Keeping The Lights On

FOR THE NORTHWEST

BONNEVILLE
POWER ADMINISTRATION
What it takes to keep the lights on in the Pacific Northwest

Lightning streaks across the sky. A child walks across a carpet on a dry day then gets a shock when touching a doorknob. The size of the event is different, but the force that drives both is the same: electricity.

Electricity has captured people’s imaginations since the ancient Greeks, but it was only about 125 years ago that Thomas Edison finally captured in a bottle the force behind lightning. He called it an electric light.

Within a year Edison had his first commercial order. Strangely enough, it was from Portland, Ore., 3,000 miles away from his Menlo Park, N.J. laboratory. Oregon Railroad and Navigation wanted to illuminate a new ship.

Electricity came in small doses to the Northwest for the next decade: A hotel in Portland. A silver smelter in Hailey, Idaho. A mill in Tacoma, Wash. Street lights near the Spokane River from the Northwest’s first hydro-electric dam. But “long distance” transmission didn’t come to the U.S. until 1889 when - again a Northwest first - the Willamette Falls Electric Company sent power from its dam at Oregon City to Portland streetlights 14 miles away.

Electricity was the high technology of the day. But few electric companies could afford the cost of building generators and transmission systems. Bottom line: The more customers per mile, the lower the cost. Cities such as Portland, Seattle and Spokane and some towns had electricity but rural areas did not.

As the demand for electric power grew in the Northwest, larger and more costly hydropower dams were conceived. To fund them the public looked to the federal government. Ironically, it was the Great Depression and the need to create jobs for the unemployed that gave the final push for the Columbia River hydropower — and transmission — that electrified the Northwest.

Today’s federal grid moves nearly 26 billion watts of electricity throughout the Northwest — enough power to serve 8 million people and the businesses where they work — through more than 15,000 miles of high-voltage line and 400 substations. Four high-voltage lines — called the “southern intertie” — connect the Northwest and Southwest so the two regions can swap power and make the most of each other’s generators.
Tracking the Future

Intel in Hillsboro, Ore., and Microsoft in Redmond, Wash., decide to expand their business parks. City leaders in Portland and Seattle react by rezoning land to add suburbs, shops and homes to handle an expected influx of new office workers.

On the eastern Oregon desert near Hermiston, Ore., developers announce plans to build two new power plants. In Spokane, fish managers hold a press conference to declare that endangered salmon will need more flows in the Columbia and Snake rivers. In Vancouver, B.C., Powerex decides it soon will have excess power to sell to the U.S. On the evening news, meteorologists forecast a winter cold snap and a cooling trend for the Northwest over the next few years.

These events may seem far apart and disconnected. Yet they have one thing in common. Not a person can be hired, not a family can move in until they have electricity. Not a megawatt can be moved, for fish or for power, until there is room — or capacity — on the transmission system — the interstate highway for electricity.

These issues fall to the utility planners and analysts. They know that the supply of electricity and the use of it have to be in equilibrium every second of the day without fail. Electrons and the laws of physics wouldn’t have it any other way.

Planners foresee trends and spot troubles long before there is an emergency. They constantly study the grid to look for weakness or constraints. They look at how changes impact the grid whether from new growth or the winter cold snap. They come up with a list of solutions.

Can energy conservation offset the new demand for electricity? Will the high-tech firms use back-up generators or some alternate source of energy? Can BPA beef up equipment at existing substations? What about adding more controls to monitor the system and make sure it is staying within the safety zone? The planners consult with other utilities, regulators, community leaders and elected officials.

Turns out the solution is to do all of these, and one item more. The planners propose a new 500,000-volt power line, the Roosevelt-Guthrie project. That’s the only way to bring megawatts from the Hermiston power plants to market. The project has a side benefit.

The southern intertie is overbooked at times of the year. Yet dam operators need it. In spring they spill water to pass young salmon through the dams. If river flows get too high, they tone down the spill by generating power and sending some of the megawatts south on the intertie. The bottleneck on the intertie will only get worse when Powerex tries to sell its excess south as well. Roosevelt-Guthrie will relieve that constraint.

Before they work up a proposal, the planners contact a project manager who pulls together a team of engineers and utility specialists. Together they estimate a budget and the time, effort, public review, materials, people and skills needed to take the job from beginning to end.

Then they argue the project’s priority against a list of projects proposed by other teams. Roosevelt-Guthrie wins its case. Its cost is within the rates BPA is charging for use of the grid. It is put on the schedule for construction three years out. The real work has just begun.
FROM THE DAM TO YOUR DOORSTEP

Terms & Fun Facts*

Conductor - Material, such as an aluminum transmission line, suitable for carrying an electric current.

Transformer - An electrical device that changes the voltage of alternating current. It can step up - transform voltage from low to high - or step down the voltage.

Circuit breaker - A device designed to open automatically and very quickly in order to protect other electrical equipment during a fault or overload. Operators also open breakers manually in order to “isolate” a piece of equipment before working on it. You have circuit breakers in your house on a much smaller scale.

Height of the Seattle Space Needle: 520 feet

* Source: Encyclopedia Britannica, World Book Encyclopedia, the engineers, craftsmen and journeymen of the Bonneville Power Administration

Turning an idea into action

Avalanche, winds and floods. The design engineers on the project team look at every civil and electrical engineering challenge Roosevelt-Guthrie will have to face in altitude, weather and terrain from the footings to the top of the towers. Environmental specialists review all the project’s possible impacts to the land, water and scenic views. They look for sensitive plants and animals and research whether there are cultural heritage sites in the area. Together, they come up with a list of six alternative ways to build Roosevelt-Guthrie.

A team of real estate experts checks out the corridors proposed for the line and compiles a list of all who live near the routes. Then a public involvement team meets with the project’s neighbors. The project manager also briefs community leaders and elected officials. After several meetings and several months, everyone decides the best thing to do is to upgrade an existing 230,000-volt line to 500,000 volts.

Towers will have to be changed; new conductors strung. There will be upgrades to transformers and circuit breakers at substations at both ends of the line. But BPA won’t have to buy new land because the existing corridor is wide enough for the higher voltage. That also means BPA won’t have to cut into a hillside and risk dumping dirt into a nearby stream. BPA agrees to compensate farmers if crops are damaged during the upgrade. For the most part, the neighbors are happy about the choice.

Richard Becker -

Keeping the power flowing throughout the transmission grid requires more than the lines and towers that dot the landscape. The system must be constantly monitored to make sure it’s functioning properly and power is being delivered.

Richard Becker works in the system protection control group. They are responsible for maintaining meters and protection devices within substation control houses. The meters measure the amount of power BPA sells to customers in order to bill them correctly. Protective relays constantly monitor the condition of the system and send an alert when something’s amiss. This large network connects every substation in BPA’s system.

Becker likes the variety of work but admits it may not be for everyone. He says a person has to be willing to change their plans at a moment’s notice if something goes awry with the system.

“You also have to be the type of person who wants the job done right the first time. We can’t have loose ends out there that jeopardize the system.”

Marv Landauer -

Planner Marv Landauer gets excited when thinking out loud through the intricacies of designing a 500,000-volt line from Schulz to Hanford substations in Washington. Although it won’t be completed until 2005, the new line could go a long way to correcting the constrained transmission capacity from northern Washington to the Oregon border.

If done right, the new line could help solve other problems as well. That’s what Landauer and others who design solutions to transmission system problems look for. They strive to achieve multiple purposes for every project they work on.

“Certainly, the line will bring more generation in from the north - places like Grand Coulee Dam and Canada - and that’s related to the southern intertie,” Landauer says. But, that’s not the end of the benefits. “The line is also related to salmon recovery. Getting more power into the mid — and lower — Columbia River means dams can spill more water to pass fish and keep the intertie capability up.”

André Marie Ampere -

His work created the basic instrument for measuring the magnitude of electric currents.

Ampere - the measure of the rate of flow of an electric current.

Richard Becker -

Keeping the power flowing throughout the transmission grid requires more than the lines and towers that dot the landscape. The system must be constantly monitored to make sure it’s functioning properly and power is being delivered.

Richard Becker works in the system protection control group. They are responsible for maintaining meters and protection devices within substation control houses. The meters measure the amount of power BPA sells to customers in order to bill them correctly. Protective relays constantly monitor the condition of the system and send an alert when something’s amiss. This large network connects every substation in BPA’s system.

Becker likes the variety of work but admits it may not be for everyone. He says a person has to be willing to change their plans at a moment’s notice if something goes awry with the system.

“You also have to be the type of person who wants the job done right the first time. We can’t have loose ends out there that jeopardize the system.”

Marv Landauer -

Planner Marv Landauer gets excited when thinking out loud through the intricacies of designing a 500,000-volt line from Schulz to Hanford substations in Washington. Although it won’t be completed until 2005, the new line could go a long way to correcting the constrained transmission capacity from northern Washington to the Oregon border.

If done right, the new line could help solve other problems as well. That’s what Landauer and others who design solutions to transmission system problems look for. They strive to achieve multiple purposes for every project they work on.

“Certainly, the line will bring more generation in from the north - places like Grand Coulee Dam and Canada - and that’s related to the southern intertie,” Landauer says. But, that’s not the end of the benefits. “The line is also related to salmon recovery. Getting more power into the mid — and lower — Columbia River means dams can spill more water to pass fish and keep the intertie capability up.”

André Marie Ampere -

His work created the basic instrument for measuring the magnitude of electric currents.

Ampere - the measure of the rate of flow of an electric current.
Facility engineers complete the specifications for the towers, conductor, insulators and concrete. Substation engineers specify the breakers and transformers. Another group selects the computer controls and protection schemes to make sure the upgraded line will survive faults and overloads. Yet another group chooses the telecommunications equipment — in this case a fiber optic cable — so computers and staff miles away can control the line and the substations, instantaneously detect problems and make sure these facilities work in unison with the rest of the grid.

After two years, the project is ready. Engineers are done. The line has been surveyed. Specifications are completed. Materials have been ordered through the procurement staff. Manufacturers have them scheduled. Come summer, Roosevelt-Guthrie will be ready for construction.

Leon Kempner

The secret’s out. BPA projects are supported not only by superior electrical engineering, but also through the notable contributions of civil, mechanical, hydraulic, environmental, geological and other types of engineers.

In fact, one of BPA’s most honored and recognized engineers, and the force behind numerous national and international industry standards is... a civil engineer.

The areas influenced and experienced by Leon Kempner during his BPA career include: everything from the transmission industry’s premier steel tower designs, to design software, to regional seismic mitigation standards that keep the Northwest from losing electrical equipment during an earthquake.

Kempner, like other exemplary engineers for whom anything less than full commitment just doesn’t cut it, has been most inspired by the design failures, excited by “the ability to investigate it, to study it, to correct it.” But expect to put in long hours, way beyond the anything resembling an 8-to-5. “This group is more than willing to put in big hours to see big rewards.”

Getting grounded

It’s June and raining hard when the construction crew prepares the sites for the new towers’ footings. They pray for a dry day so field carpenters can build the forms and a contractor can pour the concrete on schedule.

At Roosevelt and Guthrie, other crews are preparing sites for the new equipment. Roosevelt will need a larger control house. With the engineers’ drawings in hand, sheet metal workers, carpenters and painters produce the control house shell. Other workers prepare the control house racks that will hold the communications, relay and metering equipment.

A new transformer for Guthrie has arrived at a nearby port. The size of a single-car garage but as delicate as your grandmother’s Wedgwood china, it takes a special crane to gently lift it from a barge to a low, wide railcar. Along the route, a laboratory engineer checks a seismic chart to make sure nothing breaks loose. The transformer arrives in good shape. At Guthrie, a dozen burly riggers gently, slowly coax it onto the concrete pad, then strap it down.

By now the control house and its equipment are ready. Riggers transport the pieces to Roosevelt. The construction crew works with local specialists to situate the control house, install the racks and wire the equipment to the new transformer and circuit breakers.

Over on the right of way, material handlers are trucking in the tower steel. The Pasco line crew gets the honor of setting it into the sky. A helicopter leans up the base. The crew bolts it into the footings. Then strapped in harness, four men climb what looks like an oversized Erector set while the helicopter carefully eases the new top in place. The holes on each leg match perfectly. A dozen bolts later, the crew is ready for the next tower.
Electricity is just another form of energy. Energy is anything that does work. Your body’s energy comes from the food you eat. Food is your fuel.

In the case of electricity, a generator uses fuel to create mechanical energy that in turn produces electricity. For much of the nation, the fuel is coal, oil or natural gas. Fuel is burned to heat water to make steam.

Electricity moves from the generator to a switchyard at the power plant. There it is transformed to a higher voltage and sent on its way via a transmission line. Transmission lines generally are rated at 69,000 to 500,000 volts (compared to the 120 or 240 volts in your home).

The electricity moves from the generator to a switchyard at the power plant. There it is transformed to a higher voltage and sent on its way via a transmission line. Transmission lines generally are rated at 69,000 to 500,000 volts (compared to the 120 or 240 volts in your home).

For some Americans, the heat comes from a nuclear power plant, where the nuclear reaction heats water to make steam.

The transmission line enters the electric to a lower the distribution of the power for homes and businesses. Distribution lines typically have a voltage lower than that of the power for homes and businesses. Distribution lines typically have a voltage lower than that of the power for homes and businesses.

Electricity is just another form of energy. Energy is anything that does work. Your body’s energy comes from the food you eat. Food is your fuel.

In the Northwest, about 70 percent of the fuel is falling water. The power of a river is held behind a dam. The power plant’s steam or the dam’s falling water hits turbine blades and the turbine turns. The turbine is connected by a drive shaft to a generator - a magnet inside a coil of wire. As the magnet spins, it moves a magnetic field across the turns of wire in the coil, creating an electric current. The more the coils of wire, the larger the generator and the more powerful the electric current.

Electricity is just another form of energy. Energy is anything that does work. Your body’s energy comes from the food you eat. Food is your fuel.

In the Northwest, about 70 percent of the fuel is falling water. The power of a river is held behind a dam. The power plant’s steam or the dam’s falling water hits turbine blades and the turbine turns. The turbine is connected by a drive shaft to a generator - a magnet inside a coil of wire. As the magnet spins, it moves a magnetic field across the turns of wire in the coil, creating an electric current. The more the coils of wire, the larger the generator and the more powerful the electric current.

Electricity is just another form of energy. Energy is anything that does work. Your body’s energy comes from the food you eat. Food is your fuel.

In the Northwest, about 70 percent of the fuel is falling water. The power of a river is held behind a dam. The power plant’s steam or the dam’s falling water hits turbine blades and the turbine turns. The turbine is connected by a drive shaft to a generator - a magnet inside a coil of wire. As the magnet spins, it moves a magnetic field across the turns of wire in the coil, creating an electric current. The more the coils of wire, the larger the generator and the more powerful the electric current.
Transmission line quickly grid - a network of lines from various plants. The grid not only several power plants, it to several customers the power. This allows a flow and shifting of from one area to another to there is adequate for customers at all times.

In, the transmission a substation where electricity is transformed voltage ready for lines that serve businesses in neighborhoods. Distribution typically are rated at volts or less. So the is still much higher your home. The must pass through a transformer to drop voltage to a level suitable for use. Look outside, if a metal can at the top pole, you are at a distribution meter.

Managing electricity is much the same as managing traffic between major cities. Cars enter a freeway until they approach the chosen location. Then they take an off ramp to a main street and eventually to a side street to the final destination.
As one line crew moves on to erect the next tower, a second crew uses the helicopter to pull the end of a new reel of conductor to the top of the finished tower. Two men suspended 150 feet in the air at the top of the tower clamp the conductor to a string of insulators. A small explosion seals the fitting.

Within a month, the line is complete, the substations expanded, the new equipment in place. Then comes the tricky part.

To connect the upgrade to the system, that section of the grid needs to be temporarily taken out of service. That’s not easy when millions of people depend on the power of the line. Utilities and power marketers stand to forgo thousands of dollars for lost sales.

Knowing this, an outage team of engineers, planners, dispatchers, schedulers, operators and customer service managers meet with marketers and utilities to pick a date when use of the section is low and reliability on the rest of the grid is high - and when there would be the least danger to the crew. The outage date is posted on the Internet 45 days before it happens so all can plan ahead.

The date arrives. The construction crews complete their last connections. Then come the test and energization engineers. They run the new equipment through its paces, often working 24-hour days with little rest. Design engineers are on hand if something goes wrong. Construction crews are on notice for emergency re-work. At last, tests show the upgrade is sound. It can withstand faults. It can run at expected standards. It is synchronized with the rest of the grid. Roosevelt-Guthrie goes into service.
Keeping the kilowatts coming

Roosevelt-Guthrie is now a normal part of the grid. At two control centers it’s on the computer screens and on map boards, each the size of two billboards. One control center is in Vancouver, the other in Spokane. Each backs up the other. Each has three independent sources of electricity as a precaution against power outages. The centers monitor and control, not only Roosevelt-Guthrie, but also the rest of the grid, the communications and control systems and about 400 substations. They also monitor generators in the region to maintain balance between generation and load, and to control voltage on the grid.

Like traffic cops, the control centers’ dispatchers monitor and control movement of millions of kilowatts of electricity through the grid. From their computer consoles, dispatchers can call up data on how any part of the system is working. Color-coded displays show the status of any power line or other piece of equipment, including the new transformers and circuit breakers and Roosevelt and Guthrie.

In a separate area at one of the control centers, operations engineers run digital simulations of the grid. Through their computers, they add outages, suddenly take out generators and boost demand for electricity just to see how the grid will react. Their job is to set limits on capacity, to make sure the alarms and controls all work properly and that the grid never operates beyond standards of reliability.

In yet another room, schedulers book use of the grid. Roosevelt-Guthrie was scheduled the second it was ready for service. Today, the staff handles about 2,000 schedules for about 350 customers. Customers range from small rural cooperatives to large utilities to marketers and independent power producers to industries that buy power directly from BPA. Ten years ago, before deregulation hit the electric utility industry, the number of schedules was negligible and customers numbered less than 100.

Most transactions take place through OASIS — an open-access, same time information system on the Internet. It’s updated often to give users the latest on outages, available capacity and changes on the grid. After checking OASIS, users book space on the grid through schedulers.
Keeping the lights on

A tree falls into a line during a winter storm. Circuit breakers automatically trip open the line to isolate the problem. Alarms in the dispatch center sound. Computers pinpoint the fault. Dispatchers test the faulted equipment for damages, then call out substation operators at both Roosevelt and Guthrie to clear the line for the Pasco line crew. Thanks to Roosevelt-Guthrie, the power was rerouted so the crew can work safely and consumers didn’t even notice there was a problem.

Aircraft patrols scan Roosevelt-Guthrie three to four times a year with infrared equipment to check for hot spots on the transmission lines. Linemen follow up with their own hands-on inspections of the towers, insulators, fiber optic cable and conductors. Natural resource specialists check vegetation and cut dangerous trees.

Substation electricians and maintenance experts regularly diagnose the new transformers and circuit breakers for preventive maintenance. All stand ready to respond to emergencies, any day of the week, any time of the day or night during any kind of weather.

Meanwhile, it’s time for your favorite television program. The thermostat is set at a comfortable temperature. The microwave pops a bag of popcorn. In another room, a machine washes your clothes. All you have to do is to make sure the electric cord is plugged into the outlet. And, like a miracle, electricity is there to do the rest.

Terms & Fun Facts*

Kilowatt-hour (kWh) - Measurement of electricity you see on your electric bill. Measurements are metric so a kilowatt is a thousand watts. A kilowatt-hour is the amount of energy used if you use 1,000 watts for one hour. Use 10 100-watt light bulbs for one hour and you’ve used 1 kilowatt-hour of electricity.

Load - The amount of electric energy delivered or required at any specific point on an electrical system.

Megawatt-hour (MWh) - The amount of energy delivered over a period of time; in this case, a megawatt for one hour. A 1,000 MW plant can produce 1,000 MWh if it is run full force for an hour. It can produce 24,000 MWh if it is run full force for a day.

Number of days the United States could run on the electrical energy supplied by a single thunderstorm: 4.

Amount of time a typical hurricane could supply all the electric energy needed by the United States: 3-4 years.

* Source: Encyclopedia Britannica, World Book Encyclopedia, the engineers, craftsmen and journeymen of the Bonneville Power Administration

Malcolm Mackey -

Substation operators are the first to respond to trouble and emergencies. Malcolm Mackey, an operator at Keeler substation in Hillsboro, Ore., said he’s been called out in the middle of the night after an earthquake that put on the ground much of the substation equipment that should have been up in the air. Another time was due to a fire on a transformer that sent workers to the hospital.

Substation operators have a life-and-death job. They make sure line crews, craftsmen or electricians can work safely at substations and on the transmission lines between substations. If for safety’s sake, doing the work means a line has to be taken out of service, then Mackey and his colleagues work to limit an outage’s impact on the transmission system and on consumers.

“This job is a matter of timing and of knowing how the transmission system works,” Mackey said. “There is no tolerance for error. Someone could lose power or, worse, someone could get hurt.”

Substation electricians and maintenance experts regularly diagnose the new transformers and circuit breakers for preventive maintenance. All stand ready to respond to emergencies, any day of the week, any time of the day or night during any kind of weather.

George Westinghouse

In 1886, formed the Westinghouse Electric Company and used AC. AC proved more popular than DC because it was easier to transmit long distances. Edison fought back by claiming AC was dangerous. He was so convincing that New York used AC to power the nation’s first electric chair. Of course, AC and DC equally are dangerous. AC is now the standard.

Garett Rehbein -

As the time it takes to restore equipment after an outage becomes more critical to utility revenues and the health and safety of Northwest citizens, the importance of the skills BPA electricians such as Garett Rehbein has soared accordingly.

“Everybody in the field realizes how important it is to get things back on-line quickly. In Spokane we did a lot of midnight outages because, in some places when the station fails, a whole town is out of power. We only have so long of a window. The work is planned out. You get it done in that time. That’s on people’s minds always: How quickly we have to get it back in.”

Equipment failures stand out in his mind as the most significant part of his work. “That’s when you do the diagnostic work, the research, the troubleshooting, to figure out what happened. I go out every day thinking ‘I’m going to try and figure this out today.’ In that way, my job stays really interesting.”
For more information
Contact the BPA Public Information Center at 1-800-622-4520 and ask for:

**Dittmer Control Center:** Bringing power to our lives (DOE/BP-3266)

**Power Center:** BPA’s Celilo Converter Station and the Eugene Starr Complex (DOE/BP-2264)

**Keeping the way clear for better service:** The danger tree program (DOE/BP-2816)

**Stay Alive:** (DOE/BP-3181)

**High-Powered Energy:** BPA story (DOE/BP-876)

**Find Your Future:** Careers at BPA (DOE/BP-3208)

**Or visit our Web site at:** http://www.transmission.bpa.gov/ and click “About TBL”