an open bottom technique) shall:

 a) Maintain the general scour prism, as a clear, unobstructed opening (i.e., free of any fill, embankment, scour countermeasure, or structural material).

 b) Be a single span structure that maintains a clear, unobstructed opening above the general scour elevation (2-year recurrence interval) that is at least as wide as 1.5 times the bankfull width (Figure 1).

 c) Be a multiple span structure that maintains a clear, unobstructed opening above the general scour elevation, except for piers or interior bents, that is at least as wide as 2.2 times the bankfull width.
2) Bridge scour and stream stability countermeasures may be applied below the general scour elevation, however, except as described above in (1c), no scour countermeasure may be applied above the general scour elevation.

3) Remove all other artificial constrictions within the functional floodplain of the project area as follows:
 a) Remove existing roadway fill, embankment fill, approach fill, or other fills.
 b) Install relief conduits through existing fill.
 c) Remove vacant bridge supports below total scour depth, unless the vacant support is part of the rehabilitated or replacement stream crossing.
 d) Reshape exposed floodplains and streambanks to match upstream and downstream conditions.

4) If the crossing will occur within 300 feet of active spawning area, only full span bridges or streambed simulation (continuous streambed that simulates natural channel width, depth, and slope connects the reaches up and downstream of the crossing) will be used:
 a) **Channel Vertical Clearance**: The minimum vertical clearance between the culvert bed and ceiling should be more than 6 feet
 b) **Channel Slope**: The slope of the reconstructed streambed within the culvert should approximate the average slope of the adjacent stream from approximately ten channel widths upstream and downstream of the site in which it is being placed, or in a stream reach that represents natural conditions outside the zone of the road crossing influence.
 c) **Embedment**: If a culvert is used, the bottom of the culvert should be buried into the streambed not less than 30% and not more than 50% of the culvert height, and a minimum of 3 feet.

For guidance on how to complete bridge scour and stream stability analysis, refer to page 33 in this document.

d) **Maximum Length of Road Crossing:** The length for streambed simulation should be less than 150 feet.

e) **Fill Materials:** Fill materials should be comprised of materials of similar size composition to natural bed materials that form the natural stream channels adjacent to the road crossing.

f) **Water Depth and Velocity:** Water depth and velocity must closely resemble those that exist in the adjacent stream.

5) Structure material must be concrete, metal, or untreated wood. Concrete must be sufficiently cured or dried\(^\text{12}\) before coming into contact with stream flow. The use of treated wood for bridge construction or replacement is not allowed.

6) Projects in stream channels with gradients above six percent will utilize a bridge or open bottom culvert.

7) The minimum culvert width must be 1.5 times the bankfull width.

8) Culvert length shall not be longer than:
 - a) 150 feet for stream simulation
 - b) 75 feet for no-slope

9) The proponent shall include suitable grade controls to prevent culvert failure caused by changes in stream elevation. Grade control structures to prevent headcutting above or below the culvert or bridge may be built using rock or wood as outlined in the **Headcut and Grade Stabilization** criteria under the **Profile Discontinuity** activity subcategory (Page 26).

\(^{12}\) NMFS recommends 48 to 72 hours, depending on temperature.
Guidelines for Calculating General Scour Elevations

General scour is a lowering of the streambed across the stream or waterway at the crossing. This lowering may be uniform across the bed or non-uniform, that is, the depth of scour may be deeper in some parts of the cross section. The following method shall be the minimum analyses required to determine general scour elevation and in combination with the $1.5 \times$ bankfull top width; used to establish the general scour prism as presented in the Figure 1 (Page 31) above.

Equation #1 is used to determine the flow velocity (V_c) just competent to move the streambed material. The bankfull depth (y) is determined from hydraulic model results for the 2-year flood. The computed bankfull depth should be compared against the field measured bankfull depth with the larger of the two values used for (y) in Equation #1. The D_{50} particle size should be defined from the project reach specific pebble count.

$$V_c = 11.17y^{1/6}D_{50}^{1/3}$$

$V_c =$ Critical velocity above which bed material of size D and smaller will be transported (ft)

$y =$ Bankfull depth within the proposed culvert or bridge (ft)

$D_{50} =$ Particle for which 50% is finer (ft)

Equation #2 is used to determine the scour depth (d_s) below the streambed elevation. The bankfull depth (y) and the critical velocity (V_c) are taken from Equation #1 above. The mean velocity (V_m) is determined from hydraulic model results for the 2-year flood.

$$d_s = y\left(\frac{V_m}{V_c} - 1\right)$$

$d_s =$ Scour depth below streambed at thalweg (ft)

$y =$ Bankfull depth within the proposed culvert or bridge (ft)

$V_c =$ Critical velocity above which bed material of size D and smaller will be transported (ft)

$V_m =$ Mean velocity within the proposed culvert or bridge (ft)

Results from the scour depth calculation should be compared against observed scour holes or pools within or adjacent to the project reach. Consideration should be also given to evaluating the stream bed mobility upstream and downstream of the proposed crossing. The general scour prism and the proposed stream crossing shall be presented relative to a surveyed cross section of the stream channel and floodplain.
For additional guidance on engineering calculations for all components of bridge and culvert scour analysis, the designer is directed to *Evaluating Scour at Bridges*, Fifth Edition, Hydraulic Engineering Circular No. 18, April 2012, Publication No. FHWA-HIF-12-003, U.S. Department of Transportation Federal Highway Administration.

For additional guidance on engineering design of stream crossings, the designer is directed to: *Design For Fish Passage At Roadway-Stream Crossings*: Synthesis Report, June 2007, Publication No. FHWA-HIF-07-033, Office of Infrastructure Research and Development, U.S. Department of Transportation, Federal Highway Administration.

1g) Bridge and Culvert Maintenance.

Guidelines for Review.

Low Risk: Culverts and bridge maintenance is a low risk activity and requires no review.

Conservation measures:

1) Culverts will be cleaned by working from the top of the bank, unless culvert access using work area isolation would result in less habitat disturbance. Only the minimum amount of wood, sediment and other natural debris necessary to maintain culvert function will be removed; spawning gravel will not be disturbed.

2) All large wood, cobbles, and gravels recovered during cleaning will be placed downstream of the culvert.

3) Do all routine work in the dry. If this is not possible, follow work area isolation criteria outlined in the *General Conservation Measures Applicable to all Actions* (Page 13).
1h) Installation of Fords.

Description. In many streams, crossings have degraded riparian corridors and in-stream habitat resulting in increased and chronic sedimentation and reduced riparian functions including shading and recruitment of LW. Fords will be installed to allow improved stream crossing conditions only. New fords shall not be installed when there was not a previously existing stream crossing and no new fords will be constructed in salmonid spawning areas (including spawning and rearing habitat for bull trout). For the purposes of this proposed action, fords are defined as crossings for vehicles, off-highway vehicles (OHVs), bikes, pack animals, and livestock.

Guidelines for Review.

Low Risk: Fords that meet all conservation measures.

Medium Risk: Fords that do not meet all conservation measures shall require a review by the RRT.

Prior to going to the RRT, medium to high risk projects shall address the General Project and Data Summary Requirements (Page 66) in addition to the following:

1) Information detailing locations of ESA-listed salmonid spawning areas within the reach.

2) Designs must demonstrate that the ford accommodate reasonably foreseeable flood risks, including associated bedload and debris, and to prevent the diversion of streamflow out of the channel and down the trail if the crossing fails.

Conservation Measures:

1) Stream crossings shall be designed to the design benchmarks set in (NMFS 2011 or more recent version)13.

2) The ford will not create barriers to the passage of adult and juvenile fish.

3) Ford stream crossings will involve the placement of river rock along the stream bottom.

4) Existing access roads or trails and stream crossings will be used whenever possible, unless new construction would result in less habitat disturbance and the old trail or crossing is retired.

13 NMFS (National Marine Fisheries Service). 2011. Anadromous Salmonid Passage Facility Design. NMFS, Northwest Region, Portland, Oregon. Available at: \url{http://www.nwr.noaa.gov/Publications/Reference-Documents/Passage-Refs.cfm}
5) The ford will not be located in an area that will result in disturbance or damage to a properly functioning riparian area.

6) Fords will be placed on bedrock or stable substrates whenever possible.

7) Fords will not be placed in areas where ESA-listed salmonids (salmon, steelhead, bull trout) spawn or are suspected of spawning, or within 300 feet of such areas if spawning areas may be disturbed. For bull trout this CM applies to areas identified as spawning and rearing habitat.

8) Bank cuts, if any, will be stabilized with vegetation, and approaches and crossings will be protected with river rock (not crushed rock) when necessary to prevent erosion.

9) Fords will have a maximum width of 20 feet.

10) Fences will be installed (or are already existing and functioning) along with all new fords to limit access of livestock to riparian areas. Fenced off riparian areas will be maximized and planted with native vegetation. Fences will not inhibit upstream or downstream movement of fish or significantly impede bedload movement. Where appropriate, construct fences at fords to allow passage of large wood and other debris.

11) Vehicle fords will only be allowed in intermittent streams with no salmonid fish spawning.
River, Stream, Floodplain and Wetland Restoration.

The BPA proposes to review and fund river, stream, floodplain and wetland restoration actions with the objective to provide the appropriate habitat conditions required for foraging, rearing, and migrating ESA-listed fish.

Projects utilizing habitat restoration actions outlined within this activity category shall be linked to Limiting Factors identified within the appropriate sub basin plan, recovery plan or shall be prioritized by recommended restoration activities identified within a localized region by a technical oversight and steering committee (i.e. the Columbia River Estuary). Individual projects may utilize a combination of the activities listed in the River, Stream, Floodplain and Wetland Restoration activity category.

The BPA proposes the following activities to improve fish habitat: (a) Improve Secondary Channel and Wetland Habitats, (b) Set-back or Removal of Existing, Berms, Dikes, and Levees; (c) Protect Streambanks Using Bioengineering Methods; (d) Install Habitat-Forming Natural Material Instream Structures (Large Wood, Boulders, and Spawning Gravel); (e) Riparian Vegetation Planting; and (f) Channel Reconstruction.
2a) Improve Secondary Channel and Wetland Habitats.

Description. The BPA proposes to review and fund projects that reconnect historical stream channels within floodplains, restore or modify hydrologic and other essential habitat features of historical river floodplain swales, abandoned side channels, spring-flow channels, wetlands, historical floodplain channels and create new self-sustaining side channel habitats which are maintained through natural processes.

Actions include the improvement and creation of secondary channels, off channel habitats and wetlands to increase the available area and access to rearing habitat; increase hydrologic capacity, provide resting areas for fish and wildlife species at various levels of inundation; reduce flow velocities; and provide protective cover for fish and other aquatic species.

Reconnection of historical off- and side channels habitats that have been blocked includes the removal of plugs, which impede water movement through off- and side-channels. Excavating pools and ponds in the historic floodplain/channel migration zone to create connected wetlands; Reconnecting existing side channels with a focus on restoring fish access and habitat forming processes (hydrology, riparian vegetation); Wetland habits will be created to reestablish a hydrologic regime that has been disrupted by human activities, including functions such as water depth, seasonal fluctuations, flooding periodicity, and connectivity.

All activities intended for improving secondary channel habitats will provide the greatest degree of natural stream and floodplain function achievable and shall be implemented to address basin specified limiting factors. The long-term development of a restored side channel will depend on natural processes like floods and mainstem migration.

If more than 20% of the amount of water from the main channel shall be diverted into the secondary channel then the action shall be considered Channel Reconstruction (pg. 46).

Guidelines for Review.

Medium or High Risk: All of the sub-activities under the Secondary Channel and Wetland habitats projects subcategory will require RRT review.

Prior to going to the RRT, medium to high risk projects shall address the General Project and Data Summary Requirements (Page 66).

Conservation Measures:

1) Off- and side-channel improvements can include minor excavation (≤ 10%) of naturally accumulated sediment within historical channels. Evidence of historical channel location, such as land use surveys, historical photographs, topographic maps, remote sensing information, or personal observation. There is no limit as to the amount of excavation of anthropogenic fill within historic side channels as long as such channels can be clearly identified through field and/or aerial photographs.
2) Designs must demonstrate sufficient hydrology and that the project will be self-sustaining over time. Self-sustaining means the restored or created habitat would not require major or periodic maintenance, but function naturally within the processes of the floodplain.

3) Proposed new side channel construction must be within the functional floodplain (5-year recurrence interval), current channel meander migration zone, and require limited excavation for construction. Reconnection of historical fragmented habitats are preferred.

4) Side channel habitat will be constructed to prevent fish stranding by providing a continual positive overall grade to the intersecting river or stream, or by providing a year-round water connection.

5) Excavated material removed from off- or side-channels shall be hauled to an upland site or spread across the adjacent floodplain in a manner that does not restrict floodplain capacity. Hydric soils may be salvaged to provide appropriate substrate and/or seed source for hydrophytic plant community development. Hydric soils will only be obtained from wetland salvage sites.

6) Excavation depth will never exceed the maximum thalweg depth in the main channel.

7) Restoration of existing side channels including one-time dredging and an up to two times project adjustment including adjusting the elevation of the created side channel habitat.

8) All side channel and pool habitat work will occur in isolation from waters occupied by ESA-listed salmonid species until project completion, at which time a final opening may be made by excavation to waters occupied by ESA-listed salmonid or water will be allowed to return into the area.

9) Adequate precautions will be taken to prevent the creation of fish passage issues or stranding of juvenile or adult fish by demonstrating sufficient hydrologic conditions.

10) **Rewatering stream channels.** For stream channels which have been isolated and dewatered during project construction:
 a) Reconstructed stream channels will be “pre-washed” into a reach equipped with sediment capture devices, prior to reintroduction of flow to the stream.
 b) Stream channels will be re-watered slowly to minimize a sudden increase in turbidity (see Staged Rewatering plan on Page 18).
2b) Set-back or Removal of Existing Berms, Dikes, and Levees.

Description: The BPA proposes to review and fund projects that reconnect estuary, stream and river channels with floodplains, increase habitat diversity and complexity, moderate flow disturbances, and provide refuge for fish during high flows by either removing existing berms, dikes or levees or increasing the distance that they are set back from active streams or wetlands. This action includes the removal of fill, such as dredge spoils from past channelization projects, road, trail, and railroad beds, dikes, berms, and levees to restore natural estuary and fresh-water floodplain functions. Such functions include overland flow during high flows, dissipation of flood energy, increased water storage to augment low flows, sediment and debris deposition, growth of riparian vegetation, nutrient cycling, and development of side channels and alcoves.

Techniques that are covered by this programmatic need to have the sole purpose of restoring floodplain and estuary functions or to enhance fish habitat. Covered actions in freshwater, estuarine, and marine areas include: 1) full and partial removal of levees, dikes, berms, and jetties; 2) breaching of levees, dikes, and berms; 3) lowering of levees, dikes, and berms; and, 4) setback of levees, dikes, and berms.

Guidelines for Review.

Medium or High Risk: All of the sub-activities under Set-back or removal of existing berms, dikes, and levees projects subcategory will require RRT review.

Prior to going to the RRT, medium to high risk projects shall address the General Project and Data Summary Requirements (Page 66).

Conservation Measures:

1) To the greatest degree possible, nonnative fill material, originating from outside the floodplain of the action area will be removed from the floodplain to an upland site.

2) Where it is not possible to remove or set-back all portions of dikes and berms, or in areas where existing berms, dikes, and levees support abundant riparian vegetation, openings will be created with breaches.

3) Breaches shall be equal to or greater than the active channel width (as defined above) to reduce the potential for channel avulsion during flood events.

4) In addition to other breaches, the berm, dike, or levee shall always be breached at the downstream end of the project and/or at the lowest elevation of the floodplain to ensure the flows will naturally recede back into the main channel thus minimizing fish entrapment.

5) When necessary, loosen compacted soils once overburden material is removed.
6) Overburden or fill comprised of native materials, which originated from the project area, may be used within the floodplain to create set-back dikes and fill anthropogenic holes provided that does not impede floodplain function.

7) When full removal is not possible and a setback is required, the new structure locations should be prioritized to the outside of the meander belt width or to the outside or the channel meander zone margins.
2c) Protect Streambanks Using Bioengineering Methods.

Description. The BPA proposes to review and fund projects that restore eroding streambanks by bank shaping and installation of coir logs or other soil reinforcements – bioengineering techniques as necessary to support development of riparian vegetation and/or planting or installing large wood, trees, shrubs, and herbaceous cover as necessary to restore ecological function in riparian and floodplain habitats.

As techniques that are covered by this programmatic need to have the primary purpose of restoring floodplain and estuary functions or to enhance fish habitat, streambank stabilization shall only be proposed when there are additional interrelated and interdependent habitat restoration actions.

Streambank erosion often occurs within meandering alluvial rivers on the outside of meander bends. The rate of erosion and meander migration is often accelerated due to degradation of the stream side riparian vegetation and land use practices that have removed riparian woody species. Historically, as the river migrates into the adjacent riparian areas, LW would be recruited from the banks resulting in reduced near bank velocities and increased boundary roughness. Where a functional riparian area is lacking, the lateral bank erosion may occur at an unnaturally accelerated rate. The goal of streambank restoration is to reestablish long term riparian processes through re-vegetation and riparian buffer strips. Structural bank protection may be used to provide short term stability to banklines allowing for vegetation establishment.

The primary proposed structural streambank stabilization action is the use of large wood and vegetation to increase bank strength and resistance to erosion in an ecological approach to engineering streambank stabilization.

The following bioengineering techniques\(^{14}\) are proposed for use either individually or in combination: (a) Woody plantings and variations (e.g., live stakes, brush layering, facines, brush mattresses); (b) herbaceous cover, for use on small streams or adjacent wetlands; (c) deformable soil reinforcement, consisting of soil layers or lifts strengthened with biodegradable coir fabric and plantings that are penetrable by plant roots; (d) coir logs (long bundles of coconut fiber), straw bales and straw logs used individually or in stacks to trap sediment and provide a growth medium for riparian plants; (e) bank reshaping and slope grading, when used to reduce a bank slope angle without changing the location of its toe, to increase roughness and cross section, and to provide more favorable planting surfaces; (f) tree and LW rows, live siltation fences, brush traverses, brush rows and live brush sills in floodplains, used to reduce the likelihood of avulsion in areas where natural floodplain roughness is poorly developed or has been removed and (g) floodplain flow spreaders, consisting of one or more rows of trees and accumulated debris used to spread flow across the floodplain; and (h) use of LW as a primary structural component.

Guidelines for Review.

Low Risk: Streambank projects with 1) bankfull flow less than 500 cfs; 2) height of bank less than 5 feet; 3) bankfull velocity less than 5 ft/sec., and drawings that demonstrate the incorporation of applicable conservation measures.

Medium or High Risk: Streambank projects with 1) bankfull flow greater than 500 cfs, or 2) height of bank greater than 5 feet; or 3) bankfull velocity greater than 5 ft/sec. Installation of any streambank project that does not meet all of the conservation measures.

Prior to going to the RRT, medium to high risk projects shall address the **General Project and Data Summary Requirements** (Page 66).

Conservation Measures:

1) Without changing the location of the bank toe, damaged streambanks will be restored to a natural slope, pattern, and profile suitable for establishment of permanent woody vegetation. This may include sloping of unconsolidated bank material to a stable angle of repose, or the use of benches in consolidated, cohesive soils. The purpose of bank shaping is to provide a more stable platform for the establishment of riparian vegetation, while also reducing the depth to the water table, thus promoting better plant survival.

2) Streambank restoration projects shall include the placement of a riparian buffer strip consisting of a diverse assemblage of species native to the action area or region, including trees, shrubs, and herbaceous species. Do not use invasive species.

3) Large wood will be used as an integral component of all streambank protection treatments unless restoration can be achieved with soil bioengineering techniques alone.

4) LW will be placed to maximize near bank hydraulic complexity and interstitial habitats through use of various LW sizes and configurations of the placements.

5) Structural placement of LW should focus on providing bankline roughness for energy dissipation vs. flow re-direction that may affect the stability of the opposite bankline.

6) LW will be intact, hard, and undecayed to partly decaying with untrimmed root wads to provide functional refugia habitat for fish. Use of decayed or fragmented wood found lying on the ground may be used for additional roughness and to add complexity to LW placements but will not constitute the primary structural components.

7) Wood that is already within the stream or suspended over the stream may be repositioned to allow for greater interaction with the stream.

8) LW anchoring will not utilize cable or chain. Manila, sisal or other biodegradable ropes may be used for lashing connections. If hydraulic conditions warrant use of structural connections
then rebar pinning or bolting may be used. The utilization of structural connections should be used minimally and only to ensure structural longevity in high energetic systems such as (high gradient systems with lateral confinement and limited floodplain). Need for structural anchorage shall be demonstrated in the design documentation.

9) Rock will not be used for streambank restoration, except as ballast to stabilize large wood unless it is necessary to prevent scouring or downcutting of an existing flow control structure (e.g., a culvert or bridge support, headwall, utility lines, or building). In this case rock may be used as the primary structural component for construction of vegetated riprap with large woody debris. Scour holes may be filled with rock to prevent damage to structure foundations but will not extend above the adjacent bed of the river. This does not include scour protection for bridge approach fills.

10) The rock may not impair natural stream flows into or out of secondary channels or riparian wetlands.

11) Fencing will be installed as necessary to prevent access and grazing damage to revegetated sites and project buffer strips.

12) Riparian buffer strips associated with streambank protection shall extend from the project bankline towards the floodplain a minimum distance of 35 feet.
2d) Install Habitat-Forming Natural Material Instream Structures (Large Wood, Boulders, and Spawning Gravel)\(^{15}\).

Description. The BPA proposes to review and fund projects that include placement of natural habitat forming structures to provide instream spawning, rearing and resting habitat for salmonids and other aquatic species. Projects will provide high flow refugia; increase interstitial spaces for benthic organisms; increase instream structural complexity and diversity including rearing habitat and pool formation; promote natural vegetation composition and diversity; reduce embeddedness in spawning gravels and promote spawning gravel deposition; reduce siltation in pools; reduce the width/depth ratio of the stream; mimic natural input of LW (e.g., whole conifer and hardwood trees, logs, root wads); decrease flow velocities; and deflect flows into adjoining floodplain areas to increase channel and floodplain function. In areas where natural gravel supplies are low (immediately below reservoirs, for instance), gravel placement can be used to improve spawning habitat.

Anthropogenic activities that have altered riparian habitats, such as splash damming and the removal of large wood and logjams, have reduced instream habitat complexity in many rivers and have eliminated or reduced features like pools, hiding cover, and bed complexity. Salmonids need habitat complexity for rearing, feeding, and migrating. To offset these impacts large wood, boulders and spawning gravel will be placed in stream channels either individually or in combination.

Large wood will be placed to increase coarse sediment storage, increase habitat diversity and complexity, retain gravel for spawning habitat, improve flow heterogeneity, provide long-term nutrient storage and substrate for aquatic macroinvertebrates, moderate flow disturbances, increase retention of leaf litter, and provide refugia for fish during high flows. Engineered log jams create a hydraulic shadow, a low-velocity zone downstream that allows sediment to settle out. Scour holes develop adjacent to the log jam which can provide valuable fish and wildlife habitat by redirecting flow and providing stability to a streambank or downstream gravel bar.

Boulder placements increase habitat diversity and complexity, improve flow heterogeneity, provide substrate for aquatic vertebrates, moderate flow disturbances, and provide refuge for fish during high flows. The placement of individual large boulders and boulder clusters to increase structural diversity is important to provide holding and rearing habitat for ESA-listed salmonids where similar natural rock has been removed. This treatment will be used in streams that have been identified as lacking structural diversity and that are naturally and/or historically have had boulders.

The quality and quantity of available spawning gravel has been impacted by many anthropogenic features and activities. For example, dams and culverts can block the downstream movement of gravel and result in gravel starved reaches. Channelization, hard streambank stabilization, and diking restrict a stream from meandering and recruiting gravel. Elimination of riparian buffers and grazing up to the stream’s edge introduces fines that often cause embedded or silted-in spawning gravel. Spawning gravel will be placed to improve spawning substrate by compensating for an identified loss of a natural gravel supply and may be placed in conjunction with other projects, such as simulated log jams and boulders.

All activities intended for installing habitat-forming instream structures will provide the greatest degree of natural stream and floodplain function achievable through application of an integrated, ecological approach and linkage to basin defined limiting factors. Instream structures capable of enhancing habitat forming processes and migratory corridors will be installed only within previously degraded stream reaches, where past disturbances have removed habitat elements such as LW, boulders, or spawning gravel.

This project activity category can only be covered if ancillary to other stream habitat restoration actions.

Guidelines for Review.

Low Risk: Installation of habitat forming structures with drawings that demonstrate the incorporation of applicable conservation measures.

Medium or High Risk: Installation of habitat forming structures that do not meet all conservation measures.

Prior to going to the RRT, medium to high risk projects shall address the General Project and Data Summary Requirements (Page 66).

Conservation Measures (Large Wood).

1) Large wood placements must mimic natural accumulations of large wood in the channel, estuary, or marine environment and addresses basin defined limiting factors.

2) LW placements for other purposes than habitat restoration or enhancement are excluded from this consultation.

3) LW will be placed in channels that have an intact, well-vegetated protected riparian buffer (35 feet), or in conjunction with riparian rehabilitation or management.

4) Stabilizing or key pieces of large wood that will be relied on to provide streambank stability or redirect flows must be intact, hard, and undecayed to partly decaying, and should have untrimmed root wads to provide functional refugia habitat for fish. Use of decayed or fragmented wood found lying on the ground or partially sunken in the ground is not acceptable for key pieces but may be incorporated to add habitat complexity.
5) LW anchoring will not utilize cable or chain. Manila, sisal or other biodegradable ropes may be used for lashing connections. If hydraulic conditions warrant use of structural connections then rebar pinning or bolting may be used. The utilization of structural connections should be used minimally and only to ensure structural longevity in high energetic systems such as (high gradient systems with lateral confinement and limited floodplain). Need for structural anchorage shall be demonstrated in the design documentation.

6) Rock may be used for ballast but only to what is limited to that is needed to anchor the LW.

Conservation Measures (Boulder Placement)

1) Boulder placements for other purposes than habitat restoration or enhancement are not covered under HIPIII.

2) Boulder placements will be limited to stream reaches with an intact, well-vegetated riparian area, including trees and shrubs where those species would naturally occur, or that are part of riparian area restoration action; and a stream bed that consists predominantly of coarse gravel or larger sediments.

3) The cross-sectional area of boulder placements may not exceed 25% of the cross-sectional area of the low flow channel.

4) Boulder placements may not be installed with the purpose of shifting the stream flow to a single flow pattern in the middle or to the side of the stream.

5) Boulders will be machine-placed (no end dumping allowed) and will rely on the size of boulder for stability.

6) Boulders will be installed low in relation to channel dimensions so that they are completely overtopped during channel-forming flow events (approximately a 2-year flow event).

7) Permanent anchoring, including rebar or cabling, may not be used.

Conservation Measures (Spawning Gravel)

1) Spawning gravel augmentation is limited to areas where the natural supply has been eliminated or significantly reduced through anthropogenic means.

2) Spawning gravel to be placed in streams must be obtained from an upland source outside of the channel and riparian area and properly sized gradation for that stream, clean, and non-angular.

3) A maximum of 100 cubic yards of spawning sized gravel can be imported or relocated and placed upstream of each structure.
4) Spawning gravel must be used in combination with other restoration activities that address the underlying systematic problem. For example a combined project consisting of: planting streambank vegetation, placing instream LW and supplementing spawning gravel.

5) Imported gravel must be free of invasive species and non-native seeds.
2e) Riparian Vegetation Planting.

Description. The BPA proposes to fund vegetation planting to recover watershed processes and functions associated with native plant communities and that will help restore natural plant species composition and structure. Under this activity category, project proponents would plant trees, shrubs, herbaceous plants, and aquatic macrophytes to help stabilize soils. Large trees such as cottonwoods and conifers will be planted in areas where they historically occurred but are currently either scarce or absent. Native plant species and seeds will be obtained from local sources to ensure plants are adapted to local climate and soil chemistry.

Vegetation management strategies will be utilized that are consistent with local native succession and disturbance regimes and specify seed/plant source, seed/plant mixes, and soil preparation. Planting will address the abiotic factors contributing to the sites’ succession, *i.e.*, weather and disturbance patterns, nutrient cycling, and hydrologic condition. Only certified noxious weed-free seed (99.9%), hay, straw, mulch, or other vegetation material for site stability and revegetation projects will be utilized.

Guidelines for Review.

Low Risk: Riparian vegetation planting is considered low-risk and requires no review.

Conservation Measures.

1) An experienced silviculturist, botanist, ecologist, or associated technician shall be involved in designing vegetation treatments.

2) Species to be planted must be of the same species that naturally occurs in the project area.

3) Tree and shrub species as well as sedge and rush mats to be used as transplant material shall come from outside the bankfull width, typically in abandoned flood plains, and where such plants are abundant.

4) Sedge and rush mats should be sized as to prevent their movement during high flow events.

5) Concentrate plantings above the bankfull elevation.

6) Species distribution shall mimic natural distribution in the riparian and floodplain areas.
2f) Channel Reconstruction.

Description. The BPA proposes to review and fund channel reconstruction projects to improve aquatic and riparian habitat diversity and complexity, reconnect stream channels to floodplains, reduce bed and bank erosion, increase hyporheic exchange, provide long-term nutrient storage, provide substrate for macroinvertebrates, moderate flow disturbance, increase retention of organic material, and provide refuge for fish and other aquatic species by reconstructing stream channels and floodplains that are compatible within the appropriate watershed context and geomorphic setting.

The reconstructed stream system shall be composed of a naturally sustainable and dynamic planform, cross-section, and longitudinal profile that incorporates unimpeded passage and temporary storage of water, sediment, organic material, and species. Stream channel adjustment over time is to be expected in naturally dynamic systems and is a necessary component to restore a wide array of stream functions. It is expected that for most projects that there will be a primary channel with secondary channels that are activated at various flow levels to increase floodplain connectivity and to improve aquatic habitat through a range of flows. This proposed action is not intended to artificially stabilize streams into a single location or into a single channel for the purposes of protecting infrastructure or property.

Channel reconstruction consists of re-meandering or movement of the primary active channel, and may include structural elements such as streambed simulation materials, streambank restoration, and hydraulic roughness elements. For bed stabilization and hydraulic control structures, constructed riffles shall be preferentially used in pool-riffle stream types, while roughened channels and boulder weirs shall be preferentially used in step-pool and cascade stream types. Material selection (large wood, rock, gravel) shall also mimic natural stream system materials.

Guidelines for Review.

Medium Risk: Channel Reconstruction that restores historical alignment with minimal excavation shall require both RRT and NMFS Hydro Review.

High Risk: Channel Reconstruction that create entirely new channel meanders through significant excavation shall require RRT, NMFS Hydro Review, and Interagency Review.

High Risk projects in the Channel Reconstruction activity shall address the General Project and Data Summary Requirements (Page 66), the following Conservation Measures, a Staged Rewatering Plan (Page 18) and include a Monitoring and Adaptive Management Plan (Page 52).

Conservation Measures:

Data requirements for RRT & NMFS review and analysis include:

1) Detailed construction drawings
2) Designs must demonstrate that channel reconstruction will identify, correct to the extent possible, and then account for in the project development process, the conditions that lead to the degraded condition.

3) Designs must demonstrate that the proposed action will mimic natural conditions for gradient, width, sinuosity and other hydraulic parameters.

4) Designs must demonstrate that structural elements shall fit within the geomorphic context of the stream system.

5) Designs must demonstrate sufficient hydrology and that the project will be self-sustaining over time. Self-sustaining means the restored or created habitat would not require major or periodic maintenance, but function naturally within the processes of the floodplain.

6) Designs must demonstrate that the proposed action will not result in the creation of fish passage issues or post construction stranding of juvenile or adult fish.

Monitoring and Adaptive Management Plan.

1) Introduction
2) Responsible parties involved.
3) Existing Monitoring Protocols
4) Project Effectiveness Monitoring Plan
 a) Objective 1
 b) Objective 2
5) Project Review Team Triggers
6) Monitoring Frequency, Timing, and Duration
 a) Baseline Survey
 b) As-built Survey
 c) Monitoring Site Layout
 d) Post-Bankfull Event Survey
 e) Future Survey (related to flow event)
7) Monitoring Technique Protocols
 a) Photo Documentation and Visual Inspection
 b) Longitudinal Profile
 c) Habitat Survey
 d) Survival Plots
 e) Channel and Floodplain Cross-sections
 f) Fish Passage
 g) Other
8) Data Storage and Analysis
9) Monitoring Quality Assurance Plan
10) Literature Cited
Invasive Plant Treatments.

1) **Maximum herbicide treatment area.** The area treated with herbicides above bankfull elevation, within riparian areas, will not exceed 10 acres above bankfull elevation and 2 acres below bankfull elevation, per 1.6-mile reach of a stream, per year.

2) **Herbicide applicator qualifications.** Herbicides will be applied only by an appropriately licensed applicator using an herbicide specifically targeted for a particular plant species that will cause the least impact to non-target species. The applicator will be responsible for preparing and carrying out the herbicide transportation and safety plan, as follows.

3) **Herbicide transportation and safety plan.** The applicator will prepare and carry out an herbicide safety/spill response plan to reduce the likelihood of spills or misapplication, to take remedial actions in the event of spills, and to fully report the event. At a minimum, the plan will:
 a) Address spill prevention and containment.
 b) Estimate and limit the daily quantity of herbicides to be transported to treatment sites.
 c) Require that impervious material be placed beneath mixing areas in such a manner as to contain small spills associated with mixing/refilling.
 d) Require a spill cleanup kit be readily available for herbicide transportation, storage and application.
 e) Outline reporting procedures, including reporting spills to the appropriate regulatory agency.
 f) Require that equipment used in herbicide storage, transportation and handling are maintained in a leak proof condition.
 g) Address transportation routes so that hazardous conditions are avoided to the extent possible.
 h) Specify mixing and loading locations away from waterbodies so that accidental spills do not contaminate surface waters
 i) Require that spray tanks be mixed or washed further than 150 feet of surface water.
 j) Ensure safe disposal of herbicide containers.
 k) Identify sites that may only be reached by water travel and limit the amount of herbicide that may be transported by watercraft.
 l) All individuals involved, including any contracted applicators, will be instructed on the plan.
4) **Herbicides.** BPA proposes the use of the following herbicides in the typical application rates (see Tables 1 and 2) for invasive plant control.

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Trade Name</th>
<th>Typical Application Rates (ai/ac)</th>
<th>Maximum Label Application Rate (ai/ac)</th>
<th>General Geographic Application Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (amine)</td>
<td>Many</td>
<td>0.5 - 1.5 lbs.</td>
<td>4.0 lbs</td>
<td>Upland(^{16}) & Riparian</td>
</tr>
<tr>
<td>Aminopyralid</td>
<td>Milestone(^{®})</td>
<td>0.11 - 0.22 lbs</td>
<td>0.375 lb</td>
<td>Upland & Riparian</td>
</tr>
<tr>
<td>Chlorsulfuron</td>
<td>Telar(^{®})</td>
<td>0.25 - 1.33 oz</td>
<td>3.0 oz</td>
<td>Upland</td>
</tr>
<tr>
<td>Clethodim</td>
<td>Select(^{®})</td>
<td>0.125 – 0.5 lbs</td>
<td>0.50 lb</td>
<td>Upland</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>Transline(^{®})</td>
<td>0.1 - 0.375 lbs</td>
<td>0.5 lb</td>
<td>Upland & Riparian</td>
</tr>
<tr>
<td>Dicamba</td>
<td>Banvel(^{®}) only</td>
<td>0.25 - 7.0 lbs</td>
<td>8.0 lbs</td>
<td>Upland & Riparian</td>
</tr>
<tr>
<td>Glyphosate 1</td>
<td>Many</td>
<td>0.5 - 2.0 lbs</td>
<td>3.75 lbs</td>
<td>Upland & Riparian</td>
</tr>
<tr>
<td>Glyphosate 2</td>
<td>Many</td>
<td>0.5 - 2.0 lbs</td>
<td>3.75 lbs</td>
<td>Upland</td>
</tr>
<tr>
<td>Imazapic</td>
<td>Plateau(^{®})</td>
<td>0.063 – 0.189 lbs</td>
<td>0.189 lb</td>
<td>Upland & Riparian</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>Arsenal(^{®}) Habitat(^{®})</td>
<td>0.5 – 1.5 lbs.</td>
<td>1.5 lbs</td>
<td>Upland & Riparian</td>
</tr>
<tr>
<td>Metsulfuron methyl</td>
<td>Escort(^{®})</td>
<td>0.33 - 2.0 oz</td>
<td>4.0 oz</td>
<td>Upland</td>
</tr>
<tr>
<td>Picloram</td>
<td>Tordon(^{®})</td>
<td>0.125 - 0.50 lb</td>
<td>1 lb</td>
<td>Upland</td>
</tr>
<tr>
<td>Sethoxydim</td>
<td>Poast(^{®})</td>
<td>0.1875 – 0.375 lb</td>
<td>0.375 lb</td>
<td>Upland</td>
</tr>
<tr>
<td>Sulfometuron methyl</td>
<td>Oust(^{®})</td>
<td>0.023 - 0.38 oz</td>
<td>2.25 oz</td>
<td>Upland</td>
</tr>
<tr>
<td>Triclopyr (TEA)</td>
<td>Garlon 3A(^{®})</td>
<td>1.0 - 2.5 lbs</td>
<td>9.0 lbs</td>
<td>Upland & Riparian</td>
</tr>
</tbody>
</table>

5) **2,4-D.** As a result of the National Consultation\(^{17}\), this herbicide shall comply with all relevant reasonable and prudent alternatives from the 2011 Biological Opinion (NMFS 2011a):

\(^{16}\) Uplands are as defined by FEMAT(1993) for fish-bearing streams in all watersheds: the combined average height of two site potential trees or 300 feet (whichever is greater).

\(^{17}\) On June 30, 2011, NMFS issued a final biological opinion addressing the effects of this herbicide on ESA-listed Pacific salmonids. The opinion has concluded that EPA’s proposed registration of certain uses of 2,4-D,
a) Do not apply when wind speeds are below 2 mph or exceed 10 mph, except when winds in excess of 10 mph will carry drift away from salmonid-bearing waters.

b) Do not apply when a precipitation event, likely to produce direct runoff to salmonid bearing waters from the treated area, is forecasted by NOAA/NWS (National Weather Service) or other similar forecasting service within 48 h following application.

6) Control of invasive plants within the riparian habitat shall be by individual plant treatments for woody species, and spot treatment of less than 1/10 acre for herbaceous species per project per year.

7) **Adjuvants.** The following adjuvants are proposed for use (Table 2). Polyethoxylated tallow amine (POEA) surfactant and herbicides that contain POEA (e.g., Roundup) have been removed from the proposed action.

8) **Herbicide carriers.** Herbicide carriers (solvents) are limited to water or specifically labeled vegetable oil.

9) **Herbicide mixing.** Herbicides will be mixed more than 150 feet from any natural waterbody to minimize the risk of an accidental discharge and no more than three different herbicides may be mixed for any one application.

10) **Herbicide application rates.** Herbicides will be applied at the lowest effective label rates, including the typical and maximum rates given (Table 1). For broadcast spraying, application of herbicide or surfactant will not exceed the typical label rates.

Including aquatic uses of 2,4-D BEE are likely to jeopardize the continued existence of the 28 endangered and threatened Pacific salmonids. http://www.nmfs.noaa.gov/pr/consultation/pesticides.htm
Table 2. Allowable Adjuvants under HIPIII.

<table>
<thead>
<tr>
<th>Adjuvant Type</th>
<th>Trade Name</th>
<th>Labeled Mixing Rates per Gallon of Application Mix</th>
<th>General Geographic Application Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorants</td>
<td>Dynamark™ U.V. (red)</td>
<td>0.1 fl oz</td>
<td>Riparian</td>
</tr>
<tr>
<td></td>
<td>Aquamark™ Blue</td>
<td>0.1 fl oz</td>
<td>Riparian</td>
</tr>
<tr>
<td></td>
<td>Dynamark™ U.V. (blu)</td>
<td>0.5 fl oz</td>
<td>Upland</td>
</tr>
<tr>
<td></td>
<td>Hi-Light® (blu)</td>
<td>0.5 fl oz</td>
<td>Upland</td>
</tr>
<tr>
<td>Surfactants</td>
<td>Activator 90®</td>
<td>0.16 – 0.64 fl oz</td>
<td>Upland</td>
</tr>
<tr>
<td></td>
<td>Agri-Dex®</td>
<td>0.16 – 0.48 fl oz</td>
<td>Riparian</td>
</tr>
<tr>
<td></td>
<td>Entry II®</td>
<td>0.16 – 0.64 fl oz</td>
<td>Upland</td>
</tr>
<tr>
<td></td>
<td>Hasten®</td>
<td>0.16 – 0.48 fl oz</td>
<td>Riparian</td>
</tr>
<tr>
<td></td>
<td>LI 700®</td>
<td>0.16 – 0.48 fl oz</td>
<td>Riparian</td>
</tr>
<tr>
<td></td>
<td>R-11®</td>
<td>0.16 – 1.28 fl oz</td>
<td>Riparian</td>
</tr>
<tr>
<td></td>
<td>Super Spread MSO®</td>
<td>0.16 – 0.32 fl oz</td>
<td>Riparian</td>
</tr>
<tr>
<td></td>
<td>Syl-Tac®</td>
<td>0.16 – 0.48 fl oz</td>
<td>Upland</td>
</tr>
<tr>
<td>Drift Retardants</td>
<td>41-A®</td>
<td>0.03 – 0.06 fl oz</td>
<td>Riparian</td>
</tr>
<tr>
<td></td>
<td>Valid®</td>
<td>0.16 fl oz</td>
<td>Upland</td>
</tr>
</tbody>
</table>

11) **Herbicide application methods.** Liquid or granular forms of herbicides to be applied by a licensed applicator as follows:
 a) Broadcast spraying – hand held nozzles attached to back pack tanks or vehicles, or by using vehicle mounted booms;
 b) Spot spraying – hand held nozzles attached to back pack tanks or vehicles, hand-pumped spray, or squirt bottles to spray herbicide directly onto small patches or individual plants using;
 c) Hand/selective – wicking and wiping, basal bark, fill (“hack and squirt”), stem injection, cut-stump;
 d) Triclopyr – will not be applied by broadcast spraying.

12) **Emergent Knotweed Application.** No aquatic application of chemicals is covered by this consultation except for treating emergent knotweed. The only application methods for emergent knotweed are stem injection (formulation up to 100% for emergent stems greater than 0.75 inches in diameter), wicking or wiping (diluted to 50% formulation), and hand-held spray bottle application of glyphosate (up to the percentage allowed by label instructions when applied to foliage using low pressure hand-held spot spray applicators).
13) **Water Transportation.** Most knotweed patches are expected to have overland access. However, some sites may be reached only by water travel, either by wading or inflatable raft (or kayak). The following measures will be used to reduce the risk of a spill during water transport:
 a) No more than 2.5 gallons of glyphosate will be transported per person or raft, and typically it will be one gallon or less.
 b) Glyphosate will be carried in 1 gallon or smaller plastic containers. The containers will be wrapped in plastic bags and then sealed in a dry-bag. If transported by raft, the dry-bag will be secured to the watercraft.

14) **Minimization of herbicide drift and leaching.** Herbicide drift and leaching will be minimized as follows:
 a) Do not spray when wind speeds exceed 10 miles per hour, or are less than 2 miles per hour;
 b) Be aware of wind directions and potential for herbicides to affect aquatic habitat area downwind;
 c) Keep boom or spray as low as possible to reduce wind effects;
 d) Increase spray droplet size whenever possible by decreasing spray pressure, using high flow rate nozzles, using water diluents instead of oil, and adding thickening agents;
 e) Do not apply herbicides during temperature inversions, or when ground temperatures exceed 80 degrees Fahrenheit;
 f) Do not spray when rain, fog, or other precipitation is falling or is imminent. Wind and other weather data will be monitored and reported for all broadcast applications. Table 3 identifies BPA’s proposed minimum weather and wind speed restrictions (to be used in the absence of more stringent label instructions and restrictions). During application, applicators will monitor weather conditions hourly at sites where spray methods are being used.
Table 3. Required Herbicide Buffer Widths (from Bankfull Width)

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Broadcast Application<sup>18</sup></th>
<th>Backpack Sprayer/Bottle<sup>19</sup></th>
<th>Spot Spray Foliar/Basal</th>
<th>Hand Application<sup>20</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min buffer from bankfull width (ft)</td>
<td>Max/ Min wind speed (mph)</td>
<td>Min buffer from bankfull width (ft)</td>
<td>Max/ Min wind speed (mph)</td>
</tr>
<tr>
<td>2,4-D (amine)</td>
<td>100</td>
<td>10/2</td>
<td>50</td>
<td>5/2</td>
</tr>
<tr>
<td>Aminopyralid</td>
<td>100</td>
<td>10/2</td>
<td>15</td>
<td>5/2</td>
</tr>
<tr>
<td>Chlorsulfuron</td>
<td>100</td>
<td>10/2</td>
<td>15</td>
<td>5/2</td>
</tr>
<tr>
<td>Clethodim</td>
<td>NA</td>
<td>NA</td>
<td>50</td>
<td>5/2</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>100</td>
<td>10/2</td>
<td>15</td>
<td>5/2</td>
</tr>
<tr>
<td>Dicamba (Banvel only)</td>
<td>100</td>
<td>10/2</td>
<td>15</td>
<td>5/2</td>
</tr>
<tr>
<td>Glyphosate 1</td>
<td>100</td>
<td>10/2</td>
<td>15</td>
<td>5/2</td>
</tr>
<tr>
<td>Glyphosate 2</td>
<td>100</td>
<td>10/2</td>
<td>100</td>
<td>5/2</td>
</tr>
<tr>
<td>Imazapic</td>
<td>100</td>
<td>10/2</td>
<td>15</td>
<td>5/2</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>100</td>
<td>10/2</td>
<td>15</td>
<td>5/2</td>
</tr>
<tr>
<td>Metsulfuron</td>
<td>100</td>
<td>10/2</td>
<td>15</td>
<td>5/2</td>
</tr>
<tr>
<td>Picloram</td>
<td>100</td>
<td>8/2</td>
<td>100</td>
<td>5/2</td>
</tr>
<tr>
<td>Sethoxydim</td>
<td>100</td>
<td>10/2</td>
<td>50</td>
<td>5/2</td>
</tr>
<tr>
<td>Sulfometuron</td>
<td>100</td>
<td>10/2</td>
<td>15</td>
<td>5/2</td>
</tr>
<tr>
<td>Triclopyr (TEA)</td>
<td>NA</td>
<td>NA</td>
<td>50</td>
<td>5/2</td>
</tr>
<tr>
<td>Herbicide Mixtures</td>
<td>100</td>
<td>Most conservative of listed herbicides</td>
<td>15</td>
<td>Most conservative of listed herbicides</td>
</tr>
</tbody>
</table>

¹⁸ Ground-based only broadcast application methods via truck/ATV with motorized low-pressure, high-volume sprayers using spray guns, broadcast nozzles, or booms.

¹⁹ Spot and localized foliar and basal/stump applications using a hand-pump backpack sprayer or field-mixed or pre-mixed hand-operated spray bottle.

²⁰ Hand applications to a specific portion of the target plant using wicking, wiping or injection techniques. This technique implies that herbicides do not touch the soil during the application process.
Table 4. Required Adjuvant Buffer Widths (from Bankfull Width).

<table>
<thead>
<tr>
<th>Adjuvant</th>
<th>Broadcast Application(^{21})</th>
<th>Backpack Sprayer/Bottle(^{22})</th>
<th>Hand Application(^{23})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min buffer from bankfull width (ft)</td>
<td>Min buffer from bankfull width (ft)</td>
<td>Min buffer from bankfull width (ft)</td>
</tr>
<tr>
<td>Dynamark (red)</td>
<td>100</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Dynamark (yel)</td>
<td>100</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Dynamark (blu)</td>
<td>100</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Hi-Light (blu)</td>
<td>100</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Activator 90(^{\circ})</td>
<td>100</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Agri-Dex</td>
<td>100</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Entry II</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Hasten</td>
<td>100</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>LI 700</td>
<td>100</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>R-11</td>
<td>100</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Super Spread MSO</td>
<td>100</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Syl-Tac</td>
<td>100</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>41-A</td>
<td>100</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Valid</td>
<td>100</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

\(^{21}\) Ground-based only broadcast application methods via truck/ATV with motorized low-pressure, high-volume sprayers using spray guns, broadcast nozzles, or booms.

\(^{22}\) Spot and localized foliar and basal/stump applications using a hand-pump backpack sprayer or field-mixed or pre-mixed hand-operated spray bottle.

\(^{23}\) Hand applications to a specific portion of the target plant using wicking, wiping or injection techniques. This technique implies that herbicides do not touch the soil during the application process.
Variances for Herbicides

Because of the wide range of commercially available herbicides & adjuvants being sold under trade names with the same active ingredients proposed under the HIP III Biological Opinions. BPA (on behalf of the applicant) may require variances to use herbicides not on Table 1. The Services will consider granting variances, especially when there is clear evidence that the herbicide’s toxic profile is less than the listed herbicides presented in Table 1.

Variance requests shall be made on the Project Notification Form, which shall then be submitted to and approved by the Services via email correspondence and shall include:

1) Include trade name and active ingredient.
2) Environmental conditions during proposed application (a general description of topography and current vegetative cover).
3) Information regarding the herbicide’s environmental toxicity (ex. LC50 with salmonid end points) with comparison of environmental toxicity of listed herbicides on Table 1.
4) Information regarding environmental fate and transport and evidence to support that there will be less drift or runoff than listed herbicides on Table 1.
5) Include as attachments any supporting information (MSDS, Toxic profiles, fact sheets etc.)

Variances must be authorized by both the NMFS Branch Chief and USFWS Field Office Supervisor. If the Services do not approve a request for variance, the project sponsor and BPA will initiate individual Section 7 consultation with USFWS and/or NMFS on the identified action.

An example of a previously approved variance request for herbicides and the information needed:

BPA requests a variance to use the drift-retardant Compadre in lieu of Valid, for herbicide applications on the Shillapoo Wildlife Area to control invasive weeds in the uplands of this site (lat 45.677852, long. 122.748205). The adjuvant Valid was a covered product considered in our HIP III biological opinion with the BPA, however, it is no longer commercially available. Based on review of the MSDS information for the proposed replacement, Compadre is a mixture of lecithin, alcohol ethoxylate and methyl esters of fatty acids, with low aquatic toxicity (LC50 > 10 mg/L in rainbow trout). Given the upland application envisioned, the environmental fate of the ingredients in the Compadre mixture, the low inherent toxicity of the mixture, and the lack of conditions that could lead to aquatic exposure from the proposed application, the use of Compadre does not raise additional effects to ESA-listed species or their critical habitat that were not already addressed under the HIP III programmatic opinion (NMFS NWR-2013/9724).
Process Flowchart for HIPIII Herbicide Application

START

Determine location of invasive plant infestation

Obtain current county ESA-listed species list

Is location within 1-mile of ESA-listed Terrestrial Species or within ¼ miles of known or suitable unsurveyed plant habitat?

Use Table 5 to Determine Appropriate Herbicide and Application Rates

If applicable, review and implement Conservation Measures to USFWS ESA-listed Plants and/or Conservation measures to USFWS ESA-listed Terrestrial Species.

I Don't Know

A No Effect Determination is likely appropriate, no HIPIII documentation or process required. Confirm with EC_Lead, BPA makes the final determination.

Contact EC Lead and appropriate USFWS Office, a survey may be necessary to determine presence of ESA-listed plant populations

Is location within ¼-mile of salmon bearing streams?

YES

NO

Is location in Riparian or Upland Areas?

Upland

Review and Implement General Conservation Measures to ESA-listed Species.

Fill out HIPIII Project Notification Form (PFN) and submit to EC_Lead

Implement Invasive Plant Control

Submit Herbicide Use form to EC_Lead by the End of January

END

Riparian

Use Table 4 to Determine Buffer Widths for Adjuvants

Use Table 3 to Determine Buffer Widths for Herbicides

Use Table 4 to Determine Buffer Widths for Adjuvants

Use Table 3 to Determine Buffer Widths for Herbicides

Uplands are as defined by FEMA (1990) for fish-bearing streams in all watersheds. The combined average height of two site potential trees or 300 feet (whichever is greater)
Manage Vegetation Using Physical Control

Description. BPA proposes to use two mechanisms for vegetation management by physical control: (a) Manual control includes hand pulling and grubbing with hand tools; bagging plant residue for burning or other proper disposal; mulching with organic materials; shading or covering unwanted vegetation; controlling brush and pruning using hand and power tools such as chain saws and machetes; using grazing goats. When possible, manual control (e.g., hand pulling, grubbing, cutting) will be used in sensitive areas to avoid adverse effects to ESA-listed species or water quality. (b) Mechanical control includes techniques such as mowing, tilling, disking, or plowing. Mechanical control may be carried out over large areas or be confined to smaller areas (known as scalping).

Conservation Measures:
1) For mechanical control that will disturb the soil, an untreated area will be maintained within the immediate riparian buffer area to prevent any potential adverse effects to stream channel or water quality conditions. The width of the untreated riparian buffer area will vary depending on site-specific conditions and type of treatment.

2) Ground-disturbing mechanical activity will be restricted in established buffer zones adjacent to streams, lakes, ponds, wetlands and other identified sensitive habitats based on percent slope. For slopes less than 20%, a buffer width of 35 feet will be used. For slopes over 20%, no ground-disturbing mechanical equipment will be used.

3) When possible, manual control (e.g., hand pulling, grubbing, cutting) will be used in sensitive areas to avoid adverse effects to ESA-listed species or water quality.

4) All noxious weed material will be disposed of in a manner that will prevent its spread. Noxious weeds that have developed seeds will be bagged and burned.
Conservation Measures for USFWS ESA-Listed Terrestrial Species

If it is determined that ESA-listed species, critical habitat, or unsurveyed suitable habitat for ESA-listed species are located within the vicinity (generally within 1 mile) of the proposed project, the action agency will implement the following project design standards for each species. Additional species-specific conservation measures may apply (Your EC lead shall provide you with those).

1) **Project Access.** Existing roads or travel paths will be used to access project sites whenever possible; vehicular access ways to project sites will be planned ahead of time and will provide for minimizing impacts on riparian corridors and areas where listed species or their critical habitats may occur.

2) **Vehicle use and human activities.** Including walking in areas occupied by ESA-listed species, will be minimized to reduce damage or mortality to listed species.

3) **Flight patterns.** Helicopter flight patterns will be established in advance and located to avoid seasonally important wildlife habitat

4) **Herbicide Use.** On sites where ESA-listed terrestrial wildlife may occur, herbicide applications will be avoided or minimized to the extent practicable while still achieving project goals. Staff will avoid any potential for direct spraying of wildlife or immediate habitat in use by wildlife for breeding, feeding, or sheltering. Herbicide use in or within 1 mile of habitat where ESA-listed terrestrial wildlife occur will be limited to the chemicals and application rates as shown in Table 5.

5) There may be additional species-specific herbicide limitations are defined in each species section in the USFWS Biological Opinion, see your EC lead for more information.

Table 5: Maximum Application Rates within 1 Mile of Habitat where ESA-listed Terrestrial Species Occur.

<table>
<thead>
<tr>
<th>Listed Species</th>
<th>2,4-D</th>
<th>Aminopyralid</th>
<th>Chlorsulfuron</th>
<th>Clethodim</th>
<th>Clopyralid</th>
<th>Dicamba</th>
<th>Glyphosate 1</th>
<th>Glyphosate 2</th>
<th>Imazapic</th>
<th>Imazapyr</th>
<th>Metsulfuron</th>
<th>Pendim</th>
<th>Sethoxydim</th>
<th>Sulfometuron</th>
<th>Triclopyr (TEA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td>NA</td>
<td>0.22</td>
<td>0.083</td>
<td>NA</td>
<td>0.375</td>
<td>NA</td>
<td>2.0</td>
<td>2.0</td>
<td>0.189</td>
<td>1.0</td>
<td>0.125</td>
<td>NA</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Birds*</td>
<td>NA</td>
<td>0.11</td>
<td>0.083</td>
<td>NA</td>
<td>0.375</td>
<td>NA</td>
<td>2.0</td>
<td>2.0</td>
<td>0.189</td>
<td>1.0</td>
<td>0.125</td>
<td>NA</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Invertebrates*</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.375</td>
<td>NA</td>
<td>2.0</td>
<td>2.0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA = Not Authorized for use
* See required buffers and methods restrictions within each species-specific PDS
Conservation Measures for USFWS ESA-Listed Plants

Within the Columbia River Basin, BPA funded activities may occur in areas that are near or occupied by the following ESA-listed plant species on page 4.

Conservation Measures:

1) Listed plants must be clearly flagged or fenced prior to restoration activities to avoid inadvertently affecting listed plants.

2) When using manual methods at project sites occupied by a federally listed plant species, a buffer of 3 m (10 ft) will be required around green growing plants until after senescence. Manual control and removal activities may occur year round in occupied habitat or critical habitat for listed plants except at sites occupied by listed butterflies (see above for information on Fender’s blue butterfly). Chips, sawdust, brush accumulations, and other plant waste materials will be removed from project site to the extent possible.

3) Mowing, tilling, diskng, plowing, excavation, raking or sod rolling (i.e., larger scale subsurface ground disturbances) will not occur within 10 m (33 ft) of known federally listed plant species or critical habitat for listed plants at any time. Listed plants must be clearly flagged or fenced prior to restoration activities to avoid inadvertently affecting listed plants. Additional requirements for mechanical treatments include the following.
 a) Use of low ground impact (e.g., rubber tired or tracked) and appropriately sized equipment to prevent soil compaction.
 b) Mower deck heights must be set to prevent soil gouging.
 c) Chips, sawdust, brush accumulations, and other plant waste materials must be removed from project site to the extent possible.
 d) Mechanical treatments must not alter the existing hydrology at a project site.
 e) All equipment must be cleaned of invasive and non-native plant materials before entering a project site occupied by a listed plant species to prevent the dispersal of seeds or other reproductive plant parts.
 f) Ground-disturbance activities (e.g. tilling, diskng, and plowing) must be followed with native seed or plant introductions to minimize or eliminate the establishment of invasive and non-native vegetation.

4) Hand applications of herbicide will maintain a minimum distance of 5 m (16 ft) from listed plants or critical habitat. Spraying will only take place during calm periods (wind velocities less than 3 mph). ESA-listed plants will be physically shielded (e.g., covered with buckets or some other barrier that will not harm the plants) as needed to protect them from spray or drift, unless they are dormant; plants will be uncovered immediately after spraying has been completed.

5) Broadcast applications of herbicide will not occur within 275 m (900 ft) of occupied habitat or critical habitat for listed plants.
6) Herbicide treatments must be followed with native seed or plant introductions to minimize or eliminate the establishment of invasive and non-native vegetation.

7) The following conservation measures are specific for the type of herbicide application to be used at project sites when listed plant species are nearby.
 a) Wick and wipe applications
 (1) The appropriate type and size of equipment will be used to apply herbicides onto the target foliage and stems.
 (2) Herbicide applications will be made in a manner that prevents herbicide runoff onto the ground.
 b) Basal bark applications
 (1) Applicators will avoid unnecessary run-off when applying herbicide to stems of target vegetation.
 (2) Herbicide applications will be applied using the lowest nozzle pressure that will allow adequate coverage.
 (3) Applicator will apply herbicides while facing away from listed plants.
 c) Spot and patch applications
 (1) Herbicides applications may be used with hand applicators.
 (2) Herbicide will be applied in a manner where the spray is directed towards the application area and away from listed plants.
 (3) The spray nozzle will be kept within three feet of the ground when herbicide is being applied within 50 feet of listed plants. Beyond 50 feet, the nozzle may be held up to six feet above ground if needed to treat taller clumps of competing vegetation.
 d) Cut surface and hack and squirt/injection applications. Herbicide applications will be made in a manner that prevents herbicide runoff onto the ground.
 e) Spot applications of dry granules, pellets, and dust. A 5 m (16 ft) buffer will be maintained between listed plants and application areas to prevent exposure to listed plants.
General Project and Data Summary Requirements (GPDSR).

Planning and design documentation of conservation practices should effectively communicate that appropriate planning, analysis, design and resulting construction documentation are met. The project documentation should provide other persons the means of quickly following the rationale used in determining all features of a design including the design objective(s), data, criteria, assumptions, procedures, and decisions used in design and resulting construction plans, specifications and details.

The GPDSR serves as the design submittal framework that is needed to assess and evaluate the adequacy of the proposed project. The GPDSR criteria were developed using the River Restoration Analysis Tool and address the 16 overarching questions proposed within the RiverRAT Framework.

The BPA RRT will review submitted GPDSR documents to determine if the technical deliverables provided are:
1. Adequate for functionality (adherence to HIPIII Conservation Measures).
2. Adequate for technical quality (competent execution of design and project plans – contract documents).

A GPDSR basis of design report template is available.

Project Background.
1. Name and titles of sponsor, firms and individuals responsible for design.
2. List of project elements that have been designed by a licensed Professional Engineer.
3. Identification and description of risk to infrastructure or existing resources.
4. Explanation and background on fisheries use (by life stage - period) and limiting factors addressed by project.
5. List of primary project features including constructed or natural elements.
6. Description of performance / sustainability criteria for project elements and assessment of risk of failure to perform, potential consequences and compensating analysis to reduce uncertainty.
7. Description of disturbance including timing and areal extent and potential impacts associated with implementation of each element.

Resource Inventory and Evaluation.
1. Description of past and present impacts on channel, riparian and floodplain conditions.
2. Instream flow management and constraints in the project reach.
3. Description of existing geomorphic conditions and constraints on physical processes.
4. Description of existing riparian condition and historical riparian impacts.
5. Description of lateral connectivity to floodplain and historical floodplain impacts.
6. Tidal influence in project reach and influence of structural controls (dikes or gates).
Technical Data.

1. Incorporation of HIPIII specific Activity Conservation Measures for all included project elements.
2. Summary of site information and measurements (survey, bed material, etc.) used to support assessment and design.
3. Summary of hydrologic analyses conducted, including data sources and period of record including a list of design discharge (Q) and return interval (RI) for each design element.
4. Summary of sediment supply and transport analyses conducted, including data sources including sediment size gradation used in streambed design.
5. Summary of hydraulic modeling or analyses conducted and outcomes – implications relative to proposed design.
6. Stability analyses and computations for project elements, and comprehensive project plan.
7. Description of how preceding technical analysis has been incorporated into and integrated with the construction – contract documentation.
8. For projects that address profile discontinuities (grade stabilization, small dam and structure removals):
 A longitudinal profile of the stream channel thalweg for 20 channel widths upstream and downstream of the structure shall be used to determine the potential for channel degradation.
9. For projects that address profile discontinuities (grade stabilization, small dam and structure removals):
 A minimum of three cross-sections – one downstream of the structure, one through the reservoir area upstream of the structure, and one upstream of the reservoir area outside of the influence of the structure) to characterize the channel morphology and quantify the stored sediment.

Construction – Contract Documentation.

1. Incorporation of HIPIII General and Construction Conservation Measures
2. Design – construction plan set including but not limited to plan, profile, section and detail sheets that identify all project elements and construction activities of sufficient detail to govern competent execution of project bidding and implementation.
3. List of all proposed project materials and quantities.
4. Description of best management practices that will be implemented and implementation resource plans including:
 a) Site Access Staging and Sequencing Plan with description
 b) Work Area Isolation and Dewatering Plan with description of how aquatic organisms within the action area will be treated / protected.
 c) Erosion and Pollution Control Plan.
 d) Site Reclamation and Restoration Plan
 e) List proposed equipment and fuels management plan.
5. Calendar schedule for construction/implementation procedures.
6. Site or project specific monitoring to support pollution prevention and/or abatement.
HIP III Programmatic - Consultation Project Notification Form

HIP III No:

<table>
<thead>
<tr>
<th>Lead Action Agency: BPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMFS Tracking #: 2013/9724</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date of Request: DATE</th>
<th>Project Title: Click here to enter text.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPA Project #: Click here to enter text.</td>
<td>Contract #: Click here to enter text.</td>
</tr>
<tr>
<td>BPA EC Contact: Click here to enter text.</td>
<td>Phone: Click here to enter text.</td>
</tr>
<tr>
<td>Project Sponsor Contact: Click here to enter text.</td>
<td>Phone: Click here to enter text.</td>
</tr>
<tr>
<td>Project Affiliation: Click here to enter text.</td>
<td></td>
</tr>
<tr>
<td>NMFS Branch Office: Choose a NMFS Branch Office</td>
<td></td>
</tr>
<tr>
<td>USFWS Field Office: Choose a USFWS Field Office</td>
<td></td>
</tr>
<tr>
<td>Lat/Long: (in decimal degrees, WGS84) Click here to enter text.</td>
<td>County: Choose a County.</td>
</tr>
<tr>
<td>6th Field HUC: Click here to enter text.</td>
<td>HUC Name: Click here to enter text.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Start Date: DATE</th>
<th>Project End Date: DATE</th>
<th>Completed Form Due Date: DATE</th>
</tr>
</thead>
</table>

Note Project Completion Form (PCF) Due Date

- Does the project consist of Invasive Plant Control only? Yes ☐ No ☐
- Does the project require work area isolation? salvage? Yes ☐ No ☐
- Does the project require a variance? Yes ☐ No ☐

Project Description

List the project activities and describe the intended result(s); tell when the project is to occur; describe how the activities will be implemented; provide any other pertinent information. Please include Work Element for each activity.

Click here to enter text.

Simple Description: “Adding 40 pieces of large wood to RM 3.”
Variance Request

Describe how the effects of the requested variance fall within the range of effects described for the proposed activities in the HIP III Opinion, by addressing the following:

1) Define the requested variance and the relevant criterion by page number.

2) Environmental conditions anticipated at the time of the proposed work (flow and weather conditions).

3) Biological justification as to why a variance is necessary and a brief rationale why the variance will either provide a conservation benefit or, at a minimum, not cause additional adverse effects beyond the scope of the Opinion.

4) Include as attachments any necessary approvals from state agencies.

NMFS Species/Critical Habitat Present in Action Area:

Anadromous Fish:
- Lower Columbia River Chinook
- Lower Columbia River coho
- Lower Columbia River steelhead
- Middle Columbia River steelhead
- Upper Columbia River spring-run Chinook
- Upper Columbia River steelhead
- Columbia River chinook
- Green sturgeon
- Upper Willamette River Chinook
- Upper Willamette River steelhead
- Snake River spring/summer-run Chinook
- Snake River fall-run Chinook
- Snake River Basin steelhead
- Snake River sockeye
- Pacific enhalcomb

Essential Fish Habitat Species:
- Salmon (West Coast Salmon FMP)
- Estuarine Composite (Ground fish, pelagic)

USFWS Species/Critical Habitat Present in Action Area:

Freshwater Fish Species:
- Bull Trout

Mammalian Species:
- Canada lynx*
- Columbia white-tailed deer*
- Gray wolf*
- Grizzly bear*
- North American wolverine
- Pygmy rabbit*
- Northern Idaho ground squirrel*
- Woodland caribou*

Avian Species:
- Marbled murrelet
- Northern spotted owl
- Streaked horned lark*
- Western snowy plover

Invertebrate Species:
- Banbury Springs limpet
- Bleu Rapide snail*
- Bruneau Hot springsnail*
- Fender’s blue butterfly
- Taylor’s checkerspot butterfly
- Snake River physa snail*
- Oregon silverspot butterfly

*Species Affected

This is where variance information gets communicated to Services
Plant Species:
- Brandeau's lomatium
- Cook's lomatium
- Gentner's fritillary
- Golden paintbrush
- Howel's spectacular thryhody
- Kincaid's lupine
- Large-flowered woolly meadowfoam
- Malheur wire-lettuce
- McFarlane's four o'clock
- Nelson's checkermallow
- Rough popcorn flower
- Slowy stickseed
- Slickspot peppergrass
- Spalding's catchfly
- Umiam Desert buckwheat
- Utz's ladies' tresses
- Water hyssop
- Wenatchee Mountain checkermallow
- Western lily
- White Bluffs bladderpod
- Willamette daisy

Types of Action:
Identify the types of action(s) proposed.

1. Fish Passage Restoration (Profile Discontinuities)
 - a. Dams, Water Control or Legacy Structure Removal
 - b. Consolidate, or Replace Existing Irrigation Diversions
 - c. Headcut and Ograde Stabilization
 - d. Low Flow Consolidation
 - e. Providing Fish Passage at an Existing Facility

Fish Passage Restoration (Transportation Infrastructure)
- f. Bridge and Culvert Removal or Replacement
- g. Bridge and Culvert Maintenance
- h. Installation of Fords

2. River, Stream, Floodplain, and Wetland Restoration
 - a. Improve Secondary Channel and Wetland Habitats
 - b. Set-back or Removal of Existing, Berms, Dikes, and Levees
 - c. Protect Streambanks Using Bioengineering Methods
 - d. Install Habitat-Forming Natural Material Instream Structures (Large Wood, Boulders, and Spawning Gravel)
 - e. Riparian Vegetation Planting
 - f. Channel Reconstruction

3. Invasive and Non-Native Plant Control
 - a. Manage Vegetation using Physical Controls
 - b. Manage Vegetation using Herbicides

4. Piling Removal
 - a. Filing Removal

5. Road and Trail Erosion Control, Maintenance, and Decommissioning
 - a. Maintain Roads
 - b. Decommission Roads

6. In-channel Nutrient Enhancement
 - a. In-channel Nutrient Enhancement

7. Irrigation and Water Delivery/Management Actions
 - a. Convert Delivery System to Drop or Sprinkler Irrigation
 - b. Convert Water Conveyance from Open Ditch to Pipeline or Line Leaking Ditches or Canals
 - c. Convert from Instream Diversions to Groundwater Wells for Primary Water Sources
 - d. Install or Replace Return Flow Cooling Systems
 - e. Install Irrigation Water Siphon Beneath Waterway
 - f. Livestock Watering Facilities
 - g. Install New or Upgrade Maintain Existing Fish Screens

8. Fisheries, Hydrologic, and Geomorphologic Surveys
 - a. Fisheries, Hydrologic, and Geomorphologic Surveys

9. Special Actions (Terrestrial Species)
 - a. Install/develop Wildlife Structures
 - b. Fencing Construction for Livestock Control
 - c. Implement Erosion Control Practices
 - d. Plant Vegetation
 - e. Tree Removal for LW Projects

Note version. Ver 3.10 current as of 2/22/16
Once this has been signed and returned with HIPIII No# this document serves as proof of coverage.
HIP III Forms – Project Completion (PCF).

Project Completion Reporting

HIP III No:

Within 60 days of completing a project covered under the HIP III programmatic biological opinion, Bonneville Power Administration staff will review and submit this completed form with the following information to the project sponsor and to NMFS at hip.nerc@noaa.gov and USFWS at hip.pws.gov.

<table>
<thead>
<tr>
<th>Project Title:</th>
<th>Click here to enter text.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Submittal:</td>
<td>DATE</td>
</tr>
<tr>
<td>BPA Project #:</td>
<td>Click here to enter text.</td>
</tr>
</tbody>
</table>

Project Activity Start and End Dates:

<table>
<thead>
<tr>
<th>Work Element</th>
<th>In-water Activities</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Click here to enter text.</td>
<td>DATE</td>
<td>DATE</td>
</tr>
<tr>
<td></td>
<td>Click here to enter text.</td>
<td>DATE</td>
<td>DATE</td>
</tr>
<tr>
<td></td>
<td>Click here to enter text.</td>
<td>DATE</td>
<td>DATE</td>
</tr>
<tr>
<td></td>
<td>Click here to enter text.</td>
<td>DATE</td>
<td>DATE</td>
</tr>
<tr>
<td></td>
<td>Click here to enter text.</td>
<td>DATE</td>
<td>DATE</td>
</tr>
</tbody>
</table>

Fish Capture Reporting

The BPA will report the following information for all projects that involve work area isolation with associated fish capture and relocation. When available, provide a tally of ESA-listed salmonids by species (salmon or steelhead) and life stage.

| Fish Capture Lead (name, contact info) | Click here to enter text. |

<table>
<thead>
<tr>
<th>Type of take</th>
<th>Interior Columbia Basin</th>
<th>Lower Columbia (Hood River downstream)</th>
<th>Bull Trout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of salmonids Captured</td>
<td>Click here to enter text.</td>
<td>Click here to enter text.</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td>Number of salmonids Injured</td>
<td>Click here to enter text.</td>
<td>Click here to enter text.</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td>Number of salmonids Killed</td>
<td>Click here to enter text.</td>
<td>Click here to enter text.</td>
<td>Click here to enter text.</td>
</tr>
</tbody>
</table>

Note version. Ver 3.05 current as of 2/22/16

Break down fish capture by life stage and species if possible.
Include a brief description of the project, before and after photos, and any lessons learned.
HIPII Forms – Herbicide Use Form

HIPIII HERBICIDE USE FORM

HIPIII NO#

YEAR

PROPOSED

ACTUAL

Project Sponsor/Person Filling out Form:

Email Address:

BPA Project Number (9999-999-99):

BPA Contract Number:

EC Lead:

Date:

INSTRUCTIONS: Only the Herbicides listed in note #1 are allowed for use under the HIPI. Use “VARIANCE” for a variance approved herbicide not on the list and write it under trade name. Mixtures of up to three herbicides may be used and use one row for each herbicide application mixture. All Herbicide Reporting is due by April 1st. You may have to submit 2 forms for one contract if the herbicide application period extends this date. “Near ESA listed species” is within 1 mile of habitat where they are known to occur. Near ESA listed species follow Section 7 below.

<table>
<thead>
<tr>
<th>Location Name</th>
<th>Latitude (H00’S)</th>
<th>Longitude (D00’S)</th>
<th>Action Ingredient</th>
<th>Trade Name</th>
<th>Application Rate (Note #2)</th>
<th>Adjacent (Note #3)</th>
<th>Methodology (Note #7)</th>
<th>Amount A1 (Note #8)</th>
<th>Methodology (Note #7)</th>
<th>Amount A1 (Note #8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX</td>
<td>45.4657</td>
<td>-113.9537</td>
<td>Inazaprop</td>
<td>Metamitran</td>
<td>8.1</td>
<td>Ager-Dex</td>
<td>Broadcast</td>
<td>0.6</td>
<td>Broadcast</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Use one entry for each Herbicide Mixture.

Up to 3 herbicides can be used for each mixture.

Application rate and amount used are the most important items to report accurately. From this we derive treatment area.

The Lat and Long must be in decimal degrees.

There should auto fill.

Year for when herbicides were applied.

Check the box if this is pre or post application.
Restoration Review Team Frequently Asked Questions.

What is the RRT?

Under the HIP III, BPA will use an internal QA/QC process on medium- to high-risk projects in the Fish Passage Restoration activity category and the River, Stream, Floodplain and Wetland Restoration activity category to:

1) Meet the obligations set forth in the National Marine Fisheries Service (NMFS)/United States Fish and Wildlife Service (USFWS) Biological Opinions within the action area.
2) Promote interagency (NMFS/USFWS) collaboration.
3) Maximize ecological benefits of BPA-funded restoration projects.
4) Facilitate site visits.
5) Ensure consistent use and implementation of the HIP III throughout the action area.

Risk for the purposes of the RRT is defined primarily as risk to Endangered Species Act (ESA)-listed species and their habitats, but can be applied to include, but is not limited to:

1) Precedent- and/or policy-setting actions, such as the application of new technology.
2) Actions that are not necessarily new, but are new to a geographic area or stakeholder group.
3) Actions with which the project manager, sponsor, or EC Lead is unfamiliar, regardless of the relative risk.
4) Actions that are large in complexity and scope, or represent a significant investment in BPA resources.

Another purpose of the RRT is to provide updates and clarifications of the USFWS/NMFS HIP III BOs to all users to ensure consistent use, and to resolve inconsistencies and obtain clarification from the Services when needed. All updates and clarifications are communicated via the most current version of the HIP III handbook.

The RRT does not replace any existing review process, nor shall it slow down project permitting and implementation unless there are significant technical, policy, and/or program concerns with a particular restoration approach.

What types of projects require review by the RRT?

The BPA EC Lead, using guidance developed by the RRT, shall screen projects and forward only the medium and high risk projects to the RRT for review. Low-risk projects would proceed along normal channels for HIP compliance and not require RRT review.

The RRT shall only review medium to high risk projects within the Fish Passage Restoration activity category and the River, Stream, Floodplain and Wetland Restoration activity category.
Who is on the RRT?

- Restoration Review Team Lead:
 - Dan Gambetta (503.230.3493)
- Team Members:
 - Jesse Wilson (503.230.4506)
 - Michelle Guay (503.230.3459)
 - Israel Duran (503.230.3967)
 - Jenna Peterson (503.230.3018)
 - David Roberts (503.230.4511)
 - Steve Gagnon (503.230.3375)
 - Brenda Aguirre (503.230.5928)
- Technical Team:
 - Sean Welch (503.230.7691)

What information is needed?

The following project review junctures are proposed as standard project quality assurance junctures for high risk projects and may be used for medium risk projects at the discretion of the RRT based on the scope and complexity of the project. The number of review junctures depends on the adequacy of information provided, incorporation of comments recommendations, and may be modified to align with identified project junctures.

Conceptual Project Review: Project Sponsor will notify BPA at the 15% or project concept stage and coordinate a site visit to review project concepts, goals, and objectives and confirm the direction and planning for subsequent phases of project design. Staff biologists from the NMFS and USFWS shall be invited to the site visit. A typical site visit will include the review of limiting factors and any pertinent studies or reports that document restoration targets for implementation and draft project concepts. Additional data that may be presented and reviewed include other data sources e.g. high resolution aerial photography, topographic maps, geology – soils, GIS – CAD data layers or other resource data. After the site visit, BPA will collate and provide technical comments from BPA engineering and interagency partners, then notify Sponsor to proceed to 30% design.

30% Project Review: Sponsor will notify BPA at the 30% project concept completion stage. The 30% project drawings and preferred project alternatives will be submitted for review and technical comment to BPA and our interagency partners. The 30% design should demonstrate incorporation of previous technical comments and recommendations developed at the previous design review. The 30% design submittals should include preliminary drawings and specifications including overall site locations, site plans, profiles, cross sections, details, preliminary quantities and provisional technical analyses as summarized in a draft Basis of Design Report using the General Project and Data Summary Requirements (GPDSR) outline (refer to Page 66) At this point, NMFS may require a separate Fish Passage Review from NMFS Hydraulic engineering. BPA will perform review of the 30% submittal, collate any comments from interagency partners and submit them to the Sponsor. Outcomes from the review process
will consist of 30% design approval and/or comments to be incorporated in the 80% design. BPA will notify Sponsor to proceed to 80% design

80% Project Review: Sponsor will notify BPA at the 80% project concept completion stage. The 80% project drawings will be submitted for review and technical comment to BPA and our interagency partners. The 80% design should demonstrate complete incorporation of technical comments and recommendations developed at the previous design review. The 80% design submittals should include near final drawings and specifications including specific site locations, site plans, profiles, cross sections, details, construction quantities, implementation resource plans and design technical analyses as summarized in a Basis of Design Report. The Sponsor can refer to the GPDSR for an outline of information and requirements for the 80% project design submittal phase.

What is the RRT Technical Review?

RRT technical review provides an internal point of view on the merit, development, execution and anticipated benefit of med-high risk projects. Technical review is facilitated through open communication and cooperation with the project sponsor and interagency coordination with the Services.

What happens after a review?

Outcomes from the review process will consist of either:

1) comments to be addressed and re-submittal,
2) comments and approval,
3) approval.

Final approval is contingent upon NMFS branch chief and/or USFWS field officer supervisor sign off. Upon final approval, BPA will notify the Sponsor of acceptance of the project design and construction documentation for the project.

Is RRT review the same as NMFS Hydro Review?

No. NMFS Hydro review is required for any project that affects fish passage or involves channel-spanning instream structures (with the exception of bridge/culvert replacement). See page 78 for more information.

How to expedite the RRT Process?

The best way to expedite the RRT process is to have the basis of design report follow and address the GPDSR in addition to incorporating HIPHII conservation measures directly into the engineering plans. Turnaround times on reviewing plans and information are usually 2-4 weeks depending on complexity.
The NMFS Hydro-Division Review Process.

NMFS Hydropower Division shall conduct reviews for fish passage on any in-stream project that may result in alterations or changes in fish passage (with exception of bridge and culvert removal). Fish passage review is initiated by the EC Lead and usually occurs at the 60% design review juncture.

1. Fish Passage Restoration:

Profile Discontinuities Category:

a. Dams, Water Control or Legacy Structure Removal.*

 YES, small dams with a maximum total head measurement greater than 3 feet, channel spanning weirs, earthen embankments and spillway systems.

b. Consolidate, or Replace Existing Irrigation Diversions.*

 YES, irrigation diversion structures greater than 3 feet in height that are to be removed or replaced.

c. Headcut and Grade Stabilization.

 YES, installation of boulder weirs, roughened channels and grade control structures that are above 18 inches in height.

d. Low Flow Consolidation.

 YES, all projects with that as the primary intent and using artificial means.

e. Providing Fish Passage at an Existing Facility.

 YES, fish Passage improvements at an existing facility that are not upkeep and maintenance such as re-engineering improperly designed fish passage or fish collection facilities, installation of a fish ladder at an existing facility, or other activities that are not upkeep or maintenance.

Transportation Infrastructure:

f. Bridge and Culvert Removal or Replacement.*

 NO Hydro Review Required
g. Bridge and Culvert Maintenance.

NO Hydro Review Required

h. Installation of Fords.

NO Hydro Review Required

2. River, Stream, Floodplain, and Wetland Restoration.

a. Improve Secondary Channel and Wetland Habitats.

NO Hydro Review Required

b. Set-back or Removal of Existing, Berms, Dikes, and Levees.

NO Hydro Review Required

c. Protect Streambanks Using Bioengineering Methods.

NO Hydro Review Required

d. Install Habitat-Forming Natural Material Instream Structures (Large Wood, Boulders, and Spawning Gravel).

NO Hydro Review Required

e. Riparian Vegetation Planting.

NO Hydro Review Required

f. Channel Reconstruction.

YES, Hydro Review Required

*These activity categories may result in headcut or grade stabilization

***In addition, any fish screen with pumping rate that may exceed 3cfs.*
*Blue indicates project sponsor action, red indicates BPA RRT action.

**BPA typically has review milestones at 15% (conceptual), 30%, and 80%, although these junctures may be adjusted to align with our partner’s processes and with respective project management plans.
Work Element by HIPIII Risk Category

<table>
<thead>
<tr>
<th>ID</th>
<th>Work Element Name</th>
<th>Definition</th>
<th>HIPIII Category</th>
<th>RRT Review Needed</th>
<th>HIPIII Risk Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Increase Instream Habitat Complexity and Stabilization</td>
<td>Work that adds natural materials instream to create habitat features or to improve channel morphology. Includes J-hooks, barbs, vortex weirs, and large woody debris (LWD). Can include work to stabilize or maintain a streambank, such as riprap, or improve complexity by creation of pools or fish spawning habitat by addition of gravel.</td>
<td>2d</td>
<td>✓</td>
<td>Low-Med-High</td>
</tr>
<tr>
<td>30</td>
<td>Realign, Connect, and/or Create Channel</td>
<td>Active attempts to directly add sinuosity, meanders, side channels, and/or off-channel habitats (e.g., sloughs or oxbows). May include reconnection of historical channels (either via excavation or diversion of existing streamflow), excavation of new channels, and/or significantly improving the functionality of existing channels (e.g., creating a "natural" spawning channel for chum).</td>
<td>2d, 2f</td>
<td>✓</td>
<td>Med-High</td>
</tr>
<tr>
<td>33</td>
<td>Decommission Road/Relocate Road</td>
<td>Any activity that makes a road or trail unusable including adding berms, pits, boulders or logs, and/or ripping, scarifying, recontouring, or obliterating the road or trail with heavy equipment that may involve re-contouring the slope. Also use for building a road or trail in a more appropriate location to replace a decommissioned road or trail.</td>
<td>5b</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>34</td>
<td>Develop Alternative Water Source</td>
<td>Provision of water supply for livestock that is out of the water zone and at a distance beyond that which may affect the conditions of the water body. Includes, but not limited to, watering troughs, spring and well development, and guzzler installation.</td>
<td>7f</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>35</td>
<td>Develop Pond</td>
<td>Develop a pond and its surrounding habitat for resident fish and/or waterfowl. May involve the installation of a water control structure or excavation.</td>
<td>2a</td>
<td>✓</td>
<td>Med</td>
</tr>
<tr>
<td>36</td>
<td>Develop Terrestrial Habitat Features</td>
<td>Includes the installation and/or creation of structures for the benefit of wildlife species, including, but not limited to, nest boxes/platforms, avian perches, snags, guzzlers, and artificial roosting sites.</td>
<td>9a</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>38</td>
<td>Improve Road</td>
<td>Work designed to eliminate or reduce erosion, sediment, and/or toxic run-off from reaching streams, rivers, or wetlands from roads or trails currently in use. This includes road projects that reduce or eliminate inter-basin transfer of water, placement of structures to contain/control run-off from roads or trails, road or trail reconstruction or reinforcement, surface and peak-flow drainage improvements, and roadside vegetation. These roads may be in or extend into the riparian zone.</td>
<td>5a</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>40</td>
<td>Install Fence</td>
<td>Work to install various types of fence and/or gates for habitat improvement.</td>
<td>9b</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>44</td>
<td>Enhance Nutrients in Water Bodies</td>
<td>Addition of fish carcasses, or direct nutrient introduction methods to improve biological diversity in streams, rivers, or lakes.</td>
<td>6</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>47</td>
<td>Plant Vegetation</td>
<td>Use during the first year (and only first year) of planting terrestrial or aquatic vegetation and/or applying seed (aerially, mechanically, and/or by hand) for purposes such as: wildlife cover and forage enhancement, erosion control and soil stabilization (run-off reduction and other soil destabilizing processes and activities not related to restoration after construction of facilities such as passage structures, buildings, or fish hatcheries), roughness recruitment, shading, restoration of native habitat, restoration after wildfires, and rehabilitation of removed roads/trails.</td>
<td>9d, 9c</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>55</td>
<td>Erosion and Sedimentation Control</td>
<td>This is work that occurs in the riparian and upland zones, which may include the installation of water bars, gully plugs and culvert outlets, grassed waterways, grade stabilization structures, sediment catchment ponds/basins, regrading or terracing, and removal of drainage pipes and other blockages specifically to prevent erosion, sediment slumps, or landslides.</td>
<td>9c</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>Enhance Floodplain/Remove, Modify, Breach Dike</td>
<td>Refers to the removal, breaching, or alteration/set-back of a dike to restore riparian/floodplain or wetland habitat. Also includes re-contouring of habitat to restore or enhance wetland or floodplain functionality and connectivity.</td>
<td>2a, 2b ✓ Med-High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>Create, Restore, and/or Enhance Wetland</td>
<td>Refers to the creation, restoration, or enhancement of a wetland area or function. This may be from the installation of a water control structure, re-contouring, and excavation to improve habitat connectivity.</td>
<td>2a ✓ Med-High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>Remove Vegetation</td>
<td>Use during the initial year of treating a site if removing one or more plant species, or a number of individuals of a plant species, by mechanical, biological, and/or chemical means, or by controlled burn.</td>
<td>3a, 3b Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Remove Debris</td>
<td>Removal of items such as trash, old buildings, and abandoned equipment from water or land. Does not include removal of a diversion or instream structure.</td>
<td>4 Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>Maintain Vegetation</td>
<td>Maintain planted or pre-existing vegetation through physical, chemical, mechanical, and/or biological activities such as scalping, installing mats or mulch, mowing, irrigating, fertilizing, applying herbicide(s), burning, using Integrated Pest Management (IPM), preventing or reducing animal damage (browse repellents, tree tubes). This includes using different, or the same, treatment techniques in previously treated areas the second year, or later, of planting.</td>
<td>3a, 3b Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Install Fish Screen</td>
<td>Work to install or replace a fish screen associated with a diversion or pump. Typical screen types include rotary drum, flat plate or traveling.</td>
<td>7g Low-Med-High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Install Siphon</td>
<td>Covers work that installs a siphon, flume, or other structure to separate canal flow from stream flow where the two have been intermingled as part of past water diversion development, resulting in fish using the natural stream course for passage and rearing.</td>
<td>7e Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Remove/Install Diversion</td>
<td>Work that removes, replaces, or avoids creating a fish passage barrier associated with a stream diversion, including push-up dams. May be part of a diversion consolidation effort that reduces the number of diversion sites.</td>
<td>1b ✓ Med-High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Remove/Breach Fish Passage Barrier</td>
<td>Work that facilitates fish passage over a natural (e.g., beaver) or human-made barrier by breaching or removal. This includes dams, weirs, fish ladders, tidegates, culverts, bridges, and road crossings.</td>
<td>1a ✓ Med-High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>Install Fish Passage Structure</td>
<td>Install, replace, or modify structures when the intent is to improve fish passage and/or flow, typically by removing or modifying a full or partial instream barrier.</td>
<td>1e ✓ Med-High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Install Well</td>
<td>Install well to enable groundwater to be used for irrigation as an alternative to instream flow.</td>
<td>7c Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>Install Pipelining</td>
<td>Includes activities related to installing a pipeline. This work element is only for work designed to provide irrigation efficiencies which result in increased instream flow</td>
<td>7b Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Install Sprinkler</td>
<td>Includes activities related to installing a sprinkler system. This work element is only for work designed to provide irrigation efficiencies which result in increased instream flow.</td>
<td>7a Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>Line Diversion Ditch</td>
<td>Includes activities related to lining a ditch. This work element is only for work designed to provide irrigation efficiencies which result in increased instream flow.</td>
<td>7b Low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>