RESPONSE TO COMMENT A-1

Several comments noted that existing air quality in the Columbia River Gorge National Scenic Area (CRGNSA) was impaired and that the cumulative effect of additional emissions from Plymouth Generating Facility had not been adequately evaluated.

Existing air quality in the CRGNSA is generally good, with relatively low average PM$_{2.5}$ concentrations (about 6 µg/m3). Ozone concentrations are comparable to those in urban areas of western Oregon and Washington. There are, however, some concerns about visibility degradation in the CRGNSA.

A U.S. Forest Service (USFS) issues paper focusing on the Gorge indicates that “the primary sources of air pollutants in the Gorge come from the Portland/Vancouver area and from sources within the Scenic Area” (USDA 2002). The Forest Service issues paper explains: “The USDA FS is collaborating with the air regulatory community from Oregon and Washington as well as the EPA, and visibility research organizations in an ongoing monitoring and analysis project to attempt to fully understand the nature of visibility impairment in the Scenic Area. Until this effort is concluded, and some of the current uncertainties are explained, with an unbiased scientific approach, it is premature to speculate about causes.”

The Draft Environmental Impact Statement (EIS) considers the effect that PGF emissions would have on existing air quality and visibility in the CRGNSA, as well as the cumulative effect on air quality and visibility of emissions from the PGF and other power plants proposed for the area.

The Draft EIS assesses cumulative effects in two ways. The first assessment was intended to evaluate the cumulative effects of foreseeable future sources on local air quality. It considered eight other existing and reasonably realistic proposed power plants in the vicinity of PGF, and evaluated local air quality impacts using the ISCT model (see Appendix B1 in the Draft EIS). That assessment demonstrated that the cumulative effects on local air quality would be well below established ambient air quality standards.
The second assessment was intended to evaluate the cumulative effect of foreseeable future emission sources on regional air quality and visibility. It considered 14 other recently-permitted or proposed power plants in the Pacific Northwest. That assessment included such local projects as Hermiston Power, Coyote Springs 2, Goldendale Energy Center, the “Cliffs” project in Goldendale, Wallowa Power, and the Confederated Tribes’ Wanapa Energy Center. The assessment followed a procedure that BPA previously applied to evaluate regional cumulative air quality impacts from 45 proposed power plants throughout Washington, northern Idaho, and northern Oregon. The original analysis indicated that even assuming that all 45 power plants were built and operating, cumulative ambient concentrations would represent a small fraction of ambient air quality standards. Many of these 45 proposed plants are no longer under active development. That study also determined that deposition of nitrogen and sulfur would be very small in comparison with existing deposition rates and criteria suggested by the USFS. The study concluded that the only concern if all 45 power plants were built and operating would be the potential for visibility degradation in Class I areas on days that would otherwise have very good visibility.

Therefore, BPA began evaluating new proposed power projects individually, using the same dispersion modeling procedures and assessment criteria. BPA began with a “baseline” group of power plants that had recently come on line or that BPA determined were reasonably likely to be constructed. The concept was to start with projects that were not yet included in ambient measurements of pollutant concentrations and other measures of air quality, but were highly likely to be completed and come on line. As a new power plant rose to the top of the queue awaiting connection to BPA’s grid, its emissions would be added to the baseline group to assess both the individual plant’s contribution to visibility impacts and the cumulative impact of the entire group of projects on visibility. As discussed in Appendix B-2 of the Draft EIS, 14 power plants were added to the baseline group prior to the evaluation of PGF. However, it is now unclear whether several of the power plants considered in this analysis will be completed in the foreseeable future (e.g. Wallowa Power, the Wanapa Energy Center, Satsop, Mint Farm, Goldendale).

The USFS was a participant in a national forum of governmental air quality agencies that established procedures and criteria for evaluating visibility impacts from new industrial sources. The FLAG2 protocol identified the change in 24-hour average extinction as the appropriate metric for evaluating visibility impacts. Based on the FLAG2 criteria, an impact occurs when the proposed source causes a 5 percent change in extinction on a very clear day (a day with visibility equal to or better than 97.5 percent of other days). The evaluation of PGF indicated that its emissions would never cause a 5 percent or greater reduction in visibility in Class I areas or the CRGNSA. Therefore, the Draft EIS concludes that the PGF’s emissions would not have a significant adverse impact on visibility, even on days with very good visibility.

A second FLAG2 criterion states that on clear days when cumulative visibility impacts result in a 10 percent change in extinction, the individual source contribution to extinction should be less than 0.4 percent. The BPA protocol considers the cumulative impact to be that attributable to the baseline power plants and subsequent power plants that were allowed to connect to the grid. The Draft EIS analysis indicates that PGF’s contribution would exceed 0.4 percent criteria on only one day per year at the CRGNSA and one day per year at Mt. Hood Wilderness Area. This assessment is based on conservative assumptions, as discussed in the Draft EIS.

In addition to evaluating potential visibility and deposition impacts (see Responses to Comments A-9, A-10 and A-12), the CALPUFF modeling system was used to assess concentrations of NOx, PM10, and SO2 attributable to emissions from the facility in Class I areas and the CRGNSA (see Table A-1-1, which has been added as Table 3.2-9 of the EIS). The results indicate that PGF would not significantly contribute to concentra-

1 For the CRGNSA and Spokane Indian Reservation, the BPA regional haze modeling assessment based background aerosol concentrations on top 20 percent days with the best visibility. These data were provided by the USFS for the CRGNSA and allow for a more realistic assessment that considers existing development and urban areas within the CRGNSA.

2 Clear days are defined (as above) as those days with visibility equal to or greater than 97.5 percent of other days.
Table A-1-1
Maximum Concentration Predictions Attributable to PGF Emissions (µg/m³)

<table>
<thead>
<tr>
<th>Area (a)</th>
<th>Annual Average</th>
<th>24-hour</th>
<th>3-hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO₂ (b)</td>
<td>PM₁₀ (c)</td>
<td>SO₂</td>
</tr>
<tr>
<td>Diamond Peak Wilderness</td>
<td>0.0000</td>
<td>0.0003</td>
<td>0.0000</td>
</tr>
<tr>
<td>Three Sisters Wilderness</td>
<td>0.0000</td>
<td>0.0003</td>
<td>0.0001</td>
</tr>
<tr>
<td>Mt. Jefferson Wilderness</td>
<td>0.0000</td>
<td>0.0004</td>
<td>0.0001</td>
</tr>
<tr>
<td>Strawberry Mtn. Wilderness</td>
<td>0.0000</td>
<td>0.0004</td>
<td>0.0001</td>
</tr>
<tr>
<td>Mt. Hood Wilderness</td>
<td>0.0001</td>
<td>0.0009</td>
<td>0.0002</td>
</tr>
<tr>
<td>CRGNSA</td>
<td>0.0003</td>
<td>0.0016</td>
<td>0.0005</td>
</tr>
<tr>
<td>Eagle Cap Wilderness</td>
<td>0.0001</td>
<td>0.0007</td>
<td>0.0002</td>
</tr>
<tr>
<td>Hells Canyon Wilderness</td>
<td>0.0001</td>
<td>0.0007</td>
<td>0.0002</td>
</tr>
<tr>
<td>Mt. Adams Wilderness</td>
<td>0.0000</td>
<td>0.0004</td>
<td>0.0001</td>
</tr>
<tr>
<td>Goat Rocks Wilderness</td>
<td>0.0000</td>
<td>0.0003</td>
<td>0.0001</td>
</tr>
<tr>
<td>Mt. Rainier National Park</td>
<td>0.0000</td>
<td>0.0002</td>
<td>0.0000</td>
</tr>
<tr>
<td>Olympic National Park</td>
<td>0.0000</td>
<td>0.0001</td>
<td>0.0000</td>
</tr>
<tr>
<td>Alpine Lakes Wilderness</td>
<td>0.0000</td>
<td>0.0002</td>
<td>0.0001</td>
</tr>
<tr>
<td>Glacier Peak Wilderness</td>
<td>0.0000</td>
<td>0.0002</td>
<td>0.0000</td>
</tr>
<tr>
<td>North Cascades National Park</td>
<td>0.0000</td>
<td>0.0001</td>
<td>0.0000</td>
</tr>
<tr>
<td>Pasayten Wilderness</td>
<td>0.0000</td>
<td>0.0002</td>
<td>0.0000</td>
</tr>
<tr>
<td>Mt. Baker Wilderness</td>
<td>0.0000</td>
<td>0.0001</td>
<td>0.0000</td>
</tr>
<tr>
<td>Spokane Indian Reservation</td>
<td>0.0002</td>
<td>0.0010</td>
<td>0.0003</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.0003</td>
<td>0.0016</td>
<td>0.0005</td>
</tr>
<tr>
<td>EPA Proposed Class I SIL</td>
<td>0.1000</td>
<td>0.2000</td>
<td>0.1000</td>
</tr>
<tr>
<td>Percent of Class I SIL</td>
<td>0.3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) CRGNSA and Mt. Baker Wilderness areas are not Class I areas.
(b) All NOx is assumed to be converted to NO₂
(c) PM₁₀ includes sulfates and nitrates.

The ambient impacts predicted to result from PGF emissions are so small that those emissions would not contribute to significant cumulative effects when combined with other sources, so a more detailed cumulative assessment was not warranted.

The Draft EIS focuses on the impacts associated with the proposed project, in comparison to the No Action Alternative, and therefore addresses only recently permitted and proposed power plants. Two types of analyses were conducted to determine the PGF’s potential impacts on visibility. Both use conservative assumptions, which likely overstate project impacts. The first analysis assumes that every day of the year currently has excellent visibility. By assuming that current visibility is always excellent, rather than by taking into account visibility degradation that currently occurs on some days as a result of natural conditions or emissions from existing sources, the analysis overstates the potential effect of PGF emission on visibility. The results of this analysis are then compared to established FLAG2 criteria. If the established criteria indicate that PGF emissions would not cause a significant cumulative effect on visibility, then a more detailed quantitative analysis of every existing and potential source of air pollution and its impact on visibility is not necessary.

The second analysis uses a more conservative approach to evaluating cumulative impacts by assuming existing sources cause visibility degradation every day of the year. The analysis then considers how often the PGF would contribute to visibility degradation of 0.4 percent or greater. This assessment conservatively assumes that the background visibility is representative of the best 10 percent visibility days. In other words, we evaluate impacts based on a good visibility day while applying the impact criterion that applies when the cumulative impact of all man-made sources causes a bad visibility day. Despite these conservative assumptions, the analysis predicted that emissions attributable to PGF could exceed the 0.4 percent change criterion on only 14 days of the year. The results for CRGNSA are summarized in Table A-1-2, which has been added as Table 5 of Appendix B2 to the EIS. Given the

Table A-1-2
CRGNSA Haze Impacts Attributable to PGF

<table>
<thead>
<tr>
<th></th>
<th>Maximum Extinction Attributable to PGF (1/MM)</th>
<th>Maximum Change in Extinction (%)</th>
<th>Number of Days With Significant Change in Extinction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>0.088</td>
<td>0.31</td>
<td>0</td>
</tr>
<tr>
<td>Summer</td>
<td>0.099</td>
<td>0.39</td>
<td>0</td>
</tr>
<tr>
<td>Fall</td>
<td>0.322</td>
<td>1.08</td>
<td>10</td>
</tr>
<tr>
<td>Winter</td>
<td>0.374</td>
<td>1.57</td>
<td>4</td>
</tr>
<tr>
<td>Max/Total</td>
<td>0.374</td>
<td>1.57</td>
<td>14</td>
</tr>
</tbody>
</table>

Further, USFS studies indicating acid deposition, ecosystem disturbance, and cultural resource issues in the CRGNSA are acknowledged. However, no studies confirm the degree to which sources in the Columbia plateau are responsible for impacts in the CRGNSA. Requesting emission reductions from power plants (especially for gas-fired power plants such as PGF) is premature when it cannot be demonstrated that such emission reductions would have a noticeable benefit to the CRGNSA. Another approach would be to require new sources to implement the best available emission control technology and to demonstrate that the resulting emissions would not result in a significant increase in ambient air concentrations of pollutants. If scientifically sound studies demonstrate that emissions from the Columbia Basin (as opposed to the Vancouver/Portland metropolitan area) are responsible for air quality problems in the CRGNSA and that power plants are a primary contributor to the problem, power plant emission reductions could be considered.

The CALPUFF simulations of PGF emissions were used to evaluate total sulfur and nitrogen (which includes nitrogen present as background ammonium) deposition. The results are presented in Table A-2-1, which has been added as Table 3.2-8 of the EIS. The maximum total deposition (including both wet and dry deposition) attributable to PGF in the CRGNSA was estimated to be 0.00029 kg/ha/yr for sulfur and 0.00018 kg/ha/yr for nitrogen.

The USFS has indicated that total deposition of less than 3 kg/ha/yr for sulfur and 5 kg/ha/yr for nitrogen are unlikely to significantly affect terrestrial ecosystems in the Pacific Northwest forests. The Washington Department of Ecology (Ecology) has further identified a value of 0.2 percent of these total deposition values as an indicator of “significance” for a single project (analogous to the Significant Impact Levels (SILs) established by the Environmental Protection Agency (EPA) for criteria

Reference:

conservative nature of this analysis, the PGF’s contribution to cumulative visibility degradation in the CRGNSA is not likely to be significant. The PGF would implement the best available emissions control technology, which minimizes potential impacts to air quality and visibility.

RESPONSE TO COMMENT A-2

The PGF has adopted all applicable and economically feasible control technologies and is in compliance with all regulatory requirements for criteria pollutants and air toxics. Because these technologies serve to mitigate the potential air quality impacts of the proposed project to the greatest extent feasible, BPA and Benton County believe that they have considered all reasonable mitigation for the potential impacts of the proposed project. As indicated by the commenter, neither the Clean Air Act nor the State permitting rules provide measures to require additional mitigation to offset power plants’ contributions to air quality problems in the Gorge. The BPA has no statutory obligation to impose additional mitigation to offset visibility impacts, and does not believe that it is necessary for the PGF.

III-4
As shown in Table A-2-1, the impacts attributable to PGF are tiny fractions of existing deposition levels in the CRGNSA and the USFS recommended cumulative deposition criteria, and less than 7 percent of the Ecology significance levels. It is very unlikely that pollutants from PGF would significantly impact the ecosystem.

<table>
<thead>
<tr>
<th>Area</th>
<th>Annual Sulfur Deposition (kg/ha/yr)</th>
<th>Annual Nitrogen Deposition (kg/ha/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Background</td>
<td>PGF</td>
</tr>
<tr>
<td>Diamond Peak Wilderness</td>
<td>4.000</td>
<td>0.00006</td>
</tr>
<tr>
<td>Three Sisters Wilderness</td>
<td>5.600</td>
<td>0.00023</td>
</tr>
<tr>
<td>Mt. Jefferson Wilderness</td>
<td>4.000</td>
<td>0.00023</td>
</tr>
<tr>
<td>Strawberry Mt. Wilderness</td>
<td>1.400</td>
<td>0.00010</td>
</tr>
<tr>
<td>Mt. Hood Wilderness</td>
<td>8.600</td>
<td>0.00022</td>
</tr>
<tr>
<td>CRGNSA</td>
<td>12.000</td>
<td>0.00029</td>
</tr>
<tr>
<td>Eagle Cap Wilderness</td>
<td>1.600</td>
<td>0.00025</td>
</tr>
<tr>
<td>Hells Canyon Wilderness</td>
<td>1.400</td>
<td>0.00027</td>
</tr>
<tr>
<td>Mt. Adams Wilderness</td>
<td>10.800</td>
<td>0.00010</td>
</tr>
<tr>
<td>Goat Rocks Wilderness</td>
<td>11.800</td>
<td>0.00008</td>
</tr>
<tr>
<td>Mt. Rainier National Park</td>
<td>3.100</td>
<td>0.00005</td>
</tr>
<tr>
<td>Olympic National Park</td>
<td>5.600</td>
<td>0.00003</td>
</tr>
<tr>
<td>Alpine Lakes Wilderness</td>
<td>7.200</td>
<td>0.00010</td>
</tr>
<tr>
<td>Glacier Peak Wilderness</td>
<td>8.000</td>
<td>0.00007</td>
</tr>
<tr>
<td>North Cascades National Park</td>
<td>3.500</td>
<td>0.00006</td>
</tr>
<tr>
<td>Pasayten Wilderness</td>
<td>7.200</td>
<td>0.00011</td>
</tr>
<tr>
<td>Mt. Baker Wilderness</td>
<td>No Data</td>
<td>0.00005</td>
</tr>
<tr>
<td>Spokane Indian Reservation</td>
<td>No Data</td>
<td>0.00041</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td>0.00041</td>
</tr>
<tr>
<td>USFS Criteria</td>
<td></td>
<td>3.000</td>
</tr>
<tr>
<td>Ecology single-project</td>
<td></td>
<td>0.006</td>
</tr>
</tbody>
</table>
Mr. Robert Beraud

It would be very beneficial if our agencies along with the Environmental Protection Agency, could come to grips with this issue in a holistic, all encompassing agreement that embraces this issue for the future. We appreciate the opportunity to comment and look forward to working collaboratively with you toward a mutually agreeable solution.

Sincerely,

/s/ Calvin N. Joyner
CALVIN N. JOYNER
Director, Natural Resources

Enclosures

cc:
EPA Region 10
NPS Lakewood, Co
Yakama Tribe
Benton County Planning Department
P.O. Box 910
Prosser, WA 99350

K:\nservices\correspondence\backman\2580_BPA_PlymontheneratingdraftEIScoverlettdoc
Edit: canderson: NR9: 10/15/02
RESPONSE TO COMMENT A-3

The sentence summarizing cumulative air quality impacts was not worded precisely, and is corrected both in Chapter I of this Final EIS, and in Chapter II, Errata to the Draft EIS. Rather than imply that no air quality impacts exist in the CRGNSA, the summary paragraph should have indicated the PGF would not significantly contribute to any air quality impacts in the CRGNSA. Furthermore, the paragraph should have referred to Class I areas rather than Class A areas. See also Response to Comments A-1, A-2, and I-16.

RESPONSE TO COMMENT A-4

The Benton Clean Air Authority recommended that meteorological data from Pendleton Airport is used in the local air quality evaluation summarized in the Draft EIS. In response to this comment, five years of hourly meteorological data (1996-2000) were obtained from a monitoring station operated by the Umatilla Army Depot outside of Umatilla, Oregon. These data were combined with twice-daily mixing heights from the Spokane Airport. Those meteorological data were formatted for use in the ISCT3 dispersion model that was previously applied for the air quality permit application and the Draft EIS air quality assessment.

Use of the Umatilla meteorological data, instead of the Pendleton airport data, did not significantly change the modeling results. Revised versions of Tables 3.2-5 and 3.2-6 from the Draft EIS are presented below as Tables A-4-1 and A-4-2. The modeling analysis based on the alternative meteorological data resulted in lower 1-hour average and annual average pollutant concentrations, but higher predicted 3-hour, 8-hour, and 24-hour average pollutant concentrations. While none of these concentrations exceed ambient air quality standards, predicted 24-hour average concentrations of SO\textsubscript{2} and PM\textsubscript{10} using UAD data slightly exceed the SILs. However, these SIL exceedances are not considered indicative of a significant air quality impact because the predicted amount of exceedance is minimal, the conservative modeling approach likely overestimates predicted concentrations, the SILs are only initial threshold screening criteria, and the predicted 24-hour average SO\textsubscript{2} and PM\textsubscript{10}...
concentrations are small fractions of the ambient standards. Similarly, predicted annual average concentrations of toxic air pollutants (TAPs) decreased using the Umatilla meteorological data, but predicted 24-hour average concentrations increased. Table A-4-2 demonstrates that predicted TAP concentrations attributable to PGF comply with all applicable Acceptable Source Impact Levels.

Table A-4-1 (Revised Table 3.2-5 in the Draft EIS)
Maximum Criteria Pollutant Predictions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Period</th>
<th>Maximum PGF More Stringent of Concentration (µg/m³)</th>
<th>SIL (µg/m³)</th>
<th>NAAQS or WAAQS SIL (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₂ (a)</td>
<td>Annual</td>
<td>0.85</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>1-Hour</td>
<td>26</td>
<td>1,000</td>
<td>(b)</td>
</tr>
<tr>
<td></td>
<td>3-Hour</td>
<td>19</td>
<td>1,300</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>24-Hour</td>
<td>8.6</td>
<td>365</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.14</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>CO</td>
<td>1-Hour</td>
<td>113</td>
<td>40,000</td>
<td>2,000</td>
</tr>
<tr>
<td></td>
<td>8-Hour</td>
<td>62</td>
<td>10,000</td>
<td>500</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>24-Hour</td>
<td>5.3</td>
<td>150</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.32</td>
<td>50</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) Assumes 100 percent conversion of NOₓ to NO₂
(b) A SIL has not been established for 1-hour SO₂

Thus, model results based on both sets of meteorological data indicate emissions from PGF would have a negligible impact on local air pollutant concentrations.
RESPONSE TO COMMENT A-5
See Response to Comment A-1.

RESPONSE TO COMMENT A-6
The opinion of the commentor is noted. However, BPA and Benton County believe that the referenced paragraph accurately describes possible overestimation of visibility impacts. Regarding volatile organic compounds (VOCs), the extent to which emissions of VOCs contribute to visibility degradation remains a topic of research and disagreement. However, in response to this comment MFG reexamined the visibility assessment using the conservative assumption that all VOCs emitted by PGF are instantly converted to secondary organic aerosols. Using this assumption, the maximum reduction in visibility in the CRGNSA attributable to PGF would increase from 1.57 to 2.32 percent, which remains well below the 5-percent FLAG criterion established for individual sources. Using this assumption, the number of days when PGF emissions could affect visibility by more than the 0.4 percent FLAG criterion for cumulative impacts increased from 14 to 17 (Table A-6-1).

Table A-6-1
CRGNSA Haze Impacts Attributable to PGF Assuming All VOC Emissions Form Secondary Aerosols

<table>
<thead>
<tr>
<th>Season</th>
<th>Maximum Extinction Attributable to PGF (1/Mm)</th>
<th>Maximum Change in Extinction (%)</th>
<th>Number of Days With Significant Change in Extinction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>0.121</td>
<td>0.43</td>
<td>0</td>
</tr>
<tr>
<td>Summer</td>
<td>0.138</td>
<td>0.54</td>
<td>1</td>
</tr>
<tr>
<td>Fall</td>
<td>0.394</td>
<td>1.30</td>
<td>10</td>
</tr>
<tr>
<td>Winter</td>
<td>0.535</td>
<td>2.32</td>
<td>6</td>
</tr>
<tr>
<td>Max/Total</td>
<td>0.535</td>
<td>2.32</td>
<td>17</td>
</tr>
</tbody>
</table>

Several conservative assumptions contribute to this result:
- All VOCs are instantly converted to secondary organic aerosols
- Visibility in the CRGNSA is degraded by existing sources more than 10 percent for every day of the year
- Background aerosol concentrations in the CRGNSA represent excellent visual conditions for the calculation of the background scattering coefficient (approximately the 90th percentile best visibility)
- No weather phenomena (such as fog) are present that obscure the affects of the predicted change to the extinction coefficient
- The predicted extinction coefficient is applicable to the entire visual path length from observer to target
- Good visibility in the CRGNSA is equally important for all days and hours of the year
- The PGF emits at its maximum permitted emission rates for all hours of the year

This series of conservative assumptions result in exaggerated indication of potential regional haze impacts in the CRGNSA.

RESPONSE TO COMMENT A-7
The commentor disagrees with the notation in Table 3.14-2 in the Draft EIS (Potential Cumulative Impacts) that states in part that cumulative impacts would be unlikely. Table 3.14-2 summarizes the findings of an evaluation of the potential for other projects to impose cumulative impacts in the PGF project area, and the potential for the PGF and other projects to cumulatively affect locations throughout the regional area. This evaluation resulted in the conclusion that the approximately 70 miles separating the PGF and Goldendale, the volume of emissions (both plants are approximately the same size and technology) and the diffusion of the stack plume over the distance would make it unlikely that criteria pollutants would concentrate and cause cumulative impacts.
Further modeling analysis of the PGF using CALPUFF indicated that PGF emissions, when transported to the Goldendale area, would be de minimus. If the PGF air quality impacts were de minimus at Goldendale, which lies north of the Columbia Gorge, cumulative impacts would not likely occur further to the east and south in the Gorge based on the relative location of the PGF.

RESPONSE TO COMMENT A-8
See Response to Comment A-2.

RESPONSE TO COMMENT A-9
The air quality models used in the Draft EIS to analyze regional haze are those recommended by Federal Land Managers (FLMs) (including those from the USFS) in the FLAG2 guidance document for assessing acid deposition to Class I areas. The FLMs consider these models to be the best tools available for assessing deposition rates. As in any modeling analysis or measurement program, some uncertainty exists in the estimation of deposition rates. In order to address this uncertainty, the FLAG2 modeling techniques and the USFS-recommended criteria for deposition include a degree of conservatism. Using the FLAG2 procedures, predicted deposition rates in the CRGNSA are tiny fractions of existing deposition rates and of the USFS-recommended criteria (see Table A-2-1). Such small incremental increases in the deposition of sulfur or nitrogen are not likely to significantly affect resources within the CRGNSA. See also Response to Comment A-2.

RESPONSE TO COMMENT A-10
The Draft EIS’s regional haze assessment follows protocols developed by the FLMs and uses the FLAG criteria they have established. The assessment uses a year’s worth of meteorological data (relative humidity, wind direction and speed, etc.), which includes data from days in which clouds dissipate during the late morning. Although these meteorological conditions are taken into account in predicting the potential effect of PGF emissions on extinction coefficient, the analysis conservatively
assumes that the background visibility is excellent during all hours of the day and night and during all weather conditions. In other words, the assessment overstates the project’s potential effect by assuming that a 5 percent change in extinction coefficient would result in a perceptible degradation of visibility, even if that change occurred at night or when clouds obscure scenic vistas.

Potential cumulative air quality impacts, including potential visibility degradation, are discussed in Section 3.2.3 of the Draft EIS and in Appendix B of the Draft EIS. This discussion focuses on the potential cumulative effect of the proposed project in combination with other potential power plants that could be developed in the region because the combined effect of power plant emissions has been identified as a primary area of concern by the public. In addition, the regional air quality modeling performed by BPA that is discussed in the Draft EIS was performed independently of the Draft EIS process for any particular potential power plant, and was intended to focus on the cumulative impacts of the potential plants rather than other sources.

As discussed on page 3.2-19 of the Draft EIS, the cumulative modeling done for the potential power plant likely significantly overestimates visibility impacts. Nonetheless, the cumulative effect of these plants would be potentially significant only one day per year.

Air emissions from other, non-power plant sources could also contribute to visibility degradation at the CRGNSA and Mount Hood. While emissions from other sources (both past and existing) were included in the background for cumulative air quality modeling and thus are sufficiently accounted for, potential contributions from future non-power plant sources were not included in the modeling. The following has been added as the second-to-last sentence of the last paragraph on page 3.2-19 of the Draft EIS:

“In addition to potential power plants, there are several other future sources in the region that could generate air emission and contribute to visibility degradation at the CRGNSA and Mount Hood if developed. For a list of these potential non-power plant sources of air emissions, please see Table 3.14-1. These sources may add to the projected cumulative impact of the potential power plants in the region.”

BPA and Benton County believe that the Draft EIS provides sufficient information concerning potential cumulative impacts in adequate detail to allow decision-makers and the public to understand these potential impacts, and that the analysis of these potential impacts conforms to the requirements of applicable NEPA regulations.
October 21, 2002

Philip W. Smith
Bonneville Power Administration
P.O. Box 3621 KEC-4
905 NE 11th
Portland, Oregon 97208-3621

Dear Mr. Smith:

The Department of the Interior has reviewed the Draft Environmental Impact Statement (DEIS) for the Plymouth Generating Facility, Benton County, Washington. The Department does not have any comments to offer.

We appreciated the opportunity to comment.

Sincerely,

Preston A. Sleeper
Regional Environmental Officer
III-13

RESPONSE TO COMMENT A-12

As described in Response to Comments A-1 and A-10 above, a comprehensive analysis of cumulative effects on visibility in the CRGNSA was performed. The analysis performed is consistent with the requirements of 40 C.F.R. 1502.16, and the Council of Environmental Quality document Considering Cumulative Effects.

The comment correctly acknowledges that the modeling analysis demonstrates that the PGF would not cause perceptible visibility impacts in the CRGNSA. However, the comment is incorrect in stating that the modeling revealed that the cumulative effect of emissions 15 proposed gas-fired plans would be a significant adverse change in visibility. As explained in response to Comment A-1 above, the modeling indicated that visibility in the CRGNSA would be affected, at most, 7 days a year. As explained, however, the conservative nature of the modeling significantly overstates the likely effect. The impacts predicted by this analysis are also overstated as a result of subsequent events indicating that several of the potential future sources considered in the modeling analysis are no longer appear reasonably likely to be constructed.

The comment also criticizes the EIS for not including all existing sources of air emissions in the modeling. This comment misunderstands the purpose of the modeling. It is acknowledged that there are currently some days in which visibility is impaired in the CRGNSA. Those existing conditions are common to the project and no-action alternatives. The modeling was designed to indicate to what extent the PGF and other reasonably likely future sources would create further visibility impairment. Rather than include all existing emission sources in the modeling, the analysis conservatively assumed excellent visibility occurred every day of the year (as if existing sources never affect visibility), and then determined the effect of the potential future sources. This method of analysis overstates the cumulative effect of future sources because the visibility may already be impaired (due either to natural meterological conditions or to existing emissions sources) on the day or days in which the modeling shows an impact. In the agency’s judgment, this is best way to evaluate potential cumulative impacts.
The comment also criticized the EIS for not including all potential future non-power generating sources in the modeling. It would be too costly and time-consuming to include every possible emission source in the model. BPA, therefore, made a reasonable decision to focus on proposed power projects that would result in significant emission in the area. The comment does not identify any particular non-power source that should have been included in the modeling, or explain why any such source would be so significant that it would result in a material difference in the results of the analysis.

be more significant than reported because the analyses conducted to date do not reflect a complete cumulative effects assessment reflecting the contributions of all past, present and reasonably foreseeable sources. We recommend that the EIS be revised to include a comprehensive cumulative air quality analysis that is consistent with the implementing regulations for NEPA (see 40 CFR 1502.16). We also recommend consulting *Considering Cumulative Effects on Environmental Quality in 1997* in furthering the development of the cumulative effects analysis for this EIS.

Thank you for the opportunity to provide comments on the draft EIS. I urge you to contact Bill Ryon of my staff at (206) 553-8561 at your earliest opportunity to discuss our comments and how they might best be addressed in the EIS.

Sincerely,

/s/

Judith Leekrose Lee, Manager
Geographic Unit

Enclosure

cc: Mike Shuttleworth, Benton County Planning
U.S. Environmental Protection Agency Rating System for Draft Environmental Impact Statements
Definitions and Follow-Up Actions

Environmental Impact of the Action

LO -- Lack of Objections

The Environmental Protection Agency (EPA) review has not identified any potential environmental impacts requiring substantive changes to the proposal. The review may have identified opportunities for application of mitigation measures that could be accomplished with no more than minor changes to the proposal.

EC -- Environmental Concerns

The EPA review has identified environmental impacts that should be avoided in order to fully protect the environment. Corrective measures may require changes to the preferred alternative or application of mitigation measures that can reduce these impacts.

EO -- Environmental Objections

The EPA review has identified significant environmental impacts that should be avoided in order to provide adequate protection for the environment. Corrective measures may require substantial changes to the preferred alternative or consideration of a new alternative. EPA intends to work with the lead agency to reduce these impacts.

EU -- Environmentally Unsatisfactory

The EPA review has identified adverse environmental impacts that are of sufficient magnitude that they are unsatisfactory from the standpoint of public health or welfare or environmental quality. EPA intends to work with the lead agency to reduce these impacts. If the potential unsatisfactory impacts are not corrected at the final EIS stage, this proposal will be recommended for referral to the Council on Environmental Quality (CEQ).

Advisory of the Impact Statement

Category 1 -- Adequate

EPA believes the draft EIS adequately sets forth the environmental impact(s) of the preferred alternative and those of the alternatives reasonably available to the project or action. No further analysis of data collection is necessary, but the reviewer may suggest the addition of clarifying language or information.

Category 2 -- Insufficient Information

The draft EIS does not contain sufficient information for EPA to fully assess environmental impacts that should be avoided in order to fully protect the environment, or the EPA reviewer has identified new reasonably available alternatives that are outside of the spectrum of alternatives analyzed in the draft EIS, which could reduce the environmental impacts of the action. The identified additional information, data, analyses or discussion should be included in the final EIS.

Category 3 -- Inadequate

EPA does not believe that the draft EIS adequately assesses potentially significant environmental impacts of the action, or the EPA reviewer has identified new, reasonably available alternatives that are outside of the spectrum of alternatives analyzed in the draft EIS, which should be analyzed in order to reduce the potentially significant environmental impacts. EPA believes that the identified additional information, data, analyses, or discussions are of such magnitude that they should have full public review at a draft stage. EPA believes that the draft EIS is adequate for the purposes of the National Environmental Policy Act and/or Section 309 review, and thus should be formally revised and made available for public comment in a supplemental or revised draft EIS. On the basis of the potential significant impacts involved, this proposal could be a candidate for referral to the CEQ.

RESPONSE TO COMMENT A-13

Comment noted. The referenced paragraph has been revised to include information about the cultural resource sites identified by the commentor. (See Chapter II of this FEIS.)

RESPONSE TO COMMENT A-14

BPA and Benton County believe that sufficient investigative fieldwork to identify potential cultural resources has been conducted at this time. Although development of the proposed project would not be expected to affect known cultural resources, potential impacts to undiscovered cultural resources is acknowledged, and appropriate mitigation is provided. As stated in Section 3.10.3, Summary of Impacts, and 3.10.4, Mitigation Measures, of the EIS,

"...if recorded archaeological resources present within the Alternate Transmission Interconnection corridor are determined significant and will be impacted, or if previously unidentified archaeological materials or features were to be discovered during construction or ground-disturbing activities and the discovery were to be determined significant, mitigation will be necessary. The Washington State Office of Archaeological and Historic Preservation would determine appropriate mitigation."
RESPONSE TO COMMENT A-15

The implication noted in the comment was not intended. The statement to which the commentor refers has been revised. (See Chapter II of this FEIS.)

Finally, page 3.10-5 contains the statement, "The Plateau was characterized by Kroeber (1919) as a region of 'absences and low intensity culture,' particularly when compared to the more highly developed cultures represented on the Northwest Coast and Plains." The CUUK strongly resects the implication that it has a less than fully developed culture.

We look forward to reviewing the cultural resource survey report and anticipate hearing from the BPA regarding a subsurface cultural resource testing project.

Respectfully,

[Signature]

Jim Van Pelt
Program Manager

c: Johnson Men decade, Yakama Nation
 Bill White, Yakama Nation
 Scott Williams, Assistant State Archaeologist, BPA Liaison
 Valerie Hauser, Advisory Council on Historic Preservation
 Stephen Tromly, Bonneville Power Administration
RESPONSE TO COMMENT A-16
The record of site 45BN345 has been added to the cultural resources inventory for this project. See Chapter II of this Final EIS. Specifically, the distance from Site 45BN295 to the project alternative has been corrected to 180 feet, not 1,800 feet.

RESPONSE TO COMMENT A-17
A map of sites is included with the revised Cultural Resources Report for the PGF, which was submitted to the Confederated Tribes of the Umatilla Indian Reservation in January 2003.

RESPONSE TO COMMENT A-18
These two reports have been consulted. See Chapter II of this Final EIS.

RESPONSE TO COMMENT A-19
Although no prehistoric archaeological materials were noted during inventory of project areas, the ground surface across much of the area investigated is highly disturbed and may have masked the presence of archaeological materials. Therefore, this area should be considered sensitive and may contain unidentified archaeological sites. Following identification of selected alternatives, additional archaeological investigation is recommended. Specifically, probing to test for buried deposits, prior to the initiation of construction, as well as monitoring during construction, are recommended. Archaeological materials identified during probing activities should be subject to additional testing and evaluation, followed by mitigation, if appropriate. See Chapter II of this FEIS for further information.
I understand that the BPA did not prepare this report. However, it took a considerable amount of my time to review the report and identify its deficiencies. Because this area is important to the tribe, we undertook this work; however, I hope that in the future your contractors will be more thorough.

Respectfully,

[Signature]

Catherine E. Dickson
Principal Investigator

cc: Jeff Van Pelt, CRPP Manager
 Johnson Menoik, Yakama Nation
 Bill White, Yakama Nation
 Scott Williams, Assistant State Archaeologist, BPA Liaison
 Valerie Hauser, Advisory Council on Historic Preservation
 Stephen Tromly, Bonneville Power Administration
RESPONSE TO COMMENT A-20

Comment acknowledged. Please note that the requirement for this permit is listed in Table 5-1 Plymouth Energy Project Permits and Approvals of this Final EIS.

October 14, 2002

Terry Marden
Benton County Planning
PO Box 910
Prosser, WA 99350-0910

Dear Mr. Marden:

Thank you for the opportunity to comment on the Plymouth Generating Facility draft environmental impact statement (DEIS). We have reviewed the document and have the following comments.

Water Quality

The salts concentrated in the cooling loop will require a State of Washington Wastewater Discharge Permit and monitoring of the irrigated farmland will be necessary to ensure compliance with Washington State ground water standards. A wastewater discharge permit application can be obtained and returned to the Central Regional Office of the Dept. of Ecology. Please contact Cindy Hawke at (509) 457-7105 for the permit application.

If you have any questions concerning the Water Quality comments, please contact Pat Irlé at (509) 454-7864.

Sincerely,

Gwen Cleer
Environmental Review Coordinator
Central Regional Office
(509) 575-2012

A-20
October 17, 2002

Benton County Planning/Building Department
P. O. Box 910
Prosser, WA 99350-0910

Attention: Michael Shuttleworth, Senior Planner

Subject: CUP 01-45, Plymouth Energy, LLC; 306 MW Generation Facility
Draft Environmental Impact Statement (DEIS) Comments
SR 14, MP 173.88 – 179.96 (Chryisti Road to Plymouth Road) Right

We have reviewed the referenced Draft Environmental Impact Statement (DEIS), and have the following comments.

1. The project is not adjacent to any state-maintained rights-of-way, but State Highway 14 is in the project vicinity. The applicant identified SR 14 as providing indirect access to the site for both construction and operation of the proposed facility. SR 14 is a partially-controlled limited access facility. The Washington State Department of Transportation (WSDOT) has acquired all the access rights to the highway with the exception of deeded approaches.

Access to SR 14 from the site is proposed via Plymouth Industrial Road. The SR 14/Plymouth Industrial Road intersection (mp 178.90) is unchannelized, and the posted speed limit is 65 miles per hour. Alternative access to the site would connect to SR 14 via Chryisti Road or Plymouth Road. The SR 14/Chryisti Road intersection (mp 173.88) is also unchannelized, and the posted speed limit is 65 miles per hour. The SR 14/Plymouth Road intersection (mp 179.96) is likewise unchannelized, and the posted speed limit is 55 miles per hour. Any of these proposed accesses are acceptable to us. No direct access to SR 14 from the site will be allowed.

2. Doug Eldred, a WSDOT employee, is cited as a reference on pages 3.11-5 and 3.11-19. His last name is misspelled.

3. It is the applicant’s responsibility to keep and maintain SR 14 free of any debris or hazardous material. Any spilled material shall be cleaned up at the applicant’s expense.

4. All loads transported on WSDOT rights-of-way must be within the legal size and load limits, or have a valid oversize and/or overweight permit.

RESPONSE TO COMMENT A-21
Comment acknowledged.

RESPONSE TO COMMENT A-22
Comment acknowledged. This misspelling has been corrected in Chapter II of this Final EIS.

RESPONSE TO COMMENT A-23
Comment acknowledged.
5. For any traffic control needed on SR 14, the proponent must submit a traffic control plan to the WSDOT South Central Region Traffic Office for review and approval. Please contact Rick Gifford at (509) 577-1985 for specifics.

Traffic control on SR 14 should be coordinated with our Area Maintenance Superintendent, Tom Root. He can be reached at (509) 577-1933 in Pasco.

6. Any outdoor advertising or motorist signing for this project will need to comply with state criteria. As above, please contact Rick Gifford at (509) 577-1985 for specifics.

7. The applicant has indicated they will promote rideshare and vanpool programs for construction workers during the seven-month construction period. WSDOT would like to encourage these efforts, and is willing to assist the applicant with their trip reduction plans. The applicant can contact the South Central Region’s Commute Trip Reduction Coordinator, Jeff Sommerville, at (509) 577-1632 for assistance.

Thank you for the opportunity to review and comment on this proposed project. If you have any questions concerning our comments, please contact Rick Holmstrom at (509) 577-1633.

Sincerely,

W. Brian White, P.E.
Acting Regional Planning Engineer

WBW: rhjjg

cc: File #5, Benton County
Tom Root, Area 3 Maintenance Superintendent
Rick Gifford, Traffic Engineer
Jeff Sommerville, Commute Trip Reduction Coordinator

p:\planning\dev\wit\14\benton_plymouth_energy_deis.doc
RESPONSE TO COMMENT A-25

Plymouth Industrial Road would be a private road. As described in Section 2.2.7 of the Draft EIS, the exiting Plymouth Industrial Road is a private road except for the first 900 feet of the roadway that adjoins State Route 14. The portion of Plymouth Industrial Road that would be extended to the Plymouth Generating Facility would also be a private road and would intersect the existing Plymouth Industrial Road at a point where the existing road is currently private.

RESPONSE TO COMMENT A-26

Comment acknowledged.

RESPONSE TO COMMENT A-27

Comment acknowledged.
RESPONSE TO COMMENT G-1

A copy of the Draft EIS was mailed to the commentor, and the commentor was added to the Distribution List for the Final EIS. A list of required permits is provided in Section 4.0 of the Draft EIS and Chapter II of the Final EIS.

Message from "Gerald Steel" <geraldsteel@yahoo.com> on Wed, 18 Dec 2002 14:11:05 -0800

To: <mike_shuttleworth@co.benton.wa.us>

Subject: Request to become party in Plymouth Power

permits

Michael,

I represent the Central Washington Building & Construction Trades Council in their concerns regarding the Plymouth Power project. I understand that you are the correct contact for the following request but I would appreciate it if you would confirm this understanding or provide me with information as to who is the correct contact. I request that my client become a party (with me as the contact person) regarding all permits to be issued by Benton County that are associated with the Plymouth Power project. I request that I be given notice of all hearings and/or opportunities to comment and copies of all decisions. I also request a copy of the DEIS (with appendices) and a copy of the FEIS (with appendices) when it becomes available. Could you email me a list of all of the Benton County permits related to the Plymouth Power project that have been applied for with some estimate of when each permit might be issued and when any hearings might be held? Also, could you give me a list of other agencies (with a person's name and phone where available) where you know that other permits related to the Plymouth Power project either are being processed or likely will be processed? If you prefer that I make this request in a mailed letter, please let me know. I thank you for your assistance.

Gerald Steel, PE
Attorney-at-Law
2545 NE 39th St.
Seattle, WA 98115
Tel/Fax 206.329.3373
RESPONSE TO COMMENT G-2

Comment acknowledged. The commentor has been added to the Distribution List for the Final EIS.

December 12, 2002

Mr. Mike Shuttleworth
Benton County Planning & Building Department
1002 Dudley Avenue
Prosser, WA 99350

Dear Sir:

I am contacting you with regards to the proposed Plymoutth Generation Facility. Please find the attached comments in the final EIS.

You will recall that I visited the Prosser Planning Office on July 11 to request a copy of the Draft Environmental Impact Statement. At that time I requested notification for the hearing related to the Draft EIS and left my address for that purpose.

As I never received notification of the hearing, I acquired the Draft EIS upon returning to the Planning Office to inquire about the meeting after the comment period had closed.

Respectfully,

Kirk E. Deal

Kirk E. Deal
The DEIS states that approximately 65 percent of the construction worker positions would be filled from the local labor force (i.e., from Benton, Franklin and Umatilla counties). This percentage is based on prior experience of the Applicant on projects such as the actual construction of Sumas Energy 1 in Whatcom County (Martin 2002). The percentage applied to the PGF is likely conservative, because the PGF plant would be located closer to a large labor force (Tri-cities), compared to Sumas Energy 1. The local-worker percentage was assigned as 65 percent based on the following:

- labor availability within the local area (discussed in the DEIS and below) is adequate to meet demand by PGF construction;
- the assumption by the Applicant that a portion of the labor force would be highly specialized craftsmen who would originate from non-local areas; and
- the assumption by the Applicant that a portion of the labor would likely originate from outside the local area due to relatively longer commute times to which some construction workers are accustomed, due to the temporary nature of the work.

The Washington State Employment Security Department (WESD) indicates that in the two-county area of Benton and Franklin counties, almost 500 openings would exist on average per year between 3rd quarter 2001 and 3rd quarter 2003 in occupations that would be in demand by PGF construction. See Table G-3-1 below. Occupations in demand due to PGF construction are listed in Table 2-4 in the Draft EIS.
Table G-3-1
Two-Year Occupational Projections for Benton-Franklin Workforce Development Area

<table>
<thead>
<tr>
<th>Occupational Title</th>
<th>Employees 3rd Qtr 2001</th>
<th>Employees 3rd Qtr 2003</th>
<th>Avg. Annual Growth Rate</th>
<th>Avg. Annual Growth</th>
<th>Avg. Annual Total Openings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction managers</td>
<td>225</td>
<td>253</td>
<td>5.90%</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>Civil engineers</td>
<td>613</td>
<td>695</td>
<td>6.50%</td>
<td>41</td>
<td>50</td>
</tr>
<tr>
<td>Engineers, all other</td>
<td>282</td>
<td>296</td>
<td>2.60%</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Civil engineering technicians</td>
<td>149</td>
<td>162</td>
<td>4.00%</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Electrical and electronic engineering technicians</td>
<td>103</td>
<td>110</td>
<td>3.30%</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>First-line supervisors/managers of construction trades and extraction workers</td>
<td>826</td>
<td>921</td>
<td>5.60%</td>
<td>47</td>
<td>65</td>
</tr>
<tr>
<td>Carpenters</td>
<td>979</td>
<td>972</td>
<td>-0.40%</td>
<td>-4</td>
<td>11</td>
</tr>
<tr>
<td>Cement masons and concrete finishers</td>
<td>126</td>
<td>155</td>
<td>11.20%</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Construction laborers</td>
<td>486</td>
<td>602</td>
<td>11.30%</td>
<td>58</td>
<td>62</td>
</tr>
<tr>
<td>Operating engineers and other construction equipment operators</td>
<td>259</td>
<td>427</td>
<td>28.40%</td>
<td>84</td>
<td>90</td>
</tr>
<tr>
<td>Painters, construction and maintenance</td>
<td>190</td>
<td>196</td>
<td>1.50%</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Pipelayers</td>
<td>100</td>
<td>196</td>
<td>40.20%</td>
<td>48</td>
<td>50</td>
</tr>
<tr>
<td>Plumbers, pipefitters, and steamfitters</td>
<td>555</td>
<td>559</td>
<td>0.40%</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Sheet metal workers</td>
<td>131</td>
<td>134</td>
<td>0.90%</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Construction and building inspectors</td>
<td>120</td>
<td>135</td>
<td>6.10%</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>All other construction and related workers</td>
<td>61</td>
<td>62</td>
<td>0.70%</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Laborers and freight, stock, and material movers, hand</td>
<td>1,597</td>
<td>1,622</td>
<td>0.80%</td>
<td>13</td>
<td>77</td>
</tr>
<tr>
<td>TOTAL Construction</td>
<td>6802</td>
<td>7497</td>
<td>10.2%</td>
<td>346</td>
<td>496</td>
</tr>
</tbody>
</table>

Long-term occupational projections by the WESD indicate that between the years 2000 and 2005, the average number of openings per year in the group of occupations listed in Table G-3-1 would total 461 (WESD, 2002). PGF construction would occur between third quarter 2003 and third quarter 2005, and would require an average of 130 workers. Judging from these more current and localized data, demand for PGF construction workers would predominately be met locally.

References:

RESPONSE TO COMMENT G-4

Although the Applicant has not yet selected a prime contractor or entered into a construction contract, the Applicant anticipates a contracting arrangement that utilizes the local labor pool. In particular, the Applicant plans to draw from the Tri-cities’ pool of skilled labor for construction labor requirements. The construction contract would be negotiated and finalized after permitting is completed and financial closing is imminent.
RESPONSE TO COMMENT I-1

Comment Acknowledged.

Response by: Elmer Eugene Ayers

I have lived in the area here since 1975 January and have worked mainly as a Pipefitter and welder for those years. As I see it we need many small units producing electricity for our farmers and businesses and support facilities of these businesses and for the bedrooms that house the workers in our area. We need electricity for many varied and quite a number of electronic items in our lives and it needs to be uninterrupted as we have been blessed with from our PUDs in the area. We need this addition to our supply available and to sell to California and other places as needed thus we serve the whole north west as well as this great country of ours.

If we have many small facilities then it is harder for our enemy to cut us off or be cut off because of natural disasters. Also they can have shut downs that affect a smaller part of our sources instead of one shut down for maintenance effecting a very great part of our sources. It also can effectively give a better competition between the competing companies of electric generation. This verses a single source and no competing companies as is Bonneville Power Administration.

The location is good for a varied number of reasons. It is Washington build and operated and can from that placement geographically easily serve on shorter lines to Hermiston area and south to Tri Cities area and beyond and to Walla Walla vicinity. Also it can promote the development of small industries to settle in the Plymouth area on the Washington side of the Columbia vs the
Oregon side. Benton county will reap good benefits for its farmers on their needs now and future for the electric pumps and other devices in this desert region needed to operate a large industry of farming and it is expanding all the time. This also serves the tourist and those coming here for conventions and other meetings as well as the sports activities that are continuing to expand all around us in our cities.

We need this in summary because it is the right thing to do. We need this and where it is at because it fits as part of a bigger package of a lot of small units working in concert to meet our needs.

We need this because some one else will do it in Oregon and then we miss the tax base and control that we should have for our people.

We need this to add to the overall countries and NW needs for future power and varied sources in case of emergency whether natural or enemy caused or for maintenance purposes.

Thank you for listening to my opinion and I do hope this helps in your decision making process.

Elmer Eugene Ayers
907 w Park st
Pasco, Wa. 99301
RESPONSE TO COMMENT I-2

The discussion of emissions from the PGF acknowledges that the project would generate air pollutants, but the concentrations of air pollutants in the exhaust would be very low because combustion of natural gas is relatively clean and because Best Available Control Technology would be applied to minimize air pollution. The dispersion modeling analysis summarized in the Draft EIS indicates that predicted concentrations would be far below the ambient air quality standards that have been established to protect human health. Consequently, no adverse health effects attributable to air emissions from the PGF are expected.

RESPONSE TO COMMENT I-3

A regional visibility impact assessment was conducted for the Draft EIS, and the results of this assessment were included in Chapter 3.2 and Appendix B of the EIS. The assessment considered both directly emitted particulate matter and secondary aerosol formation. Results of the assessment indicated that PGF emissions would have a minimal impact on visibility. See also Responses to Comments A-1 and A-2.

The air quality modeling of emissions attributable to PGF revealed predicted concentrations that were comparable to or less than those deemed insignificant under EPA’s PSD permitting procedures. Predicted concentrations were small fractions of the ambient air quality standards established to protect human health and welfare. Since air quality laws are designed to protect humans, consideration is given to at-risk populations and sub-lethal effects. It is reasonable to assume that protection of humans in this manner will also protect wildlife. There are no studies that indicate otherwise.

RESPONSE TO COMMENT I-4

As discussed in Section 3.3.1.1.2 of the Draft EIS, groundwater sampling revealed that existing nitrate levels in the groundwater near the plant site exceed drinking water standards. A report prepared by Ecology concluded that elevated nitrate concentrations are present in groundwater in many areas of the mid-Columbia River Basin, which includes Benton
III-31

3) Public Services and Utilities

On summary page I-11 it states that impacts from the PGF would not be significant. A potentially significant cumulative impact on public services and utilities could occur because of additional daily or weekly population in the region: construction workers on other projects, thus placing a higher demand on services such as law enforcement, fire protection and emergency services. It is very apparent to anyone that lives here in Plymouth, that police response times are dreadful and very lacking. As an unincorporated area, we are not high priority. The volunteer fire dept is very effective as just that. With additional construction occurring in the Tri Cities area, I strongly disagree that response times will not be affected, as they are poor now from the police especially. 3.12-1 states that one deputy patrols the Plymouth area 40 hours a week. With the influx of construction that is not enough. With response times lacking from the TriCities, it is likely that additional traffic accidents will occur and a rise in additional civil problems, citations, burglaries and other service calls would occur. More people more problems.

During construction it is stated on 3.12-7 that approx. 222 additional workers would enter and leave the site area. This increase shows that our police coverage would be less that adequate for the construction alone. The residents and their concerns would be overlooked with the added volume of people during construction. The DOE/EIS does not adequately address this problem. It states on one hand, that the impact will be minimal yet shows the opposite. Since the socioeconomic impact on the citizens of Plymouth is not a consideration, additional law enforcement is highly unlikely and a concern for me as a citizen of Plymouth.

4) Transmission Lines

On I-17, impact of the transmission interconnection, it is stated that the interconnection may necessitate some removal of crops within Plymouth Farm and agricultural property north of the farm. Plymouth Farms in the past has removed and burned on a windy day, acres of trees. Particulate matter was sent into the air effecting my breathing so much that I had to stay in the house with windows closed. At the very least a calmer day should have been chosen. I called the air quality authority to complain, and in usual fashion nothing was done. I would like to see Plymouth Farms and Plymouth Energy, be required to be more aware of the weather conditions and the feasibility of another way to remove crops that be necessary, that not only affect my way of life, but that of others around me, including wildlife.

It is also stated that property owners would be consulted when construction of transmission lines is about to begin. We all want the area to remain unchanged environmentally as well as aesthetically as much as possible.

I-5

III-31

County. Although the source of the elevated nitrate concentrations was not discussed in the Ecology report, increased nitrates are often attributable to agricultural use of fertilizer and discharges from septic systems.

Construction of the PGF would not affect the quality of groundwater, as stated in 3.3.2.2.1 of the Draft EIS. During PGF operation, the use of a septic system would create the potential for nitrate loading to the groundwater at the plant site. The nitrate concentration in the groundwater at the site would increase approximately 0.9 percent in the immediate vicinity of the drainfield, determined to be a low-to-moderate (less than significant) impact, as discussed in Section 3.3.2.2.2.

RESPONSE TO COMMENT I-5

Section 3.12 of the Draft EIS describes existing police, fire and emergency medical service (EMS) capability in the regional and site area. Emergency service responders expect an increase in traffic and other incidents due to the proposed project, but do not expect substantial increases in demand on their services because (1) no detours or road closures would occur during construction, so delays in responding to incidents are not expected, (2) the traffic level of service (LOS) would remain at its current level during project construction, so traffic delays and volumes would not differ substantially, and (3) the peak construction period would not occur during winter when the number of accidents typically increases due to poor driving conditions. Section 3.12.3 of the DEIS discusses the cumulative impacts on public services from projects in the vicinity. The influx of workers and overlapping construction periods would likely increase the need for public services.

RESPONSE TO COMMENT I-6

The comment includes reference to heavy dust episodes during past orchard removal at Plymouth Farms. Development of the PGF would not entail removal of additional orchards. It would require removal of surface vegetation and grading of the planned PGF project site. Vegetation removal and grading would include dust suppression methods such as watering to minimize and fugitive dust emissions. See discussion in Sections 2.2.8.2 and 2.2.8.3 of the Draft EIS.
RESPONSE TO COMMENT I-7

The project site is in a relatively arid area with annual rainfall on the order of 8 inches. In addition, soils at the project site and surrounding environs are sandy underlain by gravels that promote good drainage. Relatively little surface water runoff that could promote soil erosion is expected. The project grading plan will include surface water control features to control and channel runoff to a storm water pond for percolation (see Figure 2-4 and Section 3.3 in the Draft EIS).

RESPONSE TO COMMENT I-8

Comment acknowledged.

Sincerely,

Konda Marcum

Plymouth, WA resident
RESPONSE TO COMMENT I-9

The lead agencies believe that the Draft EIS provided sufficient information so as to adequately inform the public about the proposed project and its potential impacts, as required under NEPA and SEPA. The Draft EIS provided meaningful analyses of all significant issues related to the proposed project, and comments submitted during the Draft EIS public review period have not resulted in significant changes to the Draft EIS (see Chapter II of this Final EIS for revisions made to the Draft EIS). Thus, circulation of a revised draft EIS is not necessary. Also see Response to Comment I-14.

RESPONSE TO COMMENT I-10

See Response to Comment A-1 and A-2.

RESPONSE TO COMMENT I-11

Cumulative impacts were considered for each discipline and in Section 3.14 of the Draft EIS. Alternative sites and designs for the PGF plant were considered and are discussed in Section 1.5.3 of the Draft EIS. Global warming is discussed in Response to Comment I-35. Plant and pipeline accidents are discussed in Responses to Comments I-25 and I-26, and toxic air emissions are discussed in Responses to Comments A-1 and A-2, as well as in Section 3.2, Air Quality, of the Draft EIS. Water use and farmland are discussed in Sections 3.3, Water, and Section 3.8 of the Draft EIS.
of the project’s direct, indirect, and cumulative impacts, and the failure to consider the environmental advantages of alternative sites and designs for the power plant.

The DEIS dealt inadequately with global warming, power plant and pipeline accidents, toxic air emissions, water use, and losses of farm lands.

Project alternatives that were not adequately considered include redesign to produce less air pollution, reconfiguration to reduce water use, and reduction of the amounts of surface disturbance caused by development of the plant site and pipeline and transmission line.

TEXT OF DISCUSSION
PURPOSE AND NEED
The DEIS misleads the reviewer with an inaccurate purpose and need statement and its outdated summary of the energy supplies in the Northwest. The DEIS says the WECC predicted increased electrical demand in an outdated document, presumably before 1999, and claims that the NPPC, in 2000, claimed there could be black-outs in the Northwest (“generation insufficiency events”) without 3000 more MWs of energy on line by 2003.

After citing these two or more year old studies, the DEIS then claims that “…consumers in the Pacific Northwest ... need increased power generation…”

If this claim was eve true, it rings hollow today. The facts are that the WECC’s more current data shows that the Northwest’s generating capacity is already predicted to increase by 3100 MW by 2003 to over 81,000 MW, compared to the needed reserves of only 65,600 MW, and that energy demand actually fell from 8.11% from 2000 to 2001. (WECC, 2003 Information Summary).

As for the NPPC, it now predicts that the needed 3100 MW will be added by December, 2002, in its Power Supply Outlook, May, 2001-April, 2002.

We know of over 2000 megawatts recently added to the Northwest grid: Himiston Power Partners, Rathdrum Generation, Klamath Falls Cogen, the Hanford turbine, and Frederickson II, along with upgrades at Puget Sound Energy/Fredonia, and smaller turbines added at Willamette Industries and elsewhere.

There are also at least another 2000 megawatts under construction: Goldendale Energy, Mliant Mint Farm, Satapio I, Chehalis Power, and Coyote Springs II, along with another 3500 MW that are virtually or actually fully permitted and/or are declining to start construction; Garnet Energy, PGE/Tacoma, Tahoma Energy, Unatilla Generating, Wallula, Sumna II, The Cliffs, Garnet Energy, and Everett I & II.

In other words, even if there was a 3000 Mw shortfall predicted three years ago, that gap has been more than filled. In fact there is now a glut of natural gas fired energy. There is no

RESPONSE TO COMMENT I-12

The need for the proposed action is discussed on pages 1-1 to 1-2 of the Draft EIS and in Chapter I of this Final EIS. While some regional power need projections may have been updated in recent months, BPA reasonably believes that there is still a need for increased long-term power production in the region. For example, BPA’s latest energy projections forecast that the Pacific Northwest region faces a firm energy deficit of approximately 7,125 average megawatts (aMW) by 2011 if no new resources are developed. Pacific Northwest Loads and Resources Study (“White Book”), BPA 2002. In addition, the WECC 10-year Coordinated Plan Summary for 2002-2011 (WECC 2002) mentioned by the commentor assumes a certain amount of regional power growth from projects such as the proposed action. The WECC also notes that several factors combine to make forecasting generation adequacy for the Northwest Power Pool Area difficult for this time period. These factors include the variable and uncertain reduction of hydropower production from implementation of the 2000 Biological Opinion and the constantly fluctuating number of non-hydro generation interconnection requests (and corresponding power generation capacity) received by BPA. Northwest Power Planning Council (NPPC) projections are similar to WECC projections in that they assume certain projects, such as the proposed action, will be built to reduce the long-term need for power in the region; without the construction of these projects, the accuracy of these projections is likely less valid.

Thus, the projected adequacy of generation supply in the Northwest over the next 10 years still is directly dependent on how many of the numerous projects assumed to be built under these projections, such as the Plymouth Generating Facility, are actually built. While some new generation plants have been built, many others that were expected to be built (and included in WECC and NECC projections as assumed to have been built) have recently been cancelled or put on hold due to current market conditions and the slowing economy. In addition, BPA must make decisions based on long-term projections. In the Pacific Northwest, the overall, long-term trend is one of growth, which is expected to
Evidence that the market can support another facility. The Mint Farm and Statoop 1 plants have had their conservation recently terminated when the plants are more than half built, and Goldendale Energy has now delayed completion of their plant for another year.

Another dozen plants have recently withdrawn or delayed their proposals, such as Mercer Ranch, Turner Energy, Grizzly, North Idaho Power, Kocontel Power, Morrow Generating, and Burg Energy.

In other words, the Purpose and Need Statement for the DEIS is outdated and inaccurate. Proceeding to permitting of this plant runs the risk of committing and squandering public agency staff and the public’s time, and natural resources, land uses, and investment capital, for a power plant that is not needed in the foreseeable future.

In this light, it is likely that the developer does not actually seek to build a power plant, especially since the EIS does not disclose the actual existence of a real power sales contract. Instead, it is more likely that the developer is merely seeking completed environmental permits, which will then be sold in the future to another developer, when balance is restored in the power market. We object to the misuse of staff time by the public agencies, and by the public, who must carefully review this project to ensure that unnecessary environmental degradation does not occur. Staff time and the public’s time should be reserved for “real” projects, not hypothetical projects that have an unlikely prospect of coming to fruition.

These recent facts also mean that the conclusion on page 2-1, that the No Project alternative would “not remove the need for power production” but would merely move the need to another site, is also inaccurate. The power plant construction boom of the last two years has already removed the need for power production, no matter if the No Project alternative is selected.

Agency Cooperation Urged

Several other local and federal agency approvals may be needed for this project, including the Federal Energy Regulation Commission, and the Department of Ecology. These entities should participate as cooperating agencies in a Joint EIS, rather than having the BPA and Benton County go it alone with a truncated DEIS. This type of agency cooperation is a cornerstone of efficient environmental review.

For instance, NEPA urges federal agencies to seek a cooperative posture with state agencies, in its Section titled “Elimination of Duplicating with State and Local Authorities” (40 CFR 1506.2 (b)):

“(Federal Agencies) will cooperate with State and local agencies to the fullest extent possible to avoid duplication between NEPA and State and local requirements.”

A joint NEPA/SEPA document could study all of the power plants and large industrial projects that are proposed along the Columbia River, which are in fact directly and indirectly the result of BPA’s policies and concentrations of resources, and could study these cumulative impacts, and continue into the foreseeable future. Basing decisions on short-term slow growth periods does not correspond appropriately to the more frequently occurring periods when the regional economy is growing and the demand for electricity increases. Therefore, BPA does not believe it would be wise to rely on the present slow down in the economy as a significant factor in fully assessing future demand. Because long-term forecasts still show a projected need for additional power in the region, BPA believes that there is sufficient need for the proposed action. The discussion of the need for the proposed action has been revised to reflect more current projections (see Chapter I of this Final EIS).

Reference:

Response to Comment I-13

The lead agencies have an obligation to consider applications submitted for projects such as the proposed action, and the preparation of the Draft EIS reflects this consideration. A project must go through regulatory and environmental review before the responsible agencies can grant approval to a proposed project. Project developers are often unable to enter into power sales contracts until after permits authorizing construction of the facility are obtained. The regulatory process determines if a project, such as PGF, meets the requirements for construction and operation. It is not the purpose or intent of the regulatory review to determine if a project proponent will build the project. Many different factors, including market conditions, influence whether a project will be completed.

Response to Comment I-14

Please see Response to Comment I-11.
appropriate mitigation measures, in a single comprehensive document. This type of review would provide a more robust analysis of these impacts and meaningful mitigation measures.

This approach could advance a unified and comprehensive approach to air quality impacts, as suggested by the Federal Land Management agencies in their comments on the Wallula EIS. Impacts should be required where practicable and feasible, as mandated by the courts and CEQA regulations.

The four and one half page discussion of cumulative impacts at Section 3.14 does not do justice to the existing and impending cumulative impacts, and does not even list all likely significant projects, neglecting to even list the Umatilla Depot incinerator, the Pacific Rim Ethanol plant, the Cliffs power plant at the Goldendale Smelter, and the expansion of the Boise/Walla Walla pulp and paper mill, among other developments.

CUMULATIVE IMPACTS
This is one of several power and large industrial projects already operating, being proposed, constructed, or which recently began operation within a 100 mile radius of the proposed site, in the Columbia River valley and Gorge vicinity. These include several natural gas fired plants, and of the Boardman coal fired plant. There will be cumulative air quality impacts, especially from added oxides of nitrogen (NOX) emissions. About 2000 tons/year of NOX, and about another 2000 tons/year of other pollutants, will soon be added to this local air shed from these proposed or recently constructed facilities. This area’s air quality is already degraded, according to the Federal Land Managers IMPROVE air monitoring program.

The DEIS acknowledged this significant cumulative impact at 3.2-19 from the new generation of power plants in eastern Oregon and Washington. However, this analysis did not consider previous or ongoing projects located in the Federal Land Managements air quality in this vicinity was already significantly degraded.

The coal fired power plant less than 100 miles away, which is permitted to emit over 17,000 Tons/year of NOX emissions, along with other nearby existing NOX sources such as compressor stations, and pulp and lumber mills, and chemical plants, were apparently not included in the DEIS cumulative air quality impact analysis. Nor did the charts in Appendix B even include all likely proposed power plants, and other proposed large sources of NOX and other air pollutants in the vicinity.2

CUMULATIVE AIR QUALITY IMPACTS

2The proponent of the Starbuck plant was misidentified at Pacific Power; it is Pennsylvania Power.

RESPONSE TO COMMENT I-15
BPA is undertaking the environmental review of the Proposed Action as the lead agency under NEPA. Construction and operation of the PGF must be approved under Washington State and local authority (Benton County) and requires environmental review under Washington’s State Environmental Policy Act (SEPA). Benton County is the lead agency under SEPA.

Relevant local/state and federal agencies have been informed and participated in the process of preparing the Draft EIS, which is a joint NEPA/SEPA document. Notice of the intent to prepare an EIS was sent to local/state and federal agencies. These same agencies were invited to attend public meetings held on the project and comment on the DRAFT EIS. Comments on project scope and suggestions for preparation of the Draft EIS were received from Washington Department of Transportation, Washington Department of Ecology and Washington Department of Fish and Game. Informal consultation was conducted by the U.S. Fish & Wildlife Service and National Marine Fisheries Service and the Washington Historic Preservation Office was contacted. Comments on the Draft EIS were received from the EPA, U.S. Department of Agriculture (Forest Service) and several state and local agencies. None of these agencies has requested cooperating agency status in the preparation of the joint State/Federal EIS for the Plymouth Energy Project.

RESPONSE TO COMMENT I-16
Comment acknowledged. The suggested regional analysis of power plant and industrial development has not been proposed by BPA, and such a study is beyond the scope of this EIS for the action that is being proposed in this case. However, potential cumulative impacts from the proposed action and other projects in the region are discussed in Section 3.14 of the Draft EIS and by environmental resource for select resources. For example, cumulative air quality impacts are also discussed in Section 3.2.3 and Appendix B of the Draft EIS.
RESPONSE TO COMMENT I-17

The Draft EIS included two cumulative impact assessments. The assessment in Appendix B-1 evaluated the potential cumulative impacts on local air quality in Plymouth. The assessment in Appendix B-2 evaluated the potential cumulative impacts on regional haze (the most sensitive indicator of regional air quality).

Although the impacts from PGF alone are less than or only slightly over the concentrations deemed insignificant by EPA's Prevention of Significant Deterioration permit process, a local cumulative impact assessment was conducted to focus on the unprecedented increase in local power plant projects. The assessment focused on new power plant projects primarily because the pollutants emitted from gas-fired combustion turbines are the same and therefore had a higher potential for cumulative impacts. Emissions from the existing Boardman coal-fired power plant were included in this analysis because it is the largest air pollution source in the immediate area.

The comment mentions four proposed projects located west of the Cascades: the Umatilla Depot incinerator near Umatilla, the Pacific Rim Ethanol Plant in Moses Lake, the Cliffs power plant project near Goldendale, and Boise Cascade's expansion of its Wallula mill. Table I-17-1 identifies emission increases associated with these four projects and

| Emissions (tons/year) and Locations of Other Proposed Projects |
|-------------------|-----|-----|------|--------|
| NOx | SO2 | PM2.5| Distance | Direction |
| Boise Cascade | 658 | 0 | 0 | 25 | NE |
| Pacific Rim Ethanol | 133 | 1 | 81 | 84 | N |
| Umatilla | 200 | 22 | 20 | 7 | SSW |
| Cliffs | 108 | 14 | 69 | 68 | WSW |
| "Total 4 Projects" | 1008 | 37 | 170 | - | - |
| Boardman Power Plant | 17,761 | 30,450 | 1,056 | - | - |
| "Total 4 Projects" / Boardman | 6% | 0% | 16% | - | - |
| Total "Cumulative projects" | 19,576 | 30,665 | 2,339 | - | - |
| "Total 4 Projects" / "Cumulative projects" | 5% | 0% | 7% | - | - |
Their pipeline runs along the Columbia from Clark County, Washington (Washougal) to Hermiston, and branches northeast towards Spokane, and southeast towards Boise, Oregon. Department of Environmental Quality (DEQ) files states this pipeline has compressor stations every 50 miles. An Oregon DEQ emissions inventory did list the following nearby compressor stations:

Sunfield 15.2 TPY of NOX
Moscow 581 TPY, according to their permit renewal in 1996.

There are other compressor stations along the pipeline route in Washington on the Northwest Pipeline, with large NOX emissions, including the Washougal and Klickitat/Roosevelt stations.

The NW pipeline compressor in Baker County, Oregon, increased its NOX emissions in 1997 from 131 to 257 TPY.

Compressor stations known total: 2000-odd TPY of NOX, not counting Baker City, Plymouth, or Roosevelt. These compressor stations were not apparently included in the cumulative air impacts analysis.

OTHER EXISTING NOX SOURCES IN NORTHEAST OREGON AND SOUTHEAST WASHINGTON

<table>
<thead>
<tr>
<th>NAME</th>
<th>NOX in TPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>UW/Pullman</td>
<td>250</td>
</tr>
<tr>
<td>Boise/Wallula</td>
<td>658</td>
</tr>
<tr>
<td>Kinzua</td>
<td>153</td>
</tr>
<tr>
<td>Boise</td>
<td>>250</td>
</tr>
<tr>
<td>Boise</td>
<td>>250</td>
</tr>
<tr>
<td>Gen II</td>
<td>187</td>
</tr>
<tr>
<td>Total</td>
<td>900-odd</td>
</tr>
</tbody>
</table>

Both of the smaller Boise facilities were significant NOX sources, that conducted several expansions and increased their NOX emissions, since 1984 to the present. Their actual NOX emissions are not known, since they did not get the required permits from DEQ prior to these expansions. The EPA has a Notice of Violation pending against both facilities. These two facilities did not submit it to the PSD process yet.

UNDER 100 TPY NOX

<table>
<thead>
<tr>
<th>Name</th>
<th>NOX in TPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joseph Lumber</td>
<td>26</td>
</tr>
<tr>
<td>Dee Forest</td>
<td>55</td>
</tr>
<tr>
<td>Grant Western</td>
<td>38</td>
</tr>
<tr>
<td>Simplot</td>
<td>97</td>
</tr>
<tr>
<td>Lamb-Weston</td>
<td>70</td>
</tr>
</tbody>
</table>

Considering the fact that the additional sources identified in the comment are located in different directions from Plymouth, that 3 of the 4 are more than 25 miles away, and that the increase in emissions over those already considered in the cumulative impact assessment is very small, it is unlikely that they would have a significant cumulative impact when combined with the PGF emissions. Therefore, additional cumulative impact analyses are not warranted.

The regional cumulative impacts assessment included the Cliffs project, as it was deemed by BPA as a power project likely to go forward. Consequently, the cumulative impacts of PGF with the Cliffs project were evaluated in the Draft EIS. We note, however, that several large projects included in the regional cumulative impact assessment are on hold or have been canceled. Both Duke Energy projects at Satsop (totaling 1,300 MW) have been suspended, and it appears that development of the Wallula power plant project (1,300 MW) is unlikely because the options of purchase of the site property have lapsed and Emission Reduction Credits that were to be used have expired. Proposed emissions from PGF are approximately 25 percent of those proposed for the Wallula.
power plant or the Satsop plants. Development of several other projects considered in the regional analysis has slowed or been postponed. Consequently, the regional cumulative assessment overstates potential impacts from projects in the development stage.

RESPONSE TO COMMENT I-18

See Response to Comment A-1 for discussion about air quality impacts. The lead agencies are unaware of any “certifications” that the air quality in this area is degraded. Although there are concerns about usability degradation, existing air quality in the Plymouth area is generally good.

RESPONSE TO COMMENT I-19

Please see Responses to Comment I-16 and I-17.

RESPONSE TO COMMENT I-20

Results of the dispersion modeling completed for the proposed project indicate that the associated air quality impacts would not be significant, even with the size proposed. The PGF could be considered mid-size when compared to other combined cycle projects that have recently come on line or are being constructed in the Pacific Northwest. Other recent projects include:

- Fredrickson (Pierce Co.) 248 MW
- Mint Farm (Cowlitz Co.) – 319 MW (construction suspended)
- Chehalis Generation Facility (Lewis Co.) – 520 MW
- Goldendale (Klickitat Co.) – 248 MW (construction delayed)
- Hermiston (Umatilla Co.) – 248 MW
- Coyote Springs (Morrow Co.) – 260 MW

Larger projects including projects over 1000 MW have been proposed but have been deferred or canceled (e.g., Starbuck, Satsop 1 and 2, Wallula). Combined-cycle are among the most efficient at producing electrical energy and more efficient than simple-cycle power generation
obligations, but there would be less significant impacts, especially air emissions.³

ALTERNATIVE POLLUTION CONTROL: ELIMINATE AMMONIA THREAT
The power plant will store, and emit ammonia for use in their SCR air pollution scrubbing system. This present dangers to public health and to air quality. SCONOX is an alternative pollution scrubbing system that does not use ammonia. SCONOX should have been comprehensively discussed as an alternative to the proposed project.

BENEFITS OF SCONOX NEED TO BE CONSIDERED
The SCR system proposed for use by the Applicant results in a number of environmental problems that are reduced or eliminated with the use of SCONOX. These problems include: (1) hazards from accidental releases of the ammonia used in the SCR system during its transportation and handling; (2) the formation of particulate matter from the oxidation of SO₂ in the SCR catalyst; (3) formation of particulate matter from reactions between ammonia and SO₂; (4) generation of disposal of the hazardous SCR catalyst at the end of its useful life; (5) inability to control NOx and CO emissions during startups and shutdowns; (6) increase in NOx from the use of dry low NOx combustor.

SCONOX would provide greater control of NOx and other pollutants, and eliminate ammonia emissions, and the threat of releases from storage and transport of ammonia. The EPA has recently ruled that SCONOX is considered technologically “Available” for NOx control on natural gas fired turbine power plants.

ALTERNATIVE DESIGNS TO FURTHER REDUCE WATER USE AND DISCHARGE
The proposed plant will use a combination of air and water cooling. Nonetheless, it will consume an average of over 600 gallons per minute of water, or about one million gallons per day. It will also discharge about 125 gpm.

Six hundred gallons/minute is a very high rate of water use for this size of power plant. Many power plants are designed to generate far more energy, while at the same time using far less water than is proposed for this plant. For instance, the proposed natural gas fired Chehalis power plant will generate more than twice as much energy, but will use only about one third as much water. It will be solely air cooled.

Many power plants are also able to function without discharging 125 gpm of waste water, also, including the applicant’s Sumas I plant. The DEIS should have comprehensively discussed alternative designs of the facility that would reduce water use and discharge, as follows.

AIR COOLING
This alternative would include complete air cooling, rather than partial water cooling for the facility. The comments are aware of many existing and proposed power plants that are solely

facilities which are often developed in 50 or 100 MW projects. Further as plant size increases some additional increase in generation efficiency can be realized. The project proponent has proposed the use of a Siemens Westinghouse 501 F gas turbine which will produce 180 MW (or its equivalent). The next smaller model gas turbine is the 501 D5A which produces 118 MW. The larger 501 F gas turbine combined cycle has a thermal efficiency of 52.5 percent. If the smaller 501 D5A gas turbine is substituted the cycle thermal efficiency drops to 49.5 percent. Thus the selected power plant is 6 percent more efficient than the next smaller size plant. Consequently the larger plant consumes 6 percent less fuel and emits 6 percent less air emissions per MW than would the smaller plant.

Project developers optimize project size and efficiency based on expectations of future market economics. A key objective in project formulation is to maximize generation efficiency and thus competitiveness. As nonutility generator, the project proponent must rely on being positioned in a competitive market as a low cost producer. This plant is designed to be a low cost producer of electrical power within the constraints of the site.

Since the proposed project has no significant impacts after mitigation and a smaller plant would not substantially reduce impacts, further consideration of project alternatives based on smaller project size was not warranted.

RESPONSE TO COMMENT I-21
While a detailed evaluation of air pollution control technologies is typically deemed too technical for an EIS, the Notice of Construction air quality permit application for the PGF addressed SCONOX. SCONOX is a developing technology that has been applied to small combustion turbines, but it has not been successfully demonstrated in commercial operation of large combustion turbines generating facilities such as PGF. Therefore, air pollution permitting agencies across the country have consistently selected Selective Catalytic Reduction (SCR) rather than SCONOX for NOX control on projects such as PGF. SCR is capable of achieving the same guaranteed emission rate as SCONOX (2 ppm NOx).
PGF proposes to employ urea or an aqueous solution as the source of ammonia for the SCR control technology. These options avoid most of the risks associated with the use of anhydrous ammonia.

There would be an increase in particulate matter emissions as a result of the SCR. This increase was included in the emission rates examined in the Draft EIS and the air quality permit application. Predicted concentrations were found to be less than or only slightly greater than concentrations deemed insignificant by EPA.

In addition, there is a degree of excess (unreacted) ammonia that is emitted from the stack of a power plant employing SCR. The proposed ammonia emission rate is half that typically proposed for similar projects. At the point of maximum impact, predicted ambient ammonia concentrations resulting from PGF are less than 5 percent of the toxic air pollutant criterion established by Ecology.

RESPONSE TO COMMENT I-22

The Applicant is proposing a hybrid cooling system that includes an air-cooled condenser (ACC) and a conventional wet/condenser wet tower cooling system. The project description describes that the condensing cooling load would be shared and balanced between the two systems to maximize cooling efficiency and minimize consumptive water use. During periods of cool temperature, the cooling load would be completely directed to the ACC. If the project were to rely solely on an ACC, plant electrical output would be reduced during periods of higher temperature and plant capital and operating costs would be increased. Since the project proponent has usable water available they have elected this composite cooling system to balance water use with loss of plant output and increase in costs. Since no significant environmental impacts would result from the consumptive water use required by the composite system, sole reliance on an ACC for plant cooling was not required.
The DEIS should have discussed alternatives that would not require the commitment of this massive amount of water to dilute the contaminated effluent from the power plant.

The water tests in the DEIS at Table 2.1 did not present an analysis of the trace metals and radioactive materials that may be present in the cooling water. Even if these types of materials are present in very small amounts, they will be concentrated by 1000% by the cooling cycles, and this activity could produce a significant concentration of potentially toxic materials in the irrigation water. We are aware that the neighboring Columbia River water does contain measurable levels of toxic metals such as chromium and radioactive materials, and it is likely that the area’s groundwater may mirror the contents of the River water.

PIPELINE IMPACTS

The proposed power plant and its support facilities include a 800 foot long natural gas pipeline lateral (p. 2-25). There are many other natural gas pipelines around the country, and in the Northwest, that were constructed according to federal standards. But in the Northwest alone, pipelines have blown up three times within the last few years.

A pipeline just a few miles from here, near Bonneville Dam, recently exploded and burned on February 27, 1999. The roar from the explosion was heard for two miles. The 300 foot high fireball was so huge it was visible for miles. Route 14 in Washington was closed to protect the public. Press accounts state that earth movement from recent heavy rains may have been responsible for the pipeline break. The fire destroyed a resort hotel that was under construction and a nearby dwelling.

Near Kalama, Washington, a natural gas pipeline broke in February, 1997. Again, a 300 foot high fireball blazed in the sky. And just one day earlier, the same pipeline exploded and burned near Bellingham, Washington.

In March of 1995, that same pipeline had ruptured and blew up near Castle Rock, Washington. After that 1995 explosion, the company removed soil from 300 feet of the pipeline, to relieve any stress. But less than two years later, it blew up again. Again, soil movement was the cause of the pipeline breakage, according to published accounts.

There have been a total of at least ten large natural gas pipeline explosions since 1978 in the Northwest, including other ruptures in Stevenson, Washington, La Grande, Oregon, and Montpelier, Idaho. All of these explosions have been on the Williams Pipeline system that will supply the proposed power plant.

A few years ago, a construction backhoe caused a leak in a Northwest Natural Gas pipeline recently in Rainier. Seventy five people were evacuated. There is other evidence regarding the potential impact on public health and safety from natural gas pipelines.

Earlier this year, at least six people were killed in a natural gas pipeline explosion near Carlsbad.

RESPONSE TO COMMENT I-23

Zero wastewater discharge system consists of equipment to reduce the contaminants in cooling tower and boiler blowdown and recycling wastewater. These systems reduce plant electrical output by increasing internal plant electrical loads. They also produce a sludge waste from the water treatment system that requires disposal and are not commonly used in power plants. No significant environmental impacts were identified from disposal of the cooling system blowdown by the method proposed by the Applicant.

Further, the PGF water supply would be obtained from groundwater sources formerly used for agricultural irrigation and wastewater flows returned to maintain agricultural production. While a zero discharge system would reduce water use, it would eliminate the return water made available by the project for continued support of agricultural operations.

Zero wastewater discharge is a technology that has valid applications. As with all technologies, there are times when its application is not appropriate. Zero wastewater is not the appropriate technology for this project. The project obtains a portion of its water from a fruit orchard. The water is used by the power plant and the power plant’s wastewater is returned to the orchard where it is used as irrigation water in the orchards. The wastewater from this project is used to grow fruit trees. The plant concentrates minerals in the well water supply and discharges them as wastewater. If the mineral concentration of the well water were to increase (for some unknown reason) the plant will actually have to decrease the concentration ratio and consequently, discharge more wastewater, to avoid damage to the orchard.

The zero discharge concept is not valid when the wastewater has beneficial use.

RESPONSE TO COMMENT I-24

Please see Response to Comment I-22.
RESPONSE TO COMMENT I-25

The land-applied water would be industrial wastewater, and therefore would be subject to the Industrial Waste Discharge Permit, not drinking water standards. Additional water quality testing was performed in November 2002 on groundwater beneath the site and included trace metals and radioactive materials. Based on these new results, the concentrations of constituents in the blended blowdown (cooling water discharge) that would be applied to the farmland were calculated and are shown below on Table I-25-1.

As stated in Section 3.3.2.2.1 of the Draft EIS, an engineering report for wastewater land application would be prepared as part of the permit process. The engineering report would include evaluation of site area soils and irrigation requirements, process wastewater constituents, and a proposed crop plan (as part of the Industrial Waste Discharge Permit) for use of the dilute wastewater for irrigation. As part of this plan, a monitoring program would be implemented for the process wastewater and site soils to detect potential impacts before they become significant. With proper wastewater treatment, land application and monitoring, the impacts of wastewater application to the crops, soils and groundwater in the site area are expected to be less than significant. If in order to issue an Industrial Waste Discharge Permit, the Washington Department of Ecology requires a higher blending ratio, additional land owned by Plymouth Farm is available for application. See Appendix A in the Draft EIS for further information about the land application of wastewater.

RESPONSE TO COMMENT I-26

The commentor describes natural gas pipeline incidents, including incidents in Washington where a release of natural gas from an underground pipeline caused evacuation of local population, property damage and personal injury. The potential for pipeline accidents is governed by a number of factors including age of the pipeline, size and operating pressure, construction quality and impacts to the pipeline from third parties. Most of the Washington-based incidents described occurred on the main natural gas transmission lines (24 – 36 inch diameter) that (1)

Table I-25-1
Inorganic Analysis, Cooling Water Discharge

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Raw Water (Well #4)</th>
<th>Blowdown Water (10 cycles)</th>
<th>Weighted Average 10:1 Dilution, Fresh Water to Blowdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity (um/cm)</td>
<td>393</td>
<td>3930</td>
<td>714.55</td>
</tr>
<tr>
<td>TDS</td>
<td>296</td>
<td>2960</td>
<td>538.18</td>
</tr>
<tr>
<td>Nitrate</td>
<td>29</td>
<td>290</td>
<td>52.73</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.08</td>
<td>0.8</td>
<td>0.20</td>
</tr>
<tr>
<td>Ammonia Nitrogen</td>
<td>0.5</td>
<td>5</td>
<td>0.91</td>
</tr>
<tr>
<td>Aluminum</td>
<td>0.04</td>
<td>0.4</td>
<td>0.07</td>
</tr>
<tr>
<td>Boron</td>
<td>0.06</td>
<td>0.6</td>
<td>0.11</td>
</tr>
<tr>
<td>Barium</td>
<td>0.028</td>
<td>0.28</td>
<td>0.05</td>
</tr>
<tr>
<td>Calcium</td>
<td>18</td>
<td>180</td>
<td>32.73</td>
</tr>
<tr>
<td>Copper</td>
<td>0.011</td>
<td>0.11</td>
<td>0.02</td>
</tr>
<tr>
<td>Iron</td>
<td>0.005</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>Potassium</td>
<td>3.9</td>
<td>39</td>
<td>7.09</td>
</tr>
<tr>
<td>Magnesium</td>
<td>14</td>
<td>140</td>
<td>25.45</td>
</tr>
<tr>
<td>Sodium</td>
<td>22</td>
<td>220</td>
<td>40.00</td>
</tr>
<tr>
<td>Lead</td>
<td>0.01</td>
<td>0.1</td>
<td>0.02</td>
</tr>
<tr>
<td>Sulfur</td>
<td>20</td>
<td>200</td>
<td>36.36</td>
</tr>
<tr>
<td>Silicon</td>
<td>4.8</td>
<td>48</td>
<td>8.73</td>
</tr>
<tr>
<td>Tin</td>
<td>0.027</td>
<td>0.27</td>
<td>0.05</td>
</tr>
<tr>
<td>Strontium</td>
<td>0.18</td>
<td>1.8</td>
<td>0.33</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.018</td>
<td>0.18</td>
<td>0.03</td>
</tr>
<tr>
<td>Gross Alpha (pCi/l)</td>
<td>13.88</td>
<td>138.8</td>
<td>25.24</td>
</tr>
</tbody>
</table>

Notes:

Units are in milligrams per liter (mg/L), unless otherwise noted
Other metals and radionuclides were not detected at reporting limits and were not used as part of this analysis
transport large volumes of gas at operating pressures in the range of 2,500 psi., and (2) have long distance routes that cross the state. The proposed gas pipeline lateral from the Williams Plymouth Compressor Station to the PGF would be a natural gas distribution line approximately 800 feet long. The distribution line would be 8 inches in diameter and would operate at a maximum pressure of approximately 600 psi. The pipeline lateral route would be located in a rural area with no nearby population centers, and would cross a portion of the Plymouth Farm that will remain in agricultural use (an area between the compressor station and the PGF site). No occupied buildings would be constructed on or adjacent to the pipeline. Section 2.2.5 in the Draft EIS describes the proposed gas pipeline lateral in more detail.

The potential for an accidental release to any particular portion of a pipeline is statistically extremely low. This potential is further reduced by the fact that the lateral would be newly-constructed, and would be located in an area with controlled access and use, i.e., the Plymouth Farm minimizes the potential for unauthorized third party activities that could impact the pipeline. As noted in Section 2.2.8.4 in the Draft EIS (Construction Sequence – Gas Pipeline), the pipeline lateral would be constructed in accordance with federal Department of Transportation regulations, which set safety standards for pipeline design and construction that minimize the potential for pipeline failure and accidental release of natural gas. Construction of the pipeline lateral in accordance with these standards, together with the pipeline’s rural location, the absence of adjacent occupied buildings, and the small diameter and lower operating pressure minimize the potential for an accidental release that could lead to impacts to environmental resources or the local population. See additional discussion of requirements for emergency services in the Response to Comment I-26.

RESPONSE TO COMMENT I-27

The commentor believes that the power plant could represent a fire and explosion risk. While fire and explosion accidents have been recorded at power plants, such facilities are designed and operated in accordance
occasion, similar power plants have experienced fires and explosions that have damaged property and killed people.

Just five days ago, on October 8th, 2002, a massive explosion at the Florida Power & Light natural gas fired Palm Beach plant rocked two counties, followed by a hydrogen-fed fire. The explosion shook houses and rattled windows, and was as loud as a sonic boom. In January, 2002, there was a hydrogen explosion and a resulting fire at the natural gas fired BC Hydro plant in Port Moody, BC.

Less than two weeks ago, on October 1, 2002, there was a nine-alarm fire at the Sithe power plant in Boston, that began in a hydrogen generator. The fire and explosion caused $10 million in property damage.

The Plymouth Power DEIS does not apparently even mention the use of hydrogen at that plant, or list it as being stored, in the Section 3.6, Environmental Health. We understand that hydrogen is routinely used and stored at natural gas fired and other power plants similar to Plymouth Power, including but not limited to these three plants, that have blown up this year. But this potential impact from explosives and fires can caused or fed by hydrogen, and the impact on emergency services to respond, was not adequately discussed in the DEIS.

At the Sithe blaze, 180 firefighters had to respond. The natural gas fired turbine at the Doewell power plant in Virginia recently suffered a catastrophic fire and explosion. It took 75 firefighters to quell it. The resulting fire, the DEIS should have discussed what will happen if hundreds of fire fighters are needed to respond to a problem at Plymouth Power.

There were other explosions and fires at power plants recently. An explosion and fire rocked the Black Hills Power and Light power plant in Wyoming, in June, 2002. A back-up generator blew up and caused a "major" fire at the Allegheny Energy plant in Pennsylvania, in July, 2002. Firefighters from at least five communities had to respond to the blaze. A pressure relief valve activation at the Mira site in Zeeland, Michigan in August, 2002 caused diversion of traffic, to avoid released gases. Three workers were killed at a fire in the O'Brien, Newark, New Jersey, cogeneration power plant fire recently. At least 20 other fires have been recorded over the last 10 years at power plants, causing another death and $417 million in property damage. The most severe fires often involved the release of lube oil, which ignited. Over 15,000 gallons of lube oil will be stored at Plymouth Power.

There were 272 to 55 equipment failures and accidents per year at power boilers and pressure vessels since 1992, causing almost 200 injuries and 29 deaths, and another 145 to 387 failures, and another 270 injuries and 54 deaths, from unfired pressure vessels, according to Power Magazine, Jan-Feb., 2001, p 53.

*Most of these narratives are from the Chemical Safety Board's web site.

Page 12 of 20

with specialized building and operating codes to minimize the potential for such accidents. These codes require that the power plant include automatic systems to sense and alarm fires, and trigger fire suppression systems. In addition to these requirements, the PGF would also include a 2 million-gallon fire water tank, a firewater piping and hydrant system, a dedicated fire pump, and a backup diesel drive fire pump, all of which would be continuously available and periodically tested for readiness. All emergency response systems would be initiated automatically in case of emergency. Automatic control systems would shut down or isolate the systems. Relief valves would be installed as required to remove the chances of overpressurizing components. Section 2.2.3.11 of the Draft EIS, Plant Operating and Safety Systems, and Section 4.0 of the Draft EIS, Environmental Consultation, Review and Permitting also discusses these systems and required permits.

In addition to the safety systems, the location of the PGF in a rural area, approximately two and 2.5 miles away from the nearest local population centers of Plymouth, Washington and Umatilla, Oregon, respectively, decreases the chances for damage to population in case of emergency. No residential or other occupied structures would be located directly adjacent to the PGF (see Section 3.8.1.2.1 and Figure 3.8-1 in the Draft EIS). The nearest occupied buildings are scattered farm residences, and operating facilities within the Williams Compressor Station property. Given the rural nature of the site, the limited exposed population, the requirement for plant design under applicable safety codes and the safety systems to be constructed onsite, no significant impact to environmental resources or local population is expected to occur.

The commentor also requests clarification with regard to the onsite use and storage of hydrogen and lubricating oils representing a potential fire and explosion risk. As noted in Section 2.2.3.5 of the Draft EIS, both generators would be air-cooled, so the use and storage of hydrogen would be avoided. Lubricating oils would be stored in special containment that would include an automatically-initiating fire deluge system. See Section 2.2.3.11 in the Draft EIS for more information.
The plant would be designed and built in accordance with the latest codes and standards (1) to prevent an accident from occurring and (2) if an accident were to occur, to contain the damage of the accident. The plant would be as safe as current conditions allow. Unfortunately, all human endeavors have some risk, however slight, of accident. Although it is not possible to guarantee that an accident would never occur at the plant, it is possible to design, build and operate the plant to minimize the chances of an accident.

Section 3.12 of the Draft EIS discusses the availability of emergency response equipment locally, and response times for equipment and personnel available on a cooperative basis from the Tri-cities communities. As a rural area, local fire and emergency medical response service near Plymouth is limited to volunteers and equipment located in Plymouth and Patterson. Were a major incident to occur at the proposed power plant, personnel and equipment would be called from Tri-Cities, Hermiston and Umatilla under joint aid agreements.

The Williams Gas Pipeline Plymouth District offers an emergency response training class to fire districts, police and other emergency responders. The class covers the properties of natural gas under pressure and liquid natural gas, provides information about fire and flammable liquids, and discusses how to respond to emergencies. The day-long class is free of cost, offered each November at the Plymouth District, and includes lecture, discussion and hands-on response to fires. Emergency services personnel from throughout the Plymouth area have attended these training sessions. Most of the Fire District 6 firefighters have attended the training (Weaver 2003).

Reference:

Because Power plants typically store and use many materials that present a danger of fire and explosion, such as hydrogen and lube oil, some of these hundreds of annual accidents at power plants cause injuries, and losses of life and property beyond the power plant boundaries, and require a large response of emergency personnel, as previously described. The dangers from the use and storage of these materials, and even the types of materials to be stored at Plymouth, and the ability or lack thereof of local fire departments to respond, was not discussed in the DEIS. These kinds of serious accidents are significant impacts that should be discussed in an EIS.

CUMULATIVE EFFECTS OF INCREASED USAGE OF NATURAL GAS
The EIS did not discuss the adverse impacts from the increased exploration and processing of gas in Canada, in part sparked by the development of these projects.

Discussions of Canadian impacts are mandated by Presidential findings during the Carter Administration regarding the scope of NEPA-covered projects. A description of cross-border impacts are also appropriate, considering that the Canada Energy Board requires assessments of impacts in the United States, when evaluating proposals for Canadian pipelines.

Nor did the DEIS adequately discuss the cumulative impacts of this project and the many other power projects in the Northwest, on the natural gas supplies. Although this very topic was the subject of a chapter in the Wallula Power EIS, it received inadequate discussion in this document, even though the DEIS admitted that the cumulative impact of some of the recently proposed power plants in the Northwest, was the additional consumption of over 6% of domestic natural gas reserves.

PM-10
This plant will apparently emit 88 tons per year (TPY) of PM-10 from its turbines alone (Table B-2). PM-10 is fine particulate that is capable of being drawn deep into the lungs. PM-10 is highly damaging to human health. But in addition to the power plant exhaust, there are other sources of PM-10 and total suspended particulate (TSP) from this project, including the cooling tower. We do not see any proposed limits to control cooling tower PM emissions in the DEIS.

ADDITIONAL PM SOURCES
The DEIS also lacks adequate information to assure commenters that its calculations included the impact from formation of secondary PM by conversion of ammonia, nitrogen and sulfur compounds.

COOLING TOWER DRIFT
The cooling towers are PM-10 and TSP sources, to the degree which the cooling water contain solids, which are emitted from the cooling tower exhaust as particulate. A large power plant using water high in solids can emit many tons per year of PM-10 and TSP. For instance the Goldendale Energy plant was predicted to emit 6.6 TPY of PM, and Plymouth Energy is 20%
III-47

RESPONSE TO COMMENT I-28

Section 3.5.2.2.2 of the Draft EIS states that the PGF would be fueled by supplies of natural gas from the U.S. and Canada. According to the Applicant, the project does not have any long-term gas supply contracts that specify the development of specific gas fields in Canada or the U.S. The project would contract for gas supplies from the general gas commodity market and secure transportation of those supplies to the PGF project site via the Williams Pipeline Company gas transportation system. The Williams system interconnects with other natural gas transmission systems giving the PGF access to natural gas supplies throughout the U.S. and Canada. Because natural gas is a commodity, development of new reserves in all areas where reserves are known to exist is an ongoing occurrence independent of the demand for a fuel supply for the PGF. The development of gas reserves occurs as an independent action unrelated to the PGF, and therefore analysis of exploration and production impacts for future Canadian reserves is not warranted.

RESPONSE TO COMMENT I-29

Section 3.5.2.2 and Section 3.5.3 of the Draft EIS discuss natural gas consumed by the PFG in relation to national energy use. These sections also describe the projected fuel use for the PGF (using a conservative worst case analysis), and discuss natural gas consumption by the PGF relative to national consumption. Further, natural gas is a commodity where supplies (both reserves and production) have historically expanded in response to price. It can be expected that operation of the PGF could displace older more inefficient power plants, which would not result in an increase in the total demand for natural gas. If total demand were to increase by the small percentage represented by the PGF, the increase in demand would likely be absorbed by the ability of reserves to increase production. Section 3.5 in the Draft EIS describes the cumulative impacts of other gas-fired power plants in the general region of the proposed PGF and finds that no significant impact to gas supplies would occur.
RESPONSE TO COMMENT I-30

The response to comment I-21 acknowledges that ammonia slip associated with the use of SCR for NOx control contributes to additional particulate matter emissions. PM$_{10}$ emissions were calculated assuming the worst-case short-term emission rates (considering operating load and ambient temperature) that occur every hour of the year. This is a very conservative assumption because (1) all plants must shut down for occasional maintenance, (2) plants tend to emit pollutants at levels below the emission limits, and (3) because the worst-case short-term PM$_{10}$ emissions occur only during low temperatures and maximum operating load.

When determining emissions from a proposed stationary source, one considers only the pollutants in the stack. PM$_{10}$ formed by the interaction of ammonia with sulfates and nitrates in the HRSG was included in the proposed emission rates and was evaluated in the ISCT3 modeling conducted to evaluate local air quality impacts. However, just as ozone is not considered as an emitted pollutant for facilities that emit NOx or VOCs, secondary aerosols formed in the atmosphere are not considered when determining PM$_{10}$ emissions.

Although not reflected in the PM$_{10}$ emission rates, the CALPUFF modeling used to evaluate regional impacts does consider the formation of secondary particulate matter from ammonia reacting with sulfates and nitrates in the atmosphere downwind of PG&E. Even with consideration of secondary aerosol formation, predicted concentrations were found to be far below ambient air quality standards established to protect human health and welfare. Because the formation of secondary PM$_{10}$ takes time, the secondary aerosol contribution to total PM$_{10}$ concentrations increases with distance from the source. Thus, secondary aerosol formation is generally less important locally than on a regional basis.

The Notice of Construction air quality permit application submitted to Benton Clean Air Authority identifies a potential particulate matter emission rate of 0.087 pounds per hour (0.38 tons per year) from the cooling tower. Because this emission rate is negligible in comparison with the 20 pound per hour emission rate associated with the combustion...
This additional PM$_{10}$ would increase the Project's reported contribution to soil nitrogen. The impact of this additional ammonium nitrate has not been evaluated and must be fully evaluated the environmental impact of SCR. Ammonia emissions are discussed further in the following comments. These types of reactions, as described above, are a potentially significant impact that should have been discussed in the DEIS.

AMMONIA

The proposed power plant will use, handle, store and transport large amounts of ammonia. Ammonia is listed on the EPA's list of extremely hazardous chemicals. The State of Louisiana has recently tightened regulations governing handling of ammonia. It is prudent to minimize the use and storage of any hazardous chemicals such as ammonia. Nonetheless, Plymouth Power proposes to transport, use and store large quantities of ammonia on site.

The DEIS is deficient in failing to describe and address the possible consequences of transporting, piping, storing and emitting hundreds of thousands of pounds of ammonia at this facility every year. There are two issues regarding ammonia. The first issue is the constant release of ammonia from the facility under normal operating conditions. The second issue is the risk of ammonia releases from the storage and transportation of this hazardous chemical.

AMMONIA EMISSIONS UNDER NORMAL OPERATING CONDITIONS

Ammonia may be emitted from the project at 5 parts per million (ppm) which is one-half of the odor threshold. There are other ammonia sources in the area, including feed lots and fertilizer production facilities. The agricultural uses of nitrogen based fertilizer, whose applications could contribute to an ambient ammonia level. These other ammonia sources were not evaluated in the DEIS. In this case it is possible that the ammonia odor threshold could be exceeded under ambient air quality modeling conditions, such as inversions. These nearby ammonia sources should have been inventoried, because those sources may cumulatively contribute to formation of secondary particulate.

But no controls for ammonia are discussed, nor is there any modeling that accounts for potential ambient levels of ammonia that would cumulatively join with the proposed facility's emissions. The impacts of ammonia emissions on PM$_{10}$ formation were discussed earlier.

RISKS OF AMMONIA RELEASES

The plant will store hundreds of thousands of pounds of ammonia on site, and millions of pounds of ammonia will be transported to this site every year. But the DEIS does not describe the likelihood of a transportation accident, the numbers of truck trips bearing ammonia, the possible size of any ammonia release from a truck accident, the inaccessibility of this rural area's emergency response system to react to a large release, the neighborhoods and businesses that would be threatened by a release or the risks and effects of a release from the ammonia tanks at the power plant, including the risk and effect of a tank failure.

RESPONSE TO COMMENT I-31

Even at the worst-case location, PM$_{10}$ concentrations attributable to emissions of PM$_{10}$ from PGF are only small fractions of ambient air quality standards established to protect human health. The commenter also appears to have incorrectly assumed that PM$_{10}$ emissions from the facility were underestimated. In fact, actual emissions are expected to be considerably lower than those proposed as permit limits because plant operators would always maintain a margin of safety below the permit limits. In addition, the plant would not always operate at full capacity and must shut down for maintenance periodically.

As indicated in the response to Comment I-30, emissions were calculated according to federal, state, and local procedures. That response also acknowledges that additional particulate matter is formed in the atmosphere, sometimes far downwind of the power plant. However, CALPUFF was used to evaluate the secondary aerosol formation, and the results indicate concentrations far below ambient air quality standards established to protect human health and welfare.

RESPONSE TO COMMENT I-32

Secondary PM$_{10}$ formation related to the interaction of ammonia with sulfates and nitrates in the PGF plume were considered in the CALPUFF evaluation of visibility impacts. See also Responses to Comments A-1, A-2, A-3, I-20, I-29 and I-30.
RESPONSE TO COMMENT I-33

In Responses to Comments A-2 and A-9, the Applicant evaluated total nitrogen deposition, including NOx, nitrates, and ammonia. Table A-2-1 in Response to Comment A-2 shows that total nitrogen deposition attributable to PGF in the Class I areas and special areas such as CRGNSA would be very small with respect to established nitrogen deposition criteria and existing background deposition rates.

RESPONSE TO COMMENT I-34

The risks associated with the proposed use of aqueous ammonia (a 19 percent solution of ammonia in water) are much lower than those associated with anhydrous (gaseous) ammonia. Virtually all of the hazards identified in Comment I-33 are associated with the use of anhydrous ammonia. As noted in the Notice of Construction air permit application, sources (such as PGF) employing ammonia in a 19 percent (or lower) solution are exempt from EPA’s Risk Management Program because the risks are low. As suggested by the commentor, the proponents of PGF are seriously considering the use of urea as an alternative to aqueous ammonia.

Ammonia emissions from the exhaust stack were evaluated in the dispersion modeling analysis. This analysis determined that the maximum ammonia concentration attributable to the PGF would be only five percent of Washington’s Acceptable Source Impact Levels. Consequently, no adverse impacts from ammonia would occur. Note that while the concentration of ammonia in the stack may be up to 5 ppm, predicted concentrations off-site are far below the odor threshold for ammonia. See also Response to Comment I-20.

RESPONSE TO COMMENT I-35

Water treatment chemicals would be used in two areas of the power plant: (1) water purification of boiler feedwater, and (2) water treatment of cooling tower circulating water. Chemicals expected to be used in these two processes include:

Report to Congress Section 112(c) (10) Clean Air Act as Amended. EPA 550-R-93-002. December, 1993.
Boiler Feedwater Water Treatment:
- inorganic sodium phosphate (food grade material) in the 10 to 20 mg/L range,
- ammonium hydroxide less than 1.0 mg/L, and
- diethyl-hydroxyl amine 0.010 mg/L.

Cooling Tower Water Treatment:
- inorganic phosphate at the 4 to 6 mg/L level,
- 1-hydroxyethylidene-1,1-diphosphonic acid (a common cooling water inhibitor) at 1 to 2 mg/L,
- acrylate copolymer BF Goodrich K-775 (also a common cooling water inhibitor) at the 4 to 6 mg/L level,
- sodium hypochlorite biocide to maintain a free chlorine residual of 0.3 mg/L, and
- sulfuric acid to maintain a pH of 7.8 to 8.2.

The boiler feedwater treatment system would include transportable elements and would be operated by a vendor. All water treatment wastes would be removed from the power plant site by the water treatment vendor.

The cooling tower wastewater treatment will be as described in Section 2.2.6 of the Draft EIS. Cooling water blowdown would be blended with fresh water to obtain suitable irrigation water. Depending on the number of cycles of concentration, the cooling tower wastewater would be diluted up to 25 times with fresh water in order to meet irrigation standards.

RESPONSE TO COMMENT I-36

Section 3.14.3 of the Draft EIS discusses global warming and the potential for CO₂ emissions to contribute to global warming. Although the PGF could emit up to 983,000 tons of CO₂ per year, the Draft EIS explains that the construction and operation of the PGF will not necessarily result in an increase in overall CO₂ emissions.
Electricity demand in the United States is met through a combination of resources. To the extent that electricity demand is met by fossil fuel-fired generation, the use of electricity results in the emission of greenhouse gases. However, different types of electrical generating technologies produce different amounts of greenhouse gases per kilowatt hour of electricity generated. In the United States, coal-fired generation produces an average of 2.10 lbs of CO₂ per kWh, oil-fired generation produces an average of 1.97 lbs of CO₂ per kWh, and natural-gas fired generation produces an average of 1.32 lbs of CO₂ per kWh. (DOE/EPA 2000.) In contrast, the type of highly efficient combined cycle technology that will be used at the PGF produces only about 0.85 lbs of CO₂ per kilowatt hour of electricity generated.

If electricity demand is met by the PGF instead of by less efficient gas, oil or coal fired power plants, the operation of PGF will actually have the effect of reducing the overall emission of CO₂. For this reason, virtually every major authority on global warming recommends the increased reliance on more efficient energy generating technology. In particular, they advocate increased reliance on the technology used in the PGF project – natural gas-fired combined cycle combustion turbine generating technology – as a critical near term strategy for reducing greenhouse gas emissions. (IEA 2001; DOE/EPA 2000; EAI 1998; Montgomery 2001.) The Intergovernmental Panel on Climate Change, for example, concluded that, in the near term, increased reliance upon natural gas and combined cycle technology “will play an important role in emission reduction.” (IPCC 2001.)

Accordingly, it would not be appropriate to require the PGF to mitigate its CO₂ emissions. Without a broad-based statutory or regulatory policy that requires all electrical generating facilities to mitigate their CO₂ emissions, requiring an individual new facility, such as the PGF, to mitigate its emissions would only serve to discourage the transition to newer technology that generates electricity with much lower CO₂ emissions.

to page 1-38 in the Wallula FEIS. The DEIS should have addressed to what degree power line burial would address this concern.

There are many examples of burial of high voltage power lines of considerable length. Since the proposed lines are about 3000 feet long, burial of this line would reduce the visual impact of the project would protect avian species, would reduce the project's above ground "footprint," and would add only about 1/100% of one percent to the project costs; about $500,000.

Some example of actual and proposed burials of large pipeline include the 345 kV line that would be buried for 1700 feet to go under the Namekagon River near Trego, Wisconsin.

Sierra Pacific is burying a 14,000 volt line for about 2000 feet near downtown (Lake) Tahoe City, according to the company's June 9, 1999 press release.

Sierra Pacific is also laying a 120,000 volt (120kV) line for about 1700 feet near Carson City, Nevada, according to the company's April 19, 1999 press release.

Sierra Pacific's longest underground line is 2.6 miles, according to their Media Relations department.

The California Public Utility Commission's consultants, Aspen Environmental, prepared a study of an all-underground route for a 230 kV line near Pleasanton, California (Pleasanton Weekly). "Objectors, Proponents speak out on PG&E Power Line Plan." 2/16/01

The Sunnys II Power Plant has proposed a buried 230 kV line for 1.4 miles, in Abbotsford, Canada, as part of its trans-border proposal. (Canada Newswire. "NSB Receives a Revised DEIS from Sunnys Energy II to Construct an International Power Line." October 2000)

The Sargent & Lundy engineering firm's advertising materials list several underground transmission lines for which they provided engineering, including a 115/138-kV line, a 230 kV line in Washington Dc, a 1800 foot 115-kV line in Baltimore, five 210-kV lines in China, two 69 kV lines in Iowa, a 1300 foot 138-kV line in Tennessee, and a one-mile, 138-kV line in Salt Lake City.

This list of buried transmission lines indicates that this is a practicable, feasible and economic alternative design for the portion of the project. It would reduce the visual and land use impact of the project. For this reason a burial alternative, should have been presented in the DEIS.

References:

RESPONSE TO COMMENT I-37

During normal operation of the PGF, there would be no significant steam releases from PGF. Water vapor and droplets would emit from the cooling tower, but to the Applicant's knowledge, no studies exist that suggest that this would be a significant contributor to global warming.

RESPONSE TO COMMENT I-38

The primary source of solid waste from a natural gas-fired power plant with Selective Catalytic Reduction (SCR) air emission control systems are sludges generated by the water treatment system and spent catalyst from the SCR. Other wastes generated in very small quantities include paper, food and packaging waste from plant personnel and solvents, paint and lubricating oil wastes from plant maintenance. The largest waste by volume is typically water treatment waste. The PGF water treatment system would be a vendor-supplied system that would include components that would be periodically removed from the site, cleaned, recharged and returned. Any water treatment sludges would be removed by the vendor and disposed offsite through the vendors operation.
Maintenance wastes, including some hazardous materials, would be removed and disposed offsite by the maintenance contractor. Similarly, spent catalyst from the SCR, which is removed periodically, is also a hazardous waste and would be removed by the SCR maintenance contractor. Since none of these wastes would be stored on site and all would be handled by qualified vendors, minimal risk of these wastes being released at the site exists and no significant impact from their presence is expected.

RESPONSE TO COMMENT I-39

Conceptual site design includes approximately 1.89 acres of impervious surfaces (building and HRSG roofs, the small parking lot and site roads) that would produce storm water runoff during storm events. A maximum storm water runoff during any single event is expected to be 0.82 acre-feet (compared to a storm water pond capacity on the order of 3 acre-feet). Storm water would be collected and directed to the storm water pond (see Figure 2-4 in the Draft EIS) as described in Section 2.2.3.9.4 of the Draft EIS. Areas exposed to storm water runoff would not contain materials that present potential contamination of surface water through runoff. PGF will obtain an Industrial Storm Water Discharge Permit from the state Department of Ecology, which requires compliance with the state’s most recent storm water runoff system requirements.

RESPONSE TO COMMENT I-40

Legionnaires disease can be caused by bacteria formed in untreated cooling water used in cooling tower applications. Air drawn through the cooling tower and recirculated to populated interior building spaces as part of a building air conditioning system has been the source of the most publicized outbreaks of Legionnaires disease. As described in Section 2.2.3.6.2 of the Draft EIS, the PGF would utilize a biocide (sodium hypochloride) in the cooling water to destroy organic material, including those bacteria identified with Legionnaires disease, eliminating the risk of contamination. Also, in the case of the PGF, cooling tower draft air would be released to the atmosphere, not to an interior building space, which would significantly mitigate the available pathway for potential contamination.

RESPONSE TO COMMENT I-41

No significant environmental impacts associated with the construction or operation of the preferred or alternative transmission line interconnections were identified. Overhead transmission lines permit the continued use of the land for farming (farming can occur under the line), whereas undergrounding transmission lines may require restricting surface use of the land. Further, like overhead transmission lines, underground transmission lines also generate electromagnetic fields. However, these fields degrade rapidly with distance from the electrical conductors and do not place local populations of workers at risk. A review of the current literature concerning electromagnetic fields can be found in Appendix F of the Wallula Power Project and Wallula-McNary Transmission Line Draft Environmental Impact Statement (DEO/EIS-330) released in February 2002.

The visual impacts resulting from overhead transmission line were analyzed and found not to be significant (see Sections 2.9.2.5, 3.9.2.3.2, and 3.9.2.4 of the Draft EIS).
RESPONSE TO COMMENT I-42

A copy of the Draft EIS was mailed to the commentor and the commentor was added to the Distribution List for the Final EIS.