Chapter 1 Purpose and Need

In this Chapter:

- The Purpose of and Need for Action
- Finding Solutions
- Decisions to be Made
- Other Issues

Bonneville Power Administration (BPA), a federal agency, markets power to local utilities that provide electricity for homes, businesses, and farms in the Pacific Northwest. BPA owns and operates thousands of miles of electric transmission lines. The lines move power throughout the Northwest.

The U.S. Forest Service (USFS), also a federal agency, manages publicly-owned forestlands through which many of BPA's transmission lines run. The USFS manages individual national forests to meet the diverse needs of people for resources such as timber and recreation, and environmental values such as wilderness and wildlife.

Chapter 1 explains a problem, or need, that exists in northeastern Idaho and western Wyoming on BPA's transmission system. This chapter specifically describes how the need was first discovered and what conditions came together to create it. This chapter also describes how BPA and the local utility, Lower Valley Power and Light, Inc. (LVPL), developed solutions to meet this need.

1.1 BPA's Purpose and Need For Action

1.1.1 BPA's Need

LVPL buys electricity from BPA and then supplies it to the residences, farms and businesses of the Jackson and Afton, Wyoming areas. Since the late 1980s, LVPL's electrical load has been growing by an average of 4-5 megawatts (MW) per year, and LVPL expects continued growth at about this rate. LVPL's customers use the greatest amount of electricity in the winter when temperatures are low and heating needs are great. During the winter season, an outage of one of the BPA or LVPL transmission lines that serve these areas could cause voltage on the transmission system to dip below acceptable levels in the Jackson area and to a lesser extent in the Afton area (see Section 1.3.1, Reliability Criteria). Low voltage levels can cause brownouts, or under certain conditions, a blackout.
When voltage begins to drop on a transmission system, the system tries to correct itself and voltages fluctuate up and down. If the voltage keeps dropping and the system cannot correct itself, customers using certain appliances, computers and other electrical equipment sensitive to large voltage change may suffer equipment damage, even if they have surge protectors. If the system cannot recover, it will collapse and a blackout will occur. In a blackout, homes and businesses lose electricity completely.

These conditions can be dangerous to residents, farmers, and businesses, especially in winter. The transmission system that serves the Afton and Jackson, Wyoming areas needs to be reinforced as soon as possible to maintain voltage stability.

1.1.2 BPA's Purpose

The purposes in the “purpose and need” statement are goals or objectives to be achieved while meeting the need for the project. These objectives are used to evaluate alternatives proposed to meet the need.

BPA will use the following objectives to choose among alternatives:

- Maintain environmental quality;
- Minimize costs while meeting BPA and LVPL's long-term transmission system planning objectives for the area;
- Maintain BPA and LVPL transmission system reliability.

1.2 U.S. Forest Service's Purpose and Need

The USFS, represented by the Targhee and Bridger-Teton National Forests, is responsible for management of the national forests crossed by BPA's existing transmission line from Swan Valley Substation near Swan Valley in Bonneville County, Idaho east to Teton Substation, near Jackson in Teton County, Wyoming. (See Map 1, Location Map.) The USFS needs to evaluate the project for consistency with its Forest Plans and appropriate legislation such as the National Environmental Policy Act, the Endangered Species Act, etc. The Forest Service could then issue a special use permit for the construction, operation, and maintenance of any new facilities that cross these lands.

1.3 Background

LVPL serves its customers from two 115-kilovolt (kV) transmission lines. One line, owned and operated by BPA, runs from Swan Valley Substation east to Teton Substation, near Jackson,
Wyoming. The second line, owned by LVPL, runs from Palisades Switchyard at Palisades Dam, southeast along the reservoir to LVPL's Snake River Substation. (See Map 1.) At Snake River Substation, the line splits; one line follows the Snake River most of the way into Jackson, the other runs south to serve the Afton area.

The existing system can reliably serve up to 125 MW of electricity to LVPL, even if one of the lines described above goes out of service. The system is built for that emergency (see Section 1.3.1, Reliability Criteria). However, load growth in the Jackson, Wyoming area has passed the 125 MW limit recently (see Figure 1-1).

In 1994, the system winter peak was 120 MW. In 1995, the winter peak unexpectedly hit 139.5 MW. In 1996, the peak climbed to 141.2 MW, even without another 5 MW load from a mine that was closed at the time. In 1997 and 1998, the winter peak was close to 130 MW. If one of the transmission lines had gone out of service (had an outage) during the winter peaks in 1995, 1996, or 1997, voltage would have quickly dropped.

Once the transmission system is down, it could take at least twice as much power to fully restore the system because as electrical equipment such as motors come back on line, about twice as much power is required to restart them simultaneously. Because the existing system cannot handle that much energy, LVPL, and to a lesser extent, BPA, the U.S. Bureau of Reclamation at Palisades Dam, and others must bring the system back up in stages, going from individual feeder line to individual feeder line. The time required to do this, which could be hours or even days depending on the weather and other conditions, could create a dangerous situation for LVPL's customers, especially those who do not have another source of fuel for heat and lights.

The reliability of BPA's transmission system is critical to LVPL's system.

1.3.1 Reliability Criteria

Utilities strive to provide reliable service at the best value for their customers. Cost-effectiveness is evaluated from the customer's perspective. Reliability is a measure of the transmission system's ability to meet customer demands. It is measured by how often power outages occur, how long they last, and how many customers are affected. A perfectly reliable system would always satisfy customer demand. Perfect reliability is not technically feasible and even if possible, would be extremely expensive for consumers.

Using rules based on experience, utilities design and operate transmission systems to meet high performance standards that come close to this "perfect" system. These rules, called reliability
Figure 1-1. Load Growth

- **Forecasted Load (Winter Peak)**
- **Load system can handle with one line out**
- **Actual Load (Winter Peak)**
Chapter 1 – Purpose and Need

criteria, set standards to ensure cost-effective, reliable service. A reliable system should provide electrical service under normal and emergency conditions. A transmission line outage caused by wind, ice, lightning or other events is an example of a system emergency. Reliability criteria define acceptable service under these types of emergencies.

1.4 Finding Solutions

After BPA and LVPL identified the voltage stability problem in the area, they began working together to solve it. BPA and LVPL did long-range (15-30 years) studies to determine what the transmission system needs to accommodate load growth, the best actions to meet those needs, what each action costs, and how different actions would affect the entire system. From the long-range studies, BPA and LVPL developed many alternatives to solve the problem and then chose the most feasible ones to study further.

BPA also began this environmental impact statement (EIS) to refine alternatives, identify environmental resources and potential impacts from the alternatives, and determine other issues to consider before making any decision.

Chapter 2, Agency Proposed Action and Alternatives, describes the solutions developed.

1.5 Scoping and Major Issues

Scoping refers to a time early in a project when the public has an opportunity to express which issues should be considered in an environmental impact statement. On May 1, 1996, BPA published a Notice of Intent to prepare an EIS and to conduct public scoping meetings for the project. BPA developed a public involvement plan early in the planning process to identify ways to inform the public and others about the need for the project, and to scope issues for the environmental impact statement. The first project For Your Involvement (FYI) (May 3, 1996) explained the proposal, the environmental process, and how to participate (see Appendix B, Public Involvement). A comment sheet was included so individuals could mail their comments back to BPA. Project scoping meetings were held in the following locations: Idaho Falls, Idaho on May 20, 1996; Jackson, Wyoming on May 21, 1996; Driggs, Idaho, on May 22, 1996; and Irwin, Idaho on May 23, 1996. Written and verbal comments on the project were collected.
The second project FYI (July 10, 1996) contained the results of the scoping process (see Appendix B). Many issues were raised during the scoping process. Most comments were received about the following issues:

- Design and location of alternatives;
- Using other power sources such as natural gas;
- Quality of life issues such as visual resource issues and property values;
- **Wildlife, vegetation, soil, water quality, and scenic quality, especially on national forest lands**;
- Recreation use, especially at Teton Pass and in designated Wilderness and Wilderness Study Areas;
- Noise, **electric and magnetic fields (EMF)** and fire hazards.

This is a partial list of issues identified from the comments received. All comments received during the scoping period were logged in, characterized by subject, and forwarded to resource specialists to include in their environmental impact analyses. Issues raised during scoping and many added concerns are addressed in Chapter 4, *Environmental Consequences*.

The third project FYI (March 1997) contained a status report about the environmental analyses and engineering work underway at that time. It also included a schedule for release of the Draft EIS (see Appendix B).

Issues identified during the scoping process were discussed in the Draft EIS. The Draft EIS was distributed to agencies, groups, individuals and libraries in June 1997. A 45-day public review period ended on August 5, 1997. Public meetings with an open house format were held in Driggs, Idaho and Jackson, Wyoming to review and receive comments on the Draft EIS. The comment period was extended at the request of some potentially affected landowners until September 11, 1997. Chapter 6 of this Final EIS records and provides responses to the comments on the Draft EIS. This Final EIS also provides updated information developed as a result of the comments received on the Draft EIS.

1.6 Decisions to be Made

When a project could involve more than one federal agency, those agencies work together during the planning and decision-making process. BPA is the lead federal agency on this project and supervises the preparation of the EIS. The U.S. Forest Service is a cooperating agency and assists BPA in EIS preparation.

A project of this size contains different alternatives and options for decision makers to consider. For this project, the following kinds of decisions must be made:
Chapter 1 – Purpose and Need

1.7 Other Project and Planning Activities Outside the Scope of this EIS

Long-range planning and other activities occurring in the area are outside the scope of this project, but are included here for information.

1.7.1 Long-Range Planning

BPA and its customers do long-range (15-30 year) transmission planning to meet their future needs. BPA and LVPL’s long-range planning identifies several potential projects in the area. However, these projects depend on many uncertainties (e.g., future load growth, advances in technology, energy conversion to renewable resources, future customer needs) and are not reasonably foreseeable at this time. Alternatives described in Chapter 2 to meet the need for the BPA/Lower Valley Transmission Project are the first and most important in a series of actions identified in the long-range plan. Future planning actions that may be proposed on other parts of BPA’s and LVPL’s transmission systems are outside the scope of this EIS and would be studied in more depth later if the probability that they would be needed becomes more certain. Potential impacts would be studied in additional environmental documents at that time.

For Your Information

A right-of-way is an easement over the land of another owner.
1.7.2 South Fork Snake River/Palisades Wildlife Mitigation Project

BPA is funding the South Fork Snake River Programmatic Management Plan to compensate for losses of wildlife and wildlife habitat from hydroelectric development at Palisades Dam. The Idaho Department of Fish and Game drafted the plan, which was completed in May 1993. The plan includes land and conservation easement acquisition and wildlife habitat measures, such as fencing riparian areas and revegetation to create wildlife habitats. The measures will be completed along the South Fork Snake River and the lower portion of the Henry’s Fork Snake River.

1.7.3 South Fork Snake River Basin Comprehensive State Water Plan

This plan was developed by the Idaho Water Resource Board and examines existing and planned resource uses in the South Fork Snake River Basin. The plan discusses the goals, objectives, and recommendations of the Board concerning improving, developing, and conserving water resources in the public interest. The Draft plan was completed in October 1996. The final plan was presented to the Idaho Legislature in January 1997, and, with few changes, was approved in March 1997.

1.7.4 Targhee National Forest Plan

The Targhee National Forest has finished updating its Forest Plan. The draft of the new plan and Draft EIS were released for public review in 1996, with the closing date for comments in June 1996. The Forest Service incorporated the comments received on the draft plan and Draft EIS, then released the Revised Forest Plan for the Targhee National Forest (1997) and issued the Record of Decision on April 15, 1997. The Record of Decision was published in the Federal Register in May 1997.

1.8 Organization of the Final EIS

This environmental impact statement includes information necessary for agency officials to make decisions based on the environmental consequences of proposed actions.

Federal regulations specify the kinds of information decision-makers should have to make good decisions. This document follows those recommendations.
• Chapter 1 states the purpose and need for the project. Alternatives are evaluated based on the purpose and need.

• Chapter 2 describes the agency proposed action and alternatives, including taking no action, and summarizes the differences among alternatives, especially in potential environmental impacts.

• Chapter 3 describes the existing environment that could be affected by the project. The existing environment includes human and natural resources.

• Chapter 4 describes the possible environmental consequences of the agency proposed action and alternatives. Impacts can range from no or low impact to high impact.

• Chapter 5 reveals the licenses, permits and other approvals or conditions the alternatives must obtain or meet.

• Chapter 6 contains the written and oral comments on the Draft EIS, and BPA’s responses to these comments.

• Chapters 7 through 10 list individuals who helped prepare the EIS, references used, individuals, agencies, and groups the EIS will be sent to, and a glossary.

• An index is included after Chapter 10.

• Supporting technical information is in appendices.