Responsible Agency: Bonneville Power Administration (Bonneville), U.S. Department of Energy (DOE)

States Involved: Oregon and Washington

Abstract: Bonneville is proposing to construct, operate, and maintain a 79-mile-long 500-kilovolt-transmission line in Benton and Klickitat Counties, Washington, and Umatilla and Sherman counties, Oregon. The new line would start at Bonneville’s McNary Substation in Oregon and would cross the Columbia River just north of the substation into Washington. The line would then proceed west for about 70 miles along the Columbia River. At the John Day Dam, the line would again cross the Columbia River into Oregon and terminate at Bonneville’s John Day Substation. The new line would parallel existing transmission lines for the entire length; mostly within existing available right-of-way. Presently, the existing transmission lines in the area are operating at capacity. These lines help move power from the east side of the Cascades to the west side, where there is a high need for electricity (cities along the I-5 corridor). Because the Northwest has only recently recovered from a shortfall in electric energy supply and a volatile wholesale power market in which prices reached record highs, there are many new proposals for facilities to generate new power. Some of these facilities are in the vicinity of the McNary-John Day project; the proposed line would help insure that existing and newly generated power could move through the system. Bonneville is also considering the No Action Alternative and several short-line routing alternatives. The short routing alternatives include three half-mile-long routes for getting from the McNary Substation to the Columbia River crossing; three two-mile-long routes where the Hanford-John Day transmission line joins the existing corridor; two 1,000-foot-long routes at corridor mile 32; and two 500-foot-long routes at corridor mile 35.

Public comments are being accepted through April 23, 2002.

For additional information: Stacy Mason
Bonneville Power Administration
P.O. Box 3621-KEC
Portland OR 97208-3621
(503) 230-5455
slmason@bpa.gov

Please mail comments to:
Bonneville Power Administration
Communications Office-KC-7
P.O. Box 12999
Portland OR 97212
comment@bpa.gov

To receive additional copies of the Draft Environmental Impact Statement (EIS) or Summary, call Bonneville’s document request line at 1-800-622-4520. You may access the Draft EIS on our web site at http://www.bpa.gov, look for environmental analysis, Active Projects.

For information on DOE National Environmental Policy Act (NEPA) activities, please contact: Carol Borgstrom, Director, Office of NEPA Policy and Compliance, EH-42, U.S. Department of Energy, 1000 Independence Avenue SW, Washington D.C. 20585, 1-800-472-2756; or visit the DOE NEPA Web at www.eh.doe.gov/nepa
Table of Contents

SUMMARY ... S-1

INTRODUCTION .. S-1

PURPOSE AND NEED FOR ACTION .. S-1

Purposes ... S-2
Alternatives ... S-5
Alternatives Considered but Eliminated from Detailed Study S-7

AFFECTED ENVIRONMENT, ENVIRONMENTAL IMPACTS, AND MITIGATION S-8

Land Use and Recreation .. S-8
Geology, Soils, and Seismicity ... S-10
Streams, Rivers, and Fish ... S-11
Wetlands and Groundwater ... S-14
Vegetation ... S-17
Wildlife ... S-19
Cultural Resources .. S-23
Visual Resources ... S-25
Socioeconomics, Public Services, and Utilities ... S-27
Transportation .. S-29
Air Quality ... S-30
Noise ... S-32
Public Health and Safety ... S-33

CHAPTER 1 PURPOSE OF AND NEED FOR ACTION .. 1-1

NEED FOR ACTION .. 1-1
DECISIONS TO BE SUPPORTED BY THE EIS .. 1-3
PURPOSES .. 1-3
COOPERATING AGENCIES .. 1-4
SCOPING AND MAJOR ISSUES ... 1-4
OTHER PROJECTS OR DOCUMENTS RELATED TO THIS PROJECT 1-5
HOW THIS EIS IS ORGANIZED .. 1-7

CHAPTER 2 PROPOSED ACTION AND ALTERNATIVES ... 2-1

PROPOSED ACTION .. 2-1
Location ... 2-1
Existing Corridor ... 2-1
New Easements ... 2-4
Towers ... 2-4
Tower Footings .. 2-4
Conductors ... 2-5
Tree Clearing .. 2-6
Access Roads .. 2-7
Staging Areas ... 2-8
Substation Work ... 2-8
Line Planning and Construction .. 2-9
Construction Schedule and Work Crews ... 2-10
<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>COASTAL ZONE MANAGEMENT PROGRAM CONSISTENCY .. 4-7</td>
</tr>
<tr>
<td>FLOODPLAINS AND WETLANDS PROTECTION .. 4-7</td>
</tr>
<tr>
<td>FARMLANDS .. 4-8</td>
</tr>
<tr>
<td>RECREATION RESOURCES ... 4-8</td>
</tr>
<tr>
<td>GLOBAL WARMING .. 4-8</td>
</tr>
<tr>
<td>PERMIT FOR STRUCTURES IN NAVIGABLE WATERS ... 4-9</td>
</tr>
<tr>
<td>PERMIT FOR DISCHARGES INTO WATERS OF THE UNITED STATES 4-9</td>
</tr>
<tr>
<td>THE SAFE DRINKING WATER ACT ... 4-10</td>
</tr>
<tr>
<td>PERMITS FOR RIGHT-OF-WAY ON PUBLIC LANDS ... 4-10</td>
</tr>
<tr>
<td>AIR QUALITY .. 4-10</td>
</tr>
<tr>
<td>NOISE ... 4-11</td>
</tr>
<tr>
<td>HAZARDOUS MATERIALS ... 4-11</td>
</tr>
<tr>
<td>ENVIRONMENTAL JUSTICE .. 4-12</td>
</tr>
<tr>
<td>NOTICE TO THE FEDERAL AVIATION ADMINISTRATION 4-12</td>
</tr>
<tr>
<td>FEDERAL COMMUNICATIONS COMMISSION ... 4-12</td>
</tr>
</tbody>
</table>

CHAPTER 5 REFERENCES ... 5-1

PRINTED REFERENCES ... 5-1
PERSONAL COMMUNICATIONS ... 5-11

CHAPTER 6 AGENCIES, ORGANIZATIONS, AND PERSONS RECEIVING THIS EIS ... 6-1

FEDERAL AGENCIES ... 6-1
TRIBES OR TRIBAL GROUPS ... 6-1
STATE AGENCIES, OREGON ... 6-1
STATE AGENCIES, WASHINGTON ... 6-2
PUBLIC OFFICIALS, OREGON .. 6-2
PUBLIC OFFICIALS, WASHINGTON ... 6-2
LOCAL GOVERNMENTS, OREGON ... 6-3
LOCAL GOVERNMENTS, WASHINGTON ... 6-3
SPECIAL DISTRICTS ... 6-3
BUSINESSES ... 6-4
UTILITIES ... 6-4
LIBRARIES .. 6-4
INTEREST GROUPS ... 6-4
MEDIA .. 6-5

CHAPTER 7 LIST OF PREPARERS .. 7-1

CHAPTER 8 GLOSSARY AND ACRONYMS ... 8-1

GLOSSARY ... 8-1
ACRONYMS .. 8-6
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1</td>
<td>Vicinity Map</td>
<td>follows S-2</td>
</tr>
<tr>
<td>1-1</td>
<td>Proposed Generation and Transmission Facilities in NE Oregon and SE Washington</td>
<td>follows 1-2</td>
</tr>
<tr>
<td>1-2</td>
<td>How This EIS is Organized</td>
<td>1-8</td>
</tr>
<tr>
<td>2-1</td>
<td>Vicinity Map</td>
<td>follows 2-2</td>
</tr>
<tr>
<td>2-2</td>
<td>Tower Configurations in Right-of-Way</td>
<td>follows 2-4</td>
</tr>
<tr>
<td>2-3</td>
<td>Conductors, Groundwires, and Fiber Optic Cables</td>
<td>2-6</td>
</tr>
<tr>
<td>2-4</td>
<td>McNary Substation Alternatives</td>
<td>follows 2-8</td>
</tr>
<tr>
<td>2-5</td>
<td>Hanford-John Day Junction, Alternative A-North Side</td>
<td>follows 2-12</td>
</tr>
<tr>
<td>2-6</td>
<td>Hanford-John Day Junction, Alternative B-South Side</td>
<td>follows 2-12</td>
</tr>
<tr>
<td>2-7</td>
<td>Hanford-John Day Junction, Alternative C-South Side, Highway</td>
<td>follows 2-12</td>
</tr>
<tr>
<td>2-8</td>
<td>Corridor Mile 32 Alternatives, Corridor Mile 35 Alternatives</td>
<td>follows 2-14</td>
</tr>
<tr>
<td>3-1</td>
<td>Land Use, Ownership and Recreation</td>
<td>follows 3-6</td>
</tr>
<tr>
<td>3-2</td>
<td>Streams, Fish and Wetlands</td>
<td>follows 3-18</td>
</tr>
<tr>
<td>3-3</td>
<td>Vegetation Communities</td>
<td>follows 3-38</td>
</tr>
<tr>
<td>3-4</td>
<td>Wildlife</td>
<td>follows 3-56</td>
</tr>
<tr>
<td>3-5</td>
<td>Photosimulation 1, Corridor Mile 49, In Town of Roosevelt, Looking West</td>
<td>follows 3-92</td>
</tr>
<tr>
<td>3-6</td>
<td>Photosimulation 2, Corridor Mile 65, Looking West Across State Route 14</td>
<td>follows 3-92</td>
</tr>
<tr>
<td>3-7</td>
<td>Transportation Features</td>
<td>follows 3-92</td>
</tr>
<tr>
<td>3-8</td>
<td>Right-of-way Configuration 1</td>
<td>3-122</td>
</tr>
<tr>
<td>3-9</td>
<td>Right-of-way Configuration 2</td>
<td>3-123</td>
</tr>
<tr>
<td>3-10</td>
<td>Right-of-way Configuration 3</td>
<td>3-123</td>
</tr>
<tr>
<td>3-11</td>
<td>Right-of-way Configuration 4</td>
<td>3-124</td>
</tr>
<tr>
<td>3-12</td>
<td>Right-of-way Configuration 4A</td>
<td>3-124</td>
</tr>
<tr>
<td>3-13</td>
<td>Right-of-way Configuration 4B</td>
<td>3-125</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1</td>
<td>Short-Line Routing Alternatives at Four Locations Along the Project Corridor</td>
</tr>
<tr>
<td>S-2</td>
<td>Summary of Impacts of Short-Line Alternatives, McNary-John Day Transmission Project</td>
</tr>
<tr>
<td>2-1</td>
<td>Comparison of the Proposed Action and No Action Alternatives</td>
</tr>
<tr>
<td>2-2</td>
<td>Comparison of Short-Line Routing Alternatives</td>
</tr>
<tr>
<td>2-3</td>
<td>Potential Impacts and Mitigation of the McNary-John Day Transmission Line Project</td>
</tr>
<tr>
<td>2-4</td>
<td>Summary of Impacts of Short-Line Alternatives, McNary-John Day Transmission Project</td>
</tr>
<tr>
<td>3-1</td>
<td>Summary of Land Uses within the Project Corridor by County and Structure Number</td>
</tr>
<tr>
<td>3-2</td>
<td>Formal Recreational Sites in the Vicinity of the Project Corridor</td>
</tr>
<tr>
<td>3-3</td>
<td>Acreage of Land Uses that Would Be Occupied by Permanent Project Facilities</td>
</tr>
<tr>
<td>3-4</td>
<td>Proportion of Agricultural Land in Each County that Would Be Occupied by Permanent Project Facilities</td>
</tr>
<tr>
<td>3-5</td>
<td>Impacts of Short-Line Routing Alternatives: Land Use and Recreation</td>
</tr>
<tr>
<td>3-6</td>
<td>Soil Types Along the Project Corridor</td>
</tr>
<tr>
<td>3-7</td>
<td>Streams Intersected by the Project Corridor</td>
</tr>
<tr>
<td>3-8</td>
<td>Impacts of Short-Line Routing Alternatives: Fisheries</td>
</tr>
<tr>
<td>3-9</td>
<td>Potential Construction Impacts on Groundwater</td>
</tr>
<tr>
<td>3-10</td>
<td>Impacts of Short-Line Routing Alternatives: Wetlands and Groundwater</td>
</tr>
<tr>
<td>3-11</td>
<td>Locations of Noxious Weed Species Along the Project Corridor</td>
</tr>
<tr>
<td>3-12</td>
<td>Permanent Impacts to Vegetation</td>
</tr>
<tr>
<td>3-13</td>
<td>Temporary Impacts to Vegetation</td>
</tr>
<tr>
<td>3-14</td>
<td>Estimated Temporary Impacts to Native Plants and Cryptogamic Crusts by Cover Type</td>
</tr>
<tr>
<td>3-15</td>
<td>Estimated Permanent Impacts to Native Plants and Cryptogamic Crusts by Cover Type</td>
</tr>
<tr>
<td>3-16</td>
<td>Impacts of Short-Line Routing Alternatives: Vegetation</td>
</tr>
</tbody>
</table>
List of Appendices

A Agency Correspondence and Policies
B Public Involvement
C Common and Scientific Names of Plants in the Project Corridor
D Common and Scientific Names of Animals in the Project Corridor
E Socioeconomic Data
F Living and Working Safely Around High-Voltage Power Lines
G Electric and Magnetic Fields
Summary

Introduction

This summary includes information regarding the following elements of the National Environmental Policy Act (NEPA) environmental impact statement (EIS) for the McNary-John Day Transmission Line Project:

- the purpose and need for action;
- short-line routing alternatives; and
- affected environment, impacts, and mitigation measures.

The project would involve construction of a new 500-kilovolt (kV) transmission line parallel to existing Bonneville Power Administration (Bonneville) transmission lines from the McNary Substation to the John Day Substation, a distance of approximately 79 miles.

Purpose and Need for Action

Bonneville is a federal agency responsible for purchasing, developing, marketing, and transmitting electrical power to utility, industrial, and other customers in the Pacific Northwest. Bonneville is required to ensure its transmission system can reliably serve customer power needs under all operating conditions, including times of peak use (maximum demand).

The Federal Columbia River Transmission Act directs Bonneville to construct additions to the transmission system that are required to provide interregional transmission facilities [16 U.S.C. § 838b(c)], integrate and transmit electric power from new generating sources [§ 838b(a)], and for maintaining the electrical stability and reliability of the transmission system [§ 838b(d)]. The proposed action is needed to comply with these Congressional mandates.

Bonneville is facing two problems regarding power flow on the system: there is not enough electricity being generated to meet demand, and many of Bonneville’s transmission lines are now at capacity and cannot carry more power. To solve the
problem of lack of power, private investors have proposed and are developing gas-fired and wind-powered generation facilities. Many of these facilities are in southeast Washington and northeast Oregon (Figure S-1). This is a prime area for power generation because of sufficiency of wind or access to gas pipelines, as well as access to high voltage transmission lines. The newly generated power from these facilities will need to be transmitted to the west side of the Cascades because there is a high demand for electricity from the west side’s urban areas. However, the existing transmission lines connecting southeast Washington and northeast Oregon to the west side of the Cascades are at or near capacity. In order to help ensure that existing and newly generated power can move east to west through the system, Bonneville needs to increase the capacity of its transmission system between the McNary and John Day Substations. Two of the generation facilities proposed in this area are the Starbuck Power Project (near Starbuck, Washington) and the Wallula Power Project (near Wallula, Washington). These gas-turbine facilities would generate a total of 2,500-megawatts (MW) of power. The new transmission line would be necessary to allow the power from these facilities to integrate into the transmission system and would allow Bonneville to grant firm transmission service to these facilities.

purposes

While meeting the need to increase the capacity of the transmission system in this area, the proposed action has other purposes (or objectives). Bonneville intends to base its decisions on the following objectives:

- maintenance of transmission system reliability;
- consistency with Bonneville’s environmental and social responsibilities; and
- cost and administrative efficiency.

cooperating agencies

The U.S. Army Corps of Engineers, the U.S. Bureau of Land Management, the U.S. Fish and Wildlife Service, and the Bureau of Indian Affairs are cooperating agencies in the development of this EIS because of their roles as managers of lands crossed or need to make findings on the project.

proposed action and alternatives

Bonneville proposes to construct a 500-kV transmission power line from its McNary Substation to its John Day Substation, a distance of about 79 miles. The new line would begin at the existing McNary Substation in Umatilla City (Umatilla County, Oregon) near the Columbia River and cross the Columbia River into Washington between the McNary Dam and the Umatilla Bridge. The proposed line would then generally follow the Columbia River and State Route (SR) 14 west through Benton and Klickitat Counties.
the John Day Dam, the proposed line would cross back into Oregon and connect into the John Day Substation near Rufus (Sherman County, Oregon). The proposed line would parallel existing transmission lines in an existing corridor that runs between the McNary and John Day Substations.

For most of the route in Washington, Bonneville already has existing right-of-way or easement available next to the lines.

Along the majority of the existing corridor between the McNary Substation and the crossing at John Day Dam, there are two existing transmission lines; in two areas along the corridor there are three existing lines.

Some new right-of-way easements would need to be purchased adjacent to the existing corridor along approximately 14 miles of the route.

Towers

The towers for the proposed new 500-kV line would be 145 to 165 feet tall lattice steel towers with spans of 1,150 to 1,500 feet between towers. The towers would be similar to the towers of the existing lines. The towers would be made of galvanized steel and may appear shiny for two to four years before they dull with the weather. About 360 transmission towers would be needed to carry the wires (conductors) for the proposed transmission line.

Tower Footings

Three types of footings would be used depending on the terrain and tower type (ranging from 4 feet by 4 feet to 12.5 feet by 12.5 feet in area).

A trackhoe would be used to excavate an area for the footings. The excavated area would be at least 2 feet larger than the footings to be installed (if the soil is loose or sandy, then a wider hole may be necessary). Each tower would use an area about 0.06 acre, with a temporary disturbance during construction of about 0.25 acre (equipment, soils, etc.).

Conductors

Conductors, wires that carry electrical current on a transmission line, are suspended from towers with insulators. Insulators are made of nonconductive materials (porcelain or fiberglass) that prevent electric current from passing through towers to the ground.

Two smaller wires (0.5-inch diameter), called overhead ground wires, would also be attached to the top of the transmission towers. Ground wires are used for lightning protection.
Summary

Tree Clearing

Most of the vegetation along the corridor is low-growing sagebrush or fields that are compatible with transmission lines. Tall trees cannot be allowed to grow under or near the lines because electricity can arc, which can start a fire or injure or kill someone nearby.

Access Roads

Much of the existing transmission line corridor lies within 2 miles of public highways. Because the proposed transmission line would be next to existing lines, the proposed new line would utilize up to 90% of the existing 90 miles of access roads.

The new transmission line would require some upgrades to existing access roads (approximately 40 miles would need to be reconditioned and widened); construction of new access roads (about 3 miles of new road would need to be built); construction of new access road spurs (about 270 short spur roads, each about 250 feet long from an existing access road to a new tower); and purchase of new easement (for up to 30 new access roads in areas off of the right-of-way).

Staging Areas

Temporary staging areas would be needed along or near the proposed transmission line for construction crews to store materials and trucks.

Substation Facilities

At the McNary Substation, the east side of the substation would require an expansion measuring 80 feet by 700 feet, about 1.3 acres. The substation expansion would be on Bonneville property.

At the John Day Substation, the line would terminate into a new 500-kV bay located within the existing substation fence. No expansion would be necessary.

Maintenance

During the life of the project, Bonneville would perform routine, periodic maintenance and emergency repairs to the transmission line. For lattice steel structures, maintenance usually involves replacing insulators. Every 2 months, a helicopter would fly over the line to look for hot spots (areas where electricity may not be flowing correctly) or other problems indicating that a repair may be needed.

Vegetation is also maintained along the line for safe operation and to allow access to the line. The area along the McNary-John Day transmission line needs little vegetation maintenance because of the low-growing nature of a majority of the vegetation along the right-of-way.
Alternatives

This EIS addresses short-line routing alternatives at four locations along the project corridor, as described in Table S-1.

Table S-1. Short-Line Routing Alternatives at Four Locations Along the Project Corridor

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>McNary Substation Alternatives</td>
<td></td>
</tr>
<tr>
<td>A – Relocate Building</td>
<td>Under this alternative, a 2,000-square-foot Bonneville office building would need to be relocated because the new 500-kV line would cross directly over the top of it, causing potential safety hazards. The building would be relocated somewhere adjacent to the substation within the Bonneville property line.</td>
</tr>
<tr>
<td>B – Cross Wildlife Natural Area</td>
<td>With this alternative, the new transmission line would exit the northeast side of the substation, cross Third Street, and run behind the office building and across the U.S. Army Corps of Engineers (Corps) Wildlife Natural Area. This alternative may require removal of some cottonwood trees.</td>
</tr>
<tr>
<td>C – Bus Work in Wildlife Area</td>
<td>For this alternative, the transmission line would exit the northeast side of the substation, cross Third Street, then descend into bus work across the Wildlife Natural Area behind the office building. The bus work would be about 2,000 feet long by 75 feet wide.</td>
</tr>
<tr>
<td>Hanford-John Day Junction Alternatives</td>
<td></td>
</tr>
<tr>
<td>A – North Side</td>
<td>With this alternative, the proposed transmission line would stay in the same alignment paralleling the existing lines. This would require moving the existing Hanford-John Day line 200 feet to the north. At corridor mile 70, the proposed line would cross to the south side of the corridor and the Hanford-John Day line would ease back into its alignment in the corridor.</td>
</tr>
<tr>
<td>B – South Side</td>
<td>With this alternative, the proposed transmission line would cross to the south side of the corridor just before the Hanford-John Day line enters the right-of-way. The proposed line would stay on the south side through the rest of the route. For the first mile on the south side, the line would also be on the south side of the highway. Just before corridor mile 70, there is a house with a barn and a shed on the south side of the highway. This alternative would require the removal of the barn and shed, and may require the removal of the house.</td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C – South Side, Highway</td>
<td>This alternative is very similar to Alternative B; the proposed line would cross to the south side of the corridor and highway just before the Hanford-John Day line enters the right-of-way. This alternative differs from Alternative B in that the proposed line would stay on the south side of the highway until the exiting lines cross the highway, eliminating two highway crossings of the proposed line. As with Alternative B, the barn and shed (and possibly the house) would need to be removed. With this Alternative C, the line would be about 35 feet closer to the house than with Alternative B.</td>
</tr>
</tbody>
</table>

Corridor Mile 32 Alternatives

<table>
<thead>
<tr>
<th>A – Parallel Existing Line</th>
<th>With this alternative, Bonneville would construct the proposed line across the tribal-owned property at corridor mile 32, paralleling the existing lines within the existing right-of-way. About 1,100 feet of conductor and perhaps one tower would be located on the property.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B – Move Entire Corridor</td>
<td>With this alternative, the proposed line would be moved to skirt around the tribal-owned property. The other two existing lines would also be moved to avoid the property. This alternative would require one additional tower for the proposed line. For the existing lines, eight towers (four for each line) would be removed and ten new towers (five for each line) constructed for the reroute. New right-of-way would be purchased from the landowners.</td>
</tr>
</tbody>
</table>

Corridor Mile 35 Alternatives

<table>
<thead>
<tr>
<th>A – Parallel Existing Line</th>
<th>With this alternative, Bonneville would construct the proposed line across the tribal-owned property at corridor mile 35, paralleling the existing lines within the existing right-of-way. About 500 feet of conductor would be located across the property.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B – Move Entire Corridor</td>
<td>With this alternative, the proposed line would be moved to skirt around the tribal-owned property at corridor mile 35. The other two existing lines would also be moved to avoid the property. No additional towers would be required for this alternative (compared to Alternative A). For the existing lines, eight towers (four for each line) would be removed and eight new towers (four for each line) constructed for the reroute. New right-of-way would be purchased from the landowners.</td>
</tr>
</tbody>
</table>

No Action Alternative

The No Action Alternative would be to not build the proposed transmission line. If Bonneville did not build this line, new generation facilities in the area could not connect and send power over the transmission system.
Alternatives Considered but Eliminated from Detailed Study

During the scoping process, Bonneville considered a range of alternatives for the proposed action. Alternatives that did not meet the need and purposes, including whether they were practical or feasible, or would obviously have greater adverse environmental impacts than the proposed action, were eliminated from detailed study. The following alternatives did not meet the need and purposes.

- **Oregon Route Alternative.** Bonneville examined various ways to transmit power from east to west, including a new transmission line from the McNary Substation to the John Day Substation through Oregon. This Oregon routing alternative would have required the purchase of all new right-of-way as there is no existing vacant right-of-way available for a 500-kV line in this area of Oregon. The social and environmental impacts of an Oregon route would also be much greater with the relocation of residents, disruption of existing land uses, construction of new access roads (erosion, water quality), and potential vegetation clearing.

- **McNary Substation Southeast Alternative.** In examining ways for the line to exit the McNary Substation and reach the river crossing, Bonneville considered exiting the southeast side of the substation. This alternative was eliminated from consideration for reliability reasons.

- **Increased Capacity Line Alternative.** The proposed line would have a capacity of 1,400 to 2,300 MW. During scoping, commenters requested a line capable of carrying 5,000 MW or more. Transmission lines need back-up line(s) in case any component of the transmission system were to fail. There is sufficient back-up in the area for the proposed line. In order to maintain the reliability of a new line carrying 5,000 MW, a new second high voltage line would have to be built as a back-up. Rather than building two high voltage lines now, Bonneville’s system planners will continue to evaluate the need for increased capacity as new generation facilities request interconnection.

- **Underground Transmission Line Alternative.** Underground transmission lines (cables), are highly complex in comparison to overhead lines. For 500-kV lines, underground cable may be ten times as costly as overhead designs. Because of the cost, Bonneville uses underground cable in limited, special reliability, or routing situations, such as near nuclear power stations, at locations where high capacity lines must cross, at long bay crossings, or in urban areas.

- **Double Circuit Alternative.** Double circuiting would involve taking out one of the existing lines and putting in a double circuit line (one set of towers to hold both the existing line and the proposed line). This alternative was eliminated due to costs because the transmission towers for a double circuit line are twice as much as for a single circuit line. The overall cost of removing one of the existing lines and constructing a double circuit line would be much greater than constructing the proposed single circuit line.
Affected Environment, Environmental Impacts, and Mitigation

The affected environment, potential impacts, and mitigation for the resource elements evaluated in this EIS are briefly described below.

Land Use and Recreation

Affected Environment

The existing Bonneville corridor (the site for the proposed transmission line) crosses mostly private land (94% of lands crossed) as well as tribal, federal, and state lands in eastern Washington and Oregon bordering the Columbia River.

Land use within the corridor is primarily agriculture (irrigated cropland, dryland wheat farming, and grazing). Irrigated agricultural uses in the project corridor include poplar tree farms, orchards, and a variety of crops such as potatoes, corn, onions, carrots, and asparagus. Some crops change annually. There are no lands designated as prime farmland in the project corridor.

Thirteen formal recreational sites lie within one mile of the proposed transmission line in Benton and Klickitat Counties, Washington, and Sherman and Umatilla Counties, Oregon. A majority of the facilities are located on, or are associated with the Columbia River. Informal recreational opportunities in the vicinity of the project corridor include upland bird hunting in certain areas of the corridor in Benton County, and various water sports on the Columbia River along most of the project corridor. SR 14 is designated as a Scenic and Recreation Highway by the state of Washington.

Environmental Consequences—Proposed Action

Construction

Development of the proposed project would add an additional transmission line to the current land uses within the existing Bonneville transmission line corridor.

The project would be consistent with the purpose and intent of the zoning and comprehensive plans of the local jurisdictions.

Temporary impacts on land use would be due to construction activities such as heavy equipment causing soil and crop disturbance, noise, and dust. The construction activities that could cause impacts would include placement of towers, access roads upgrades and construction, and conductor tensioning sites.
Approximately 47 acres (12 acres in cropland and 35 acres in grazing land) would be impacted during the construction of the new access roads and spur roads. Approximately 93 acres (29 acres of upland and 64 acres of grazing land) would be impacted during the construction of the towers.

Approximately 25 acres of trees would need to be removed from the poplar tree farm in the vicinity of Glade Creek, and a total of 50 acres would be removed from cottonwood production.

None of the formal recreation facilities would be disturbed during construction. Upland bird hunting may be temporarily disturbed in the project corridor in Benton County, depending on the time of year when construction occurs.

Operation and Maintenance

The permanent footprints of the towers would occupy approximately 19 acres total (6 acres of irrigated and nonirrigated cropland and 13 acres of grazing land). New access roads would occupy approximately 47 acres of additional area. The cropland no longer available for farm use would represent a small portion of the agricultural land in the project corridor and a negligible portion of agricultural land in each of the four affected counties. This would not appreciably disrupt the current and planned agricultural uses of the land in the four affected counties.

Environmental Consequences—Short-Line Routing Alternatives

The potential land use and recreation impacts of the short-line routing alternatives are presented in Table S-2.

Mitigation

The following mitigation measures would help minimize land use impacts.

- Locate towers and roads so as not to disrupt irrigation circles, where possible.
- Locate structures and roads outside of agricultural fields, orchards, and vineyards, where possible.
- Coordinate with landowners for farm operations, including plowing, crop dusting, and harvesting.
- Redesign irrigation equipment and compensate landowner for additional reasonable costs where new right-of-way needs to be acquired.
- Compensate farmers for crop damage and restore compacted soils.
- Control weeds around the base of the towers.
- Keep gates and fences closed and in good repair to contain livestock.
Summary

No mitigation measures are warranted for recreation since no impacts are anticipated.

Environmental Consequences—No Action Alternative

If the No Action Alternative was implemented, existing land uses in the project corridor would continue without influence from the proposed project.

Geology, Soils, and Seismicity

Affected Environment

The project corridor and vicinity consist mainly of river terraces, ridges, bluffs, and volcanic tableland adjacent to the north bank of the Columbia River running parallel to SR 14. The corridor crosses numerous incised stream channels draining into the Columbia River.

Soils along the project corridor primarily consist of wind-blown loess deposits or glacial outburst flood sands and gravels underlain by basaltic bedrock. Most soils along the corridor are designated as suitable for rangeland, woodland, or wildlife, and some steeper areas may require complex conservation methods when used for cultivation.

The project corridor and vicinity lie in a low earthquake hazard area (seismic zone 2B) recognized by the 1994 Uniform Building Code. Published geologic maps and field observation indicated five faults (probably inactive) along the corridor (Phillips and Walsh 1987).

Environmental Consequences—Proposed Action

Construction

Construction of the proposed project would potentially remove vegetation and disturb the underlying soils in up to 222 acres. This temporary impact is projected to last up to one year and has the potential to increase the rate of erosion along the corridor. In areas along the corridor where quaternary period loess soils have developed as a result of wind deposition, removal of vegetation would likely increase the rate of wind erosion.

Operation and Maintenance

Anticipated erosion rates during operation and maintenance are expected to remain at or near current levels, once revegetation has occurred.

Environmental Consequences—Short-Line Routing Alternatives

The potential impacts of the short-line routing alternatives are presented in Table S-2.
Mitigation

The following mitigation measures would help minimize impacts to soil and seismicity impacts.

- Minimize vegetation removal.
- Avoid construction on steep slopes where possible.
- Properly engineer cut-and-fill slopes.
- Install appropriate roadway drainage to control and disperse runoff.
- Ensure graveled surfaces on access roads in areas of sustained wind.
- Develop additional mitigation measures (using a certified engineer) between corridor miles 39 and 41 due to the presence of an active landslide in the vicinity of tower 40/3.
- Apply erosion control measures such as silt fence, straw mulch, straw wattles, straw bale check dams, other soil stabilizers, and reseeding disturbed areas as required.
- Regularly inspect and maintain project facilities, including the access roads, to ensure erosion levels remain the same or less than current conditions.

Environmental Consequences—No Action Alternative

Under the No Action Alternative, the potential impacts to geology and soils from the proposed project would not change from the current site conditions. No impact to geology and soils is predicted.

Streams, Rivers, and Fish

Affected Environment

A total of 15 streams, the Columbia River, and 146 dry washes cross the project corridor. Of the streams and river, 11 are considered fish bearing or potentially fish bearing and five are non-fish-bearing.

Five of the 11 fish-bearing streams (Glade Creek, the unnamed tributary to Glade Creek, Dead Canyon, Alder Creek, and Rock Creek) along the project corridor were found to have water temperatures in excess of 64.4°F during the June 2001 field surveys. These conditions identify water quality in these streams as impaired under Section 303(d) of the Clean Water Act and may indicate problems for fish species.

All streams identified as either fish bearing or potentially fish bearing in the project area are included in designated Essential Fish Habitat (EFH) for chinook and coho salmon. Chinook salmon that utilize the streams intersected by the project corridor are not
Summary

currently federally listed, while coho salmon are a candidate for federal protection. Steelhead trout is another anadromous salmonid known to occur in the fish-bearing streams crossed by the project corridor.

The 146 non-fish-bearing dry washes that cross the project corridor (channels lacking any semblance of a riparian zone) are intermittent, primarily providing seasonal drainage off of hills (WDFW 2000).

Environmental Consequences—Proposed Action

Construction

The construction of the proposed project could potentially impact fish habitat through the transport of sediment (and hazardous materials) from construction sites to streams.

Riparian vegetation would not be removed, but instead would be spanned by the transmission line. Some short-term sediment transport would occur until stream channels are stabilized following installation of culverts on ephemeral streams.

There is a risk of sediment transport into streams from construction of towers, access roads, spur roads, and staging areas; and impacts to fish from blasting, if such blasting is within 200 feet of fish-bearing streams. No fish-bearing streams would be crossed by the construction of new access roads and no existing access road currently crosses a fish-bearing or potentially fish-bearing stream that Bonneville owns and/or manages.

Several common construction materials (e.g., concrete and paint) and petroleum products (e.g., fuels, lubricants, and hydraulic fluids) could be toxic to fish and other aquatic organisms if spilled into or near streams.

The work associated with the McNary Substation and the towers spanning the Columbia River adjacent to the Umatilla Bridge would occur within the FEMA-designated 100-year floodplain of the Columbia River. However, the McNary Substation and the new towers are above the elevation of the 100-year flood event as designated by the U.S. Army Corps of Engineers. This is based on water level control through the dam system along the Columbia River.

All other new access roads and towers would be installed outside the 100-year floodplains of other streams crossed and would create no impacts to the floodplains.

Operation and Maintenance

Routine inspections, monitoring, and vegetation management would not impact fish or fish habitat.
Environmental Consequences—Short-Line Routing Alternatives

The potential impacts of the short-line routing alternatives are presented in Table S-2.

Mitigation

The following mitigation measures would minimize potential impacts to streams and fisheries habitat from possible erosion and clearing of vegetation.

- Place towers outside of stream riparian areas and utilize natural landscape features to span the conductor over existing shrub and tree riparian zones and avoid cutting.
- Place new access roads outside of stream riparian areas, where possible.
- Construct fords instead of culverts at access road crossings of dry washes or seasonal streams if possible. If culverts are required, design and install to accommodate flows associated with a 100-year flood event.
- Preserve existing vegetation where practical, especially next to intermittent and perennial streams.
- Avoid construction within the 200-foot designated stream buffers in Klickitat and Benton Counties, Washington.
- Maximize the use of existing roads, minimizing the need for new road construction.
- Avoid tower or access road construction on potentially unstable slopes where feasible.
- Use erosion control methods during construction (see mitigation measures for Geology, Soils, and Seismicity, Chapter 3), to minimize transport of sediments to streams via runoff.
- Install appropriate water and sediment control devices at all dry wash crossings, if necessary.
- Reseed disturbed areas following construction where appropriate.
- Construct any required culverts using Washington Department of Fish and Wildlife culvert installation guidelines. Methods may include avoiding installation during periods of flow, armoring streambanks near the culvert entrance and exit, installing culverts on straight sections of stream to ensure unimpeded flow, and following the contour of the stream channel.
- Repair existing road failures and drainage devices between corridor mile 33 to 47 to reduce potential impacts to dry washes.
- Avoid blasting during periods when salmonid eggs or alevins are present in gravels.
Summary

- Avoid blasting within 200 feet of fish-bearing or potentially fish-bearing streams.
- Develop and implement a Spill Prevention and Contingency Plan to minimize the potential for spills of hazardous material including provisions for storage of hazardous materials and refueling of construction equipment outside of riparian zones, spill containment and recovery plan, and notification and activation protocols.
- Keep vehicles and equipment in good working order to prevent oil and fuel leaks.
- Return staging areas to pre-construction condition.

Environmental Consequences—No Action Alternative

The No Action Alternative would result in no changes to the existing corridor, and aquatic habitats would not be affected in the project vicinity. Therefore, no impacts to fish or fish habitat would occur as a result of the No Action Alternative.

Wetlands and Groundwater

Affected Environment

Wetlands in the area are mostly seasonal because of low annual precipitation and common drought during the summer. Typically, the area receives approximately 8 inches of precipitation annually. Most precipitation falls as light showers or snowfall in the winter (SCS 1972).

A total of 25 wetlands totaling 45 acres were identified within the project corridor. These wetlands are generally supported by water sources associated with riparian areas, seasonal spring seeps, shallow depressions fed by precipitation, and surface runoff. Wetland sizes range from narrow riparian fringes 5 to 10 feet wide, to large wetland complexes covering 5 to 10 acres.

Near the McNary Substation, there is a large wetland complex associated with the floodplain of the Columbia River. Near corridor miles 48 to 50, there is a large depressional wetland complex associated with alkali saltgrass communities on saline-alkali soils. Between corridor miles 71 and 75, there are several palustrine emergent wetlands located in depressions among rock outcroppings.

Groundwater is generally available in large quantities in the Columbia Plateau province from the basalt bedrock. Aquifer recharge occurs primarily by precipitation through direct infiltration and seepage from the numerous intermittent streams along the corridor. Some recharge may occur from the spray irrigation of orchards and other agricultural crops using well water, but this is negligible relative to recharge from irrigation canals elsewhere in eastern Washington and eastern Oregon.
Environmental Consequences—Proposed Action

Construction

Of the 43 acres of wetlands located within the project corridor, no wetland areas would be filled to construct the proposed project. Vegetation would be cut within wetlands for McNary Substation Alternative B where the line would cross the wildlife refuge.

Construction of access roads or towers located adjacent to some wetlands may require removal of wetland buffer vegetation. The quality of vegetation of the wetland buffers in these areas is marginal; the areas are mostly used for grazing and are dominated by invasive weeds such as cheatgrass. However, the reduction of some of the vegetated buffers adjacent to these wetlands would reduce overland flow and slightly increase the likelihood of silts and sediments entering wetland surface waters, thus decreasing water quality. These anticipated impacts are minor.

Oils and pollutants from machinery could also enter surface water, potentially effecting fish or wildlife species. The construction of roads and tower pads could also alter overland flow patterns, thereby either increasing or decreasing wetland hydropenia (the duration of soil saturation or inundation within a wetland).

The potential for impacts on groundwater is minor due to the use of construction techniques that avoid trenching and drilling. Potential groundwater impacts that could occur during construction include the potential for localized groundwater contamination from refueling and equipment maintenance. Erosion in areas of soil disturbance and vegetation removal could result in increased groundwater turbidity, and interception of groundwater seeps in road cutbanks could alter the hydrology or water quality of adjacent wetlands and streams.

Operation and Maintenance

Impacts during operation and maintenance of the proposed line could result from the use of access roads for tower maintenance, and from vegetation clearing. These activities could potentially introduce sediment into local wetlands through surface runoff, potentially affecting water quality. These operational impacts on groundwater are considered minimal.

Environmental Consequences—Short-Line Routing Alternatives

The potential impacts of the short-line routing alternatives are presented in Table S-2.
Mitigation

The following mitigation measures would minimize wetland and groundwater impacts.

- Locate structures, new roads, and staging areas so as to avoid waters of the United States, including wetlands.

- Avoid construction within designated Klickitat and Benton Counties wetland and stream buffers to protect potential groundwater recharge areas (Klickitat County Critical Areas Ordinance; Benton County Code Title 15).

- Avoid mechanized land clearing within wetlands and riparian areas to avoid soil compaction from heavy machinery, destruction of live plants, and potential alteration of surface water patterns to reduce groundwater turbidity risk.

- Anticipate and avoid, as required, contaminated soil and underground tanks during construction activities near pipelines and agricultural and other historic projects. Anticipate and avoid orphaned wells, as required, particularly near the communities of Plymouth, Paterson, Roosevelt, Sundale, and Towal.

- Use erosion control measures (see mitigations listed in the Geology, Soils, and Seismicity section) when conducting any earth disturbance within 100 feet of wetlands, or within the resource buffer as established by Benton and Klickitat Counties.

- Avoiding refueling and/or mixing hazardous materials where accidental spills could enter surface or groundwater.

- Using existing road systems, where possible, to access tower locations and for the clearing of the transmission line alignment.

- Avoid construction on steep, unstable slopes if possible.

- Place tower footings on upland basalt outcroppings and limit access road construction in wetlands complex and buffers between corridor miles 70 and 74, if possible.

- Place tower footings and access roads within uplands within the wetland complex between corridor miles 48 and 50.

- Avoid placing towers and roads that would necessitate the cutting of the palustrine-forested wetland near the McNary Substation (Alternative B).

Environmental Consequences—No Action Alternative

Under the No Action Alternative, the existing transmission corridor would remain as at present. Potential impacts to wetlands and groundwater resources along the corridor associated with the proposed project would not occur.
Vegetation

Affected Environment

The area is characterized by flat buttes, rolling hills, basalt cliffs, terraces, and scablands including rock outcroppings interspersed with wet areas. Portions of the project corridor cross irrigated agricultural cropland, particularly in the eastern half of the corridor. Shrub-steppe communities dominated by bunchgrasses and sagebrushes dominate the dry, rocky areas. Within the corridor, shrub-steppe and mixed grasslands are the most common plant communities, comprising approximately 61% of the corridor.

Other vegetation communities present include agricultural areas, scabland/lithosol (shallow soils) communities, riparian corridors, and ruderal communities in developed areas. Past disturbance of the corridor has influenced the types of plant communities present. Along the project corridor, the invasive species cheatgrass is prevalent in most of the plant communities.

The U.S. Fish and Wildlife Service has identified one federally listed threatened species (Utes ladies’ tresses) and one candidate plant species (northern wormwood) as having potential habitat present within the project corridor. Neither species was found during field surveys conducted in July 2001.

The Washington Natural Heritage Program (WNHP) has identified potential habitat in or near the project corridor for three state sensitive plant species. None of these plant species were found during field surveys conducted in July 2001. However, the field surveys verified that favorable habitat for all three species is present in portions of the corridor.

Environmental Consequences—Proposed Action

Construction

The proposed transmission line expansion would result in both permanent and temporary impacts to vegetation within the project corridor from vegetation removal or trampling and soil compaction. Permanent impacts would total approximately 54 acres. Temporary impacts would total 121 to 134 acres, depending upon the number and location of conductor tensioning sites.

The project is not likely to adversely affect any federal or state-listed sensitive plant species, since none are likely to occur within the project area. Construction would temporarily disturb soils, creating opportunities for colonization by noxious weeds or other undesirable plants.

The proposed project would result in temporary impacts to 24 to 27 acres of native plants and approximately 4 acres of cryptogamic crusts. Permanent project impacts would require the removal of approximately 12 acres of native plant species, and 2 acres of...
cryptogamic crusts. Loss of the cryptogamic crusts could result in an increase in soil erosion and decreased soil nutrient and water retention.

Of the transmission towers to be placed, approximately 144 would be placed in grazed shrub-steppe vegetative cover, 118 would be placed in agricultural cover, 75 would be in grasslands, 26 would be in scabland/lithosol communities, and 11 would be in shrub-dominated shrub-steppe cover. No towers would be placed in riparian communities.

The proposed expansion of the McNary Substation would result in the loss of approximately 2 acres of mixed native/nonnative grassland communities. The construction of a new 3-mile-long access road, and 270 (250-foot-long) spur roads would result in 95 acres of temporary impacts to vegetation communities on the proposed route.

Operation and Maintenance

Operations and maintenance of new access roads would result in the permanent alteration of 31 acres of existing vegetation communities in the proposed roadbeds. Impacts to local vegetative cover types during operation and maintenance of the access roads include continued disturbance and compaction of soils and the potential for spreading noxious weed species. An additional potential impact to local vegetation would be the risk of fire from vehicles driving along the access roads, particularly during dry periods.

Environmental Consequences—Short-Line Routing Alternatives

The potential impacts of the short-line routing alternatives are presented in Table S-2.

Mitigation

The following measures would help minimize potential impacts to vegetation along the proposed transmission line corridor.

- Locate the proposed transmission line adjacent to the existing corridor to minimize additional clearing.
- Utilize the existing access road system to the extent possible to reduce the need for new access roads.
- Keep vegetation clearing to the minimum required to maintain safety and operational standards.
- Avoid construction activities or permanent tower or access road siting in native shrub-dominated shrub-steppe communities if possible.
- Reseed areas temporarily disturbed in higher quality shrub-steppe with native grasses and forbs (if recommended by local county) and salvage topsoil and bunchgrass plant material. Reseeding should occur at the appropriate planting season. Reseed all disturbed areas with seeds recommended by the local county.
- Equip all vehicles with basic fire-fighting equipment including extinguishers, shovels, and other equipment deemed appropriate for fighting grass fires.
- Avoid tree removal to the extent possible.
- Limit construction equipment to tower sites, access roads, and conductor tensioning sites.
- Minimize disturbance to native species to the extent possible during construction to prevent invasion by nonnative species.
- Conduct a pre-construction and a post-construction noxious weed survey to determine if construction contributed to the spread of noxious weed populations.
- Enter into active noxious weed control programs with land owners/managers or county weed control districts where activities may have caused or aggravated an infestation.
- Wash vehicles that have been in weed-infested areas (removing as much weed seed as possible) before entering areas of no known infestations.
- Use certified weed-free mulching.

Environmental Consequences—No Action Alternative

Under the No Action Alternative, vegetation in the project area would not be disturbed by the proposed transmission line construction. The existing transmission line corridor would remain at its present width, with no additional area that would likely become dominated by invasive species.

Wildlife

Affected Environment

Five habitats are present within or near the project corridor, including ruderal areas (made up of grazed shrub-steppe, agricultural lands, and grasslands), cliffs, shrub-dominated shrub-steppe, stream riparian zones, and tree stands.

The U.S. Fish and Wildlife Service has identified the bald eagle as the only listed wildlife species known to occur in the project vicinity. A winter foraging and roosting area is located approximately 2,300 feet south of the corridor on an island in the Columbia River near the town of Paterson. The U.S. Fish and Wildlife Service has also identified the spotted frog and the Mardon skipper butterfly as candidate wildlife species potentially occurring in the project vicinity. Habitat for 29 different Washington and/or Oregon state-listed species occurs within or near the corridor.

The Columbia River basin is a wintering and breeding area for waterfowl. Waterfowl rest during migration and forage in wetlands, agricultural fields, and other open water
Summary

Shallow wetlands are located near streams crossed by the project corridor. Waterfowl also feed in agricultural fields near Paterson. Open water habitat occurs within the project corridor at the major stream crossings and in the vicinity of the existing transmission lines at Rock Creek and the Columbia River crossings at McNary and John Day Dams.

Raptors (such as hawks, eagles, falcons, and owls) use grasslands, cliffs, and agricultural lands, habitats that are relatively common in the project vicinity. Such habitats are relatively common in the project vicinity.

Mule deer are known to occur in the Rock Creek watershed and in the Umatilla National Wildlife Refuge. The primary mule deer concentration area is more than 2 miles north of the crossing location at Rock Creek (PHS 2001).

Environmental Consequences—Proposed Action

Construction

During construction, wildlife may be impacted by noise and human presence that cause disturbance to foraging and breeding behavior. Additionally, construction would cause disturbance to and the modification of vegetation and soils that would result in loss of habitat. Temporary construction impacts would be associated with noise and human presence such as tower installation activities involving the use of heavy equipment, helicopters, and blasting, explosive couplers, and high levels of human activity around the construction site; construction of the substation addition and roads; clearing rights-of-way; and pulling conductors.

The project is not likely to adversely affect the bald eagle. The primary potential impact of construction activities would be to eagles foraging on the Columbia River in the area of construction. Few trees in the project corridor representing potential eagle perching habitat would be removed by the proposed project.

Construction of the proposed project could impact raptor nesting activities particularly near cliffs or rocky outcrops. Temporary disturbance would be caused by activities such as road and tower building construction near known burrowing owl burrows. Owls could be flushed from their nests, and road construction or tower erection in burrow areas could cause burrow abandonment and loss of recruitment for the year. An incremental amount of burrowing owl habitat could be lost from access roads and towers.

Noise and human disturbance from construction activity would be temporary and result in no permanent displacement of waterfowl from feeding or breeding areas.
Operation and Maintenance

Potential operation and maintenance impacts include bird collisions with power lines, and avoidance of areas by wildlife due to such activities as road or vegetation maintenance and repair of towers, helicopter flights for line surveys, and replacement of insulators.

Operations and maintenance activities are not likely to adversely affect nesting or wintering bald eagles.

Impacts during operation and maintenance would be limited to bird collisions with power lines and potential disturbance of roosting or foraging due to maintenance activities.

The proposed line would cross few areas of open water or wetlands and would run primarily through upland grazed shrub-steppe and croplands. One area of high seasonal bird use is the Umatilla National Wildlife Refuge. This area would represent the highest risk areas for avian collisions because of the high seasonal use and the species involved.

Because of the temporary nature of maintenance activities, the noise, and human disturbance, impacts from those activities would be minor and of short duration.

Environmental Consequences—Short-Line Routing Alternatives

The potential impacts of the short-line routing alternatives are presented in Table S-2.

Mitigation

The following mitigation measures would be employed to minimize potential impacts to wildlife along the proposed transmission corridor.

Threatened, Endangered or Other Sensitive Species

- Prior to construction, conduct raptor nest surveys (for existing and new nests) of cliffs located within 0.25 mile of the right-of-way (corridor miles 3, 54, 56, 57, 72, 73). See potential mitigation measures below for specific species.

- Between January 1 and July 30, avoid using helicopters within 0.25 mile of cliffs identified as priority habitat by the Washington Department of Fish and Wildlife (use ground-based equipment near cliffs).

- Avoid blasting cliffs identified as priority habitats by Washington Department of Fish and Wildlife and consult with the Washington Department of Fish and Wildlife or Oregon Department of Wildlife regarding measures to minimize nest disturbance on a site-by-site basis if nests are found.

- If bald eagle nests are found on the cliffs, restrict construction during nesting season (January 1 through July 15).
Mitigation for burrowing owls. If possible, avoid disturbance within 160 feet of occupied burrows during the non-breeding season of September 1 through January 31 or within 250 feet during the breeding season of February 1 through August 31.

Mitigation for peregrine falcon. If possible, avoid disturbance within 0.25 mile of any active nests during the breeding season (March through June).

Mitigation for prairie falcon. If possible, avoid construction activities between February 15 and July 15 within 0.25 mile of active nests.

Mitigation for red-tail hawk. If possible, avoid construction activities within 320 feet between February 15 and July 15.

Mitigation for other raptors. Consult with Oregon Department of Fish and Wildlife and Washington Department of Fish and Wildlife.

Avian Collisions

If deemed appropriate, install line markers in avian flight paths or migration corridors, such as near crop irrigation circles in the vicinity of the town of Paterson (north of the Umatilla National Wildlife Refuge) if appropriate and for the Columbia River crossing.

For the McNary Substation Alternatives, avoid placing towers and lines across wetlands to minimize risk of bird collision.

Shrub-Steppe Dependent Wildlife

Minimize the amount of shrub-steppe plant communities removed by clearing only the amount of vegetation necessary to prepare tower footings or build roads.

Minimize road construction in shrub-steppe areas with burrows. Burrows were found in the field near corridor miles 19, 21, 63, and 76.

Riparian Dependent Wildlife

Span riparian corridors to minimize removal of shrubs or trees within riparian areas.

Environmental Consequences—No Action Alternative

Under the No Action Alternative, wildlife and wildlife habitats would not be altered. Agricultural lands would continue to be managed for crop production. The shrub-steppe lands to the east would continue to be used as grazing lands.
Cultural Resources

Affected Environment

The 73-mile portion of project corridor that lies within Washington State is within the Mid-Columbia Study Unit as defined by the Resource Protection Planning Process (RP3). Archival records indicate ten known archaeological sites along the corridor. Near the corridor, there are at least 70 additional archaeological sites recorded within a 1-mile radius of the proposed transmission line. Of these 70 sites, 26 (37%) are underwater behind the John Day Dam.

Historical data demonstrate continuous use of the Mid-Columbia Study Unit from the time of the first Euro-American exploration through the arrival of a trans-continental railroad, a state highway system, and construction of two federal dams.

A total of 12 cultural resource sites were identified during the field surveys. An additional 14 isolate finds were also documented. Of the 10 previously recorded sites situated within or adjacent to the corridor, eight were re-identified in the field.

Jones & Stokes, on behalf of Bonneville, contracted with the Confederated Tribes of the Umatilla Indian Reservation (Umatilla Tribes), Confederated Tribes of the Warm Springs Reservation Oregon (Warm Springs Tribes), and the Yakama Nation to provide the oral history of the project vicinity. Detailed oral accounts were prepared and are summarized in Chapter 3 of this EIS.

Environmental Consequences—Proposed Action

Construction

No impacts to cultural resources are anticipated during construction of the proposed project. Tower construction would be limited to a relatively small area adjacent to existing transmission line towers. Road construction and improvements are the most likely activities to disturb unknown cultural resources.

Of the 14 cultural resource sites found along the corridor, 12 require avoidance and two sites should have cultural resource monitors during construction excavation. Of the 10 previously documented cultural resource sites along the corridor, nine require avoidance and one site requires a cultural resource monitor during construction excavation.

Operation and Maintenance

No impacts to cultural resources are anticipated during the continuing operation and maintenance of the proposed McNary-John Day Transmission Line.
Summary

Environmental Consequences—Short-Line Routing Alternatives

The potential impacts of the short-line routing alternatives are presented in Table S-2.

Mitigation

The following mitigation measures would minimize impacts to significant cultural resources.

- Locate structures, new roads, and staging areas so as to avoid known cultural resource sites.

- If archaeological or historic materials are discovered during construction, further surface-disturbing activities at the site would cease and Bonneville, state historic preservation offices, and tribal personnel would be notified to ensure proper handling of the discovery.

- Utilize existing access road system to the extent possible to reduce the need for new access roads.

- Limit construction equipment to tower sites, access roads and conductor tensioning sites.

- Limit the number of contractors to cultural resource site sensitive information on a need-to-know basis.

- The Umatilla Tribes CRPP identified ten TCP areas. Based on file and literature searches and oral history interviews with tribal elders, the CRPP recommends that a tribal monitor be present during all ground disturbing activities throughout the construction process. The CRPP further requests that the Tribe be consulted with through the entire construction process, including the planning phase and until the completion of the transmission line project. Furthermore, the CRPP recommends that Jones & Stokes and Bonneville meet with the Cultural Resources Commission and the Board of Trustees to set up consultation protocols on site mitigation and management because the law requires consultation.

- The Umatilla Tribes would like Bonneville to ensure that the cultural and natural resources are protected. The Umatilla Tribes would like Bonneville to guarantee that traditional use of this area, in accordance with treaty reserved rights, be able to be utilized.

Environmental Consequences—No Action Alternative

Under the No Action Alternative, cultural resources in the project area would not be disturbed by the proposed transmission line construction. The existing transmission line corridor would remain at its present width, with no additional disturbance to known or
previously undocumented cultural resources. Continued impacts associated with operation and maintenance of the two existing lines would remain.

Visual Resources

Affected Environment

The affected environment and visual impacts of the proposed project was evaluated by assessing the visual quality of the project corridor, viewer sensitivity, and the visibility of the towers and transmission line as seen from sensitive viewpoints.

The visual quality of the project corridor is predominantly rural, with a few low-density settlement areas, including Umatilla City, Plymouth, Paterson, Roosevelt, and Rufus. In addition, there are single houses, small groupings of houses, and small farm complexes scattered along the corridor outside of these settlements.

Sensitive viewpoints include residences in Umatilla City and Rufus, Oregon (at the east and west ends of the corridor, respectively) and in Plymouth, Paterson, and Roosevelt, Washington. There are also small groupings of houses and small farm complexes scattered along the corridor outside of these settlements.

Other sensitive viewpoints include segments of SR 14 where the project corridor is in close proximity to the highway and from various recreational sites in relatively close proximity to the project corridor.

Environmental Consequences—Proposed Action

Potential visual impacts include temporary visual changes during construction and the overall permanent visual changes caused by the presence of the towers and the transmission lines.

Construction, Operations and Maintenance

Impacts during construction and operations and maintenance would be relatively the same, except during construction when equipment would also be part of the viewscape. Construction sites would be visible from a distance in Benton County, Washington from I-82 through corridor mile 13. As the line moves further away from SR 14 and as the topography changes to hills and canyons, views would be intermittent and sites would not likely be seen from a distance due to the topography. Installation of the towers by sky-crane helicopters would likely be visible from a distance regardless of the location in the corridor.

The proposed towers and transmission lines, which would be located in an existing Bonneville transmission line corridor and would be spaced to match the existing spans and towers in the corridor where possible, would be visible for some distance.
Summary

Residences in Umatilla City would probably not notice the McNary Substation expansion or the new line leaving the substation because their views would be partially obstructed by the existing substation and several transmission lines that originate at or leave the substation.

The flat terrain in Plymouth would provide residents relatively unobstructed views of the proposed transmission line, especially for residences located close to the existing transmission line corridor (closest resident is about 500 feet).

In Paterson at corridor mile 16, orchards, farm buildings, and other transmission lines could partially obstruct some residents’ views of the new transmission line, depending on their location. In North Roosevelt and West Roosevelt, the hilly terrain would partially obstruct some residents’ views, again depending on location. In West Roosevelt, the hills would provide a backdrop for the towers, causing them to blend into the landscape. In these communities, the new line would add more humanmade elements to the landscape.

Scattered residences located along the corridor would see the new line.

Environmental Consequences—Short-Line Routing Alternatives

The potential impacts of the short-line routing alternatives are presented in Table S-2.

Mitigation

The mitigation measures that would help minimize visual impacts are as follows.

- Site all construction staging and storage areas away from locations that would be clearly visible from SR 14 as much as practical.
- Provide a clean-looking facility following construction by cleaning-up after construction activities.
- Keep the areas around the towers clean and free of debris.
- Provide regular maintenance of the access roads and fences within and leading to the corridor.

Environmental Consequences—No Action Alternative

Under the No Action Alternative, the visual quality and sensitivity of the viewers along the existing Bonneville corridor would not be influenced by the proposed project. Viewers would continue to see the existing transmission lines and towers in the existing Bonneville transmission line corridor.
Socioeconomics, Public Services, and Utilities

Affected Environment

The area of potential effect for this section covers six counties, four of which are where the proposed project would be located. The other two counties, Franklin County in Washington and Wasco County in Oregon, are less likely to be affected, but were also included in the population, employment, and housing analyses. In 2000, the six-county study area had a population of 307,256 people. Benton County, Washington, was the most populated with 142,475 people and Sherman County, Oregon, was the least populated with 1,934 people.

In 2000, Oregon’s three-county study area employment was 42,135 people, of that the average annual agricultural employment was 4,350. In 1999, Washington’s three-county study area total employment (including agriculture) was 87,627.

Environmental Consequences—Proposed Action

Construction

The project would be constructed by one or more construction crews. A typical transmission line construction crew for the 500-kV line would likely consist of up to 60 construction workers.

The typical crew would likely construct about 10 miles of line in 3 months. To meet the proposed construction schedule for this project (1 year), two or more crews would work simultaneously on separate sections of the 79-mile-long transmission line. During the 1-year construction period, approximately 180 workers would be required to complete the project, assuming three crews are mobilized at the start of the construction period. Of these crews, one would likely be stationed out of the Umatilla and Hermiston area (Umatilla County) and the other two would likely be stationed either in Goldendale (Klickitat County) or in the Biggs, Wasco, or Rufus area (Sherman County). Franklin and Wasco counties—which have relatively large metropolitan areas including Pasco (Tri-Cities Area) and The Dalles—could also provide workers and attract workers to stay there during construction.

A potential temporary increase in spending on goods and services in the study area would also occur. The potential influx of workers from outside the project area would create a temporary increase in population.

No adverse impacts to housing in the project area are expected, and the influx of workers would create modest economic benefits to the area. Schools are not expected to be impacted.

The impact of introducing a new right-of-way easement for transmission towers and lines along the corridor would vary depending on the placement of the right-of-way in relation
Summary

to the property’s size, shape, and location of existing improvements. The transmission line could diminish the utility of a portion of the property if the line effectively severed this area from the remaining property.

If the new transmission line crossed a portion of a property in agricultural use such as pasture or cropland, little utility would be lost between the towers, but 100% of the utility would be lost within the base of the tower. Towers may also present an obstacle for operating farm equipment and controlling weeds at tower locations. To the extent possible, the new transmission lines and towers would be designed to minimize the impact to existing and proposed (if known) irrigation systems.

Minority and low-income populations would not be disproportionately affected by the proposed project because the project would occur entirely within or adjacent to an existing Bonneville transmission line corridor. The population that would be crossed by the line are a mix of income levels and there are no minority groupings.

Operation and Maintenance

During operation of the project, no impacts are expected to housing, schools, or water and sanitary sewer systems, and only minor adverse impacts could occur to emergency services, due mainly to the risk of fire. Positive benefits include increased service capacity for the Bonneville transmission grid.

The proposed transmission line is not expected to have long-term impacts on property values in the area. The proposed action would have no direct beneficial effect on the local taxing districts because Bonneville, as a federal agency, is exempt from local taxes. Conversely, the proposed action could have a minor but negative impact on local taxing authorities if any properties are devalued as a result of limits the proposed easement might impose on the highest and best use of a parcel.

Environmental Consequences—Short-Line Routing Alternatives

The potential impacts of the short-line routing alternatives are presented in Table S-2.

Mitigation

See the Land Use and Recreation section for mitigation measures for agricultural uses. No additional mitigation measures are needed.

Environmental Consequences—No Action Alternative

Under the No Action Alternative, there would not be opportunity to hire people from the area to work on the project, nor would there be an increase in goods and services and lodging revenues from workers staying in the area during construction.
Transportation

Affected Environment

Structural parts for the transmission line would likely travel by truck to the project via I-5. I-5 provides access across the Columbia River and connects with SR 14 in Vancouver, Washington, and with I-84/US 30 in Portland, Oregon. East-west access on the south (Oregon) side of the Columbia for the project is provided by I-84/US 30. The Bonneville right-of-way and SR 14 follow the north (Washington) side of the Columbia River for more than 80% of the project length. If parts are trucked from the east, they would likely be transported via I-90, connecting to I-82/SR 97 near Ellensburg, and connecting to the project site via SR 97 near Goldendale or I-82/SR 12 on east past the Tri Cities via I-82/US 295 into Hermiston.

Bonneville could choose to utilize the Burlington Northern Santa Fe Railway that follows SR 14 and the project corridor to transport materials.

The Columbia River could also be utilized to transport equipment and components via barge. Ports in the project vicinity are located at Umatilla, Morrow, and Arlington.

The Port of Morrow and Port of Umatilla would be able to assist in the import or export of materials for Bonneville; the Port of Arlington is a grain barging facility.

There are seven airports and landing strips of various sizes in the project vicinity.

Environmental Consequences—Proposed Action

Construction

Transportation impacts during the 12-month construction period are anticipated to be minimal. During project construction, heavy and light vehicles would access the corridor, and equipment and components would be transported to the project site via trucks, along the routes previously described in the Affected Environment section above.

There are numerous transportation options for getting equipment to the project sites. Highway SR 14, in combination with local roads and the access road system, provide adequate pathways for getting materials and workers to the project with minor impacts to existing traffic flows.

There may be short interruptions of SR 14 traffic when trucks cross the road or there is blasting (to protect cars from flying debris). If the railroad needs to be crossed, the contractors would appropriately time the crossing to avoid interrupting train service.
Summary

Operation and Maintenance

Transportation impacts during operation and maintenance of the transmission line would be negligible. Operation and maintenance traffic would normally consist of personnel vehicles and project pickup trucks. On infrequent occasions, larger equipment, such as flatbed trucks or a crane, may be required to replace or repair the transmission line and towers.

Environmental Consequences—Short-Line Routing Alternatives

The potential impacts of the short-line routing alternatives are presented in Table S-2.

Mitigation

The following mitigation measures would help minimize transportation impacts.

- Coordinate routing and scheduling of construction traffic with state and county road staff and Burlington Northern Santa Fe Railway.
- Employ traffic control flaggers and post signs warning of construction activity and merging traffic, when necessary for short interruptions of traffic.
- Repair any damage to local farm roads caused by the project.
- Install gates on access roads when requested by property owners to reduce unauthorized use.

Environmental Consequences—No Action Alternative

No impacts on existing transportation facilities would occur if the proposed project is not constructed.

Air Quality

Affected Environment

There are no major industrial facilities along the corridor and no significant existing air quality problems. Local air pollutant emissions are limited mainly to windblown dust from agricultural operations and tailpipe emissions from traffic along state highways and local roads.

The nearest air quality monitoring stations are in Washington at Wallula, Kennewick, and Goldendale. The project area has been designated by the Washington State Department of Ecology (Central Region and Eastern Region), the Benton Clean Air Authority, and the Oregon Department of Environmental Quality, as having attainment status.
Environmental Consequences—Proposed Action

Construction

Air quality impacts associated with the construction of the proposed transmission line and associated facilities would be minimal. The primary type of air pollution during construction would be combustion pollutants from equipment exhaust and fugitive dust particles from disturbed soils becoming airborne.

The amount of pollutants emitted from construction vehicles would be relatively small and similar to current conditions with the operation of agricultural equipment in the project site and vicinity. Such short-term emissions from construction sites are exempt from air quality permitting requirements.

Operation and Maintenance

Air quality impacts during operation and maintenance of the project would be negligible. Operation and maintenance vehicles would mainly use access roads with native surfaces, causing dust particles to be stirred up. Quantities of potential emissions would be very small, temporary, and localized.

Environmental Consequences—Short-Line Routing Alternatives

The potential impacts of the short-line routing alternatives are presented in Table S-2.

Mitigation

The following mitigation measures would help to control dust and reduce emissions.

- Water exposed soil surfaces if necessary to control blowing dust.
- Cover construction materials if they are a source of blowing dust.
- Limit vehicle speeds along dirt roads to 25 miles per hour.
- Shut down idling construction equipment, if feasible.

Environmental Consequences—No Action Alternative

Under the No Action Alternative, potential impacts to air quality associated with the proposed project would not occur.
Summary

Noise

Affected Environment

Most of the proposed corridor is near highways or freeways, so existing noise levels are mainly characterized by traffic noise. Background noise in the more remote areas of the corridor far from highways would mainly consist of corona noise from existing transmission lines.

Sources of noise associated with electrical transmission systems include construction and maintenance equipment, transmission line corona, and electrical transformer hum. Corona is the partial electrical breakdown of the insulating properties of air around the transmission line wires. Corona-generated noise can be characterized as a hissing, crackling sound that is accompanied by a 120 Hertz (Hz) hum under certain conditions.

Noise from transmission lines generally occurs during wet weather. Conductors can be wet during periods of rain, fog, snow, or icing. Such conditions are expected to occur infrequently in the project area.

Environmental Consequences—Proposed Action

Construction

Sources of noise associated with construction of the proposed project include construction of access roads and foundations at each tower site, erection of steel towers at each tower site, helicopter assistance during tower erection and stringing of conductors, potential blasting, and potential use of implosive couplers for conductor splicing.

The Washington state limit for noise levels at residential areas caused by permanent daytime industrial operations is 65 dBA. Construction noise levels would exceed these limits, but construction noise is exempt from state limits.

An estimated 19 homes in the cities of Plymouth, Paterson, and North and West Roosevelt in Washington, and the cities of Umatilla and Rufus in Oregon; and single residences, small groupings of houses, or small farm complexes located along the line would be within approximately 600 feet of construction activity and may experience noise levels at or above 65 dBA. If helicopters are used to install the towers a wider range of residences could be affected.

Operation and Maintenance

Noise impacts during operation and maintenance of the proposed project would be negligible. Every 2 months a helicopter would fly the line to look for any problems or repair needs. When and if these needs arise, field vehicles would be used to access the trouble spots.
If the proposed transmission line is found to be the source of radio or television interference in areas with reasonably good reception, measures would be taken to restore the reception to a quality as good or better than before the interference.

Environmental Consequences—Short-Line Routing Alternatives

The potential impacts of the short-line routing alternatives are presented in Table S-2.

Mitigation

To reduce the potential for temporary, adverse noise impacts during construction, the following measures would be incorporated into contract specifications.

- All equipment will have sound-control devices no less effective than those provided on the original equipment.
- All equipment will have muffled exhaust.
- No noise-generating construction activity will be conducted within 1,000 feet of a residential structure between the hours of 10:00 p.m. and 7:00 a.m.
- Landowners directly impacted along the corridor will be notified prior to construction activities.
- Bonneville will take measures to restore reception to a quality of reception as good or better than before the radio or television interference.

Environmental Consequences—No Action Alternative

Under the No Action Alternative, existing background noise levels in the project vicinity would continue without influence of the proposed project.

Public Health and Safety

Affected Environment

Potential hazards along the corridor include fire (both natural and human-caused), existing overhead transmission line crossings, and natural gas pipeline crossings.

Environmental Consequences—Proposed Action

Construction

During construction and installation of the towers and conductor/ground wires, there is a risk of fire and injury associated with the use of heavy equipment, hazardous materials such as fuels, cranes, helicopters, potential bedrock blasting for towers or access roads,
and other risks associated with working near high-voltage lines. There is also a potential for fire during refueling of hot equipment such as trackhoes and bulldozers that cannot be taken off-site for refueling. Connection of conductors may be accomplished using implosion bolts, which could be a source of injury to construction personnel. In addition, there are potential safety issues with more traffic on the highways and roads in the project area during construction.

Operation and Maintenance

With the addition of the proposed transmission line, there will be slight additional risks for fire and injuries as maintenance workers and vehicles travel along the corridor to perform required maintenance.

An increase in public exposure to magnetic fields could occur if field levels increase and if residences or other structures draw people to these areas. The predicted field levels are only indicators of how the proposed project may affect the magnetic-field environment. They are not measures of risk or impacts on health. The 79-mile-long corridor in which the proposed line would be built is sparsely populated. There are about 40 structures within 400 feet of either side of the right-of-way edge.

Environmental Consequences—Short-Line Routing Alternatives

The potential impacts of the short-line routing alternatives are presented in Table S-2.

Mitigation

The following mitigation measures would help minimize potential health and safety risks during construction.

- Prior to starting construction, the contractor would prepare and maintain a safety plan in compliance with Washington and Oregon requirements. This plan would be kept on-site and would detail how to manage hazardous materials such as fuel, and how to respond to emergency situations.
- During construction, the contractors would also hold crew safety meetings at the start of each workday to go over potential safety issues and concerns.
- At the end of each workday, the contractor and subcontractors will secure the site to protect equipment and the general public.
- As necessary, employees would be trained in tower climbing, cardiopulmonary resuscitation, first aid, rescue techniques, and safety equipment inspection.
- To minimize the risk of fire, all highway-authorized vehicles would be fueled off-site. Fueling of construction equipment that was transported to the site via truck and is not highway authorized would be done in accordance with regulated construction
practices and state and local laws. Helicopters would be fueled and housed at local airfields.

- Helicopter pilots and the contractor would work with communities along the corridor to ensure public safety. For example, flight paths could be established for transport of project components in order to avoid flying over populated areas or near schools (Helicopter Association 1993). Contractors would also work with local crop dusters and agricultural businesses to minimize interruption in agricultural activity during construction (for instance, to schedule work or tower placement so it does not conflict with crop dusting and harvesting).

- If blasting is required, a notice would be sent to residents in the affected area. A public meeting would be held prior to blasting to inform residents and other interested parties of the date and time of the blasting and to answer questions. During blasting, appropriate safety measures would be taken as required by state and local codes and regulations. All explosives would be removed from the work site at the end of the work day.

- If implosion bolts are used to connect the conductors, they would be installed in such a way as to minimize potential health and safety risks.

- Construction and operation/maintenance workers would need to be trained in what to do in the event of a chemical release from the Umatilla Army Depot.

- Operation and maintenance vehicles would be required to carry fire suppression equipment including (but not limited to) shovels and fire extinguishers.

- Drivers would be required to stay on established access roads and smoking would be prohibited.

- The corridor would be maintained to control tall grass that could potentially start fires via contact with hot vehicle parts. Trees and other tall vegetation would be trimmed to Bonneville standards to avoid contact with transmission lines.

- The towers are not expected to exceed 200 feet in height. However, Federal Aviation Administration laws would be followed regarding the placement of line markers to warn approaching aircraft. Bonneville would submit final locations and tower heights to the Federal Aviation Administration for review and requirements for markings and lighting would be addressed at that time.

- Because of theproximity of the proposed transmission line to agricultural fields, crop dusting pilots planning to enter the area would take suitable precautions to avoid collision with the proposed transmission lines.
Summary

Environmental Consequences—No Action Alternative

Under the No Action Alternative, the proposed transmission line would not be built and the potential increased health and safety risks associated with the proposed transmission line project would not occur.
| Wildlife viewing temporarily obstructed; no impact to soils; some sedimentation to Columbia River and pond habitat; about 0.1 acre of trees in wetland; about 2 acres marginal grassland habitat removed; no cultural resource impacts with mitigation; recreationists and travelers would have views of construction; no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts |
| Wildlife viewing temporarily obstructed; no impact to soils; some sedimentation to Columbia River and pond habitat; though less ground disturbance than Alternative A, but closer to river; about 0.2 acre of willows in wetland removed; cottonwood trees and vegetation removed; bird nesting and ground dwelling animal habitat removed; increased risk of avian collisions; no cultural resource impacts with mediation; recreationists, travelers, and residence would have views of bus work; no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts |
| No recreation impacts anticipated; no impact to soils; slight increased (than Alternative A or Alternative B) sedimentation to Columbia River and pond habitat though ground disturbance and permanent surface of bus work; minor sediments to wetland; about 0.7 acre of grassland removed for bus work; negligible wildlife impacts; no cultural resource impacts with mediation; views of line from highway and residence (less than Alternative B or C); no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts |
| About 1.5 acres of grazing land disturbed; no impact to soils; no impact to fish/water; invasive Ailanthus sp. trees in wetland may be removed; sedimentation to small wetland; about 1.6 acres of vegetation impacted; negligible wildlife impacts; no cultural resource impacts with mediation; 10 invasive Ailanthus sp. trees removed; loss of trees reduce bird nesting habitat; no cultural resource impacts with mediation; views of line from highway and residence (less than Alternative B or C); no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts |
| About 1.5 acres of grazing land disturbed; residence may need to be removed; no impact to soils; no impact to fish/water; invasive Ailanthus sp. trees in wetland may be removed; sedimentation to small wetland; about 1 acre of vegetation impacted; 10 invasive Ailanthus sp. trees removed; loss of trees reduce bird nesting habitat; no cultural resource impacts with mediation; views of line from highway and residence (less than Alternative B or C); no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts |
| About 0.8 acre of cropland removed from production; no impact to soils; no impact to fish/water; no wetland impacts; about 5.5 acres grazed shrub-steppe impacted; about 1 acre of marginal agricultural habitat removed; no cultural resource impacts with mediation; travelers on highway and agricultural workers would view line (more than Alternative A); no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts |
| About 0.6 acre of cropland; no impact to soils; no impact to fish/water; no wetland impacts; about 5.5 acres grazed shrub-steppe impacted; minimal impact to heavily grazed shrub-steppe habitat; no cultural resource impacts with mediation; travelers on highway and agricultural workers would view line (more than Alternative A); no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts |
| Building relocation; about 2 acres marginal grassland habitat removed; no cultural resource impacts with mitigation; recreationists, travelers, and residence would have views of construction; no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts |
| Table S-2: Summary of Impacts of Short-Line Alternatives, McNary-John Day Transmission Project |

McNary Substation Alternatives	Hanford-John Day Junction Alternatives	Corridor Mile 32 Alternatives	Corridor Mile 35 Alternatives					
Alternative A	Alternative B	Alternative C	Alternative A	Alternative B	Alternative A	Alternative B	Alternative A	Alternative B
Wildlife viewing temporarily obstructed; no impact to soils; some sedimentation to Columbia River and pond habitat; about 0.1 acre of trees in wetland; about 2 acres marginal grassland habitat removed; no cultural resource impacts with mitigation; recreationists and travelers would have views of construction; no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts	No recreation impacts anticipated; no impact to soils; slight increased (than Alternative A or Alternative B) sedimentation to Columbia River and pond habitat though ground disturbance and permanent surface of bus work; minor sediments to wetland; about 0.7 acre of grassland removed for bus work; negligible wildlife impacts; no cultural resource impacts with mediation; views of line from highway and residence (less than Alternative B or C); no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts	About 1.5 acres of grazing land disturbed; no impact to soils; no impact to fish/water; invasive Ailanthus sp. trees in wetland may be removed; sedimentation to small wetland; about 1.6 acres of vegetation impacted; negligible wildlife impacts; no cultural resource impacts with mediation; 10 invasive Ailanthus sp. trees removed; loss of trees reduce bird nesting habitat; no cultural resource impacts with mediation; views of line from highway and residence (less than Alternative B or C); no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts	About 0.8 acre of cropland removed from production; no impact to soils; no impact to fish/water; no wetland impacts; about 5.5 acres grazed shrub-steppe impacted; about 1 acre of marginal agricultural habitat removed; no cultural resource impacts with mediation; travelers on highway and agricultural workers would view line (more than Alternative A); no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts					

| Alternative A | Alternative B | Alternative C | Alternative A | Alternative B | Alternative A | Alternative B |
| Wildlife viewing temporarily obstructed; no impact to soils; some sedimentation to Columbia River and pond habitat; though less ground disturbance than Alternative A, but closer to river; about 0.2 acre of willows in wetland removed; cottonwood trees and vegetation removed; bird nesting and ground dwelling animal habitat removed; increased risk of avian collisions; no cultural resource impacts with mediation; recreationists, travelers, and residence would have views of bus work; no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts | About 1.5 acres of grazing land disturbed; residence may need to be removed; no impact to soils; no impact to fish/water; invasive Ailanthus sp. trees in wetland may be removed; sedimentation to small wetland; about 1 acre of vegetation impacted; 10 invasive Ailanthus sp. trees removed; loss of trees reduce bird nesting habitat; no cultural resource impacts with mediation; views of line from highway and residence (more than Alternative A); no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts | About 0.8 acre of cropland removed from production; no impact to soils; no impact to fish/water; no wetland impacts; about 5.5 acres grazed shrub-steppe impacted; about 1 acre of marginal agricultural habitat removed; no cultural resource impacts with mediation; travelers on highway and agricultural workers would view line (more than Alternative A); no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts | About 0.6 acre of cropland; no impact to soils; no impact to fish/water; no wetland impacts; about 5.5 acres grazed shrub-steppe impacted; minimal impact to heavily grazed shrub-steppe habitat; no cultural resource impacts with mediation; travelers on highway and agricultural workers would view line (more than Alternative A); no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts |

| Alternative A | Alternative B | Alternative C | Alternative A | Alternative B | Alternative A | Alternative B |
| Building relocation; about 2 acres marginal grassland habitat removed; no cultural resource impacts with mitigation; recreationists, travelers, and residence would have views of construction; no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts | About 1.5 acres of grazing land disturbed; residence may need to be removed; no impact to soils; no impact to fish/water; invasive Ailanthus sp. trees in wetland may be removed; sedimentation to small wetland; about 1 acre of vegetation impacted; 10 invasive Ailanthus sp. trees removed; loss of trees reduce bird nesting habitat; no cultural resource impacts with mediation; views of line from highway and residence (less than Alternative B or C); no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts | About 0.8 acre of cropland removed from production; no impact to soils; no impact to fish/water; no wetland impacts; about 5.5 acres grazed shrub-steppe impacted; about 1 acre of marginal agricultural habitat removed; no cultural resource impacts with mediation; travelers on highway and agricultural workers would view line (more than Alternative A); no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts | About 0.6 acre of cropland; no impact to soils; no impact to fish/water; no wetland impacts; about 5.5 acres grazed shrub-steppe impacted; minimal impact to heavily grazed shrub-steppe habitat; no cultural resource impacts with mediation; travelers on highway and agricultural workers would view line (more than Alternative A); no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts |
Chapter 1
Purpose of and Need for Action

Need for Action

Bonneville Power Administration (Bonneville) is a federal agency that owns and operates more than 15,000 miles of high-voltage transmission lines. The transmission lines move most of the Northwest’s high-voltage power from facilities that generate the power to power users throughout the region and to nearby regions (e.g., north to Canada and south to California and Arizona). The facilities that generate the power include federally-owned dams on the Columbia River and private investor-owned facilities (gas-turbine, coal-fired, and wind-turbine facilities). Buyers of high-voltage power include electric utilities (public utility districts, municipalities, and investor-owned utilities) and direct service industries (e.g., aluminum plants). The electric utilities, in turn, provide electricity to homes, businesses, and farms. Bonneville also provides transmission service; generation facilities use this service by connecting to Bonneville’s transmission system and using the transmission lines to send power to their buyers.

Presently, Bonneville is facing two problems regarding power flow on the system: there is not enough electricity being generated to meet demand, and many of Bonneville’s transmission lines are now at capacity and cannot carry more power. To solve the problem of lack of power, private investors have proposed and are developing gas-fired and wind-powered generation facilities. Many of these facilities are in southeast Washington and northeast Oregon (see Figure 1-1 for locations and the section on Other Projects or Documents at the end of this Chapter for descriptions). This is a prime area for power generation because of sufficiency of wind or access to gas pipelines, as well as access to high voltage transmission lines. The newly generated power from these facilities will need to be transmitted to the west side of the Cascades because there is a high demand for electricity from the west side’s urban areas. However, the existing transmission lines connecting southeast Washington and northeast Oregon to the west side of the Cascades are at or near capacity.

Bonneville has a statutory obligation to ensure that there is sufficient capacity and reliability in Bonneville’s transmission system. The Federal Columbia River Transmission Act directs Bonneville to construct additions to the transmission system that are required to provide interregional transmission facilities [16 U.S.C. § 838b(e)]. In addition, the Act directs Bonneville to construct additional transmission lines that are
Purpose of and Need for Action

necessary to integrate and transmit electric power from new Federal and non-federal generating sources [§ 838b(a)]. Finally, the Act directs Bonneville to construct additional transmission lines necessary for maintaining the electrical stability and reliability of the transmission system [§ 838b(d)]. The proposed action is needed to comply with these Congressional mandates.

In order to help ensure that existing and newly generated power can move east to west through the system, Bonneville needs to increase the capacity of its transmission system between the McNary and John Day Substations.

Need for Power

As recognized by the National Energy Policy report submitted by Vice President Cheney on May 16, 2001, resolution of the Western energy crisis requires development of new generation resources. About 1,000-megawatts (MW) of generation currently under construction have contracted for wheeling (transferring power) over the Bonneville system. An additional 3,000-MW of new generation is proposed to be online by 2004 and developers for nearly 30,000-MW of generation have requested interconnection. While many of these plants will likely not be built, regional studies have identified a shortfall of about 3,000-MW by 2004 (based on regional load and generation resource forecasts). Most proposed new generation resources cannot obtain firm transmission service, or be integrated into the regional power system, without additional transmission investment.

Two of the generation facilities proposed in this area are the Starbuck Power Project (near Starbuck, Washington), and the Wallula Power Project (near Wallula, Washington). These gas-turbine facilities would generate a total of 2,500-MW of power. The new transmission line would be necessary to allow the power from these facilities to integrate into the transmission system and would allow Bonneville to grant “firm” transmission service to these facilities. (Firm transmission service is reserved or scheduled availability of the transmission line for sending generated power for a specific term—usually a year or longer.) If either the Starbuck or Wallula generation projects fail to be built, there are other proposed facilities in the area that would be able to utilize the line.
Transmission Infrastructure

Portions of the Northwest transmission system are approaching gridlock. An adequate and affordable electric supply is not possible without sufficient transmission capacity. Bonneville has a number of transmission paths that experience chronic electrical congestion, which requires that Bonneville reduce the amount of power that is delivered on the system (curtailment of both firm power deliveries and economy energy). The amount of power loads (power being transmitted and sold) has been growing steadily at 1.8% annually, and the use of the transmission system is up by over 2% annually, but very few bulk grid transmission lines have been added in the last 15 years. Bonneville has kept up with increasing transmission demands through substation upgrades, conservation, and other non-wire solutions; however, the system is beyond its limits for these fixes.

Decisions to be Supported by the EIS

Bonneville will use the information contained in this environmental impact statement (EIS) and comments from the public to make the following decisions.

- Bonneville must decide whether or not to build the proposed McNary-John Day transmission line (see Chapter 2 for descriptions of the transmission line and short-line routing alternatives).

- If the decision is to build the new transmission line, Bonneville must choose among the short-line routing alternatives analyzed in this EIS (at the McNary Substation, the Hanford-John Day Junction, Corridor Mile 32, and Corridor Mile 35).

- If the decision is to build a new transmission line, Bonneville would determine the exact locations of the towers and access roads and chose among the mitigation measures identified in this EIS.

Purposes

While meeting the need to increase the capacity of the transmission system in this area, the proposed action has other purposes (or objectives). Bonneville intends to base its decisions on the following objectives:

- maintenance of transmission system reliability;

- consistency with Bonneville’s environmental and social responsibilities; and

- cost and administrative efficiency.
Cooperating Agencies

The U.S. Army Corps of Engineers (Corps), the U.S. Bureau of Land Management (BLM), the U.S. Fish and Wildlife Service (USFWS) and the Bureau of Indian Affairs (BIA) are cooperating agencies in the development of this EIS. The proposed transmission line would cross a Corps Wildlife Natural Area near the McNary Substation and would cross the Columbia River twice. (The Corps has permitting jurisdiction of crossings over navigable rivers. See permits and requirements in Chapter 4.) The proposed transmission line crosses three BLM parcels and two tribal allotments (the BIA is responsible for negotiating easements for tribal allotments). The USFWS manages the Umatilla Wildlife Refuge adjacent to the transmission line corridor and will make findings and opinions regarding impacts to threatened and endangered species. As cooperating agencies, the Corps, BLM, USFWS, and BIA will make sure that the EIS and the proposal meet their requirements for allowing easements or findings as appropriate. See Appendix A for correspondence with coordinating agencies.

Scoping and Major Issues

Early in this environmental process, Bonneville contacted people who may be interested in or affected by the proposed project to learn what issues should be studied in the EIS. Because these issues help define the scope of the EIS, this process is called “scoping.”

In scoping this EIS, Bonneville contacted people who lived along or near the proposed transmission line route, federal, state, and local agencies who manage lands or have other jurisdictions along the route, Indian tribes with interests in the area, and interest groups. Comments were sought and received in a number of ways:

- A Notice of Intent to prepare an EIS was published in the federal register May 2001;
- A letter, map, and comment form packet was mailed in May 2001 to about 420 people; and
- Two public scoping meetings were held—one in Paterson, Washington on May 23, 2001, and another in Roosevelt, Washington on May 24, 2001.

During scoping, Bonneville received about 350 comments. Most of the comments (45%) focused on potential impacts of the new transmission line. Bonneville also received many comments and questions on why it needs to build the line, alternatives to building the line, where the line would go, and what would it look like.

The three topics that drew the most comments about impacts included

- land use (passing through orchards and vineyards, cattle grazing, etc.),
vegetation (mostly noxious weed concerns, some clearing concerns), and

fire (concerns about workers starting brush fires).

Other comments on impacts involved cultural resources, social impacts, economic, noise, public health and safety, soils, visual, water, and wildlife. A letter was mailed (August 2001) to interested parties that summarized scoping comments and identified next steps in the EIS process.

See Appendix B for public involvement mailings and a summary of scoping comments for this project.

Other Projects or Documents Related

Below are brief descriptions of generation projects proposed in the area and a document incorporated by reference into this EIS.

To receive a copy of one of these documents or to be put on the mailing for a project, call Bonneville’s toll-free document request line at 1-800-622-4520 and leave a message (please include the name of the project and a complete mailing address). If the project is posted on Bonneville’s website, it can be accessed at www.efw.bpa.gov under the section on environmental planning/analysis.

Wallula-McNary Transmission Line Project and Wallula Power Project

The Wallula Power Project is a 1,300-MW natural gas-fired generation facility proposed by Newport Northwest, LLC (Newport Northwest) that would be located near Wallula in Walla Walla County, Washington. Newport Northwest has requested an interconnection and upgrade to Bonneville’s transmission system; a new substation and a 35-mile transmission line coming into McNary Substation would be required. Bonneville proposes to execute an agreement with Newport Northwest to provide the interconnection and firm power transmission. A joint state and federal EIS is being developed on the project. The proposed McNary-John Day transmission line would allow electricity generated from the Wallula project to flow into the transmission system.

Starbuck-Lower Monumental Dam Transmission Line Project and Starbuck Power Project

The Starbuck Power Project is a 1,200-MW natural gas-fired generation facility proposed by Starbuck Power Company, LLC that would be located near the town of Starbuck in Columbia County, Washington. Starbuck Power Company has requested an interconnection and upgrade to Bonneville’s transmission system (a 16-mile transmission line would be required). A joint state and federal EIS is being developed on the project.
The proposed McNary-John Day transmission line would allow electricity generated from the Starbuck project to flow into the transmission system.

Umatilla Generating Project

The Umatilla Generating Project is a 550-MW natural gas-fired generation facility proposed by Umatilla Generating Company, LP, that would be located about 4 miles southwest of the city of Hermiston near the existing Hermiston Generating Plant. The company has requested an interconnection and upgrade to Bonneville’s transmission system into the McNary Substation that would allow firm power delivery to the wholesale power market. A draft EIS on this project was made available for public review on August 15, 2001.

Mercer Ranch

The Mercer Ranch Project is an 850-MW natural gas-fired generation facility proposed by Cogentrix Energy, Inc., that would be located adjacent to the proposed McNary-John Day transmission line in Benton County, Washington. A joint state and federal EIS is being developed on the project. The proposed McNary-John Day transmission line would allow electricity generated from the Mercer Ranch project to flow into the transmission system. As part of the Mercer Ranch Project, a new substation would be built next to the right-of-way described in this EIS, and the proposed McNary-John Day transmission line would go in and out of that substation. The potential impacts of building the substation would be analyzed in the Mercer Ranch Project EIS.

Wanapa Energy Center

Wanapa Energy Center is a 1,000-MW natural gas-fired power generation facility proposed by the Confederated Tribes of the Umatilla Indian Reservation (Umatilla Tribes) and others. The Wanapa Energy Center would be located on tribal-owned land in Umatilla County, Oregon, near McNary Dam. The Umatilla Tribes have requested interconnection with Bonneville’s transmission system at McNary Substation. The Bureau of Indian Affairs has published a Notice of Intent to prepare an EIS for this project, and Bonneville will participate as a cooperating agency.

Cliffs Energy Project

Cliffs Energy Project is a 225-MW natural gas-fired power generation facility that would be located adjacent to the Goldendale Aluminum Company smelter near the proposed McNary-John Day transmission line in Klickitat County, Washington. Klickitat County prepared a state environmental review of the proposal.
Plymouth Generating Facility

The Plymouth Generating Facility is a 306-MW natural-gas-fired generation facility proposed by Plymouth Energy, L.L.C. that would be located near the town of Plymouth, Benton County, Washington. The company has requested an interconnection to Bonneville’s transmission system that would allow firm power delivery to the wholesale power market. A joint state and federal EIS will be developed on the project.

Wind Projects

Some of the wind generation projects either being built or proposed in the general area include Stateline Wind Project (300-MW), Horse Heaven Hills (150-MW), Waitsburg (100-MW), Roosevelt (150-MW), Six Prong (150-MW), Columbia Wind Ranch (80-MW), Condon (50-MW), Summit Ridge (50-MW), Vansycle Wind Project, and Wheat Field (150-MW). The locations of these proposed wind projects is shown in Figure 1-1.

Bonneville’s Vegetation Management Program

The vegetation management for this proposed project would be guided by the decisions and protocols developed in Bonneville’s Transmission System Vegetation Management Program EIS (June 2000). The Vegetation Management EIS is incorporated by reference, and relevant information is summarized in this EIS. (See the section on Maintenance, Chapter 2, for more information on vegetation management for the proposed transmission line.)

How this EIS is Organized

Figure 1-2 shows how this EIS is organized. In addition to this chapter on purpose and need for action, there are chapters on the project proposal and alternatives; affects, consequences, and mitigation; and review and permits. This EIS also includes various reference and appendix materials.
Figure 1-2: How this EIS is Organized
Chapter 2
Proposed Action and Alternatives

Proposed Action

Location

Bonneville proposes to construct a 500-kilovolt (kV) transmission power line from its McNary Substation to its John Day Substation, a distance of about 79 miles. The new line would begin at the existing McNary Substation in Umatilla City (Umatilla County, Oregon) near the Columbia River and cross the Columbia River into Washington between the McNary Dam and the Umatilla Bridge. The proposed line would then generally follow the Columbia River and State Route (SR) 14 west through Benton and Klickitat Counties. At the John Day Dam, the proposed line would cross back into Oregon and connect into the John Day Substation near Rufus (Sherman County, Oregon) (see Figure 2-1).

Existing Corridor

The proposed line would parallel existing transmission lines in an existing corridor that runs between the McNary and John Day Substations.

There are three existing transmission lines at the river crossing near McNary Substation that cross the river. The transmission line towers closest to the Umatilla Bridge are owned by Benton County Public Utility District (PUD). Benton County PUD is presently not using the towers but is retaining them for future use when they need to run a transmission line from Oregon to Washington. Bonneville proposes to buy these tower locations and replace them with new towers that can hold two lines (double-circuit towers).

As part of the tower location purchase, Bonneville would agree to provide Benton County PUD electrical service on the Washington side of the river as needed. The environmental review for that service would be done at the time the service is requested. The service
may include utilizing the vacant side of the new towers (stringing a new line), or building a new switching station near the existing lines on the Washington side.

For most of the route in Washington, Bonneville already has existing right-of-way or easement available next to the lines. When Bonneville built the existing lines, extra right-of-way was acquired to accommodate potential future lines. In most areas, the existing right-of-way corridor is 500 feet wide, which is wide enough to accommodate the proposed line.

A right-of-way is an easement over land owned by someone else. Bonneville rarely owns the land under transmission lines.

The proposed line would be located on the north side of the existing corridor for most of the length. Just after corridor mile 23 the proposed line would have to cross under the existing 500-kV Ashe-Slatt transmission line. In order to have the proposed line cross under it, the Ashe-Slatt line would need a new tower just north of the crossing to lift the conductors up by about 10 feet for adequate clearance.

Mercer Ranch, just north of corridor mile 27 is a location being proposed for a new generation facility. If this facility is approved and built, a new substation would have to be constructed adjacent to the existing transmission line corridor. The proposed McNary-John Day transmission line would be built through this substation. (See the section on Other Projects or Documents Related to this Project, Chapter 1, for more information about the Mercer Ranch Project.) At around corridor mile 68, the new line would cross to the south side of the existing corridor and continue to the river crossing at John Day Dam.

The corridor mile numbers start at the McNary Substation (corridor mile 1) and proceed along the existing lines to the John Day Substation (corridor mile 79). Bonneville numbers the towers by the corridor mile and number of towers in that corridor mile (e.g., 8/3 means the third tower in corridor mile 8).

The new transmission line would cross the Columbia River into Oregon just south of the John Day Dam. One transmission line presently crosses the river at this point. The new line would be adjacent and just east of the existing line crossing. The new line would cross the river and proceed south, straight up into the hills above the railroad and Interstate 84 (I-84). The line would turn west and join a large corridor of seven other transmission lines and continue for about 3 miles into the John Day Substation. This new line would be located between existing lines on the north side of the corridor.
Along the majority of the existing corridor between the McNary Substation and the crossing at John Day Dam, there are two existing transmission lines; in some areas there are three existing lines. In those portions of the corridor where there are two existing lines, these include

- a 230-kV line with lattice steel towers about 80 feet tall, and
- a 345-kV line with lattice steel towers about 110 feet tall.

There are two sections of the corridor where a third transmission line has joined the corridor. These sections are

- corridor mile 23, the Ashe-Slatt/Marion double circuit 500-kV line (about 180 feet tall) that parallels the existing lines for about 4 miles; and
- corridor mile 68, the Hanford-John Day 500-kV line (about 145 feet tall) that parallels the existing lines for about 6 miles, until the river crossing.

Line Separation

*If a proposed line (usually a 500-kV line, but in some cases a lower voltage line) is a key component to the main grid and is constructed next to an existing line that is also very important to the main grid, transmission line planners have to determine the likelihood and consequences of an outage that could affect both lines. The outage of multiple important lines in an area greatly increases the chances for blackouts. The events that could cause simultaneous outage of lines include one tower falling into an adjacent line, aircraft flying into the lines, fire on the right-of-way causing smoke to envelop more than one line, and lightning strikes. These risks are lessened by separating the high-risk lines by 200 feet or more, preferably at least 1,000 to 1,500 feet (a span length).

For this project the proposed line would parallel existing 500-kV lines in a couple of locations and lower voltage lines for the entire length. Planners determined that the distance of the parallel to the 500-kV lines would be short and the risks for simultaneous outage low. The lower voltage lines are not considered important lines to the main grid. Therefore, the proposed line would be separated from the existing lines by the typical distance that insures that the conductors of the two lines would not swing into one another and that one tower could not fall into the adjacent line (about 150 feet).*
New Easements

Some new right-of-way easements would need to be purchased adjacent to the existing corridor along approximately 14 miles of the route. The easements would give Bonneville the rights to construct, operate, and maintain the line in perpetuity. The new right-of-way easements would be needed in the following locations:

- from corridor mile 23 through 27, a 70-foot-wide right-of-way easement on the north side of the existing right-of-way;
- from corridor mile 43 through 47, a 140-foot-wide right-of-way easement on the north side of the existing right-of-way; and
- from corridor mile 69 through 75, a 200-foot-wide right-of-way easement, some of which would be on the north side and some on the south side of the existing right-of-way. See the discussion of the Hanford-John Day Junction Alternatives later in this chapter for more details.

Towers

The towers for the proposed new 500-kV line would be 145 to 165 feet tall lattice steel towers with spans of 1,150 to 1,500 feet between towers. The towers would be similar to the towers of the existing lines (see Figure 2-2). The towers would be made of galvanized steel and may appear shiny for two to four years before they dull with the weather. About 360 transmission towers would be needed to carry the wires (conductors) for the proposed transmission line, including about 20 towers in Oregon and 340 towers in Washington.

Bonneville would use two types of tower structures: tangent structures and dead-end structures. Tangent structures would be used on relatively straight stretches of line. Dead-end structures would be used where the line makes a sharp turn or when the conductor tension changes. Dead-end structures are much stronger (about double the thickness) than tangent structures, in order to hold the tension of the conductors.

Exact tower heights and spans along any line may change depending on the terrain, need for highway crossings, or other factors.

Tower Footings

Transmission towers are attached to the ground with footings. The footings are a metal assembly in the ground at each of the four tower corners. Three types of footings would be used depending on the terrain and tower type.

- Plate footings are the most commonly used footing types. They consist of a 4-foot by 4-foot steel plate buried about 11 feet deep.
Proposed Action

- Grillage footings are used to support heavier structures, such as dead-end towers. They are 12.5-foot by 12.5-foot, wielded steel I-beams buried about 15 feet deep.

- Rock anchor footings are used when a tower is built on solid bedrock. Holes are drilled into the bedrock and the steel anchor rods are secured within the hole with concrete. Then the tower footings are attached to the rods.

A trackhoe would be used to excavate an area for the footings. The excavated area would be at least 2 feet larger than the footings to be installed (if the soil is loose or sandy, then a wider hole may be necessary). Each tower would use an area of about .05 acre, with a temporary disturbance during construction of about 0.25 acre (equipment, soils, etc.). All of the soil and rock removed would be used to backfill the excavated area once the footings are installed.

Conductors

The wires that make up transmission lines are called conductors. The conductors carry the electrical current. There are three bundles of conductors making up a transmission line; each bundle consists of three conductor wires of 1.3 inches diameter. From a distance, a bundle looks like a single wire. The conductors for the proposed transmission line would be treated to reduce the shininess of the metal.

The three conductor bundles are attached to the towers using insulators (see Figure 2-3). Insulators are bell-shaped devices that prevent the electricity from jumping from the conductors to the tower and going to the ground. The insulators are made of porcelain or fiberglass and are nonreflective. In the past when glass insulators were used, the reflection of the sunlight made them visible from great distances.

For safety reasons, the National Electrical Safety Code establishes minimum conductor heights. For 500-kV lines (as is the proposed line), the conductor must be at least 35 feet from the ground. Clearances would be greater over highways, railroads, and river crossings.

Bus work is used when a conductor cannot be strung between towers. The electricity runs on a pipe set about 15 feet off the ground. For safety reasons, the area surrounding the two towers on either end of the bus work and the pipe is fenced and graveled (similar to a small substation). Like a substation, the area must be kept free of vegetation.

Two smaller wires (0.5-inch diameter), called overhead ground wires, would also be attached to the top of the transmission towers. Ground wires are used for lightning protection. The ground wires are strung from the top of one structure to the next. When lightning strikes, the ground wire takes the charge instead of the conductors. A series of wires, called counterpoise, is buried in the ground at each structure. These wires are used to establish a low resistance path to earth for lightning.
A fiberoptic cable would also be strung on the towers below the conductors (see Figure 2-3). The fiberoptic cable would have up to 72 fibers. The fiber would be used for communications as part of the power system. Fiberoptics technology uses light pulses instead of radio or electrical signals to transmit messages. This communication system can gather information about the system (such as the transmission lines in service and the amount of power being carried, meter reading at interchange points, status of equipment and alarms). The fiberoptic cable allows voice communications between power dispatchers and line maintenance crews and provides instantaneous commands that control the power system operations.

Figure 2-3. Conductors, Ground Wires, and Fiber Optic Cable

Tree Clearing

Most of the vegetation along the corridor is low-growing sagebrush or fields that are compatible with transmission lines. Tall trees cannot be allowed to grow under or near the lines because electricity can arc, which can start a fire or injure or kill someone nearby. The existing corridor does cross some windbreak trees, orchards, and tree farms that grow deciduous trees for paper products. About 25 acres of trees would need to be removed; a total of 50 acres would be permanently removed from cottonwood production. Some trees may also need to be removed between the McNary Substation and the river crossing.
Access Roads

Access roads are the system of roads that Bonneville’s construction and maintenance crews would use to get to the towers or tower sites along the line. The roads are designed to be used by cranes, excavators, supply trucks, boom trucks, log trucks, and line trucks. Bonneville prefers road grades to be 15% or less depending on the erosion potential of the soil. Roads are graded to provide a 16-foot-wide travel surface (somewhat wider on curves), with about a 20-foot-wide total area disturbed (including drainage ditches).

Bonneville’s road systems consist of a mix of permits or access road easements across public and private ownership. For this project, much of the transmission line corridor lies within 2 miles of public highways. Because the proposed transmission line would be next to existing lines, the proposed new line would utilize up to 90% of the existing 90 miles of access roads. Many of the access roads are approached from SR 14; there are 35 sites where Bonneville vehicles leave the highway directly onto an access road.

The new transmission line would require some upgrades of existing access roads, construction of new access roads and road spurs, and purchase of new easement.

- **Road upgrades.** Approximately 40 miles of existing access road would need to be reconditioned and widened. Roads would be graded, and rock would be used where the soil is unstable.

- **Spur roads.** About 270 short spur roads, each about 250 feet long, would be needed from an existing access road to a new tower. These spur roads would be within the existing right-of-way.

- **New roads.** About three miles of new road would need to be built from corridor mile 39 to 41 (4 miles east of Roosevelt). The terrain in this area is very steep. Because the new transmission line would be at a higher elevation than the existing lines, the grades of spur roads from the existing access road would be too steep. Instead, a parallel access road would be built at the elevation of the new towers in this section of line.

- **Easement purchases.** Bonneville proposes to purchase easements (rights for access) for up to 30 new access roads in areas off of the right-of-way. A majority of these easements would be for existing private roads (such as driveways or farm roads). In a few areas, Bonneville would need to buy an easement to build a new road.

- **New gates.** About 38 new swing gates would be installed with about 23 of these new gates replacing barbed-wire or broken gates. Bonneville, in coordination with landowners, gates the entrances to access roads to prevent public access to private lands and the transmission line right-of-way. There are also gates in fences that separate animals or denote property lines. Gate locks are coordinated with the landowners to ensure that both Bonneville and the landowner can unlock the gates.
Most access roads would be on the native surface (dirt roads or sparse vegetation). Many of the existing access roads and farm roads are made of compacted soils; in other areas they are naturally rocky. Some rock would need to be added in a few sandy locations. There would be no new road crossings of year-round streams, so no new culverts would be needed. Drain dips or water bars may be needed on a few access roads that cross drainages that carry seasonal runoff.

Staging Areas

Temporary staging areas would be needed along or near the proposed transmission line for construction crews to store materials and trucks. The contractors hired to construct the transmission line would be responsible for determining appropriate staging area locations. Often the contractors rent empty parking lots or already developed sites for use as staging areas. The contractors would also be responsible for working with state and local governments to obtain any required permits or environmental reviews for the staging areas.

Substation Work

The proposed line would come out of the McNary Substation and would enter into the John Day Substation. New equipment would be needed at each substation. At the McNary Substation (in Umatilla City, Oregon) the east side of the substation would require an expansion measuring 80 feet by 700 feet, about 1.3 acres (see Figure 2-4). The substation expansion would be on Bonneville property and would require some excavation and fill, although the ground is relatively flat in that area. This expansion would hold three new 500-kV bays in which the lines terminate. This equipment and expansion at the McNary Substation would be used for several projects besides the new McNary-John Day transmission line. Since the work on the other projects would occur at the same time, the entire expansion is explained here.

At the John Day Substation near Rufus, the line would terminate into a new 500-kV bay located within the existing substation fence. No expansion would be necessary.

The 500-kV-bay equipment to be installed in the substations includes the following.

- **Power circuit breakers.** A breaker is a switching device that can automatically interrupt power flow on a transmission line at the time of a fault, such as a lightning strike, tree limb falling on the line, or other unusual events. The breakers would be installed at the substation to redirect power as needed. Several types of breakers have been used in Bonneville substations over the years. The breakers planned for this project, called gas breakers, are insulated by special nonconducting gas (sulfur hexafluoride). These breakers would contain no oil, except a small amount of hydraulic fluid.
Proposed Action

- **Switches.** These devices are used to mechanically disconnect or isolate equipment. Switches are normally located on both sides of circuit breakers.

- **Substation dead-end towers.** These are the towers within the substation where incoming or outgoing transmission lines end. Substation dead-ends are typically the tallest structure within the substation.

- **Substation fence.** A chain-link fence with barbed wire on top surrounds the substation for security and public safety.

- **Substation rock surfacing.** A 3-inch layer of rock, selected for its insulating properties, is placed on the ground within the substation to protect operation and maintenance personnel from danger during substation electrical failures.

Line Planning and Construction

To determine exact tower location along a transmission line right-of-way, Bonneville first lays large Xs (photograph panels with exact coordinates) on the ground and takes photographs of the route from an airplane. These photographs help crews survey the route previously laid out by engineers. The surveys are used for determining the profile of the ground. With the profile, engineers can determine where towers and access roads should be located, how tall towers should be, and how much right-of-way is needed. Engineers also use the environmental information and discussions with landowners to help determine tower and access road locations.

Next, the right-of-way is cleared of any vegetation that may hinder line safety or construction access (see the previous discussion of tree clearing for details). Access roads are built or upgraded.

Holes for tower footings are dug with a trackhoe and footings put in place at each tower site. Towers are either assembled at the tower site and lifted into place by a large crane (30- to 100-ton-capacity) or assembled at a staging area and set in place by a large sky-crane helicopter. The towers are then bolted to the footings.

The conductor is strung from tower to tower through pulleys on the towers. A “sock line” is placed in the pulleys and pulled through by a helicopter much smaller than the sky-crane helicopter. The conductor is attached to the end of the sock line. Every 2 to 3 miles there is a conductor-tensioning site where trucks pull the conductor to the correct tension. The temporary conductor tensioning sites typically disturb an area of about 1 acre. The appropriate areas for conductor tensioning sites are determined by the construction contractor using environmental and land use information provided by Bonneville.

The conductor has to be fitted together when one reel of conductor ends and a new one begins. There are two types of conductor fittings: hydraulic compression and implosive devices. Hydraulic compression uses a press that compresses the fittings on the conductor. With implosive fittings, an explosive device is set off with a sound like a
gunshot, causing the fitting to tighten around the conductor to provide a solid connection. Nine conductors (three bundles each with three conductors) would need to be fitted about once every 2 to 3 miles.

Construction Schedule and Work Crews

The proposed timeframe for construction would be a 1-year period from January 2003 to December 2003.

The line would be constructed by one or more construction crews. A typical transmission line construction crew for a 500-kV line consists of

- 50 to 60 construction workers,
- 20 vehicles (pickups, vans),
- 3 Manitex bucket trucks,
- 1 conductor reel machine,
- 3 large excavators,
- 1 line tensioner, and
- 1 helicopter.

A typical crew can usually construct about 10 miles of transmission line in 3 months. To meet the proposed construction schedule for this project, most likely up to three crews would work simultaneously on separate sections of line.

Maintenance

During the life of the project, Bonneville would perform routine, periodic maintenance and emergency repairs to the transmission line. For lattice steel structures, maintenance usually involves replacing insulators. Every 2 months, a helicopter would fly over the line to look for hot spots (areas where electricity may not be flowing correctly) or other problems indicating that a repair may be needed.

Vegetation is also maintained along the line for safe operation and to allow access to the line. The area along the McNary-John Day transmission line needs little vegetation maintenance because it has sagebrush and other low-growing vegetation. In orchards and vineyards, landowners are responsible for keeping the trees trimmed and the appropriate distance away from the conductors.

Bonneville’s vegetation management would be guided by its Transmission System Vegetation Management Program EIS (see the section on Other Projects or Documents Related to this Project, Chapter 1 for more information). Bonneville uses an integrated
vegetation management strategy for controlling vegetation along transmission line rights-of-way. This strategy involves choosing the appropriate method for controlling the vegetation based on the type of vegetation and its density, the natural resources present at a particular site, landowner requests, regulations, and costs. Bonneville may use a number of different methods: manual (hand-pulling, clippers, chainsaws), mechanical (roller-choppers, brush-hogs), biological (insects or fungus for attacking noxious weeds), and herbicides.

Prior to controlling vegetation, Bonneville sends notices to landowners and requests information that might help in determining appropriate methods and mitigation measures (such as herbicide-free buffer zones around springs or wells). Noxious weed control is also part of Bonneville’s vegetation maintenance program. Bonneville works with the county weed boards and landowners on area-wide plans for noxious weed control.

Estimated Project Cost

The estimated cost for constructing the entire project is $100 million.

Short-Line Routing Alternatives

This EIS addresses short-line routing alternatives at four locations along the project corridor, as described below. These four areas include:

- McNary Substation,
- Hanford-John Day Junction,
- Corridor Mile 32, and
- Corridor Mile 35.

McNary Substation Alternatives

The alternatives listed below are located between the McNary Substation and the Columbia River crossing. The proposed transmission line would exit the northeast side of the substation (facing the river) and head to the river crossing. This area is congested with transmission lines coming into the substation and abuts the Corps Wildlife Natural Area that runs along the river. (See Figure 2-4.)

Alternative A – Relocate Building

With this alternative, the transmission line would exit the northeast side of the substation, cross Third Street (which runs in front of the substation), and head west, adjacent to the road for about 2,400 feet, then turn north and cross the Corps Wildlife Natural Area to the river crossing. The new line would cross six transmission lines coming from McNary.
Proposed Action and Alternatives

Dam. Where the line runs along the road, there is a 2,000-square-foot Bonneville office building. The building would need to be relocated because the new 500-kV line would cross directly over the top of it, causing potential safety hazards. The building would be relocated somewhere adjacent to the substation within the Bonneville property line.

Alternative B – Cross Wildlife Area

With this alternative, the new transmission line would exit the northeast side of the substation, cross Third Street, and run northwest (gradually toward the river) behind the office building and across the Corps Wildlife Natural Area. This alternative may require removal of some cottonwood trees. The new line would also cross six lines coming from McNary Dam.

Alternative C – Bus Work in Wildlife Area

For this alternative, the transmission line would exit the northeast side of the substation, cross Third Street, then descend into bus work across the Corps Wildlife Natural Area behind the office building. The bus work would be about 2,000 feet long by 75 feet wide.

Hanford-John Day Junction Alternatives

At about corridor mile 68, the 500-kV Hanford-John Day transmission line joins the existing right-of-way from the north. It parallels the existing lines on the north side for the rest of the route. At corridor mile 70, the proposed line would be on the south side of the right-of-way through the remainder of the route. There is a 2-mile stretch where there are three alternatives for where to place the proposed line. (See Figures 2-5, 2-6, and 2-7.)

Alternative A – North Side

With this alternative, the proposed transmission line would stay in the same alignment paralleling the existing lines (see Figure 2-5). This would require moving the existing Hanford-John Day line 200 feet to the north. At corridor mile 70, the proposed line would cross to the south side of the corridor and the Hanford-John Day line would ease back into its alignment in the corridor.

Alternative B – South Side

With this alternative, the proposed transmission line would cross to the south side of the corridor just before the Hanford-John Day line enters the right-of-way. See Figure 2-6. The proposed line would stay on the south side through the rest of the route. For the first mile on the south side, the line would also be on the south side of the highway. Just before corridor mile 70, there is a house with a barn and a shed on the south side of the highway. This alternative would require the removal of the barn and shed, and may require the removal of the house.
Alternative C – South Side, Highway

This alternative is very similar to Alternative B; the proposed line would cross to the south side of the corridor and highway just before the Hanford-John Day line enters the right-of-way. This alternative differs from Alternative B in that the proposed line would stay on the south side of the highway until the existing lines cross the highway. This alternative would eliminate two highway crossings of the proposed line (see Figure 2-7). As with Alternative B, the barn and shed (and possibly the house) would need to be removed. With this Alternative C, the line would be about 35 feet closer to the house than with Alternative B.

Corridor Miles 32 and 35 Alternatives

The existing right-of-way crosses two lots that are owned by members of the Yakama Nation. The existing easements on these lands are due to expire in 2003. The remainder of the right-of-way easements are perpetual. On tribal lands, the initial easements were for 50 years. Because Bonneville does not know how the negotiations for extending the easements will go, it is considering two alternatives at each site: paralleling the existing lines across the tribal property or moving the entire corridor, its two existing lines, and the new proposed line off of tribal property. (See Figure 2-8.)

Corridor Mile 32 Alternatives

Alternative A – Parallel existing line across tribal allotment.

With this alternative, Bonneville would construct the proposed line across the tribal-owned property at corridor mile 32, paralleling the existing lines within the existing right-of-way. About 1,100 feet of conductor and perhaps one tower would be located on the property.

Alternative B – Move entire corridor off of tribal property.

With this alternative, the proposed line would be moved to skirt around the tribal-owned property. The other two existing lines would also be moved to avoid the property. This alternative would require one additional tower for the proposed line. For the existing lines, eight towers (four for each line) would be removed and ten new towers (five for each line) constructed for the reroute. New right-of-way would be purchased from the landowners.

Corridor Mile 35 Alternatives

Alternative A – Parallel existing line across tribal allotment.

With this alternative, Bonneville would construct the proposed line across the tribal-owned property at corridor mile 35, paralleling the existing lines within the existing right-of-way. About 500 feet of conductor would be located across the property.
Alternative B – Move entire corridor off of tribal property.

With this alternative, the proposed line would be moved to skirt around the tribal-owned property at corridor mile 35. The other two existing lines would also be moved to avoid the property. No additional towers would be required for this alternative (compared to Alternative A). For the existing lines, eight towers (four for each line) would be removed and eight new towers (four for each line) constructed for the reroute. New right-of-way would be purchased from the landowners.

No Action Alternative

The No Action Alternative would be to not build the proposed transmission line. If Bonneville did not build this line, new generation facilities in the area could not connect and send power over the transmission system.

Comparison of the Alternatives and Summary of Impacts

Table 2-1 compares the Proposed Action and the No Action Alternatives based on the purposes of the project described in Chapter 1.

Table 2-1: Comparison of the Proposed Action and No Action Alternatives

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Proposed Action</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintain transmission system reliability</td>
<td>Constructing the proposed 500-kV transmission line would help ensure that present and forecasted power demands in the Pacific Northwest could be met without the risk of power interruptions due to demand becoming greater than the reliable capacity in the system. The proposed transmission line would also increase the reliability of the electrical grid in the region by providing an additional service line for power should there be an interruption in the operation of one of the other transmission lines in the area. The proposed line would also help Bonneville meet its statutory obligations to construct additions to the transmission system to integrate and transmit electric power from new generation sources, and to maintain the stability and reliability of the system 16 U.S.C., 838 (a), (b), and (c).</td>
<td>By not constructing the proposed transmission line, there would be increased risk of power interruptions occurring in the Pacific Northwest Service Area due to insufficient capacity in the grid as demand increases. Also, the ability for Bonneville to provide continuous electric service would be reduced should there be a failure in any of the other main transmission lines serving the region. Furthermore, by not constructing the line, Bonneville would not be meeting its statutory obligations as a federal agency.</td>
</tr>
</tbody>
</table>
No Action/
Comparison of the Alternatives

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Proposed Action</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensure consistency with environmental and social responsibilities</td>
<td>Although constructing the proposed transmission line would not be free of environmental impacts (see Table 2-2), siting the proposed line within an existing transmission corridor, and employing mitigation measures to protect resources and Best Management Practices during construction and operations would ensure consistency with Bonneville’s environmental stewardship mandates. Also, the proposed transmission line would help Bonneville meet social responsibility obligations for providing safe and reliable electric service to the public in the Northwest.</td>
<td>If the line were not built there would not be any environmental impacts due to construction or operation. Some social impacts may occur due to not being able to meet electrical demands (such as possible higher electricity costs, or possible long term cutbacks on electrical consumption).</td>
</tr>
<tr>
<td>Provide cost and administrative efficiency</td>
<td>The proposed transmission line project would cost about $100,000 million. For a line of this length, utilizing existing right-of-way with a relatively direct route between the two substations, the proposed line provides cost and administrative efficiency.</td>
<td>No immediate costs would be involved if the line were not built.</td>
</tr>
</tbody>
</table>

Table 2-2 compares the short-line routing alternatives in terms of the purposes outlined in Chapter 1. Table 2-3, at the conclusion of this chapter, summarizes the impacts of the proposed action. Table 2-4 summarizes impacts of the short-line routing alternatives.

Table 2-2: Comparison of Short-Line Routing Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Maintain Transmission System Reliability</th>
<th>Ensure Consistency with Environmental and Social Responsibilities</th>
<th>Provide Cost and Administrative Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>McNary Substation Alternatives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Relocate administration building presently located on north side of substation adjacent to Wildlife Natural Area</td>
<td>Same as Alternative B; better than Alternative C</td>
<td>Slightly less impact than Alternatives B and C</td>
<td>Same as Alternative B; less than Alternative C</td>
</tr>
<tr>
<td>B. Cross Wildlife Natural Area; circumvent administration building on north side</td>
<td>Same as Alternative A; better than Alternative C</td>
<td>More impact than Alternative A; slightly more than Alternative C</td>
<td>Same as Alternative A; less than Alternative C</td>
</tr>
<tr>
<td>C. Place line in bus work at ground level on north side of administration building, inside Wildlife Natural Area</td>
<td>Least reliable; crossing under multiple lines, any failure of existing lines would cause outage of proposed line</td>
<td>More impact than Alternative A; slightly less than Alternative B</td>
<td>Most expensive, dead-end structures and bus equipment cost more</td>
</tr>
</tbody>
</table>
Proposed Action and Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Purposes</th>
<th>Provide Cost and Administrative Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maintain Transmission System Reliability</td>
<td>Ensure Consistency with Environmental and Social Responsibilities</td>
</tr>
</tbody>
</table>

Hanford-John Day Junction Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Purposes</th>
<th>Provide Cost and Administrative Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Move existing Hanford-John Day line north 200 feet to make room for new line on north side of corridor</td>
<td>Slightly less reliable than Alternatives B and C; next to existing 500-kV line, failure would cause larger outage</td>
<td>Less impact than Alternatives B or C</td>
</tr>
<tr>
<td>B. Place new line on south side of corridor</td>
<td>Same as Alternative C; better than Alternative A</td>
<td>More impact than Alternative A; slightly more than Alternative C</td>
</tr>
<tr>
<td>C. Place new line on south side of highway</td>
<td>Same as Alternative B; better than Alternative A</td>
<td>More impact than Alternatives A and C</td>
</tr>
</tbody>
</table>

Corridor Mile 32 Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Purposes</th>
<th>Provide Cost and Administrative Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Keep existing and new lines on tribal land</td>
<td>Same as Alternative B</td>
<td>More impact than Alternative B</td>
</tr>
<tr>
<td>B. Relocate existing and new lines away from tribal land</td>
<td>Same as Alternative A</td>
<td>Less impact than Alternative A</td>
</tr>
</tbody>
</table>

Corridor Mile 35 Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Purposes</th>
<th>Provide Cost and Administrative Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Keep existing and new lines on tribal land</td>
<td>Same as Alternative B</td>
<td>More impact than Alternative B</td>
</tr>
<tr>
<td>B. Relocate existing and new lines away from tribal land</td>
<td>Same as Alternative A</td>
<td>Less impact than Alternative A</td>
</tr>
</tbody>
</table>

Alternatives Considered but Eliminated from Detailed Study

During the scoping process, Bonneville consider a range of alternatives for the proposed action. Bonneville assessed whether the alternatives were reasonable and merited detailed study in this EIS. Alternatives that did not meet the need and purposes (see Chapter 1), including whether they were practical or feasible, or would obviously have greater adverse environmental impacts than the proposed action, were eliminated from detailed study. This section summarizes those alternatives considered but eliminated from detailed study in this EIS.
Oregon Route Alternative

Bonneville examined various ways to transmit power from east to west, including a new transmission line from the McNary Substation to the John Day Substation through Oregon. This Oregon routing alternative would have required the purchase of all new right-of-way for there is no existing vacant right-of-way available for a 500-kV line in this area of Oregon. The location of a line in Oregon could be adjacent to existing lines in some areas, but would mostly require the development of a new corridor where there are no existing transmission lines. In the areas where existing lines could be paralleled, there are many homes. The cost of constructing a new 500-kV line in Oregon would be considerably greater than the proposed route in Washington due to purchasing all new right-of-way, constructing a new access road system, and the mitigation measures that would be needed (particularly in areas with residences where new right-of-way would be purchased). The social and environmental impacts of an Oregon route would also be much greater with the relocation of residents, disruption of existing land uses, construction of new access roads (erosion, water quality), and potential vegetation clearing.

Because the proposed route and the short-line routing alternatives discussed in this EIS are mostly within existing right-of-way (purchased years ago with the construction of the existing lines), the land uses in the right-of-way are compatible with transmission line operation.

McNary Substation Southeast Alternative

In examining ways for the line to exit the McNary Substation and reach the river crossing, Bonneville considered exiting the southeast side of the substation. The line would run west along the back side of the substation, and turn north along the west side of the substation to the river crossing.

This alternative was eliminated from consideration for reliability reasons. The line would have to cross a number of transmission lines presently exiting the substation. These lines serve electric loads west and south of the McNary Substation. In the rare event that the proposed line fell, those existing lines would be put out of service, affecting a large number of customers.

Increased Capacity Line Alternative

During scoping, Bonneville was asked to consider all the generation projects being proposed in the area and construct the transmission line with a capacity to carry all the power that could be generated. The proposed line would have a capacity of 1,400 to 2,300 MW. The commentors requested that it be capable of carrying 5,000 MW or more. When transmission system planners consider integrating new generation they analyze the whole transmission system to determine what is needed to transmit a certain
When considering the construction of new transmission lines, the planners have to consider the back-up line(s) if any component of the transmission system were to fail. There is sufficient back-up in the area for the proposed line. If the proposed line were to fail, then all the energy would flow over remaining lines (such as the existing McNary-Slatt 500-kV line and the McNary-Ross 345-kV line and several smaller capacity lines). If the proposed line were built to carry more energy and the line failed, the back-up lines would become overloaded and shut down. In order to maintain the reliability of a new line carrying 5,000 MW, a new second high voltage line would have to be built as a back-up. Rather than building two high voltage lines now, Bonneville’s system planners will continue to evaluate the need for increased capacity as new generation facilities request interconnection.

Underground Transmission Line Alternative

During scooping a person suggested putting the transmission line underground. Bonneville considers, and at times has used, underground transmission cables for new lines. The cables used for undergrounding are highly complex in comparison to overhead lines. Even with current technologies, transmission cables exceed the cost of overhead lines by many times. For 500-kV lines, underground cable may be ten times as costly as overhead designs. Because of the cost, Bonneville uses underground cable in limited, special reliability, or routing situations, such as near nuclear power stations, at locations where high capacity lines must cross, at long bay crossings, or in urban areas. Transmission cables used by Bonneville are only at lower voltages and are short in comparison to typical overhead transmission lines. Bonneville’s longest underground cable is a 8-mile-long 115-kV cable. Bonneville has no 500-kV underground cable in our system. The Bureau of Reclamation operates two 6,000-foot-long, 500-kV underground cables at Grand Coulee Dam. Underground cables are also much more difficult to maintain than overhead lines and take longer to repair.

Bonneville has kept abreast of transmission cable technologies. Cable technology has not advanced as quickly as the industry anticipated, nor have costs declined as expected. Cable remains a tool available for special situations, but because of its high cost it would not meet the purposes and need of this project.

Double Circuit Alternative

During scoping, it was requested that Bonneville take out one of the existing lines and put in a double circuit line (one set of towers to hold both the existing line and the proposed line). This alternative was eliminated due to costs. The transmission towers for a double circuit line are twice as much as for single circuit (the tower has to be twice as thick to carry the tension of two lines). The tower costs far outweigh any savings due to access road construction or right-of-way purchases. The overall cost of removing one of the existing lines and constructing a double circuit line would be much greater than constructing the proposed single circuit line. There would be less environmental impacts
from the proposed line for some of the new access roads and spur roads would not be needed; however, all the access road upgrades would still be repaired. Visual impacts and land use would be less with less towers and no new right-of-way. Tower footing impacts (land use disturbance, vegetation removal, erosion potential) would be about the same as constructing the proposed line since the new towers would not be placed in the same locations as the ones removed. When towers are removed, in most cases the footings are cut off at ground level, leaving the underground portion in place. The new towers could not use the existing footings or be placed where old underground footing portions are located.
<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Proposed Action</th>
<th>Mitigation Measures</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use and Recreation</td>
<td></td>
<td></td>
<td>No impact</td>
</tr>
<tr>
<td>Temporary disturbance to upland bird hunting in project vicinity</td>
<td>Locate towers and roads so as not to disrupt irrigation circles, where possible</td>
<td>Locate structures and roads outside of agricultural fields, orchards, and vineyards, where possible</td>
<td></td>
</tr>
<tr>
<td>Approximately 47 acres impacted by new roads, 93 acres impacted by tower</td>
<td>Locate structures and roads outside of agricultural fields, orchards, and vineyards, where possible</td>
<td>Coordinate with landowners for farm operations, including plowing, crop dusting, and harvesting</td>
<td></td>
</tr>
<tr>
<td>construction, and 25 acres of poplar trees cut and converted to agriculture</td>
<td>Redesign irrigation equipment and compensate landowner for additional reasonable costs where new right-of-way needs to be acquired</td>
<td>Compensate farmers for crop damage and restore compacted soils</td>
<td></td>
</tr>
<tr>
<td>compatible with the transmission line</td>
<td>Control weeds around the base of the towers</td>
<td>Control weeds around the base of the towers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keep gates and fences closed and in good repair to contain livestock</td>
<td>Keep gates and fences closed and in good repair to contain livestock</td>
<td></td>
</tr>
<tr>
<td>Geology, Soils, and Seismicity</td>
<td>Minimize vegetation removal</td>
<td>Minimize vegetation removal</td>
<td>No impact</td>
</tr>
<tr>
<td>Removal of vegetation and disturbance to underlying soils in an area of up to</td>
<td>Avoid construction on steep slopes where possible</td>
<td>Avoid construction on steep slopes where possible</td>
<td></td>
</tr>
<tr>
<td>222 acres</td>
<td>Properly engineer cut-and-fill slopes</td>
<td>Properly engineer cut-and-fill slopes</td>
<td></td>
</tr>
<tr>
<td>Operation and maintenance activities could increase erosion potential along</td>
<td>Install appropriate roadway drainage to control and disperse runoff</td>
<td>Install appropriate roadway drainage to control and disperse runoff</td>
<td></td>
</tr>
<tr>
<td>the project corridor</td>
<td>Ensure graveled surfaces on access roads in areas of sustained wind</td>
<td>Ensure graveled surfaces on access roads in areas of sustained wind</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Develop additional mitigation measures (using a certified engineer)</td>
<td>Develop additional mitigation measures (using a certified engineer)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>between corridor miles 39 and 41 due to the presence of an active landslide</td>
<td>between corridor miles 39 and 41 due to the presence of an active landslide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in the vicinity of tower 40/3</td>
<td>in the vicinity of tower 40/3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apply erosion control measures such as silt fence, straw mulch, straw wattsles,</td>
<td>Apply erosion control measures such as silt fence, straw mulch, straw wattsles,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>straw bale check dams, other soil stabilizers, and reseeding disturbed areas as</td>
<td>straw bale check dams, other soil stabilizers, and reseeding disturbed areas as</td>
<td></td>
</tr>
<tr>
<td></td>
<td>required</td>
<td>required</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regularly inspect and maintain project facilities, including the access roads,</td>
<td>Regularly inspect and maintain project facilities, including the access roads,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>to ensure erosion levels remain the same or less than current conditions</td>
<td>to ensure erosion levels remain the same or less than current conditions</td>
<td></td>
</tr>
<tr>
<td>Potential Impact</td>
<td>Proposed Action</td>
<td>Mitigation Measures</td>
<td>No Action</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Streams, Rivers, and Fish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Potential transport of sediment to fish-bearing waters</td>
<td>Use erosion control methods during construction (see mitigation measures for Geology, Soils, and Seismicity)</td>
<td></td>
<td>No impact</td>
</tr>
<tr>
<td>▪ Potential accidental spills of construction materials into waterways</td>
<td>Develop and implement a Spill Prevention and Contingency Plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Potential dry wash crossing and culvert installation</td>
<td>Install water and sediment control at dry wash crossings and construct culverts per WDFW guidelines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Potential blasting near fish-bearing waters</td>
<td>Avoid blasting within 200 feet of streams when salmon eggs or alevins are in gravels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Implementation of vegetation management techniques</td>
<td>Follow BMPs defined in Vegetation Management Plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Proposed project would temporarily disturb 121 to 134 acres depending on the number and location of conductor tensioning sites</td>
<td>Locate transmission line as close as possible to existing lines to minimize additional clearing</td>
<td></td>
<td>No impact</td>
</tr>
<tr>
<td>▪ Temporary impact to 24 to 27 acres of native plants and 4 acres of cryptogramic crusts; permanent impact to 12 acres of native plants and 2 acres of cryptogramic crusts</td>
<td>Utilize existing access roads to reduce need for new access roads; limit construction equipment to designated construction areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Establishment of noxious weeds</td>
<td>Avoid placing towers in riparian zones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Vegetation loss due to fire</td>
<td>Keep vegetation clearing to a minimum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reseed areas temporarily disturbed in higher quality shrub-steppe with native grasses and forbs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimize disturbance to native species during construction to prevent invasion by nonnative species</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conduct pre- and post-construction noxious weed surveys; enter into active noxious weed control programs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wash vehicles that have been in weed-infested areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use certified weed-free mulch</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equip all project vehicles with basic fire-fighting equipment, including extinguishers, shovels, and other equipment deemed appropriate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential Impact</td>
<td>Proposed Action</td>
<td>No Action</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Wildlife</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction noise and activities would cause some wildlife to avoid areas of active construction</td>
<td>Prior to construction, conduct raptor nest surveys of cliffs located within 0.25 mile of the right-of-way and in potential burrowing owl nesting habitat within the right-of-way</td>
<td>No impact</td>
<td></td>
</tr>
<tr>
<td>Temporary impact to 24 to 27 acres of shrub-steppe habitat and permanent impact to 12 acres of shrub-steppe</td>
<td>If nests are found, follow the species-specific mitigation measures defined in the Wildlife section of Chapter 3 of this EIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential for bird collisions with new transmission line, particularly where line would cross open water or wetlands</td>
<td>Minimize the impact of shrub-steppe plant communities by clearing the least amount of vegetation necessary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimize road construction in shrub-steppe areas with burrows (corridor miles 19, 21, 63, and 76)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If deemed appropriate, install line markers in avian flight paths or migration corridors such as near crop irrigation circles and the Columbia River crossing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For the McNary Substation Alternative, avoid placing towers and lines across wetlands to minimize risk of collisions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Resources and Wetlands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential removal of wetland buffer vegetation at corridor mile 48, 50, and between corridor mile 71 and 74, with risk of increasing silt and sediment to wetlands</td>
<td>Locate structures, roads, and staging areas to avoid waters of the United States</td>
<td>No impact</td>
<td></td>
</tr>
<tr>
<td>Accidental spills of hazardous or toxic materials used or stored on the project site (fuels, lubricants, solvents)</td>
<td>Avoid construction within designated Klickitat and Benton County, Washington wetland and stream buffers to protect potential groundwater recharge areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use erosion control measures (see mitigations listed in the Soils, Geology, and Seismicity section) when conducting any earth disturbance within 100 feet of wetlands, or within the resource buffer as established by Benton and Klickitat Counties</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Place tower footings on upland basalt outcroppings and limit access road construction in wetlands complex and buffers between corridor miles 70 and 74, if possible</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Place tower footings and access roads within uplands within the wetland complex between corridor miles 48 and 50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2-3: Summary of Impacts and Mitigation Measures for the Proposed Action and No Action Alternative, p 4

<table>
<thead>
<tr>
<th>Proposed Action</th>
<th>No Action</th>
<th>Potential Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Resources and Wetlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Avoiding refueling and/or mixing hazardous materials where accidental spills could enter surface or groundwater</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Avoid mechanized land clearing within wetlands and riparian areas to avoid soil compaction from heavy machinery, destruction of live plants, and potential alteration of surface water patterns to reduce groundwater turbidity risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Anticipate and avoid, as required, contaminated soil and underground tanks during construction activities near pipelines and agricultural and other historic projects; anticipate and avoid orphaned wells, as required, particularly near the Washington communities of Plymouth, Paterson, Roosevelt, Sundale, and Towal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Avoiding refueling and/or mixing hazardous materials where accidental spills could enter surface or groundwater</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Implement the Spill Prevention and Contingency Plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultural Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Disturbance of undiscovered hunter-fisher-gatherer resources or unrecorded cultural resources</td>
<td>▪ If archaeological or historic materials are discovered during construction, surface-disturbing activities at the site would cease, and Bonneville, State Historic Preservation Office, and tribal personnel would be notified to ensure proper handling of the discovery</td>
<td>▪ No impact</td>
</tr>
<tr>
<td>▪ Locate structures, new roads, and staging areas so as to avoid known cultural resource sites and limit contractor access to cultural resource site sensitive information on a need-to-know basis</td>
<td>▪ The Umatilla Tribes CRPP identified ten TCP areas and recommends the presence of a tribal monitor during all ground disturbing activities; tribal consultation throughout the construction process (from the planning phase through the completion of the project); and collaboration between Jones & Stokes, Bonneville, and the CRC and the Board of Trustees to set up required consultation protocols on site mitigation and management</td>
<td></td>
</tr>
<tr>
<td>▪ The Umatilla Tribes would like Bonneville to ensure that the cultural and natural resources are protected as well as guaranteed traditional use of this area, in accordance with treaty reserved rights</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2-3: Summary of Impacts and Mitigation Measures for the Proposed Action and No Action Alternative, p 5

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Proposed Action</th>
<th>Mitigation Measures</th>
<th>No Action</th>
<th>Potential Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary alterations to viewscape from construction activities</td>
<td>Site all construction staging and storage areas away from locations that will be clearly visible from SR 14 to the extent practical</td>
<td></td>
<td>No impact</td>
<td></td>
</tr>
<tr>
<td>Change in viewscape; impacts would be greatest for residential viewers</td>
<td>Provide a clean-looking facility following construction by cleaning-up after construction activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keep the areas around the towers clean and free of debris</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Socioeconomics, Public Services, and Utilities			No impact
Potential benefit to local and regional economies through employment opportunities and purchase of goods and services	None required		No impact
Increased demand on local emergency response resources such as fire, police, and medical personnel and facilities			
Minor reduction on local taxing from any reduction in property values			

<p>| Transportation | | | No impact |
| Short interruptions of SR 14 traffic from construction activities | Coordinate routing and scheduling of construction traffic with state and county road staff and Burlington Northern Santa Fe Railway | | |
| Possible damage to farm roads during construction | Employ traffic control flaggers and post signs warning of construction activity and merging traffic, when necessary for short interruptions of traffic | | |
| Potential for increased unauthorized access following project construction | Employ traffic control flaggers and signs warning of construction activity and merging traffic as required | | |
| | Repair any damages to local farm roads caused by project construction | | |
| | Install gates on access roads when requested by property owners to reduce unauthorized use | | |</p>
<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Proposed Action</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Combustion pollutants from equipment exhaust and fugitive dust particles from</td>
<td>• Water exposed soil surfaces if necessary to control blowing dust</td>
<td>• No impact</td>
</tr>
<tr>
<td>disturbed soils becoming airborne</td>
<td>• Cover construction materials if they are a source of blowing dust</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Limit vehicle speeds along non-graveled roads to 25 mph</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Shut down idling construction equipment, if feasible</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No impact</td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Residents in the vicinity of the project site could experience construction</td>
<td>• All equipment will have sound-control devices no less effective than those</td>
<td>• No impact</td>
</tr>
<tr>
<td>noise (associated with grading and earthmoving activities, hauling of materials,</td>
<td>provided on the original equipment</td>
<td></td>
</tr>
<tr>
<td>and building of towers) above Washington and Oregon noise standards</td>
<td>• No equipment will have an unmuffled exhaust</td>
<td></td>
</tr>
<tr>
<td>• Potential radio and television interference</td>
<td>• No noise-generating construction activity will be conducted within 1,000 feet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of an occupied residence between 10:00 p.m. and 7:00 a.m.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Landowners directly impacted will be notified prior to construction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bonneville will take measures to restore reception to a quality of reception</td>
<td></td>
</tr>
<tr>
<td></td>
<td>as good or better than before the interference</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No impact</td>
<td></td>
</tr>
<tr>
<td>Public Health and Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Health and safety risks for workers, farmers, aviators, and visitors</td>
<td>• Prior to construction, the contractor would maintain a safety plan in</td>
<td>• No impact</td>
</tr>
<tr>
<td></td>
<td>compliance with Washington and Oregon requirements; this plan would be kept</td>
<td></td>
</tr>
<tr>
<td></td>
<td>onsite and would detail how to manage hazardous materials such as fuel, and how</td>
<td></td>
</tr>
<tr>
<td></td>
<td>to respond to emergency situations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• During construction, the contractors would also hold crew safety meetings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>at the start of each workday to go over potential safety issues and concerns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• At the end of each workday, the contractor and subcontracts will secure the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>site to protect equipment and the general public</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• As necessary, employees would be trained in tower climbing, CPR, first aid,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rescue techniques, and safety equipment inspection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• To minimize the risk of fire, all highway-authorized vehicles would be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fueled offsite; equipment not highway authorized would be fueled in accordance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with regulated construction practices and state and local laws; helicopters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>would be fueled and housed at local airfields</td>
<td></td>
</tr>
<tr>
<td>Proposed Action</td>
<td>No Action</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Potential Impact</td>
<td>Mitigation Measures</td>
<td>Potential Impacts</td>
</tr>
<tr>
<td>Public Health and Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Helicopter pilots and the contractor would work with communities along the corridor to ensure public safety; contractors would also work with local crop dusters and agricultural businesses to minimize interruption in agricultural activity during construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- If blasting is required, a notice would be sent to residents in the affected area; a public meeting for residents and other interested parties would be held prior to blasting regarding the date and time of the blasting and to answer questions; during blasting, appropriate safety measures would be taken as required by state and local codes and regulations; all explosives would be removed from the work site at the end of the work day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- If implosion bolts are used to connect the conductors, they would be installed in such a way as to minimize potential health and safety risks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Construction and operation/maintenance workers would need to be trained in what to do in the event of a chemical release from the Umatilla Army Depot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Operation and maintenance vehicles would be required to carry fire suppression equipment including (but not limited to) shovels and fire extinguishers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Drivers would be required to stay on established access roads and smoking would be prohibited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- The corridor would be maintained to control tall grass that could potentially start fires via contact with hot vehicle parts; trees and other tall vegetation would be trimmed to Bonneville standards to avoid contact with transmission lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Towers are not expected to exceed 200 feet in height; FAA laws would be followed regarding the placement of line markers to warn aircraft; Bonneville would submit locations and tower heights to FAA for review; requirements for markings and lighting would be addressed at that time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Because of the proposed transmission line’s proximity to agricultural fields, crop dusting pilots planning to enter the area would take suitable precautions to avoid collision with the proposed transmission lines</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2-4: Summary of Impacts of Short-Line Alternatives, McNary-John Day Transmission Project

<table>
<thead>
<tr>
<th>McNary Substation Alternatives</th>
<th>Hanford-John Day Junction Alternatives</th>
<th>Corridor Mile 32 Alternatives</th>
<th>Corridor Mile 35 Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildlife viewing</td>
<td>Wildlife viewing</td>
<td>Wildlife viewing</td>
<td>Wildlife viewing</td>
</tr>
<tr>
<td>temporarily obstructed; no impact to soils; some sedimentation to Columbia River and pond habitat; about 0.1 acre of trees in wetland; about 2 acres grassland habitat removed; negligible resource impacts with mitigation; recreationists and travelers would have views of construction; no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts</td>
<td>temporarily obstructed; no impact to soils; some sedimentation to Columbia River and pond habitat; about 0.1 acre of trees in wetland; about 2 acres grassland habitat removed; negligible resource impacts with mitigation; recreationists and travelers would have views of construction; no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts</td>
<td>temporarily obstructed; no impact to soils; some sedimentation to Columbia River and pond habitat; about 0.1 acre of trees in wetland; about 2 acres grassland habitat removed; negligible resource impacts with mitigation; recreationists and travelers would have views of construction; no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts</td>
<td>temporarily obstructed; no impact to soils; some sedimentation to Columbia River and pond habitat; about 0.1 acre of trees in wetland; about 2 acres grassland habitat removed; negligible resource impacts with mitigation; recreationists and travelers would have views of construction; no impact to socioeconomics; negligible transportation impacts during construction; minimal air quality impacts during construction/operation; construction noise; no specific health and safety impacts</td>
</tr>
</tbody>
</table>
Chapter 3
Affected Environment, Environmental Consequences, and Mitigation

Regional Setting

The proposed project corridor is located in the mid-Columbia River basin in eastern Oregon and Washington in four counties that border the Columbia River. It is part of an existing 500-foot-wide, 79-mile-long Bonneville corridor of transmission lines on lattice-steel towers.

Most of the land that is crossed by the corridor is privately owned, with small portions of the corridor crossing tribal, federal, and state lands. The eastern half of the corridor predominantly crosses irrigated cropland, while the western half mainly crosses horse and cattle rangeland of shrub-steppe and grasslands, interspersed with some pockets of irrigated and nonirrigated cropland. The corridor crosses approximately 61 utility lines, including gas, electric, fiber optic, telephone, irrigation, and water.

The following affected environment and environmental consequences discussions are based on the overall proposed route. Any differences in impacts of the short-line routing alternatives are given in tables toward the end of each resource discussion.

Land Use and Recreation

Affected Environment

Land Ownership and Uses within Project Corridor

The existing Bonneville corridor (the site for the proposed transmission line) crosses mostly private land (94% of lands crossed) as well as tribal, federal, and state lands in eastern Washington and Oregon bordering the Columbia River. The project corridor originates in Umatilla City, Oregon, crosses over Columbia River, travels west through
Benton and Klickitat Counties in Washington, crosses back over the Columbia River, and ends in Sherman County, Oregon.

At the McNary Substation, the proposed line would cross a Corps managed wildlife refuge. At corridor miles 32 and 35 the transmission line corridor crosses two tribal properties owned by members of the Yakama Nation. Over each property, between 500 and 1,100 feet of corridor crosses the land. Bonneville is considering moving the entire corridor off the tribal lands (see Corridor Miles 32 and 35 Alternatives, Chapter 2, for details). The Yakama Nation Reservation is located 25 miles north of the corridor.

The corridor also crosses property managed by the BLM (about 5 miles between corridor miles 36 through 42), and three properties managed by the Washington Department of Natural Resources (DNR) (about 1 mile at corridor mile 21, 1 mile at corridor mile 44, and 1 mile at corridor mile 67).

Land use within the corridor is primarily agriculture (irrigated cropland, dryland wheat farming, and grazing). Irrigated agricultural uses in the project corridor include poplar tree farms, orchards, and a variety of crops such as potatoes, corn, onions, carrots, and asparagus. Some crops change annually. There are approximately 1,409 acres of irrigated and non-irrigated cropland, 3,064 acres of grazing land, and 2 acres of substation/wildlife land use in the project corridor. There are no lands designated as prime farmland in the project corridor. Table 3-1 summarizes the land uses and the corresponding Bonneville structure numbers within the project corridor. Residential and industrial/commercial land is also adjacent to the corridor (see discussion in the following section on Land Uses Adjacent to Project Corridor).

Land Uses Adjacent to Project Corridor

The residential areas adjacent to the transmission line corridor are rural and of low density, with single-family houses, barns, and accompanying outbuildings. The residences are concentrated in the cities of Plymouth (structure 4/1), Paterson (structures 16/1 to 16/5), and North Roosevelt and West Roosevelt (corridor miles 48 and 49, respectively) in Washington and Umatilla City (corridor mile 1) and Rufus (corridor mile 78) in Oregon. In addition, single residences, small groupings of houses, or small farm complexes are located in the vicinity of structures 6/1, 7/2, 10/4, 22/3, 29/3, 30/1, 68/1, 68/5, and 69/4. Paterson Elementary School is located in the vicinity of structure 16/3.
Table 3-1: Summary of Land Uses within the Project Corridor by County and Structure Number

<table>
<thead>
<tr>
<th>County</th>
<th>Land Use</th>
<th>Structure Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umatilla</td>
<td>Substation</td>
<td>McNary Substation</td>
</tr>
<tr>
<td>Benton</td>
<td>Irrigated cropland</td>
<td>6/3 to 6/11, 14/2 to 16/3, 18/2 to 20/3, 21/5 to 27/1, 28/3 to 29/1</td>
</tr>
<tr>
<td></td>
<td>Grazing land</td>
<td>16/3 to 18/2, 11/2 to 14/1, 20/3 to 21/5, 27/1 to 28/3</td>
</tr>
<tr>
<td>Klickitat</td>
<td>Grazing land</td>
<td>32/4 to 33/1, 33/3 to 54/1, 54/4 to 60/3, 61/3 to 76/2</td>
</tr>
<tr>
<td></td>
<td>Orchards and vineyards</td>
<td>30/1 to 32/4</td>
</tr>
<tr>
<td></td>
<td>Vineyards only</td>
<td>33/1 to 33/3, 54/1 to 54/4</td>
</tr>
<tr>
<td></td>
<td>Dryland grain farming</td>
<td>60/3 to 61/3</td>
</tr>
<tr>
<td>Sherman</td>
<td>Grazing land</td>
<td>77/4 to 78/1</td>
</tr>
<tr>
<td></td>
<td>Dryland grain farming</td>
<td>76/2 to 77/4</td>
</tr>
<tr>
<td></td>
<td>Irrigated cropland</td>
<td>78/1 to John Day Substation</td>
</tr>
</tbody>
</table>

The industrial/commercial facilities near the project corridor include Watts Brothers Frozen Foods near structure 14/2; Paterson Onion near structure 17/5; a gravel quarry at 22/3; Mercer Ranch in the vicinity of corridor miles 28 and 29; Stimson Lane Wine and Spirits, Columbia River Farms, Central Services, and Columbia Water and Power District in the area between structures 31/4 to 33/3; McBride’s Cattle and Quarter Horse Ranch and Alder Ridge Vineyard near structure 38/5; and the Goldendale aluminum plant, near structure 73/5.

The Portland District of the Corps has developed or is developing Columbia River Treaty Fishing Access Sites (CRTFAS) within the John Day/Lake Umatilla Project. The Corps has been authorized by Public Law 100-581 to acquire, develop, and transfer to the Bureau of Indian Affairs lands along the Columbia River on Bonneville, The Dalles, and John Day pools in support of treaty fishing of four treaty tribes. In general, Title IV of this Act provides that designated sites—also known as Section 401(a) sites—will be administered to provide access and facilities in support of treaty fishing use by these four treat tribes. Congress directed the Corps to provide over 20 sites in all, 14 of which are located at Lake Umatilla. Nine sites have been developed at Lake Umatilla and five more...
are in development planning stage, with construction expected in 2002-2003. Generally, once the sites are developed, they are transferred to Bureau of Indian Affairs and public use is no longer permitted. In a few cases, the tribes have agreed to share use and the Corps retains management provisions.

Utility Line Crossings

The project corridor crosses approximately 61 utility lines (e.g., gas lines, electric, fiber optic, telephone, irrigation, and water lines). The proposed transmission line would be located in the corridor with a number of existing Bonneville transmission lines: McNary-Horse Heaven No. 1 line and McNary-Ross No. 1 line from corridor mile 0 to 18; Horse Heaven-Harvalum No. 1 line and McNary-Ross No. 1 line from corridor mile 18 to 76; Ashe-Marion No. 2 line and Ashe-Slatt No. 1 line join with the proposed transmission line right-of-way from corridor mile 23 to 27; and Hanford-John Day No. 1 line joins with the project corridor at corridor mile 68 to the John Day Substation.

Recreation

Formal recreational opportunities in the project vicinity are listed by county in Table 3-2. Informal recreational opportunities in the vicinity of the project corridor include upland bird hunting, with proper authorization, along certain areas of the corridor on the south side of SR 14 in Benton County and various water sports on the Columbia River along the entire length of the project corridor. SR 14 is designated as a Scenic and Recreation Highway by the state of Washington.

Table 3-2: Formal Recreational Sites in the Vicinity of the Project Corridor

<table>
<thead>
<tr>
<th>Recreational Site</th>
<th>Proximity to Project Corridor</th>
<th>Amenities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umatilla County, Oregon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umatilla Marina Park (leased to Port of Umatilla by the Corps)</td>
<td>Approximately 0.125 mile west of McNary Substation (corridor mile 1)</td>
<td>Boating, fishing, picnicking, swimming</td>
</tr>
<tr>
<td>Benton County, Washington</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corps National Wildlife Area</td>
<td>Adjacent to McNary Substation (corridor mile 1)</td>
<td>Fishing, wildlife viewing, boating</td>
</tr>
<tr>
<td>McNary Park</td>
<td>Adjacent to McNary Substation (corridor mile 1)</td>
<td>Picnicking</td>
</tr>
</tbody>
</table>
Land Use and Recreation

<table>
<thead>
<tr>
<th>Recreational Site</th>
<th>Proximity to Project Corridor</th>
<th>Amenities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plymouth Park (owned by the Corps)</td>
<td>Approximately 1 mile south of project corridor (corridor mile 4)</td>
<td>Swimming, picnicking</td>
</tr>
<tr>
<td>Umatilla National Wildlife Refuge</td>
<td>Approximately 100 yards to 2 miles south of project corridor (corridor mile 11 to 28)</td>
<td>Wildlife viewing, hunting</td>
</tr>
<tr>
<td>Crow Butte State Park (leased to the State of Washington by the Corps)</td>
<td>Approximately 0.25 mile south of project corridor (corridor mile 28 to 30)</td>
<td>Boating, swimming, fishing, camping, picnicking</td>
</tr>
<tr>
<td>Crow Butte Fishing Access Site</td>
<td>Approximately 0.25 mile south of project corridor (corridor mile 28 to 30)</td>
<td>Columbia River Treaty Fishing Access Site (CRTFAS) (tribal access only)</td>
</tr>
<tr>
<td>Plymouth Park</td>
<td>Approximately 1 mile south of project corridor (corridor mile 4)</td>
<td>Swimming, picnicking</td>
</tr>
<tr>
<td>Corridor Mile 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umatilla National Wildlife Refuge</td>
<td>Approximately 100 yards to 2 miles south of project corridor (corridor mile 11 to 28)</td>
<td>Wildlife viewing, hunting</td>
</tr>
<tr>
<td>Corridor Mile 11 to 28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crow Butte State Park (leased to the State of Washington by the Corps)</td>
<td>Approximately 0.25 mile south of project corridor (corridor mile 28 to 30)</td>
<td>Boating, swimming, fishing, camping, picnicking</td>
</tr>
<tr>
<td>Crow Butte Fishing Access Site</td>
<td>Approximately 0.25 mile south of project corridor (corridor mile 28 to 30)</td>
<td>Columbia River Treaty Fishing Access Site (CRTFAS) (tribal access only)</td>
</tr>
<tr>
<td>Plymouth Park</td>
<td>Approximately 1 mile south of project corridor (corridor mile 4)</td>
<td>Swimming, picnicking</td>
</tr>
<tr>
<td>Corridor Mile 28 to 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corridor Mile 54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klickitat County, Washington</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sundale Park</td>
<td>Approximately 0.25 mile south of project corridor (no view of project corridor) (corridor mile 54)</td>
<td>Picnicking, boat launch</td>
</tr>
<tr>
<td>Corridor Mile 54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pine Creek Fishing Access Site</td>
<td>Approximately 1 mile south of project corridor (corridor mile 48)</td>
<td>CRTFAS (tribal access only)</td>
</tr>
<tr>
<td>Roosevelt Park (owned by the Corps)</td>
<td>Approximately 1 mile south of project corridor (no view of project corridor) (corridor mile 49)</td>
<td>Camping, windsurfing, swimming, picnicking</td>
</tr>
<tr>
<td>Roosevelt Fishing Access Site</td>
<td>Approximately 1 mile south of project corridor (no view of project corridor) (corridor mile 49)</td>
<td>CRTFAS (tribal access only)</td>
</tr>
<tr>
<td>Stonehenge</td>
<td>Approximately 6 miles west of John Day Dam</td>
<td>Photography, historical information</td>
</tr>
<tr>
<td>Maryhill State Park (leased to the State of Washington by the Corps)</td>
<td>Approximately 7 miles west of John Day Dam</td>
<td>Boating, swimming, camping, picnicking, windsurfing</td>
</tr>
<tr>
<td>Maryhill Museum of Art</td>
<td>Approximately 5 miles west of John Day Dam (limited views of corridor)</td>
<td>Picnicking, museum facilities</td>
</tr>
<tr>
<td>John Day Dam Cliffs Park (owned by the Corps)</td>
<td>Adjacent to John Day Dam (corridor mile 74)</td>
<td>Windsurfing, camping, fishing</td>
</tr>
<tr>
<td>Rock Creek Park (owned by the Corps)</td>
<td>Approximately 1 mile north of corridor (corridor mile 61)</td>
<td>Park is closed; no plans to reopen</td>
</tr>
</tbody>
</table>
Environmental Consequences—Proposed Action

Impacts During Construction

Land Use

Development of the proposed project would add an additional transmission line to the current land uses within the existing Bonneville transmission line corridor. These current land uses include irrigated and nonirrigated cropland, grazed and ungrazed shrub-steppe land, and transmission line facilities and substations (see Figure 3-1). The project would be consistent with the purpose and intent of the zoning and comprehensive plan designations for the City of Umatilla and Sherman County in Oregon and Benton and Klickitat Counties in Washington. The proposed project would be consistent with the Statewide Planning Goal 11 (Public Services and Utilities) guidelines for siting utility lines and facilities in existing public or private rights-of-way. Bonneville would strive to meet development regulations for Statewide Planning Goal 3 (Agricultural Lands).

In Umatilla County, the project corridor is not located within the City of Umatilla city limits, but it is located within the Urban Growth Boundary of the City of Umatilla under the jurisdiction of the Umatilla County Zoning Code (in a Joint Management Agreement between the City and the County) and the City of Umatilla Comprehensive Plan. In Umatilla County, the corridor is located on land designated as Recreation/Open Space and Public Facilities in the City of Umatilla Comprehensive Plan. Because the proposed transmission line is a public utility, and would not significantly affect recreation in this area, the proposed project would not be in conflict with the county’s land use plan. The county’s zoning designation for the project corridor is F1, Exclusive Farm Use. A noncommercial utility facility is permitted outright in the F1, Exclusive Farm Use zone (Section 3.012(5)), and the proposed action thus would not be inconsistent with this designation.

In Benton County, the corridor is zoned as Growth Management Act (GMA) Agriculture by the Benton County Zoning Ordinance (11.18.050) and the Benton County Comprehensive Plan. Utility corridors are an allowed use in this zone and plan designation, and the proposed transmission line thus would not be in conflict with the county’s zoning ordinance or comprehensive plan. A portion of the corridor where it
crosses the Columbia River also is located on land that is designated as Urban Environment by the Benton County Shoreline Management Master Plan. Utilities such as transmission lines are a conditional use in areas with this designation. Bonneville would comply to the maximum extent practicable with any general regulatory standards from the Shoreline Plan. Thus, the proposed action would likely not conflict with the County’s Shoreline Plan (Shuttleworth pers. comm.).

In Klickitat County, the project corridor is located on land designated as Agricultural Forest and Rural Center by the Klickitat County Comprehensive Plan. The project corridor in Klickitat County is on land designated as Agricultural Forest, except for land around Roosevelt, which is designated as Rural Center. Utilities such as transmission lines are consistent with the policies of the land use designations of the Comprehensive Plan. The proposed action would therefore not conflict with the County’s Comprehensive Plan. The majority of the corridor in Klickitat County is zoned as Extensive Agriculture by the Klickitat County Zoning Ordinance. The rest of the project corridor is located in land zoned as Open Space (near the river crossing), Industrial Park (Goldendale vicinity), and Rural Residential (near Roosevelt) (Frampton pers. comm.). Utilities such as transmission lines are conditional uses in the Open Space, Extensive Agriculture, and Rural Residential zones. Utilities are permitted outright in the Industrial Park zone.

When the project corridor crosses the Columbia River, it is located on land that is designated as an Urban/Industrial Environment of the shoreline area by the Klickitat County Shoreline Master Plan. Utilities such as transmission lines are permitted in areas with this designation. Bonneville would comply to the extent practicable with any general regulatory standards from the Shoreline Plan. Thus, the proposed action would not conflict with the County’s Shoreline Plan.

In Sherman County, the project corridor is located on land designated as Exclusive Farm Use in the Sherman County Comprehensive Plan, and is zoned as Exclusive Farm Use, (EFU) F-1 by the Sherman County Zoning, Subdivision, and Land Development Ordinance. A noncommercial utility facility necessary for public service is a permitted use in this zone. The County Ordinance also identifies a Natural Hazards overlay zone for an area along the bluffs downstream from John Day Dam. The portion of the corridor that crosses the bluffs is located in this overlay zone. Utilities are a conditional use in the overlay zone. The transmission line would be located, constructed, and operated in a manner generally consistent with the relevant provisions of the Natural Hazard overlay zone.

See the section on State, Areawide, and Local Plan and Program Consistency, Chapter 4, for more information.

Temporary impacts on land use would be due to construction activities such as heavy equipment causing soil and crop disturbance, noise, and dust. The construction activities that could cause impacts would include placement of towers, access roads upgrades and construction, and conductor tensioning sites.
In areas of crop or grazing lands, the heavy machinery could damage crops and compact soils, causing a temporary loss of soil productivity. The damage would depend on the type of crop (whether it was a vineyard, orchard or annuals), the season (during summer growing season, harvest, or dormant winter), and if the land was in use or fallow.

Soil and vegetation disturbance can also encourage the establishment or spread of noxious weeds. Noxious weeds can impact crops and grazing grasses by competing and replacing them. See the Vegetation section for more discussion about noxious weeds.

Approximately 48 acres (12 acres in cropland and 35 acres in grazing land) would be impacted during the construction of the new access roads and spur roads (based on a 25-foot-wide construction area). Approximately 93 acres (29 acres of cropland and 64 acres of grazing land) would be temporarily impacted during the construction of the towers, based on an impact area of 0.25 acre per tower.

Approximately 25 acres of trees would need to be removed from the poplar tree farm (structures 21/5 to 23/3) in the vicinity of Glade Creek. A total of 50 acres would be removed from cottonwood production. Since the trees were grown to be harvested, the impact of the line may be that the trees would need to be harvested earlier than anticipated, thus losing some potential wood fiber. The tree farm would no longer be able to farm poplar trees in this area, because the trees grow tall and would be a threat to the safety and reliability of the line. (If a tree grows too close to power lines, electricity could arc over and cause an outage of the line and/or a fire.) The farmland could be used for low growing crops or orchards.

Conductor-tensioning sites, where the trucks pull the conductor to the correct tension, would also impact land use, although temporarily. The sites would be located along the project corridor every 2 to 3 miles, disturbing an area of about 1 acre. Total temporary impacts from the conductor-tensioning sites would be approximately 40 acres if spaced every 2 miles (14 acres in cropland and 26 acres in grazing land), or approximately 26 acres if every 3 miles (9 acres in cropland and 17 acres in grazing land).

During construction, livestock grazing, farming, and crop dusting in the corridor may have to be temporarily restricted in some areas to avoid conflicts between livestock or farm equipment and construction equipment. Potential impacts include cattle having to be segregated to avoid getting out.

Temporary staging areas will be determined by the contractor. These areas will likely be located in empty parking lots or on previously disturbed sites. In previously disturbed areas there would be no impacts of staging areas. If staging areas are not on empty parking lots, they would cause temporary vegetation and soil disturbance.

Recreation

None of the formal recreation facilities shown in Figure 3-1 would be disturbed during construction. Access to some of the sites may be delayed by construction traffic.
distribution and selling of fish is an activity at some of the CRTFASs, access delay could potentially affect sales. Upland bird hunting may be temporarily disturbed in the project corridor in Benton County on the south side of SR 14, depending on the time of year when construction occurs. Construction of the project could encourage sightseeing by travelers on SR 14. Noise and/or dust would likely be noticeable by those travelers or recreationists in close proximity to the construction site(s).

Impacts During Operation and Maintenance

Land Use

The permanent project facilities (not including access roads) would occupy approximately 19 acres total (6 acres of irrigated and nonirrigated cropland and 13 acres of grazing land). New access roads would occupy a permanent footprint of approximately 48 acres (based on a 25-foot impact area). Table 3-3 identifies the land uses affected by the permanent project footprint.

The cropland no longer available for farm use would represent a small portion of the agricultural land in the project corridor and a negligible portion of agricultural land in each of the four affected counties (see Table 3-4).

Table 3-3: Acreage of Land Uses that Would Be Occupied by Permanent Project Facilities

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Acres Occupied by Permanent Project Facilities</th>
<th>Access Roads</th>
<th>Towers</th>
<th>Substations</th>
<th>Total Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cropland (irrigated and nonirrigated)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benton County</td>
<td>8.9</td>
<td>4.1</td>
<td>0</td>
<td>13.1</td>
<td></td>
</tr>
<tr>
<td>Klickitat County</td>
<td>2.3</td>
<td>1.2</td>
<td>0</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Sherman County</td>
<td>0.8</td>
<td>0.4</td>
<td>0</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Grazing Land</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benton County</td>
<td>5.5</td>
<td>2.4</td>
<td>0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>Klickitat County</td>
<td>29.2</td>
<td>9.5</td>
<td>0</td>
<td>39.1</td>
<td></td>
</tr>
<tr>
<td>Sherman County</td>
<td>0.8</td>
<td>0.1</td>
<td>0</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Substation/Wildlife Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umatilla County</td>
<td>0.5</td>
<td>0.4</td>
<td>2</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
<td>18.1</td>
<td>2</td>
<td>68.1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3-4: Proportion of Agricultural Land in Each County that Would Be Occupied by Permanent Project Facilities

<table>
<thead>
<tr>
<th>County</th>
<th>Total Agricultural Land in County (acres)</th>
<th>Agricultural Land Occupied by Permanent Project Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benton</td>
<td>611,903</td>
<td>21.1</td>
</tr>
<tr>
<td>Klickitat</td>
<td>588,732</td>
<td>42.6</td>
</tr>
<tr>
<td>Sherman</td>
<td>425,036</td>
<td>2.1</td>
</tr>
<tr>
<td>Umatilla</td>
<td>1,345,097</td>
<td>23.0</td>
</tr>
<tr>
<td>Total, All Four Counties</td>
<td>2,970,768</td>
<td>88.8</td>
</tr>
</tbody>
</table>

The proposed project would not appreciably disrupt the current and planned agricultural uses of the land in the four affected counties. To the extent possible, the transmission line facility would be constructed to avoid existing and proposed (if known) irrigation lines. In areas where new right-of-way needs to be acquired, if the irrigation equipment or layout needs to be redesigned because of the proposed transmission line, Bonneville would compensate the landowner for the additional reasonable costs. In areas, where the line construction would be within existing right-of-way, Bonneville would follow existing agreements made with the landowner and work with them to minimize the impact to the irrigation systems. In areas where new easement for the transmission line or access roads would have to be acquired, nonfederal landowners would receive compensation, based on market value, for the use of their property. Easements for access on existing roads where the property owner is the only user other than Bonneville, would be compensated at 50% of full fee value, or less than 50% if more than one landowner shares the road.

The tower spacing would allow for crop dusting to continue, and the project would not alter the existing gates and fences that cross the project corridor. Approximately 38 new swing gates would be installed, 23 of which would replace existing barbed-wire or broken gates. Gate locks would be coordinated with the landowner to ensure that both Bonneville and the landowner can unlock the gates. Access roads on private property would be accessible to the landowners.

Recreation

The proposed transmission line would be seen from the following recreation facilities: Umatilla Marina Park, McNary Wildlife Viewing Area, McNary Park, Plymouth Park, Umatilla National Wildlife Refuge, Crow Butte State Park, Crow Butte CRTFAS, Pine Creek CRTFAS, Stonehenge, Maryhill State Park, Maryhill Museum of Art, John Day Dam Cliffs Park, Rock Creek Park, and the John Day Viewing Area (see Visual Resources in this chapter).
Environmental Consequences—Short-Line Routing Alternatives

Table 3-5 summarizes the land use impacts associated with the short-line routing alternatives described in the Routing Alternatives section of Chapter 2.

Table 3-5: Impacts of Short-Line Routing Alternatives:
Land Use and Recreation

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>McNary Substation Alternatives</td>
<td></td>
</tr>
<tr>
<td>A. Relocate administration building presently located on north side of</td>
<td>Wildlife viewing may be temporarily obstructed during construction.</td>
</tr>
<tr>
<td>substation adjacent to Wildlife Natural Area</td>
<td></td>
</tr>
<tr>
<td>B. Cross Wildlife Natural Area; circumvent administration building on</td>
<td>Wildlife viewing may be temporarily obstructed during construction.</td>
</tr>
<tr>
<td>north side</td>
<td></td>
</tr>
<tr>
<td>C. Place line in bus work at ground level on north side of administration</td>
<td>No recreation impacts are anticipated.</td>
</tr>
<tr>
<td>building, inside Wildlife Natural Area</td>
<td></td>
</tr>
<tr>
<td>Hanford-John Day Junction Alternatives</td>
<td></td>
</tr>
<tr>
<td>A. Move existing Hanford-John Day line north 200 feet to make room for</td>
<td>Approximately 1.5 acres of grazing land would be disturbed during</td>
</tr>
<tr>
<td>new line on north side of corridor</td>
<td>construction. The permanent project facilities (towers and roads)</td>
</tr>
<tr>
<td></td>
<td>would occupy approximately 0.25 acre of grazing land. No</td>
</tr>
<tr>
<td></td>
<td>recreation impacts are anticipated.</td>
</tr>
<tr>
<td>B. Place new line on south side of corridor</td>
<td>Approximately 3.2 acres of grazing land would be permanently</td>
</tr>
<tr>
<td></td>
<td>impacted (occupied by roads and towers) and about 0.5 acre of</td>
</tr>
<tr>
<td></td>
<td>grazing land would be temporarily impacted during construction. No</td>
</tr>
<tr>
<td></td>
<td>recreation impacts are anticipated. The occupants of the residence</td>
</tr>
<tr>
<td></td>
<td>would be impacted by having their barn and shed removed. If the house</td>
</tr>
<tr>
<td></td>
<td>requires removal, the residents would have to find new housing.</td>
</tr>
<tr>
<td>C. Place new line on south side of highway (occupied by roads and towers)</td>
<td>Approximately 3.2 acres of grazing land and 3.1 acres of cropland</td>
</tr>
<tr>
<td></td>
<td>would be permanently impacted. Approximately 0.5 acre of grazing</td>
</tr>
<tr>
<td></td>
<td>land would be temporarily impacted during construction. No</td>
</tr>
<tr>
<td></td>
<td>recreation impacts are anticipated. Impacts to the residence would</td>
</tr>
<tr>
<td></td>
<td>be the same as Alternative B, though the towers would be located</td>
</tr>
<tr>
<td></td>
<td>about 35 feet closer to the house.</td>
</tr>
</tbody>
</table>
Alternative Impacts

Corridor Mile 32 Alternatives

A. Keep existing and new lines on tribal land
 Approximately 0.6 acre of cropland would permanently impacted (occupied by roads and towers) and about 0.8 acre would be temporarily impacted during construction. No recreation impacts are anticipated.

B. Relocate existing and new lines away from tribal land
 Approximately 1.8 acres of cropland would be permanently impacted (occupied by roads and towers) and about 2.25 acres would be temporarily impacted during construction. No recreation impacts are anticipated.

Corridor Mile 35 Alternatives

A. Keep existing and new lines on tribal land
 Approximately 0.8 acre of grazing land would be permanently impacted (occupied by roads and towers) and about 1.0 acre would be temporarily impacted during construction. No recreation impacts are anticipated.

B. Relocate existing and new lines away from tribal land
 Approximately 1.5 acres of grazing land would be impacted (occupied by roads and towers) and about 2 acres would be temporarily impacted during construction. No recreation impacts are anticipated.

Mitigation

The following mitigation measures would help minimize land use impacts.

- Locate towers and roads so as not to disrupt irrigation circles, where possible.
- Locate structures and roads outside of agricultural fields, orchards, and vineyards, where possible.
- Coordinate with landowners for farm operations, including plowing, crop dusting, and harvesting.
- Redesign irrigation equipment and compensate landowner for additional reasonable costs where new right-of-way needs to be acquired.
- Compensate farmers for crop damage and restore compacted soils.
- Control weeds around the base of the towers.
- Keep gates and fences closed and in good repair to contain livestock.

Unavoidable Impacts Remaining after Mitigation

During construction, approximately 50 to 55 acres of irrigated and nonirrigated cropland and 116 to 125 acres of grazing land (shrub-steppe and grasslands) would be temporarily disturbed during construction.
Following construction, approximately 68 acres of irrigated and nonirrigated cropland and grazing land would be converted to transmission line facilities during the life of the project. This includes a small percentage of agricultural land in Benton and Klickitat Counties in Washington and Umatilla and Sherman Counties in Oregon.

Environmental Consequences—No Action Alternative

If the No Action Alternative was implemented, existing land uses in the project corridor would continue without influence from the proposed project.

Geology, Soils, and Seismicity

Affected Environment

Geology

The 79-mile corridor for the proposed transmission line is located within the western margin of the Columbia River plateau. The Columbia River plateau covers approximately 63,000 square miles throughout Washington, Oregon, and Idaho. The plateau is bordered by the Okanogan Highlands to the north, the Cascade Mountains on the west, the Clearwater Mountains on the east, and the Blue Mountains to the south.

The geology of the Columbia River plateau is dominated by the Columbia River Basalt group, a series of flood basalt flows that erupted during the Miocene epoch. Younger geologic units cover the basalt flows, consisting of alluvium, landslides, river terrace deposits, catastrophic flood deposits, and loess deposits. Within the 500-foot-wide project corridor evaluated for the project, the Columbia River Basalt Group is composed of three distinct formations (from oldest to youngest): Grande Ronde, Wanapum, and Saddle Mountains (Orr and Orr 1996).

For natural resources, the field investigations for this EIS focused on the existing 500-foot-wide Bonneville transmission line corridor following the path of the proposed transmission line. The detailed assessment of potential wildlife habitat, vegetation types, and other natural resources was focused within this 500-foot-wide corridor in order to focus the EIS assessment on areas where impacts are most likely to occur as a result of the project.
The project corridor and vicinity consist mainly of river terraces, ridges, bluffs, and volcanic tableland adjacent to the north bank of the Columbia River running parallel to SR 14. The corridor crosses numerous incised stream channels draining into the Columbia River. Based on the review of geologic maps and field observation, ridges, bluffs, and the inner gorge areas of the incised stream channels crossed by the project corridor are composed primarily of exposed basaltic bedrock covered with a generally thin layer of soil. Loess deposits of varied thickness cover the relatively flat stream terraces along the east portion of the study area through Klickitat County and across The Burn. The Burn is a geographical area (a plateau overlooking the Columbia River) south of Rock Creek.

Soils

Soils along the project corridor primarily consist of wind-blown loess deposits or glacial outburst flood sands and gravels underlain by basaltic bedrock. Most soils along the corridor are designated as suitable for rangeland, woodland, or wildlife, and some steeper areas may require complex conservation methods when used for cultivation. Small sections along the project corridor have soils considered prime farmland, including the soils underlying both the McNary Substation and John Day Substation. Table 3-6 describes soil types along the project corridor.

Seismicity

The project corridor and vicinity lie in a low earthquake hazard area (seismic zone 2B) recognized by the 1994 Uniform Building Code. Published geologic maps and field observation indicated five faults along the corridor (Phillips and Walsh 1987). These faults are probably inactive, with no known historic activity, meaning no recorded activity and no evidence of activity during the Holocene epoch (last 10,000 years). This does not mean that the faults would never again move, but the probability of these faults reactivating is low.

If a moderate or severe seismic event was to occur in the project vicinity, the ground movement would have the potential to cause impacts along the project corridor through mass wasting (landslides) in areas that have steep slopes. The likelihood of mass wasting event happening during a significant seismic event is increased in areas where historic quaternary period landslides are known to have occurred. Due to the generally arid conditions along the corridor, ground surface ruptures or ground liquefaction do not have as high of a potential to occur as mass wasting.
Table 3-6: Soil Types Along the Project Corridor

<table>
<thead>
<tr>
<th>Corridor Mile</th>
<th>Soil Association</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 2</td>
<td>Quincy-Winchester-Burbank</td>
<td>Deep, excessively drained soils formed by loess deposits, flood gravels, or recent alluvium on river terraces. One soil of this association, Adkins fine sandy loam with gravelly substratum, is considered prime farmland and underlies the McNary switchyard (SCS 1988).</td>
</tr>
<tr>
<td>2 to 14</td>
<td>Quincy-Hezel-Burbank</td>
<td>Dry sandy to silty soils formed on river terraces or in dunes (SCS 1971). Some of these soils may be designated prime farmland.</td>
</tr>
<tr>
<td>14 to 48</td>
<td>Kiona-Bakeoven-Starbuck</td>
<td>Dry stony, very shallow to moderately deep rangeland soils with low water-retention properties.</td>
</tr>
<tr>
<td>48 to 57 and 60 to 70</td>
<td>Clerf-Bakeoven-Vantage</td>
<td>Dry, stony, and very shallow to moderately deep rangeland soils having slightly dark topsoil.</td>
</tr>
<tr>
<td>57 to 60 (The Burn)</td>
<td>Mikkalo-Bakeoven-Zen</td>
<td>Formed on highly dissected plateaus or eroded land surfaces. Include loessial soils 20 to 40 inches thick above the basaltic bedrock that are suitable for cultivation and shallow stony soils that are used for rangeland. No soils of this association are listed as prime farmland (www.wsu.edu, accessed August 24, 2001).</td>
</tr>
<tr>
<td>70 to 75 (Columbia River)</td>
<td>Kuhl-Badge-Lickskillet</td>
<td>Stony rangeland soils of shallow to moderate depth having slightly dark, humus-rich topsoil (KRC 1977).</td>
</tr>
<tr>
<td>75 to 79</td>
<td>Kuhl-Lickskillet-Wato</td>
<td>Stony to sandy soils of shallow to moderate depth formed by wind deposits on plateau tops and valley slopes. Two soils of this association are considered prime farmland. Wato very fine sandy loam is located on the south plateau overlooking the Columbia River crossing and is the soil type underlying the John Day Substation. The second soil type is Anders very fine sandy loam, located as one small area immediately east of the John Day Substation (SCS 1964).</td>
</tr>
</tbody>
</table>

A landslide area was observed in the vicinity of tower 40/3 during the field investigation conducted on May 23, 2001. Evidence that this landslide is recent and may continue include a barren vertical headwall scarp, open and acute tension cracks at the ground surface near both upper and lower access roads, and additional open tension cracks at the ground surface extending beneath the northwest footing of tower 40/3. Also, most of the area is not considered to be susceptible to liquefaction, which occurs primarily in weakly developed granular soils under saturated conditions.
Environmental Consequences—Proposed Action

Impacts During Construction

The basaltic bedrock underlying the project corridor is expected to provide a stable foundation for the proposed transmission towers.

Construction impacts would total 166 to 181 acres depending on the number and location of conductor tensioning sites. This temporary impact is projected to last up to one year and has the potential to increase the rate of erosion along the corridor. In areas along the corridor where quaternary period loess soils have developed as a result of wind deposition, removal of vegetation would likely increase the rate of wind erosion. Erosion rates would most likely return to their current level following construction if plants reestablished along the corridor, naturally, or through revegetation.

Approximately 78 acres of existing roads would be reconditioned and widened for the project. About 48 acres of spur roads and new roads would be constructed for the project. Additionally, between 26 and 39 acres would be disturbed (perhaps cleared of vegetation) for conductor-tensioning sites along the project corridor. Approximately 93 acres would be disturbed and cleared of vegetation to construct the 360 transmission towers anticipated along the project corridor. Up to 2 acres would be disturbed and cleared of vegetation for substation work at McNary. Additionally, approximately 25 acres of poplar trees would likely need to be removed west of Glade Creek due to safety protocols. A total of 50 acres would be removed from cottonwood production.

The removal of vegetation and disturbance of the underlying soils has the potential to increase the risk of erosion along the project corridor. Areas where a higher likelihood for increased rates of erosion to occur include the loose unconsolidated quaternary period loess soils. Areas where a higher likelihood for increased rates of erosion to occur include the loose unconsolidated quaternary period loess soils and dune fields. These unconsolidated materials are wind created and found as pockets along the project corridor in areas comprised of the Quincy-Winchester-Hezel-Burbank, Mikkalo-Bakeoven-Zen, or Kuhl-Lickskillet-Wato soil associations (see Table 3-6).

Impacts During Operation and Maintenance

Operation and maintenance activities could increase erosion potential along the project corridor. Anticipated erosion rates during operation and maintenance are expected to remain at or near current levels, once revegetation has occurred.

Environmental Consequences—Short-Line Routing Alternatives

None of the short-line routing alternatives proposed for the transmission line are expected to have unexpected or adverse impacts if the mitigation measures and best management practices listed for construction are implemented.
There are no impacts expected to geology and soils for the project alternatives with proper mitigation.

Mitigation

The following mitigation measures would help minimize impacts to soil and seismicity impacts.

- Minimize vegetation removal.
- Avoid construction on steep slopes where possible.
- Properly engineer cut-and-fill slopes.
- Install appropriate roadway drainage to control and disperse runoff.
- Ensure graveled surfaces on access roads in areas of sustained wind.
- Develop additional mitigation measures (using a certified engineer) between corridor miles 39 and 41 due to the presence of an active landslide in the vicinity of tower 40/3.
- Apply erosion control measures such as silt fence, straw mulch, straw wattles, straw bale check dams, other soil stabilizers, and reseeding disturbed areas as required (prepare a Stormwater Pollution Prevention Plan).
- Regularly inspect and maintain project facilities, including the access roads, to ensure erosion levels remain the same or less than current conditions.

Unavoidable Impacts Remaining after Mitigation

No unavoidable or adverse impacts to geology or soils are expected to remain following completion of the project if the mitigation measures and best management practices listed earlier are implemented.

Environmental Consequences—No Action Alternative

Under the No Action Alternative, the potential impacts to geology and soils from the proposed project would not change from the current site conditions. No impact to geology and soils is predicted.
Streams, Rivers, and Fish

Affected Environment

A total of 15 streams, the Columbia River, and 146 dry washes cross the project corridor. Of the streams and river, 11 are considered fish bearing or potentially fish bearing and five are non-fish-bearing. Table 3-7 lists the streams crossed and the fish they may contain. Figure 3-2 shows the location of all streams and the river surveyed. Table 3-7 summarizes the streams intersected by the project corridor.

Table 3-7: Streams Intersected by the Project Corridor

| Streams | Location | Fish Species Utilization
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbia River</td>
<td>between towers 2/2 and 2/3</td>
<td>steelhead trout,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle Columbia River (T),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Snake River basin (T),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper Columbia River (E),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>chinook salmon,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper Columbia River Spring (E),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Snake River Spring/Summer (T),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Snake River Fall (T),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sockeye salmon,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Snake River (E)</td>
</tr>
<tr>
<td>Fourmile Canyon</td>
<td>between towers 6/2 and 6/3</td>
<td>non-fish bearing stream</td>
</tr>
<tr>
<td>Unnamed Tributary to Columbia River</td>
<td>between towers 13/1 and 13/2</td>
<td>non-fish bearing stream</td>
</tr>
<tr>
<td>Glade Creek</td>
<td>between towers 21/4 and 21/5</td>
<td>potential coho salmon (of the lower Columbia River/southwest Washington ESU) (C) and resident fish use</td>
</tr>
<tr>
<td>Unnamed Tributary to Glade Creek</td>
<td>between towers 22/5 and 23/1</td>
<td>potential coho salmon (C) and resident fish use</td>
</tr>
<tr>
<td>Dead Canyon</td>
<td>between towers 27/2 and 27/3</td>
<td>resident fish use</td>
</tr>
<tr>
<td>Alder Creek</td>
<td>between towers 33/3 and 33/4</td>
<td>potential steelhead trout (of the Middle Columbia River ESU) (T) and resident fish use</td>
</tr>
<tr>
<td>Pine Creek</td>
<td>between towers 41/5 and 42/1</td>
<td>potential steelhead trout (T) and resident fish use</td>
</tr>
<tr>
<td>Wood Gulch</td>
<td>between towers 48/3 and 48/4</td>
<td>steelhead trout (T) and resident fish use</td>
</tr>
<tr>
<td>Old Lady Canyon</td>
<td>between towers 52/5 and 53/1</td>
<td>non-fish bearing stream</td>
</tr>
</tbody>
</table>
Streams, Rivers, and Fish

<table>
<thead>
<tr>
<th>Streams</th>
<th>Location</th>
<th>Fish Species Utilization¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapman Creek</td>
<td>between towers 54/2 and 54/3</td>
<td>chinook salmon (of the Middle Columbia River Spring-Run ESU) (NW), coho salmon (C), steelhead trout (T) and resident fish use</td>
</tr>
<tr>
<td>Rock Creek</td>
<td>between towers 61/3 and 61/4</td>
<td>chinook salmon (NW), steelhead trout (T), and resident fish use</td>
</tr>
<tr>
<td>JU Canyon</td>
<td>between towers 66/3 and 66/4</td>
<td>potential resident fish use</td>
</tr>
<tr>
<td>Oregon Streams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scott Canyon</td>
<td>between towers 97/4 and 98/1</td>
<td>potential resident fish use</td>
</tr>
<tr>
<td>Gerking Canyon</td>
<td>between towers 78/1 and 79/1</td>
<td>non-fish bearing stream</td>
</tr>
</tbody>
</table>

¹ Species Status Codes appear in parenthesis (i.e. T= threatened, E= endangered, C= candidate; NW= not warranted).

Most of the streams within the project area flow toward the Columbia River and perpendicular to the project corridor. Floodplains are limited because of the deeply incised canyons with narrow valley floors. Several of the stream channels within the survey corridor also exhibit extensive downcutting, which is likely caused by a combination of natural processes and adjacent land use activities that increase the frequency, duration, and magnitude of high flows (Lautz 2000).

Downcutting, or channel incising is the severe erosion or scour of the channel such that the streambanks become vertical, or nearly so.

Streams crossing the project corridor are generally low gradient (less than at 5% slope), and have straight to meandering channel patterns. Peak stream flows occur in the spring during snowmelt and spring rains. Many of the streams surveyed are ephemeral and are completely dry during the summer months.

Those streams crossing the corridor east of Alder Creek generally have a higher percentage of fine materials in the streambank and bed, derived from gravelly alluvial deposits mantled by eolian sands (SCS 1988). These low-gradient streams generally have unstable streambanks resulting from the unstable soils. This increases the potential for these streams to deliver sediments downstream to the Columbia River if disturbed by natural or human events.

The streams west of Alder Creek generally have gravel and cobble substrates and are formed at the bottom of steep canyons, and have stable streambanks as a result of natural rock armoring and deep-rooted riparian vegetation.
Grassland and forbs are the dominant riparian vegetation along most of the streams intersected by the project corridor. These include Glade Creek, the unnamed tributary to Glade Creek, Dead Canyon, Wood Gulch, and Rock Creek. Alder Creek has riparian vegetation of mainly shrubs and seedlings, but only along that portion of the bank that is wetted during high flows. Wood Gulch has riparian vegetation that includes clusters of small trees, but these are not the dominant vegetation form. Upslope areas of Alder Creek are dominated by grassland/forb vegetation. Pine Creek has riparian vegetation that includes shrubs, seedlings, and small trees in wetted areas. Chapman Creek and JU Canyon have small trees in the riparian zone, and both are well shaded along the portions crossing the project corridor, while the upslope areas contain grass and forbs. Scott Canyon has mainly shrubs and seedlings in the riparian areas.

Five of the 11 fish-bearing streams identified along the project corridor were found to have water temperatures in excess of 64.4°F during the June 2001 field surveys. These conditions identify water quality in these streams as impaired under Section 303(d) of the Clean Water Act and may indicate problems for fish species. These five streams include Glade Creek, the unnamed tributary to Glade Creek, Dead Canyon, Alder Creek, and Rock Creek. At present, these streams are not 303(d) listed by the Washington State Department of Ecology (Ecology). Rock Creek was identified as a candidate for the 303(d) list in 1998, but was then excluded through a Memorandum of Understanding between Ecology and the Eastern Klickitat Conservation District (Lautz 2000). The midsection of the Columbia River—between McNary Dam and John Day Dam—is listed in both the Washington and Oregon 1998 303(d) lists for temperature, total dissolved gas, sediment bioassay, and arsenic levels.

There are several ways in which streams can be classified as fish bearing. All 11 streams identified as fish bearing meet the fish bearing classification based on the Ordinary High Wetted Width (3 feet in eastern Washington, provided the stream gradient does not exceed 20% for 160 meters or more). The Columbia River, Wood Gulch, Chapman Creek, and Rock Creek were also identified as fish bearing in the Priority Habitat Species database. Fish were observed in the Columbia River, Glade Creek, the unnamed tributary to Glade Creek, Dead Canyon, Alder Creek, Pine Creek, Wood Gulch, Chapman Creek, and Rock Creek. The Scott Canyon stream may potentially support resident trout game fish and dace (Pribyl pers. comm.), and is therefore considered fish bearing.

No stream crossing structures (culverts, bridges, or fords) are owned or maintained by Bonneville along the project corridor at any of the 11 fish-bearing or potential fish-bearing streams. A road crossing and culvert exist at the unnamed tributary to Glade Creek within the project corridor. The road is owned and maintained by Sandpiper Farms/Boise Cascade Tree Farm.
Essential Fish Habitat

The proposed action could affect two fisheries protected by the Essential Fish Habitat (EFH) provisions of the Magnuson-Stevens Act (16 U.S.C. 1855(b)): which includes the chinook and coho salmon fisheries. All streams identified as either fish bearing or potentially fish bearing in the project area are included in designated EFH for these two fisheries. Chinook salmon that utilize the streams intersected by the project corridor are not currently federally listed, while coho salmon are a candidate for federal protection. However, steelhead trout are federally listed as a threatened species, and occur, or are likely to occur in the same streams along the project corridor as chinook or coho salmon. Since steelhead trout are a federally listed species and their distribution overlaps with both chinook and coho, the analyses of current conditions and potential impacts to this species also serve to describe all potential impacts to EFH.

Listed Species

Based on information provided by the U.S. Fish and Wildlife Service (USFWS 2001), the following species which are listed under the Endangered Species Act are known to occur in the Columbia River, as they migrate upstream through the project area (NMFS 2001):

- Snake River spring/summer and fall chinook salmon (threatened),
- Upper Columbia River spring chinook salmon (endangered),
- Lower Columbia River coho salmon (candidate),
- Snake River sockeye salmon (endangered),
- Middle Columbia River steelhead trout (threatened),
- Snake River basin steelhead trout (threatened), and
- Upper Columbia River steelhead trout (endangered).

Three species of anadromous salmonids are known to occur in the fish-bearing streams crossed by the project corridor: chinook salmon, coho salmon, and steelhead trout.

Fall chinook salmon use the lower reaches of Rock Creek and Chapman Creek. Juvenile coho salmon have also been documented in the lower reaches of Chapman Creek. Potential coho salmon habitat has been identified in the lower portion of Glade Creek. Coho in this area are believed to be hatchery strays, but some minor wild breeding may also exist.

Rock Creek summer steelhead trout are the only anadromous salmonids indigenous to streams along the project corridor. Streams in the project area used by steelhead for spawning and rearing include the lower and middle reaches of Rock Creek, lower Chapman Creek, and lower Wood Gulch. There is potential spawning and rearing habitat present in Pine Creek and Alder Creek (Lautz 2000).
Pine Creek has barrier culverts at SR 14, which have been identified by the Washington Department of Fish and Wildlife and scheduled for repair during the 2003-2005 biennium (Cierebiej pers. comm.). All of the streams identified as fish bearing along the project corridor may support resident trout populations as well.

Bull trout and coastal cutthroat trout may also be present in some of the fish-bearing streams crossed by the project corridor. Bull trout are federally listed as a threatened species, and coastal cutthroat trout are proposed for listing (USFWS 2001). The Washington Department of Fish and Wildlife has conducted electrofishing surveys in the fish-bearing streams along the project corridor, but has not documented that either bull trout or coastal cutthroat trout are present. One cutthroat trout was documented in Luna Creek, a tributary to Rock Creek, but it is believed to be a hatchery planted resident (Dugger pers. comm.).

Non-Fish-Bearing Streams

Several non-fish-bearing streams that drain into the Columbia River exist within the project corridor (see Figure 3-2). These include the following streams on the Washington side, from east to west: Fourmile Canyon, the unnamed tributary to the Columbia River, Old Lady Canyon, and 2 unnamed tributaries to the Columbia River. On the Oregon side, Gerking Canyon is the only non-fish-bearing stream along the project corridor; it is located near the town of Rufus.

Non-Fish-Bearing Dry Washes

There are 146 non-fish-bearing dry washes that also cross the project corridor. Dry washes are defined as channels lacking any semblance of a riparian zone and are intermittent, primarily providing seasonal drainage off of hills (WDFW 2000). Most of the dry washes are located between Alder Creek and Wood Creek on the steep south-facing slopes of the Columbia River gorge, and drain into the Columbia River.

Floodplains

The McNary Substation and the towers spanning the Columbia River adjacent to the Umatilla Bridge occur within the 100-year floodplain of the Columbia River as it is designated on the Federal Emergency Management Administration map (FEMA 1998). The ancestral floodplain of the Columbia River is currently inundated by the pool of Lake Umatilla, which was created following the construction of John Day Dam in 1968.

The FEMA 100-year floodplain is not that relevant in this area because the lake pool level is controlled by John Day Dam 77 miles to the west of McNary Dam, and fluctuates seasonally to a maximum pool level of 276.5 feet above-sea-level (Burney and Associates 1999).
On this basis, a 100-year flood event would reach elevations of 279 feet above-sea-level near the McNary Substation. However, the McNary Substation is located at approximately 290 feet, while towers for the Columbia River crossing would range in elevation from 285 to 310 feet, all above maximum pool levels (McGowin pers. comm.).

The corridor crosses the Columbia River again immediately west of John Day Dam. The normal Columbia River pool level in this area (between John Day Dam and the Dalles Dam), is 165.8-feet above-sea-level (USGS 1971). If the river-crossing tower would be at or lower than 165.8 feet, appropriate fill permits would be obtained.

There are 100-year floodplains associated with many of the streams along the project corridor, and these are mostly confined to relatively narrow floodplains within steep, narrow canyons.

Environmental Consequences—Proposed Action

The construction and the operation and maintenance of the proposed project could potentially impact fish habitat through the transport of sediment (and hazardous materials) from construction sites to streams and the removal of riparian habitat.

With erosion and sedimentation, deposition of excessive fine sediment on the stream bottom eliminates habitat for aquatic insects, reduces the number and diversity of aquatic insects, reduces the amount and permeability of spawning gravel, and disrupts nutrient transport in the water column. Increases in fine sediments in low-velocity stream reaches can also completely cover suitable spawning gravel, cause channel braiding, increase width:depth ratios, increase incidence and severity of bank erosion, reduce pool volume and frequency, and increase subsurface flow. These changes can result in a reduction in the quality and quantity of spawning and rearing habitat (Meehan 1991).

Large woody debris from streamside trees and other riparian vegetation provides cover, habitat complexity, shade, and an insulating canopy that moderates water temperatures during both summer and winter. Riparian vegetation also provides a filter that reduces the transport of fine sediment to the stream and the roots provide streambank stability and cover for rearing fish (Meehan 1991).

All the rivers and streams crossed by the corridor would be spanned and no new road crossings of perennially flowing streams would be necessary.

Impacts During Construction

Riparian Vegetation

Four fish-bearing streams along the project corridor have riparian vegetation that includes clusters of small trees (diameter of 9 to 20.9 inches). These streams are Pine Creek, Wood Gulch, Chapman Creek, and JU Canyon (see Figure 3-2). In addition, JU Canyon’s riparian vegetation also contains some large trees (diameter of 21 to
31.9 inches) (USFS 1998). Bonneville currently has transmission lines across these drainages along the project corridor, has maintained the riparian vegetation along these streams, and would continue to maintain the integrity of these riparian areas. In the deep gullies and canyons, the trees would also be left uncut, because the conductors would span these deeply incised stream channels at a height that would allow trees to grow under the lines. The remaining fish bearing streams along the project corridor have riparian vegetation consisting of shrub/seedling and grassland/forb communities, which would also be maintained, and not be removed.

Tree removal along the corridor could potentially occur at windbreaks for agricultural lands, orchards, and the Sandpiper Farms/Boise Cascade Tree Farm. Glade Creek and an unnamed tributary to Glade Creek intersect the project corridor in the area of the Sandpiper Farms/Boise Cascade Tree Farm. Boise Cascade has an approximate 6-year rotation on tree harvest (Boise Cascade 2001). The trees associated with the tree farm provide limited natural riparian functions such as filtering some run-off to the stream, however these trees do not provide such riparian functions as shade, which reduces summer water temperatures, or increasing habitat complexity through large woody debris recruitment to the stream.

Stream Crossings

No culverts would be installed at perennial streams along the corridor; therefore, fish access upstream of the project corridor would not be affected. Fords or culverts may be required at a few seasonable non-fish-bearing streams and dry washes. A constructed ford would be preferable to installing a culvert due to maintenance concerns and the potential for washouts associated with culverts. Culvert failures can cause significant sedimentation and degradation to fish habitat and water quality downstream. Therefore, any culverts installed in ephemeral streams would be designed and installed to accommodate flows associated with a 100-year flood event.

Tower Footings

Tower footings would be located on upslope areas and conductors would span all streams. Tower work would require the disturbance of soils, thus exposing them to the erosive forces of wind and rain, which could potentially transport sediments to all streams along the project corridor, as well as the Columbia River, and adversely affect fish and fish habitat. All streams would be equally susceptible. If areas cleared for tower footings were reseeded or naturally revegetated after construction, the potential for erosion and sedimentation would be less than if left as bare soil. Tower footings would be drilled where possible, although some areas may require blasting.

Detonating explosives adjacent to fish habitat could cause disturbance, injury, or mortality to fish and destruction or alteration of their habitat. To avoid impacts to fish and fish habitat, blasting should be avoided within 200 feet of fish-bearing streams.
Erosion potential would be greater if towers were sited in areas of steep hill slopes and dry washes. The steeper sloping areas along the corridor occur generally west of Glade Creek, with the greatest concentration occurring between Alder Creek and Wood Gulch. If a tower was sited at a dry wash the potential for delivery of fine sediments would be greater than most other locations because dry washes provide transport of surface waters during periods of precipitation and snow melt and typically drain to a larger stream. This increases the opportunity for sediments to be delivered to a fish bearing, or potentially fish bearing stream along the corridor. All of the dry washes along the corridor occur west of Alder Creek, with 66% occurring between Alder Creek and Wood gulch, and the remaining 34% occurring west of Wood Gulch.

Hazardous Materials

Construction of the proposed project would require the use of several common construction materials (e.g., concrete and paint) and petroleum products (e.g., fuels, lubricants, and hydraulic fluids) that could be toxic to fish and other aquatic organisms if spilled into or near streams.

Access Roads

The project would require approximately 40 miles of existing roads to be reconditioned and upgraded and 12.5 miles of new “spur roads” constructed from existing access roads. This new access and spur road construction would include the clearing and grading of an area 16 feet wide, with an approximate impact area 25 feet wide. The impact area may include hill slopes where spoils from cut-and-fill road construction may be sent down slope. Roads would be located on stable hill slopes and road gradients would not exceed 15% in areas with potentially unstable soils. Three miles of new access road would be constructed from corridor mile 39 to 41. This road would cross 16 dry washes, all draining to the Columbia River, 2,000 to 3,000 feet downstream.

Where access roads cross a dry wash, the road gradient should be 0% to avoid diverting surface waters from the channel. The construction of the new access road across dry washes could potentially affect the Columbia River fisheries from the occurrence of a catastrophic event such as mass wasting, or from less severe actions such as the delivery of fine sediment from the exposure of soils, or the potential that a spill of hazardous materials may enter surface waters flowing within the dry washes.

No fish-bearing streams would be crossed by the construction of new access roads and no existing access road currently crosses a fish-bearing or potentially fish-bearing stream that Bonneville owns and/or manages. An additional 0.5 to 1.0 miles of new access road and spur roads may also be constructed for Alternatives B and C of the Hanford-John Day Junction Short-Line Routing Alternatives, respectively. Please refer to Table 3-8 for potential impacts associated with these alternatives.
3 Affected Environment, Environmental Consequences, and Mitigation

Staging Areas

Construction staging areas would be temporary and likely located in currently developed areas such as parking lots. If new staging areas were created adjacent to fish bearing streams, or areas that drain directly to fish bearing streams, they could cause potential impacts associated with erosion, sedimentation, and hazardous material spills.

Floodplains

The work associated with the McNary Substation and the towers spanning the Columbia River adjacent to the Umatilla Bridge would occur within the FEMA-designated 100-year floodplain of the Columbia River. However, as stated earlier, the McNary Substation and the new towers are above the elevation of the 100-year flood event as designated by the U.S. Army Corps of Engineers, who can control the water level of the Columbia River via the dams.

The Columbia River crossing immediately west of John Day Dam would require the construction of a transmission tower on the lower banks of the north side of the Columbia River. The tower would be placed adjacent to the existing Columbia River crossing tower on a humanmade gravel berm at approximately 190-feet above-sea-level. The normal Columbia River pool level between John Day Dam and the Dalles Dam, approximately 24 miles to the west, is 160-feet above-sea-level (USGS 1971).

All other new access roads and towers would be installed outside the 100-year floodplains of other streams crossed and would create no impacts to the floodplains.

Impacts During Operation and Maintenance

Bonneville generally performs aerial inspections of transmission lines and access roads once a month. Maintenance of roads, towers, and vegetation could have minor impacts on fish or fish habitat; soils could be disturbed causing short-term sedimentation. Herbicide buffer zones and other mitigation measures would be used (consistent with Bonneville’s Vegetation Management Program EIS [2000]) to prevent potential impacts associated with operational contamination.

Environmental Consequences—Short-Line Routing Alternatives

Table 3-8 summarizes the fisheries impacts associated with the short-line routing alternatives.
Table 3-8: Impacts of Short-Line Routing Alternatives: Fisheries

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>McNary Substation Alternatives</td>
<td></td>
</tr>
<tr>
<td>A. Relocate administration building presently located on north side of substation adjacent to Wildlife Natural Area</td>
<td>Potential impacts include the delivery of fine sediments to the Columbia River and off-channel pond habitat connected with the Columbia River in the Corps Wildlife Natural Area (approximately 1,000 feet from the McNary Substation). With proper mitigation, potential impacts to fisheries in the Columbia River would be minor.</td>
</tr>
<tr>
<td>B. Cross Wildlife Natural Area; circumvent administration building on north side</td>
<td>Potential impacts would be the same as those for Alternative A. Alternative B would require the least amount of ground disturbance, but would be located closest to the Columbia River, especially the off-channel ponds (approximately 200 feet) located in the Corps Wildlife Natural Area. Therefore, this alternative could have a slightly greater potential impact.</td>
</tr>
<tr>
<td>C. Place line in bus work at ground level on north side of administration building, inside Wildlife Natural Area</td>
<td>Potential impacts would be the same as those for Alternative A. Some trees would be removed as part of this alternative. However, since these trees are approximately 1,000 feet from the Columbia River, no impact to fish or fish habitat is anticipated. The bus work would also require the clearing of an area 2,000 feet in length by 75 feet in width, which would be permanently surfaced with gravel. The permanent surfacing of the bus station area with gravel could potentially result in a slight increase of run-off and fine sediment transport to the Columbia River from precipitation and/or snow melt due to the replacement of the vegetation that currently exists in this area which provides soil stability and absorption of run-off. Potential impacts to fish and fish habitat would be minor.</td>
</tr>
<tr>
<td>Hanford-John Day Junction Alternatives</td>
<td></td>
</tr>
<tr>
<td>A. Move existing Hanford-John Day line north 200 feet to make room for new line on north side of corridor</td>
<td>No fish bearing, or potentially fish bearing streams occur in the area of the Hanford-John Day junction. The Columbia River is approximately 2,000 feet to the south of this area. Two dry washes drain a hillslope to the north of this area, with an additional three dry washes located between structures 68/6 and 70/5, where the potential impacts of the proposed three alternatives for this area would no longer occur. The junction is located on a large flat plateau above the Columbia River. It would be unlikely that construction of any of the 3 Hanford-John Day alternatives would affect fish or fish habitat within the Columbia River, due to the topography and distance from the Columbia River.</td>
</tr>
<tr>
<td>B. Place new line on south side of corridor (occupied by roads and towers)</td>
<td>Same as Alternative A.</td>
</tr>
<tr>
<td>C. Place new line on south side of highway</td>
<td>Same as Alternative A.</td>
</tr>
</tbody>
</table>
Alternative Impacts

Corridor Mile 32 Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Keep existing and new lines on tribal land</td>
<td>The Columbia River is approximately 3,000 feet to the south, Alder Creek is approximately 3,000 feet to the west, and a dry wash is located approximately 1,000 feet to the north of this location. Therefore, the construction of either of the two Corridor Mile 32 alternatives would not likely affect fish or fish habitat in either the Columbia River or Alder Creek.</td>
</tr>
<tr>
<td>B. Relocate existing and new lines away from tribal land</td>
<td>Same as Alternative A.</td>
</tr>
</tbody>
</table>

Corridor Mile 35 Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Keep existing and new lines on tribal land</td>
<td>The Columbia River is located approximately 1,500 feet to the south of corridor mile 35. One dry wash is located in this area, which drains to the Columbia River. Potential for delivery of fine sediment to the Columbia River would be greater with Alternative B (relocating the line), than with Alternative A due to a greater area of ground disturbance.</td>
</tr>
<tr>
<td>B. Relocate existing and new lines away from tribal land</td>
<td>Same as Alternative A.</td>
</tr>
</tbody>
</table>

Mitigation

The following mitigation measures would minimize potential impacts to streams and fisheries habitat from possible erosion and clearing of vegetation.

- Place towers outside of stream riparian areas and utilize natural landscape features to span the conductor over existing shrub and tree riparian zones and avoid cutting.
- Place new access roads outside of stream riparian areas, where possible.
- Construct fords instead of culverts at access road crossings of dry washes or seasonal streams if possible. If culverts are required, design and install to accommodate flows associated with a 100-year flood event.
- Preserve existing vegetation where practical, especially next to intermittent and perennial streams.
- Avoid construction within the 200-foot designated stream buffers in Klickitat and Benton Counties, Washington.
- Maximize the use of existing roads, minimizing the need for new road construction.
- Avoid tower or access road construction on potentially unstable slopes where feasible.
• Use erosion control methods during construction (see mitigation measures for Geology, Soils, and Seismicity, Chapter 3), to minimize transport of sediments to streams via runoff.

• Install appropriate water and sediment control devices at all dry wash crossings, if necessary.

• Reseed disturbed areas following construction where appropriate.

• Construct any required culverts using Washington Department of Fish and Wildlife culvert installation guidelines. Methods may include avoiding installation during periods of flow, armoring streambanks near the culvert entrance and exit, installing culverts on straight sections of stream to ensure unimpeded flow, and following the contour of the stream channel.

• Repair existing road failures and drainage devices between corridor mile 33 to 47 to reduce potential impacts to dry washes.

• Avoid blasting during periods when salmonid eggs or alevins are present in gravels.

• Avoid blasting within 200 feet of fish-bearing or potentially fish-bearing streams.

• Develop and implement a Spill Prevention and Contingency Plan to minimize the potential for spills of hazardous material including provisions for storage of hazardous materials and refueling of construction equipment outside of riparian zones, spill containment and recovery plan, and notification and activation protocols.

• Keep vehicles and equipment in good working order to prevent oil and fuel leaks.

• Return staging areas to pre-construction condition.

Unavoidable Impacts Remaining after Mitigation

Unavoidable impacts remaining after mitigation include the creation of unvegetated disturbed areas associated with new access and spur roads, tower sites, and bus work. The exposed soils are susceptible to erosion, and thus, the transport of sediment to streams could potentially occur. Also, roads are more susceptible to catastrophic events such as land slides and mass wasting events. Such actions would be unlikely to occur because roads would be designed and sited appropriately (i.e. not on unstable soils, steep hillslopes, or in drainages). Also, based on the location of these areas there would be a small likelihood of affecting fish or fish habitat.

Environmental Consequences—No Action Alternative

The No Action Alternative would result in no changes to the existing corridor, and aquatic habitats would not be affected in the project vicinity. Therefore, no impacts to fish or fish habitat would occur as a result of the No Action Alternative.
Wetlands and Groundwater

Affected Environment

The proposed project lies within the Columbia River basin province of eastern Washington and Oregon, in the rainshadow of the Cascade Mountains, one of the driest regions of the Pacific Northwest. Most water features in the project area are ephemeral or intermittent streams and seasonal wetlands because of low annual precipitation and common drought during the summer. Shrub-steppe and grassland vegetation are present on a diverse landscape that includes flat buttes, rolling hills, basalt cliffs, terraces, and barren rock outcroppings interspersed with vegetated wet areas.

Typically, the area receives approximately 8 inches of precipitation annually. Most precipitation falls as light showers or snowfall in the winter (SCS 1972). Winter months are cold with daily temperatures averaging between 34°F and 40°F. Summers are hot and dry with average daily high temperatures ranging between 80°F and 88°F (WRCC 2001). Drought periods during the summer months are not uncommon, with occasional thunderstorms bringing isolated heavy rains.

Wetlands

Wetlands are not common within the dry shrub-steppe desert areas of eastern Oregon and Washington along the Columbia River that make up most of the project corridor. A total of 25 wetlands totaling 45 acres were identified within the project corridor (Figure 3-2).

These wetlands are generally supported by water sources associated with riparian areas, seasonal spring seeps, shallow depressions fed by precipitation, and surface runoff. Wetland sizes range from narrow riparian fringes 5 to 10 feet wide, to large wetland complexes covering 5 to 10 acres. Wetland soils are often formed in gravelly alluvial deposits mantled by windblown sand (SCS 1988, Franklin and Dyrness 1973).

Most wetlands along the project corridor are dominated by grasses, sedges, and rushes. These wetlands often begin at the edge of a creek’s Ordinary High Water Mark and extend within the active floodplain of the creek. However, the riparian wetland plant communities often include some deciduous trees and shrubs. Common plant species associated with the riparian wetlands in this area include Russian olive, mountain alder, black cottonwood, small-fruited bulrush, reed canarygrass, common cattail, and sedge (see Appendix C for common and scientific plant names).

Wetland plant community types referred to in this section are based on the U.S. Fish and Wildlife Service wetland classification system (Cowardin et al. 1979) and include palustrine open water, palustrine scrub-shrub, palustrine forested, and palustrine emergent (see Glossary for definitions). The types of wetlands identified within the project corridor are described below.
Near the McNary Substation, there is a large wetland complex associated with the floodplain of the Columbia River. This wetland is composed of palustrine open water, palustrine scrub-shrub, palustrine forested, and palustrine emergent communities and is associated with several large ponds that were built adjacent to the south bank of the Columbia River. Common tree and shrub species found within this wetland area include Pacific willow, Russian olive, and cottonwood. Reed canarygrass dominates the herbaceous layer.

Near corridor miles 48 to 50, there is a large depressional wetland complex associated with alkali saltgrass communities on saline-alkali soils. These wetlands are formed as water runoff collects at the base of nearby slopes while ponding and rapid evaporation leave crusted salt grains covering the soil surface. These wetlands are often fringed by greasewood communities common to saline-alkali upland soils.

Between corridor miles 71 and 75, there are several palustrine emergent wetlands located in depressions among rock outcroppings. These seasonally wet wetlands are formed on shallow soils over basalt. This wetland hydrology is mainly provided by rainwater that flows over the soil surface. However, several seasonal spring seeps also contribute water to these wetlands. The seeps are associated with groundwater discharge areas on hills and at the base of hills, frequently where the topography changes slope. These seeps are often perennially saturated to the soil surface. Many of these seeps are hydrologically isolated from other surface waters, but the more extensive seeps can form long stringer wetlands that connect to perennially flowing surface waters. Common wetland plant species associated with these wetlands include alkali saltgrass, bottlebrush squirreltail, Douglas’s sedge, Baltic rush, red fescue, and tall wheatgrass.

Groundwater

Groundwater is generally available in large quantities in the Columbia Plateau Province from the basalt bedrock (see the section on Geology, Soils, and Seismicity). Multiple aquifers occur at varying depths as a result of contacts between the numerous basalt flows underlying the region; together these aquifers are referred to as the Columbia River Basalt Group. Other aquifers occur locally in glacial outburst deposits over basalt and in recent alluvium adjacent to the larger tributaries of the Columbia River. Loess soils, which frequently cover the basalt in the project area, do not yield appreciable quantities of water to wells, but may develop hydric conditions as described in the section on Wetlands above.

Aquifer recharge occurs primarily by precipitation through direct infiltration and seepage from the numerous intermittent streams along the corridor. Some recharge may occur from the spray irrigation of orchards and other agricultural crops using well water, but this is negligible relative to recharge from irrigation canals elsewhere in eastern Washington and eastern Oregon. Groundwater flow in the province is generally to the southwest. Flow rates are generally slow due to low hydraulic gradients, but can be rapid in the highly permeable interflow zones between various basalt formations. Groundwater
3 Affected Environment, Environmental Consequences, and Mitigation

contributes to the baseflow of 15 perennial and intermittent streams that cross the project alignment, and supports five springs within 1 mile of the alignment west of corridor mile 55.

Groundwater is commonly used for both domestic consumption and irrigation. Groundwater quality is generally good, although hardness and dissolved iron and manganese concentrations can be high in some areas. In some areas of the Columbia River Basalt Group, deeper well boreholes have interconnected the layered aquifers, allowing upper layers to commingle with the lower layers, and providing a potential conduit for contaminant migration to deeper aquifers. It is not known how common this may be along the corridor.

Because of the large size and complexity of aquifers in the Columbia River Basalt Group, no sole source aquifers have been designated in the project area. A sole source aquifer, one that is the principal source of more than 50% of the drinking water supply consumed in the area overlying the aquifer, is provided regulatory protection under the Safe Drinking Water Act of 1974 (EPA 2001).

Environmental Consequences—Proposed Action

Direct and indirect impacts to wetlands and groundwater could occur during construction, operation, and maintenance activities for the proposed 500-kV transmission line and associated structures. The proposed transmission line right-of-way would cross valleys, depressions, stream channels, wetlands, and springs. For the majority of the right-of-way, conductors would span wetlands, and new structures and new access roads would be sited to avoid sensitive water resources.

Impacts During Construction

Wetlands

Of the 45 acres of wetlands located within the project corridor, less than 0.5 acre of wetland would likely be filled to construct the proposed project. Three main wetland complexes contain 73% of the wetlands located within the construction corridor: at the wildlife refuge near McNary Substation, corridor mile 1; the Roosevelt Grade Road from corridor mile 48 to 50; and in the basalt outcroppings east of Harvalum Substation at corridor mile 71 to 75. The other 27% of the wetlands are predominantly riparian wetlands associated with the floodplains of perennial streams. The construction of new access roads in association with the Hanford-John Day Alternatives B and C would potentially fill 0.1 acre of emergent wetlands. The wetlands are associated with a constructed stock pond fed by a well. The construction of an access road through this wetland would destroy emergent vegetation and divert surface flows, potentially affecting hydrological patterns within the greater wetland area.
Vegetation would be hand cleared within wetlands for McNary Substation Alternative B where the line would cross the wildlife refuge. This wetland consists of a narrow, 100-foot band of willow trees, a portion of which would need to be removed if the conductor span is to cross to the east of the existing administration building. Cutting this band of willow trees could permanently change this forested wetland and buffer to an adjacent Sitka willow shrub wetland. With invasive species including indigo bush and reed canarygrass already within this wetland, it is possible that the clearing of forested species would promote the expansion of these invasives as well. The removal of forested vegetation would also decrease evapotranspiration rates, and increase soil and water temperatures due to the lack of shading.

Most wetlands within the construction corridor are dominated by low-growing grass and grass-like vegetation and shrubs which are generally compatible with the vegetation height requirements for conductor clearance, and therefore, would not need to be cut.

Construction of access roads or towers located adjacent to wetlands may require removal of wetland buffer vegetation, the Roosevelt Grade Road at corridor mile 48 to 50 and the basalt outcroppings at corridor mile 71 to 74. Wetland buffer widths for these wetlands extend 75 to 200 feet from the wetland edge. The width of the wetland buffer is based upon the wetland rating as defined in the Klickitat County Critical Areas Ordinance. The quality of vegetation of the wetland buffers in these areas is marginal; the areas are mostly used for grazing, and are dominated by invasive weeds such as cheatgrass. However, the reduction of vegetated buffers adjacent to wetlands would reduce overland flow and increase the likelihood of silts and sediments entering wetland surface waters, thus decreasing water quality. Impacts would be even less if the removal of the vegetation was done by hand such that the roots were left intact. With the roots in place, the soils would be less likely to erode and the plants could resprout, recreating the vegetative buffer.

The wetlands could also be impacted by the construction activities of the towers or access roads adjacent to and within these three wetland complexes. If not mitigated the impacts could include increased sedimentation that would enter surface waters, as well as smother wetland plants. Oils and pollutants from machinery could also enter surface water, potentially effecting fish or wildlife species. The construction of roads and tower pads could also alter overland flow patterns, thereby increasing or decreasing wetland hydroperiod which would change wetland plant communities, as well as water dependent fish and wildlife species.

Groundwater

The potential for impacts on groundwater is minor due to the use of construction techniques that avoid trenching and drilling. Potential groundwater impacts that could occur during construction are identified in Table 3-9.

Most refueling and equipment maintenance would be done at staging areas that would be located at least 100 feet from streams and wetlands, with spill containment and clean up
Table 3-9: Potential Construction Impacts on Groundwater

<table>
<thead>
<tr>
<th>Construction Activity</th>
<th>Impact Mechanism</th>
<th>Potential Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refueling, equipment maintenance, location of staging areas</td>
<td>Hazardous material spills and leaks</td>
<td>Local groundwater contamination</td>
</tr>
<tr>
<td>Road construction and maintenance, vegetation removal, soil disturbance</td>
<td>Erosion and Sedimentation</td>
<td>Increased groundwater turbidity</td>
</tr>
<tr>
<td>Road construction</td>
<td>Excavation of contaminated soils and structures, and abandoned wells</td>
<td>Reductions in groundwater quality; risk to drinking water</td>
</tr>
<tr>
<td>Road construction</td>
<td>Interception of subsurface flows</td>
<td>Local modification of hydrology and water quality in wetlands and streams</td>
</tr>
</tbody>
</table>

Erosion in areas of soil disturbance and vegetation removal could result in increased groundwater turbidity. This impact would be greatest where new spur roads and new access roads would be constructed. The potential for impacts would be less likely with the reconditioning of existing roads. Interception of groundwater seeps in road cutbanks could also alter the hydrology or water quality of adjacent wetlands and streams. Use of erosion control measures in all areas where soils are exposed during construction is expected to minimize the transport of sediment to groundwater recharge areas, including intermittent streams. These construction impacts would therefore be minor and temporary in duration.

Contaminated soils and underground structures may exist as remnants of earlier road, pipeline, power line, and agricultural projects along the alignment. Excavation of contaminated soils, primarily during road construction, could mobilize contaminants into a previously uncontaminated groundwater body. In addition, abandoned or orphaned wells could be disturbed, providing a direct pathway for contaminants to flow to an underlying aquifer. These impacts would be minimized with the mitigation measures described later in this section.

Impacts During Operation and Maintenance

Impacts of the operation and maintenance of the proposed line would be due to the use of access roads for tower maintenance and vegetation clearing within the transmission line corridor. This could potentially introduce sediment into wetlands through surface runoff, potentially affecting water quality. If vegetation treatment would be required (i.e. for noxious weed control), appropriate buffers would be used to keep herbicides out of wetlands, springs, or wells.
Operational impacts on groundwater would be limited to chronic conditions that may have developed during construction despite implementation of preventive and corrective best management practices. New, maintained roads could continue to interrupt groundwater flow paths, and incidental aquifer contamination could persist. The risk of these impacts is considered minimal or negligible.

Environmental Consequences—Short-Line Routing Alternatives

Table 3-10 summarizes the water resources and wetland impacts associated with the short-line routing alternatives.

Table 3-10: Impacts of Short-Line Routing Alternatives: Wetlands and Groundwater

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>McNary Substation Alternatives</td>
<td></td>
</tr>
<tr>
<td>A. Relocate administration building presently located on north side of substation adjacent to Wildlife Natural Area</td>
<td>Approximately 0.1 acre of willow and Russian olive trees within a palustrine forested wetland would be removed to allow for conductor. These impacts to wetlands would permanently change the wetland vegetation community from forested to shrub dominant.</td>
</tr>
<tr>
<td>B. Cross Wildlife Natural Area; circumvent administration building on north side</td>
<td>Approximately 0.2 acre of willows within a palustrine forested wetland would be removed to allow conductor clearance. This impact to wetlands would permanently change the wetland vegetation community from forested to shrub dominant.</td>
</tr>
<tr>
<td>C. Place line in bus work at ground level on north side of administration building, inside Wildlife Natural Area</td>
<td>Sedimentation impacts to wetlands and water resources are expected to be minimal or negligible with implementation of appropriate mitigation. This impact to wetlands would permanently change the wetland vegetation community from forested to shrub dominant.</td>
</tr>
<tr>
<td>Hanford-John Day Junction Alternatives</td>
<td></td>
</tr>
<tr>
<td>A. Move existing Hanford-John Day line north 200 feet to make room for new line on north side of corridor</td>
<td>No wetland resources would be spanned by this alternative. Impacts to adjacent wetlands and water resources are expected to be negligible with implementation of appropriate mitigation measures.</td>
</tr>
<tr>
<td>B. Place new line on south side of corridor (occupied by roads and towers)</td>
<td>An emergent wetland would be spanned by the transmission line corridor. Construction of access roads would potentially fill approximately 0.1 acre of wetland. If new access roads are not necessary, impacts to wetlands and water resources are expected to be negligible with implementation of appropriate mitigation measures.</td>
</tr>
<tr>
<td>C. Place new line on south side of highway</td>
<td>Same as Alternative B.</td>
</tr>
</tbody>
</table>
3 Affected Environment, Environmental Consequences, and Mitigation

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corridor Mile 32 Alternatives</td>
<td></td>
</tr>
<tr>
<td>A. Keep existing and new lines on tribal land</td>
<td>No wetland resources are adjacent to this alternative. Therefore, impacts to wetlands and water resources are expected to be negligible with implementation of appropriate mitigation measures.</td>
</tr>
<tr>
<td>B. Relocate existing and new lines away from tribal land</td>
<td>Same as Alternative A.</td>
</tr>
<tr>
<td>Corridor Mile 35 Alternatives</td>
<td></td>
</tr>
<tr>
<td>A. Keep existing and new lines on tribal land</td>
<td>No wetland resources are adjacent to this alternative. Therefore, impacts to wetlands and water resources are expected to be negligible with implementation of appropriate mitigation measures.</td>
</tr>
<tr>
<td>B. Relocate existing and new lines away from tribal land</td>
<td>Same as Alternative A.</td>
</tr>
</tbody>
</table>

Mitigation

The following mitigation measures would minimize wetland and groundwater impacts.

- Locate structures, new roads, and staging areas so as to avoid waters of the U.S., including wetlands.

- Avoid construction within designated Klickitat and Benton Counties, Washington wetland and stream buffers to protect potential groundwater recharge areas (Klickitat County Critical Areas Ordinance; Benton County Code Title 15).

- Avoid mechanized land clearing within wetlands and riparian areas to avoid soil compaction from heavy machinery, destruction of live plants, and potential alteration of surface water patterns to reduce groundwater turbidity risk.

- Anticipate and avoid, as required, contaminated soil and underground tanks during construction activities near pipelines and agricultural and other historic projects. Anticipate and avoid orphaned wells, as required, particularly near the communities of Plymouth, Paterson, Roosevelt, Sundale, and Towal.

- Use erosion control measures (see mitigations listed in the Soils, Geology, and Seismicity section) when conducting any earth disturbance within 100 feet of wetlands, or within the resource buffer as established by Benton and Klickitat Counties.

- Avoiding refueling and/or mixing hazardous materials where accidental spills could enter surface or groundwater.

- Using existing road systems, where possible, to access tower locations and for the clearing of the transmission line alignment.
- Avoid construction on steep, unstable slopes if possible.
- Place tower footings on upland basalt outcroppings and limit access road construction in wetlands complex and buffers between corridor miles 70 and 74, if possible.
- Place tower footings and access roads within uplands within the wetland complex between corridor miles 48 and 50.
- Avoid placing towers and roads that would necessitate the cutting of the palustrine-forested wetland near the McNary Substation (Alternative B).

Unavoidable Impacts Remaining after Mitigation

A small amount of forested wetland vegetation would be removed with the short-line McNary Substation Alternatives A, B, and C. This would not result in a loss of wetland area; however, it would permanently change the wetland vegetation community from forested to shrub dominant.

In locations where new access roads and towers are sited, impervious surface area will increase and surface hydrology patterns may be altered. This could slightly increase the volume and affect the timing of surface runoff, which in turn could cause minor increases in erosion and sedimentation in adjacent wetlands and streams. Minor amounts of fuel and oils could spill and potentially enter surface waters from the operation of maintenance vehicles within the transmission line corridor.

Environmental Consequences—No Action Alternative

Under the No Action Alternative, the existing transmission corridor would remain as at present. Potential impacts to wetlands and groundwater resources along the corridor associated with the proposed project would not occur.

Vegetation

Affected Environment

The vegetation in this area is influenced by the topography, climate, and soils of the region. The proposed transmission line project lies within the Columbia River basin province of eastern Washington and Oregon (Franklin and Dyrness 1973). This is an area within the rainshadow east of the Cascade Mountains, in a portion of eastern Washington and Oregon that is too arid to support natural upland forest (Daubenmire 1970).
The area is characterized by flat buttes, rolling hills, basalt cliffs, terraces, and scablands including rock outcroppings interspersed with wet areas. Portions of the project corridor cross irrigated agricultural cropland, particularly in the eastern half of the corridor. Cattle rangeland is prevalent along the western half of the corridor.

Shrub-steppe communities dominated by bunchgrasses and sagebrushes dominate the dry, rocky areas of central and eastern Washington (Franklin and Dyrness 1973). Within the corridor, shrub-steppe and mixed grasslands are the most common plant communities, comprising approximately 61% of the corridor.

Other vegetation communities present include agricultural areas, scabland/lithosol (shallow soils) communities, riparian corridors, and ruderal communities in developed areas. Past disturbance of the corridor has influenced the types of plant communities present. Throughout the study area, the invasive species cheatgrass is at least codominant in most of the plant communities.

The distribution of plant communities along the corridor is shown in Figure 3-3. The seven major plant communities identified along the corridor are described below.

Grazed Shrub-Steppe

Grazed shrub-steppe communities are the most prevalent vegetation in the project corridor, dominating the central and western portions of the corridor (approximately 38%) (Figure 3-3).

These communities are dominated by shrubs and grasses and have been disturbed by human activities, especially grazing of livestock, and include big sagebrush, gray rabbitbrush, and a mixture of grasses including bluebunch wheatgrass, needle and thread grass, and Idaho fescue. Cheatgrass, a nonnative, invasive grass, also dominates the community and is, in fact, the most prevalent grass found. Total grass coverage ranges from 80% to 60%. Shrub coverage ranges from 10% to 35%. A number of forbs are occasionally present in these communities, including western yarrow, silky lupine, fiddle-necks, rosy pussytoes, hairy milkvetch, and several buckwheat and fleabane species. Forb coverage is generally under 5%. Refer to Appendix C for a list of plant scientific names.

Shrub-Dominated Shrub-Steppe

Portions of the shrub-steppe communities along the project corridor tend to have a higher coverage of shrub species, apparently because they have been less disturbed. These portions are located between structures 3/2 and 4/1 and between structure 20/4 and Glade Creek (Figure 3-3). The largest examples of shrub-dominated shrub-steppe communities are found from I-82 west to Plymouth Road, and from structure 19/1 west to Glade Creek. Shrub-dominated communities cover approximately 3% of the corridor.
The shrub-dominated communities are differentiated from grazed shrub-steppe communities by taller, denser shrub coverage, higher species diversity, greater coverage of intact cryptogamic crusts, and a lower percentage of invasive species. Therefore, these areas represent a more native shrub-steppe community than the grazed and otherwise disturbed shrub-steppe found elsewhere along the project corridor.

The shrub-dominated communities have the same vegetation as the shrub-steppe described above, but there is more big sagebrush and gray rabbitbrush, and in addition the communities have bitterbrush, green rabbitbrush, and grasses, bottlebrush squirreltail, and Sandberg’s bluegrass. Cheatgrass is present, but reduced in coverage relative to the grazed shrub-steppe areas. Forb coverage is similar to the grazed shrub-step, with more species present, including prickly-pear cactus and Carey’s balsamroot.

Grasslands

Grassland communities are present throughout the project corridor but most prevalent at each end of the corridor, and in the west-central portion of the corridor. Overall, grassland communities comprise approximately 20% of the project corridor.

Mixed grasses, both native and nonnative, dominate the grassland communities. These communities are similar to shrub-steppe, with a greatly reduced coverage of shrub species. Shrub species in grasslands comprise less than 10% of the cover and in many areas are not present at all.

Species dominance within a given area of grassland varies over the length of the project corridor. The dominant species tend to be one or more of the following: bluebunch wheatgrass, Idaho fescue, foxtail barley, needle and thread grass, bottlebrush squirreltail, and Sandberg’s bluegrass. Invasive nonnative species—including cheatgrass, bulbous bluegrass, and medusa-head wild rye—are also present in most of the grassland communities along the project corridor, and are often among the dominant species.

Agriculture

Agriculture is dominant in the eastern half of the project corridor and in small pockets to the west, accounting for approximately 31% of the agricultural vegetation along the corridor. Several types of agricultural vegetation occur, including irrigated grain fields, row crops, cottonwood plantations, and fruit orchards. Crop irrigation circles in wheat and other grain production along with row crops are the most common of these agricultural activities, and are most prevalent between structures 14/5 and 32/4. Cottonwood plantations in several stages of production are found immediately west of Glade Creek (structure 21/5). Apple and other small-tree fruit orchards are located on either side of Chapman Creek (structures 54/1 to 54/4).
Scablands/Lithosol Communities

Much of the project corridor (particularly the western half) has shallow soils (lithosols). Numerous rock outcrops and exposed basalt surfaces are located along the route. However, a portion of the corridor (approximately 5 miles between structures 70/1 and 74/1) is noticeably more exposed, with soils shallower than those along most of the remainder of the corridor. In this area, referred to as scabland, a mosaic of small but distinct grassland, wetland, and shrub-steppe communities is present. Many of these communities include the same plant species found in the grassland and shrub-steppe communities, but the grassland communities tend to dominate. Typical grasses include foxtail barley, bluebunch wheatgrass, Sandberg’s bluegrass, and squirreltail bottlebrush. Cheatgrass (an invasive nonnative) is the dominant grass present. Patches of shrub-steppe dominated by both gray and green rabbitbrush are found where the soils are deeper. The small depressional emergent wetlands present are dominated by soft rush and bulrush species.

Riparian Areas

Most of the larger streams crossed by the project corridor have narrow and sloping riparian areas dominated by shrubs and small trees. Shrub species found in these riparian areas include smooth sumac, red elder, nootka rose, and pearhip rose. Tree species include red alder, cottonwood, willows, and occasionally black locust.

At Alder Creek (structure 33/3), the entire riparian zone is dominated by indigo bush, a Benton County Class B-Designate noxious weed. Indigo bush is minor or absent in the riparian zones of the other drainages crossing the corridor.

Small groves of up to 20 trees are scattered near the west end of the project corridor. Trees in these small wooded areas consist of black locust and tree-of-heaven.

Special-Status Plants

Threatened, Endangered, and Other Sensitive Species

The U.S. Fish and Wildlife Service has identified one federally listed threatened species (Utes ladies’ tresses) and one candidate plant species (northern wormwood) as having potential habitat present within the project corridor. Neither species was found during field surveys conducted in July 2001.

Washington State Sensitive Species

The Washington Natural Heritage Program (WNHP) has identified potential habitat in or adjacent to the project corridor for two state sensitive plant species (Pauper’s milkvetch and Snake River cryptantha) between structures 47/1 and 48/3. Both species occur in dry, open, flat, or sloping areas in stable or stony soils, where the overall cover of
vegetation is relatively low. Pauper’s milkvetch is also associated with big sagebrush-bluebunch wheatgrass shrub-steppe communities.

Neither plant species was found during field surveys conducted in July 2001. However, the field surveys verified that favorable habitat for both species is present in the WNHP-identified areas, between structures 47/1 and 48/2.

Potential habitat for a third state sensitive species, Piper’s daisy, has also been identified by WNHP approximately 2 miles north of the project corridor, at structures 33/4 to 35/3. The field surveys of the project corridor found no Piper’s daisy individuals or populations.

Noxious Weed Species

Noxious Weeds

Staff from the Klickitat County Weed Board conducted surveys along the project corridor for noxious weeds between July 31 and August 28, 2001. The surveyors noted occurrences of noxious weeds along the route, and recorded the number of the nearest tower to the noxious weeds population.

The results of the noxious weed survey indicate that diffuse knapweed (*Centaurea diffusa*) is by far the most prevalent noxious weeds occurring on the corridor. Diffuse knapweed populations occur in 55 of the corridor miles (70%) on the route. In 48 of these corridor miles, diffuse knapweed was found near at least three of the five or six towers typically located in a corridor mile. In the remaining 24 corridor miles, occurrences of diffuse knapweed are more isolated. Diffuse knapweed is most prevalent near the east end of the corridor, between corridor miles 1 and 20. Another concentration of diffuse knapweed was found between corridor miles 42 and 50.

Ten additional noxious weeds were located during the survey. None was found as frequently or as widespread as diffuse knapweed. Of the ten additional species found, yellow starthistle (*Centaurea solstitialis*) was the most prevalent. Yellow starthistle populations were found in portions of 15 of the corridor miles (19%). In six of these corridor miles, yellow starthistle populations were found near at least three of the towers within the corridor mile. Occurrences in the other nine corridor miles were isolated. Yellow starthistle is most prevalent between corridor miles 54 and 58.

Puncture vine (*Tribulus terrestris*) and kochia (*Kochia scoparia*) populations were found in 12 of the corridor miles (15%). In approximately half of these occurrences for each species, populations were found consistently through most of the corridor mile. The other corridor miles had more isolated occurrences.

White top (*Cardaria draba*) was found near most towers between corridor miles 49 and 51. An additional isolated occurrence of white top was noted near tower 69/3. Spotted knapweed (*Centaurea maculosa*), perennial pepperweed (*Lepidium latifolium*), rush skeletonweed (*Chondrilla juncea*), Canada thistle (*Cirsium arvense*), Indigo bush
(Amorpha fruticosa), and Russian knapweed (Centaurea repens) were also located at isolated points along the route.

No noxious weeds were found between corridor miles 34 through 42, 64 through 66, and 70 through 71.

A summary of locations of noxious weeds within McNary-Ross transmission line corridor mile is presented in Table 3-11.

Table 3-11: Locations of Noxious Weed Species Along the Project Corridor

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Common Name</th>
<th>McNary-Ross Corridor Miles</th>
<th>Major Occurrences[^1]</th>
<th>Isolated Occurrences[^2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centaurea diffusa</td>
<td>Diffuse knapweed</td>
<td>1-20; 27; 29; 37; 42-50; 53; 62-63; 67; 71-74; 31; 38; 39; 51; 55; 58; 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centaurea solstitialis</td>
<td>Yellow starthistle</td>
<td>54-58; 69</td>
<td>2; 51-53; 60; 71; 72-74;</td>
<td></td>
</tr>
<tr>
<td>Tribulus terrestris</td>
<td>Puncture vine</td>
<td>6; 10; 24-26</td>
<td>8; 9; 30-33; 54</td>
<td></td>
</tr>
<tr>
<td>Kochia scoparia</td>
<td>Kochia</td>
<td>27; 48-50; 68; 74</td>
<td>14; 16-18; 22; 26</td>
<td></td>
</tr>
<tr>
<td>Centaurea maculosa</td>
<td>Spotted knapweed</td>
<td>none</td>
<td>17-20</td>
<td></td>
</tr>
<tr>
<td>Lepidium latifolium</td>
<td>Perennial pepperweed</td>
<td>none</td>
<td>1; 11; 21; 45; 46; 48; 53; 71</td>
<td></td>
</tr>
<tr>
<td>Chondrilla juncea</td>
<td>Rush skeletonweed</td>
<td>69</td>
<td>4; 13; 27; 43; 58; 62;</td>
<td></td>
</tr>
<tr>
<td>Cirsium arvense</td>
<td>Canada thistle</td>
<td>none</td>
<td>21; 22; 24; 27; 28; 73; 74</td>
<td></td>
</tr>
<tr>
<td>Cardaria draba</td>
<td>White top</td>
<td>49-51</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Amorpha fruticosa</td>
<td>Indigo bush</td>
<td>none</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Centaurea repens</td>
<td>Russian knapweed</td>
<td>53</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

[^1]: Major occurrences are corridor miles with populations found near at least three of five towers within that corridor mile.
[^2]: Isolated occurrences are corridor miles with populations found near one or two of five towers within that corridor mile.

Environmental Consequences—Proposed Action

Summary of Project Impacts

The proposed transmission line expansion would result in both permanent and temporary impacts to vegetation within the project corridor. Permanent impacts would total approximately 68 acres. Permanent impacts are those actions that result in the removal and loss of vegetation through construction and operation and maintenance of new...
facilities, and that do not allow for reestablishment of the preconstruction cover type. There are 3 sources of permanent impacts: operation of new towers, new access road operation and maintenance, and substation expansion. The permanent impacts to each vegetative cover type resulting from each of these actions are summarized in Table 3-12. Criteria used to determine permanent impact acreages are described later in this section.

Temporary impacts would total 166 to 181 acres, depending upon the number and location of conductor tensioning sites. Temporary impacts are those actions that result in disturbance to vegetation during construction of the facilities, but do not result in permanent removal of vegetation, or preclude reestablishment of the preconstruction cover type.

Table 3-12: Permanent Impacts to Vegetation (acres)

<table>
<thead>
<tr>
<th>Vegetation Cover Type</th>
<th>Total Acres in Project Area</th>
<th>Percent Cover in Project Area</th>
<th>Permanent Impacts from Tower Construction</th>
<th>Substation Impacts</th>
<th>Total Permanent Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural</td>
<td>1,409</td>
<td>31</td>
<td>5</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>Grassland</td>
<td>900</td>
<td>20</td>
<td>4</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Grazed Shrub-Steppe</td>
<td>1,700</td>
<td>38</td>
<td>7</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>Riparian</td>
<td>38</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scabland/Lithosol Communities</td>
<td>294</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Shrub-dominated Shrub-Steppe</td>
<td>132</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>4,473</td>
<td>100</td>
<td>18</td>
<td>48</td>
<td>68</td>
</tr>
</tbody>
</table>

There are three sources of temporary impacts: work areas around tower sites, new access road construction, and conductor tensioning sites. The temporary impacts to each vegetative cover type resulting from each of these actions are summarized in Table 3-13. Criteria used to determine temporary impact acreages are described later in this section.

Impacts During Construction

Impacts during construction would potentially be caused by placement of towers, expansion of the McNary Substation, and construction of new access roads and conductor tensioning sites. In each of these activities, potential impacts to vegetation include removal or trampling and soil compaction from crew activity and construction equipment. These impacts would be most pronounced on native plant communities that are more susceptible to the introduction of nonnative weedy species (noxious weed species) that can replace native grasses, forbs and/or shrubs.
Table 3-13: Temporary Impacts to Vegetation (acres)

<table>
<thead>
<tr>
<th>Vegetation Cover Type</th>
<th>Total Acres in Project Area</th>
<th>Percent Cover in Project Area</th>
<th>Temporary Impacts from Tower Construction</th>
<th>Temporary Impacts from Road Construction¹</th>
<th>Conductor Tensioning Site Impacts²</th>
<th>Total Temporary Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural</td>
<td>1,409</td>
<td>31</td>
<td>28</td>
<td>12</td>
<td>7-15</td>
<td>47-55</td>
</tr>
<tr>
<td>Grassland</td>
<td>900</td>
<td>20</td>
<td>19</td>
<td>8</td>
<td>5-6</td>
<td>32-33</td>
</tr>
<tr>
<td>Grazed Shrub-Steppe</td>
<td>1,700</td>
<td>38</td>
<td>36</td>
<td>23</td>
<td>11-16</td>
<td>70-75</td>
</tr>
<tr>
<td>Riparian</td>
<td>38</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scabland/Lithosol Communities</td>
<td>294</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Shrub-dominated Shrub-Steppe</td>
<td>132</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0-1</td>
<td>5-6</td>
</tr>
<tr>
<td>Total</td>
<td>4,473</td>
<td>100</td>
<td>93</td>
<td>48</td>
<td>26-39</td>
<td>166-181</td>
</tr>
</tbody>
</table>

¹ Temporary road impacts include new spur roads and a 3-mile segment between corridor miles 39 and 41. Temporary roadway impacts are based on a 50-foot construction corridor. The central 16 feet of the temporary roadway corridor would become a permanent impact.

² The range given for conductor tensioning site impacts is based on 3- and 2-mile intervals, respectively.

Construction of New Access Roads

The construction of a new 3-mile-long access road, and 270 (250-foot-long) spur roads would result in 48 acres of temporary impacts to vegetation communities on the proposed route. The permanent impacts are discussed in the following section on Impacts During Operations and Maintenance. The various vegetation communities temporarily impacted by construction of new access roads are presented in Table 3-13.

Of the area temporarily impacted, approximately half is in the grazed shrub-steppe vegetative cover type. Temporary disturbance from new access road construction is not likely to noticeably alter the species composition of this cover type, because it is already dominated by those invasive species favored by disturbance.

Grassland, scabland/lithosol, and shrub-dominated shrub-steppe communities would have somewhat lower acreages of temporary impacts from new access road construction. These cover types would recover more slowly from the temporary disturbance and would likely see increases in percent cover of invasive and/or disturbance-favored species such as cheatgrass. The recovery of agricultural areas from the temporary disturbance from new access road construction would depend on the timing of replanting of the areas, and on local crop management practices such as hydrosedging of exposed soils.
Regrading of Existing Roads

In some places, the existing access roads would be graded. In places where the soil is unstable, rock would be laid on the road. The roads are largely devoid of vegetation and are dominated by cheatgrass in those places where vegetation grows between the road tracks. Placement of rock on the roads would result in up to 78 acres of permanent disturbance. This activity would be restricted to areas that have been previously disturbed, and that do not support vegetation communities. As a result, the impact would not result in additional disturbed area or contribute to further loss of vegetation communities.

Conductor Tensioning Sites

Conductor tensioning sites would be placed at approximately 2- to 3-mile intervals. Each site would result in a 1-acre temporary impact to existing vegetation due to heavy equipment driving over the area. The ranges of temporary impact acreages are in Table 3-13. Temporary impacts associated with conductor tensioning sites are located primarily in the grazed shrub-steppe, agricultural, and grassland cover types. As with new access road construction, temporary disturbance from conductor tensioning is not likely to noticeably alter the species composition of the grazed shrub-steppe cover type, because it is already dominated by those invasive species favored by disturbance. Similarly, recovery of agricultural areas will follow local management practices. Grassland, shrub-dominated shrub-steppe, and scabland/lithosol cover types would likely see an increase in disturbance-favored species. Conductor tensioning sites would not impact riparian cover type areas.

Impacts to Trees

The proposed transmission line corridor has few areas with dense concentrations of trees. One notable exception is the cottonwood farm west of Glade Creek. This area is included under the agricultural cover type because it is an irrigated, managed site dedicated to production of a marketable product that is grown on a regular, repeated interval. The cottonwoods reach heights of up to 60 feet at their harvest age. This height exceeds allowable tree heights for safe operation of the transmission line. As a result, cottonwood production will be discontinued under the proposed transmission line. This will result in the permanent loss of 50 acres of trees along the project corridor.

Trees in other portions of the project area are restricted to small clumps and wind breaks scattered in a few locations along the route. Total removal of trees from these sites would be less than 1 acre. Complete removal of trees from these scattered sites would have a minimal impact on the remaining vegetation communities. The trees present in these isolated stands are too few in number and too sparse in distribution to support communities of shade-dependent shrub and herb species. Instead, grasses typical of the majority of the route grow near and under the trees. These grass species would not be
impacted by the removal of trees, and would likely expand their coverage. On this route, removal of trees would probably favor increased dominance by cheatgrass.

Removal of trees from wind breaks would affect any species (e.g., orchard trees) being protected from the wind.

Impacts During Operation and Maintenance

Impacts to vegetation communities during operation and maintenance of the proposed transmission line would result from operation and maintenance of the existing and new access roads, the transmission line towers, and the expanded substation. These are permanent impacts. Impacts to specific vegetative cover types resulting from operation and maintenance are summarized in Table 3-12.

Operations and Maintenance of New Access Roads

Operations and maintenance of new access roads would result in the permanent alteration of 48 acres of existing vegetation communities in the proposed roadbeds. This figure is based on an assumption of 270 new access roads, each about 250 feet long, with a 25-foot width. In areas where cut or fill activities are required to build or support the roadbed, or at corners in roads, the permanent impact width would be wider.

Impacts to local vegetative cover types during operation and maintenance of the access roads include continued disturbance and compaction of soils and the potential for spreading noxious weed species. An additional potential impact to local vegetation would be the risk of fire from vehicles driving along the access roads, particularly during dry periods.

A noxious weed survey has been conducted along the proposed corridor. The results of the survey will be used to determine where noxious weed control measures along the access roads are most important to control those species and contain their spread.

The risk of fire caused by vehicles would be minimized through the practice of standard precautions in high-risk areas (see the Mitigation portion of this section).

If fire were to occur within the right-of-way or adjacent areas, it would have a limited, temporary effect on most of the vegetation communities present. Vegetation removed by fire would regenerate naturally in the grassland and shrub-steppe communities. Species composition in these regenerated communities would be more or less the same, with grass species returning to maturity within 1 to 2 years, and shrub species maturing within 5 years.

In economic terms, fire in agricultural vegetation communities could result in financial losses to the landowner. Ecologically, fire damage in these communities would be limited to the loss of vegetation for one season, with replanting likely in the following year.
Vegetation

Fire damage in lithosol vegetation communities could result in expansion of non-vegetated, bare rock areas. The shallow soils over bedrock in these communities are stabilized by vegetation. Loss of the vegetation could lead to the loss of soils in some areas.

Fire in the cottonweed plantation would result in losses of trees. Replacement of mature, harvestable trees would take 7 to 10 years. Fire loss of trees in hedgerows and isolated patches elsewhere on the alignment would take longer to replace. Tree species identified on the right-of-way would take approximately 25 years to regenerate to mature individuals.

Impact acreage from access road operation would be highest in the grazed shrub-steppe cover type. Ten acres of this cover type would be converted to roadbed. Many of the existing two-track roadbeds in this cover type, and throughout the route, are dominated by low cheatgrass. As such they have a close affinity to the surrounding degraded shrub-steppe, even while converted to access roads. Impact acreage within higher quality vegetation communities (such as shrub-dominated shrub-steppe) are lower, but would result in the creation of new edge communities and a permanent avenue of invasion for nonnative and/or disturbance-favored species.

Tower Operation and Maintenance

The proposed line would require the placement of 360 steel lattice towers. Each tower would take up approximately 0.05 acre. Of the towers to be placed, approximately 144 would be placed in grazed shrub-steppe vegetative cover, 118 would be placed in agricultural cover, 75 would be in grasslands, 26 would be in scabland/lithosol communities, and 11 would be in shrub-dominated shrub-steppe cover. No towers would be placed in riparian communities. Acreages permanently impacted by tower placement are presented in Table 3-12.

Tower operation is regarded as a permanent impact to vegetation communities, because it requires the removal and displacement of existing vegetation and results in the compaction of soils. However, the grassland and grazed shrub-steppe communities would likely return to and recover at least some of the area beneath the towers within 1 to 5 years of construction. Shrub-dominated shrub-steppe and scabland/lithosol communities may also return to portions of the areas under towers, but over a longer time period, and with more intensive management. Based on conditions observed at existing towers, it is likely that a combination of native and nonnative species would establish around the towers. Nonnatives commonly observed around towers include cheatgrass, medusa-head wild rye, and bulbous bluegrass. Native species seen around existing towers include bluebunch wheatgrass, big sagebrush, and gray rabbitbrush. Agricultural cover types would not return to the areas under new towers.
Expansion of Substation

The proposed expansion of the McNary Substation would result in the loss of approximately 2 acres of mixed native/nonnative grassland communities. The proposed installation of additional equipment at the John Day Substation would be completed within the existing substation yard, and would not result in additional impacts to existing vegetation.

General Effects on Native Plant Communities

Addition of a new transmission line adjacent to the existing lines would widen the overall corridor. Widening of the transmission line corridors occasionally requires clearing of a broad swath of upright woody vegetation. This creates long stretches of edge conditions, which favor colonization by invasive species. However, most of the existing McNary-John Day corridor is located in open, grassy or shrub-steppe areas with varying degrees of prior disturbance. As a result, the creation of additional edge conditions will be restricted to tower areas and new access roads. Tree removal would be restricted to a few isolated clumps of trees and would not involve removal of trees across the entire corridor width.

The project is not likely to adversely affect any federal or state-listed sensitive plant species, since none are likely to occur within the project area. Construction would temporarily disturb soils, creating opportunities for colonization by noxious weeds or other undesirable plants.

Plant species that would be affected by the project would include those listed in the Affected Environment section and in Appendix C. Grazing and agriculture have previously disturbed most of the proposed transmission line route. The invasive annual cheatgrass is the dominant species along much of the route. However, there are portions of the route that are dominated by native grasses and shrubs. These higher quality shrub-steppe communities are more vulnerable to the types of construction, operation, and maintenance activities required for the project.

The proposed project would result in the temporary removal of 34 to 37 acres of native plants and approximately 6 acres of cryptogamic crusts. Permanent project impacts would require the removal of approximately 16 acres of native plant species, and 2.5 acres of cryptogamic crusts.

Both native plant species and cryptogamic crust estimated coverages are highest in the shrub-dominated shrub-steppe communities. This vegetative cover type has approximately 65% cover of native plant species, and 20% cover of cryptogamic crusts. The areas of permanent and temporary impacts in this vegetative cover type are relatively small, and losses of native plant species and cryptogamic crusts are, therefore, small.

The estimated temporary and permanent removal of native plants and cryptogamic crusts within each vegetation cover type is summarized in Tables 3-14 and 3-15.
Table 3-14: Estimated Temporary Impacts to Native Plants and Cryptogamic Crusts by Cover Type

<table>
<thead>
<tr>
<th>Vegetation Cover Type</th>
<th>Total Acres in Project Area</th>
<th>Total Temporary Impacts (acres)</th>
<th>Estimated Percent Cover of Native Plants in Cover Type</th>
<th>Estimated Temporary Impacts to Native Plants in Cover Type (acres)</th>
<th>Estimated Percent Cover of Cryptogamic Crusts in Cover Type</th>
<th>Estimated Temporary Impacts to Cryptogamic Crusts in Cover Type (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural</td>
<td>1,409</td>
<td>47-55</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grassland</td>
<td>900</td>
<td>32-33</td>
<td>25</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grazed Shrub-Steppe</td>
<td>1,700</td>
<td>70-75</td>
<td>30</td>
<td>21-23</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Riparian</td>
<td>38</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scabland/Lithosol Communities</td>
<td>294</td>
<td>12</td>
<td>15</td>
<td>2</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Shrub-dominated Shrub-Steppe</td>
<td>132</td>
<td>5-6</td>
<td>65</td>
<td>3-4</td>
<td>20</td>
<td>1.0-1.2</td>
</tr>
<tr>
<td>Total</td>
<td>4,473</td>
<td>166-181</td>
<td>--</td>
<td>34-37</td>
<td>--</td>
<td>6.0-6.2</td>
</tr>
</tbody>
</table>

Table 3-15: Estimated Permanent Impacts to Native Plants and Cryptogamic Crusts by Cover Type

<table>
<thead>
<tr>
<th>Vegetation Cover Type</th>
<th>Total Acres in Project Area</th>
<th>Total Permanent Impacts (acres)</th>
<th>Estimated Percent Cover of Native Plants in Cover Type</th>
<th>Estimated Permanent Impacts to Native Plants in Cover Type (acres)</th>
<th>Estimated Percent Cover of Cryptogamic Crusts in Cover Type</th>
<th>Estimated Permanent Impacts to Cryptogamic Crusts in Cover Type (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural</td>
<td>1,409</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grassland</td>
<td>900</td>
<td>14</td>
<td>25</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grazed Shrub-Steppe</td>
<td>1,700</td>
<td>30</td>
<td>30</td>
<td>9</td>
<td>5</td>
<td>1.5</td>
</tr>
<tr>
<td>Riparian</td>
<td>38</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scabland/Lithosol Communities</td>
<td>294</td>
<td>4</td>
<td>15</td>
<td>1</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>Shrub-dominated Shrub-Steppe</td>
<td>132</td>
<td>3</td>
<td>65</td>
<td>2</td>
<td>20</td>
<td>0.6</td>
</tr>
<tr>
<td>Total</td>
<td>4,473</td>
<td>68</td>
<td>-</td>
<td>16</td>
<td>-</td>
<td>2.5</td>
</tr>
</tbody>
</table>

In addition to the loss of native plants that grow in these communities, the cryptogamic crusts often found on the surface of shrub-steppe community soils would be disturbed.
Loss of the cryptogamic crusts could result in an increase in soil erosion and decreased soil nutrient and water retention. Reestablishment of the cryptogamic crust component in higher quality shrub-steppe is a long-term process, and can take from 7 to 100 years, depending on the complexity of the species association within a given area of cryptogamic crust (PALS 1997).

Removal or disturbance of higher quality shrub-steppe communities along the project corridor would be a notable impact for the following reasons.

- Disturbance of these areas would provide an opportunity for invasion by cheatgrass and other nonnative species. Adjacent grasslands provide a seed source for cheatgrass invasion. Moreover, cheatgrass has a competitive advantage over native bunchgrasses, which are an important component of shrub-steppe associations in the project area.
- Restoration of native shrub-steppe communities would require long-term intensive maintenance to control invasive species.
- Restoring the native shrub and grass component of the higher quality shrub-steppe would be only one component of recovering these communities. Restoration of the cryptogamic crust component and support for the animals that utilize shrub-steppe communities would be long-term processes tied to reestablishment of the shrub-steppe.

Environmental Consequences—Short-Line Routing Alternatives

Table 3-16 summarizes the vegetation impacts associated with the short-line routing alternatives.

Table 3-16: Impacts of Short-Line Routing Alternatives: Vegetation

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>McNary Substation Alternatives</td>
<td></td>
</tr>
<tr>
<td>A. Relocate administration building presently located on north side of substation adjacent to Wildlife Natural Area</td>
<td>Approximately 2 acres of permanent impact to grassland communities for the new location of building.</td>
</tr>
<tr>
<td>B. Cross Wildlife Natural Area; circumvent administration building on north side</td>
<td>Cottonwood trees and some vegetation would be removed for tower sites and conductor clearance. These cottonwoods are somewhat unique given the dry conditions that prevail over most of the route. The are supported by a local seep. Since the seep will not be altered, similar moisture-dependent woody species will likely regenerate in the areas where cottonwoods are cut.</td>
</tr>
</tbody>
</table>
Alternative Impacts

C. Place line in bus work at ground level on north side of administration building, inside Wildlife Natural Area

Approximately 0.7 acre of permanent impact to grassland communities for construction, operation and maintenance of 1,600 feet of bus work.

Hanford-John Day Junction Alternatives

A. Move existing Hanford-John Day line north 200 feet to make room for new line on north side of corridor

Less than 1 acre of temporary construction impacts for six relocated towers, 1.2 acres of temporary impacts from new access road construction, and 0.6 acre of permanent impact from new access road operation and maintenance.

B. Place new line on south side of corridor (occupied by roads and towers)

0.5 acre of temporary construction impacts for up to two additional towers; 0.1 acre of permanent impacts for two additional towers; 3.1 acres of impacts resulting from construction and operation and maintenance of new access roads; removal of up to 12 trees-of-heaven (*Ailanthus altissima*).

C. Place new line on south side of highway

0.5 acre of temporary construction impacts for up to two additional towers; 0.1 acre of permanent impacts for two additional towers; 6.2 acres of impacts resulting from construction and operation and maintenance of new access roads; removal of up to 12 trees-of-heaven (*Ailanthus altissima*).

Corridor Mile 32 Alternatives

A. Keep existing and new lines on tribal land

0.75 acre of temporary construction impacts for three new towers; 0.15 acre of permanent operation and maintenance impacts for three new towers; 0.42 acre of impacts resulting from construction, operation and maintenance of new access roads to three new towers. All impacts would occur in agricultural land.

B. Relocate existing and new lines away from tribal land

2.25 acres of temporary construction impacts for nine new towers; 0.5 acre of permanent operation and maintenance impacts for nine new towers; 1.26 acres of impacts resulting from construction, operation and maintenance of new access roads to nine new towers. All impacts would occur in agricultural land.

Corridor Mile 35 Alternatives

A. Keep existing and new lines on tribal land

1.0 acre of temporary construction impacts for four new towers; 0.2 acre of permanent operation and maintenance impacts for four new towers; 0.57 acre of impacts resulting from construction, operation and maintenance of new access roads to four new towers. All impacts would occur in grazed shrub-steppe.

B. Relocate existing and new lines away from tribal land

2.0 acres of temporary construction impacts for eight new towers; 0.4 acre of permanent operation and maintenance impacts for eight new towers; 1.14 acres of impacts resulting from construction, operation and maintenance of new access roads to eight new towers. All impacts would occur in grazed shrub-steppe.
Mitigation

The following measures would help minimize potential impacts to vegetation along the proposed transmission line corridor.

- Locate the proposed transmission line adjacent to the existing corridor to minimize additional clearing.
- Utilize the existing access road system to the extent possible to reduce the need for new access roads.
- Keep vegetation clearing to the minimum required to maintain safety and operational standards.
- Avoid construction activities or permanent tower or access road siting in native shrub-dominated shrub-steppe communities, if possible.
- Reseed areas temporarily disturbed in higher quality shrub-steppe with native grasses and forbs (if recommended by local county) and salvage topsoil and bunchgrass plant material. Reseeding should occur at the appropriate planting season. Reseed all disturbed areas with seeds recommended by the local county.
- Equip all vehicles with basic fire-fighting equipment including extinguishers, shovels, and other equipment deemed appropriate for fighting grass fires.
- Avoid tree removal to the extent possible.
- Limit construction equipment to tower sites, access roads, and conductor tensioning sites.
- Minimize disturbance to native species to the extent possible during construction to prevent invasion by nonnative species.
- Conduct a pre-construction and a post-construction noxious weed survey to determine if construction contributed to the spread of noxious weed populations.
- Enter into active noxious weed control programs with land owners/managers or county weed control districts where activities may have caused or aggravated an infestation.
- Wash vehicles that have been in weed-infested areas (removing as much weed seed as possible) before entering areas of no known infestations.
- Use certified weed-free mulching.

Unavoidable Impacts Remaining after Mitigation

Construction of new towers, access roads, and substation structures would disturb small areas of native plant communities and would create conditions favoring displacement of
those communities by nonnative plant species. Small segments of native plant communities may be permanently lost as a result of these disturbances. In locations where access roads, towers, and substation structures are built, future colonization and development of those areas by native grassland or shrub-steppe communities would not be likely.

Environmental Consequences—No Action Alternative

Under the No Action Alternative, vegetation in the project area would not be disturbed by the proposed transmission line construction. The 68 acres of permanent vegetation impacts and the 166 to 181 acres of temporary vegetation impacts would not occur. The existing transmission line corridor would remain at its present width, with no additional area that would likely become dominated by invasive species. Continued impacts associated with operation and maintenance of the existing lines would remain.

Wildlife

Affected Environment

This section provides information regarding federally listed species, avian groups, game species, other common wildlife species, and habitat types that are either known to occur or may occur in the project vicinity. A complete list of common and scientific wildlife names is located in Appendix D.

Habitat and Occurrence of Sensitive-Status Species

Sensitive-status species potentially occurring within the corridor and project vicinity are listed in Table 3-17. Sensitive-status species include those that are

- federally listed as threatened or endangered,
- candidates for federal listing,
- considered species of concern by the U.S. Fish and Wildlife Service,
- listed as threatened or endangered by the state of Washington,
- candidates for listing in Washington State,
- Washington State priority species, and
- listed by the state of Oregon as threatened, endangered, or sensitive.
Federally Listed Species

The U.S. Fish and Wildlife Service has identified the bald eagle as the only listed wildlife species known to occur in the project vicinity. A winter foraging and roosting area is located approximately 2,300 feet south of the corridor on an island in the Columbia River near the town of Paterson. During field surveys in February 2001 and October 2001, bald eagles were detected in the vicinity of Rock Creek and near McNary Dam. However, no bald eagle nesting or roosting habitat occurs in the project corridor based on Washington Department of Fish and Wildlife Priority Habitats Species data and results of field surveys.

The U.S. Fish and Wildlife Service has also identified the spotted frog and the Mardon skipper butterfly as candidate wildlife species potentially occurring in the project vicinity. Potential habitat for spotted frogs occurs in wetlands and stream margins along the corridor. Habitat for the Mardon skipper consists of native prairie vegetation such as Idaho fescue and blue violet. No habitat was found within the project corridor for Mardon Skipper.

Sensitive-Status Species

Habitat for 29 different state-listed species occurs within or near the corridor. Habitat for these species varies from grazed and nongrazed shrub-steppe, agricultural lands, grasslands, cliffs, and riparian areas (see Table 3-17).

Table 3-17: Sensitive Wildlife Species Potentially Occurring in the Project Corridor and Project Vicinity

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Habitat Type</th>
<th>Sightings or Recordings in Project Vicinity</th>
<th>Washington State Rank</th>
<th>Oregon State Rank</th>
<th>Federal Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western burrowing owl</td>
<td>F, B</td>
<td>X</td>
<td>Candidate</td>
<td>State critical</td>
<td>Species of concern</td>
</tr>
<tr>
<td>Bald eagle</td>
<td>F</td>
<td>X</td>
<td>Threatened</td>
<td>Threatened</td>
<td>Threatened</td>
</tr>
<tr>
<td>Golden eagle</td>
<td>F, B</td>
<td>X</td>
<td>Candidate</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Ferruginous hawk</td>
<td>F, B</td>
<td>X</td>
<td>Threatened</td>
<td>State critical</td>
<td>Species of concern</td>
</tr>
<tr>
<td>Prairie falcon</td>
<td>F, B</td>
<td>X</td>
<td>Monitor</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Merlin</td>
<td>F, B</td>
<td></td>
<td>Candidate</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Northern goshawk</td>
<td>F</td>
<td>X</td>
<td>Candidate</td>
<td>State critical</td>
<td>None</td>
</tr>
<tr>
<td>Peregrine falcon</td>
<td>F</td>
<td></td>
<td>Endangered</td>
<td>Endangered</td>
<td>Species of concern</td>
</tr>
<tr>
<td>Western meadowlark</td>
<td>F, B</td>
<td></td>
<td>None</td>
<td>State critical</td>
<td>None</td>
</tr>
<tr>
<td>Common Name</td>
<td>Habitat Type</td>
<td>Sightings or Recordings in Project Vicinity</td>
<td>Washington State Rank</td>
<td>Oregon State Rank</td>
<td>Federal Status</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>---</td>
<td>-----------------------</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Loggerhead shrike</td>
<td>F, B</td>
<td>Candidate</td>
<td>Sensitive</td>
<td>Sensitive</td>
<td>Species of concern</td>
</tr>
<tr>
<td>American white pelican</td>
<td>F</td>
<td>X</td>
<td>Endangered</td>
<td>State vulnerable</td>
<td>None</td>
</tr>
<tr>
<td>Harlequin duck</td>
<td>F</td>
<td></td>
<td>Species of concern</td>
<td>Status unclear</td>
<td>Species of concern</td>
</tr>
<tr>
<td>Long-billed curlew</td>
<td>F</td>
<td>None</td>
<td>State vulnerable</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sandhill crane</td>
<td>F</td>
<td>Endangered</td>
<td>Sensitive</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sage thrasher</td>
<td>F, B</td>
<td>Candidate</td>
<td>Sensitive</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Oregon vesper sparrow</td>
<td>F, B</td>
<td>Candidate</td>
<td>State Critical</td>
<td>Species of concern</td>
<td></td>
</tr>
<tr>
<td>Sage sparrow</td>
<td>F, B</td>
<td>Candidate</td>
<td>State critical</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Streaked horned lark</td>
<td>F, B</td>
<td>Candidate</td>
<td>Sensitive</td>
<td>Species of concern</td>
<td></td>
</tr>
<tr>
<td>Black-tailed jackrabbit</td>
<td>F, B</td>
<td>X</td>
<td>Priority</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Pygmy rabbit</td>
<td>F, B</td>
<td>Endangered</td>
<td>State vulnerable</td>
<td>Possible emergency listing</td>
<td></td>
</tr>
<tr>
<td>Western pocket gopher</td>
<td>F, B</td>
<td>Candidate</td>
<td>None</td>
<td>Species of concern</td>
<td></td>
</tr>
<tr>
<td>Woodhouse’s toad</td>
<td>F, B</td>
<td>X</td>
<td>None</td>
<td>Sensitive</td>
<td>None</td>
</tr>
<tr>
<td>Northern leopard frog</td>
<td>F, B</td>
<td>Endangered</td>
<td>Sensitive</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Oregon spotted frog</td>
<td>F, B</td>
<td>Endangered</td>
<td>Sensitive</td>
<td>Candidate</td>
<td></td>
</tr>
<tr>
<td>Painted turtle</td>
<td>F, B</td>
<td>None</td>
<td>Sensitive</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Western rattlesnake</td>
<td>F, B</td>
<td>None</td>
<td>Sensitive</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Striped whipsnake</td>
<td>F, B</td>
<td>Candidate</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sagebrush lizard</td>
<td>F, B</td>
<td>None</td>
<td>Sensitive</td>
<td>Species of concern</td>
<td></td>
</tr>
<tr>
<td>Mardon skipper</td>
<td>None</td>
<td>Endangered</td>
<td>None</td>
<td>Candidate</td>
<td></td>
</tr>
</tbody>
</table>

1 F: foraging; B: breeding
2 Observed during site surveys or recorded on Priority Habitat Species maps in the project vicinity.
Waterfowl

By definition, waterfowl include ducks, geese, and swans (order Anseriformes).

The Columbia River basin is a wintering and breeding area for waterfowl. Waterfowl rest during migration and forage in wetlands, agricultural fields, and other open water bodies. Shallow wetlands are located near streams crossed by the project corridor. Waterfowl also feed in agricultural fields near Paterson (Haines pers. comm.). Open water habitat occurs within the project corridor at the major stream crossings shown on Figure 3-4. However, the most extensive open water habitat occurs in the vicinity of the existing transmission lines at Rock Creek (corridor mile 61) and the Columbia River crossings at McNary and John Day Dams. Waterfowl use these areas for feeding and loafing, but to a lesser degree than at the Umatilla National Wildlife Refuge and agricultural fields.

Much of the shoreline of the Columbia River in the project vicinity has been altered by construction of roads and other developments in the riparian area. However, mainstem dams and other impoundments along the Columbia River have created some wetlands that are attractive to waterfowl, notably those at the Umatilla National Wildlife Refuge located 0.1 to 4 miles south of the project corridor from corridor mile 11 to 28. This refuge is a migratory stopover for geese, mallards, green-winged teal, northern pintail, cinnamon teal, northern shoveler, gadwall, American widgeon, bufflehead, and common golden-eye. The harlequin duck, a federal species of concern, is a rare winter visitor.

Raptors

Raptors (such as hawks, eagles, falcons, and owls) use grasslands, cliffs, and agricultural lands. They forage along the edges of fencerows, over grassy areas, across ruderal areas (lands used for agriculture or grazing), and near open water. Such habitats are relatively common in the project vicinity. Sensitive-status raptors known to occur in the project vicinity include bald eagle, western burrowing owl, golden eagle, goshawk, prairie falcon, osprey, peregrine falcons, and merlin.

The only raptors known to nest within 0.25 mile of the project corridor are red-tail hawk, prairie falcon and the burrowing owl. Red-tail hawks, a state-monitor species in Washington, nest in large trees, transmission line structures, and rocky cliffs (Bechard et al. 1990). Red-tail hawks are known to have nested in transmission line towers at corridor miles 21, 35 and 41.

Prairie falcons, a state-monitor species, nest on rocky outcrops (and transmission towers) and forage on small mammals in shrub-steppe habitats. Prairie falcons were found nesting on cliffs adjacent to the project corridor at corridor miles 55 and 66.

Burrowing owls inhabit the shrub-steppe lands throughout eastern Washington. Factors important to good burrowing owl habitat include openness, short vegetation and burrow availability (Plumpton and Lutz 1993). Burrowing owls are tolerant of humans and occur
in agricultural areas, provided natural areas with burrows are available (WDFW 2000). Burrowing owls depend on burrows created by ground-dwelling mammals, such as ground squirrels, badgers and marmots. Burrowing owls nest in the utility line corridor near corridor mile 19.

Golden eagles, a state-monitor species, require large open areas for feeding. Nests are usually located on cliffs or large trees (Anderson and Bruce 1980), but can also be found on transmission lines (Steenhoff 1993). Human disturbance is thought to be a major factor in golden eagle nest failure (Rodrick 1991). A golden eagle nest site, discovered in 1995, was located 0.6 mile from the corridor in the vicinity of the Goldendale aluminum plant. No nesting activity was detected during surveys conducted in February 2001.

Ferruginous hawks, a federal species of concern, are also associated with shrub-steppe in eastern Washington and Oregon. Their distribution and abundance are generally limited by the availability of nest sites and prey abundance (WDFW 1993). Most nest sites occur on cliffs, although artificial structures such as power line towers are also used for nesting and perching (Steenhoff 1993). The ferruginous hawk is known to avoid areas with agricultural machinery, and areas with over 50% of the land in cultivation (Gilmer and Stewart 1983, Bechard et al.1990). The nearest known ferruginous hawk nest is located approximately 1 mile north of the project corridor at mile 13.

Peregrine falcons nest on cliffs near abundant sources of prey (Ratcliffe 1993). During helicopter surveys conducted for another project, a pair of peregrine falcons were detected in the vicinity of Rock Creek (Jones & Stokes 1995). No nests were detected in the vicinity of Rock Creek (corridor mile 61) during nest surveys conducted in spring 2001 as a part of the McNary-John Day study. During the nonbreeding season, peregrine falcons generally follow the movements of shorebirds and waterfowl and have been reported to move through eastern Washington from late November through January (Ennor 1991). Likely peregrine falcon foraging habitat includes waterfowl areas between the McNary Dam and Paterson, open water near Rock Creek, and the two Columbia River crossings.

A juvenile northern goshawk was detected by Washington Department of Fish and Wildlife biologists in the vicinity of the tree farm just west of Glade Creek near corridor mile 21 (PHS 2001). This tree farm is harvested every 6 to 10 years and would not be expected to provide nesting habitat for northern goshawk (Bevis pers. comm.). The northern goshawk is primarily found in forested areas of Washington, but could migrate through the project vicinity.

Merlin, a state candidate species, are occasional winter visitors at the Umatilla National Wildlife Refuge. Merlins nest in trees near open grasslands, forest edges, cliffs or lakeshores (Bechert and Ball 1983, Trimble 1975) and feed on small mammals, reptiles birds and insects. Scattered groves of trees provide nest structure in grassland habitats devoid of cliffs.
Shorebirds and Other Water Birds

Shorebirds are long-billed, flocking, highly migratory birds of the order Charadriiformes that inhabit shore and some upland habitats. Other water birds include loons (order Gaviiformes), grebes (order Podicipediformes), pelicans (order Pelecaniformes), herons (order Ciconiiformes); cranes, rails, and coots (order Gruiformes). Species of all of these groups of birds occur in the Columbia River basin.

Few wetlands are located within the project corridor, however mainstem dams and other impoundments along the Columbia River in the project vicinity have created wetlands attractive to shorebirds for foraging and breeding. The only sensitive-status shorebird known to occur in the project vicinity is the long-billed curlew. Long-billed curlew nest in grasslands and spend the winter near swamps and river systems. Long-billed curlew were detected at Glade Creek by Washington Department of Fish and Wildlife biologists (PHS 2001) and are common visitors to the Umatilla National Wildlife Refuge (see Chapter 5 References for website address).

American white pelicans, a state-listed bird, are known to forage on islands located about 3 miles south of the project corridor. Pelicans are commonly seen in the wildlife refuge in summer through fall, and were observed during the spring 2001 surveys flying east of Paterson.

The sandhill crane is also an occasional spring and fall visitor to the Umatilla National Wildlife Refuge. Other common shorebirds known to frequent the refuge include the greater and lesser yellowlegs, western sandpipers, and killdeer.

Shorebirds may also use habitats along the corridor near Chapman Creek, Rock Creek, Alder Creek, Glade Creek, Wood Gulch, Pine Creek, JU Canyon, and wetlands near the Goldendale aluminum plant at the west end of the corridor. Killdeer were observed at Pine Creek during the spring 2001 surveys.

Passerines

Passerines include birds commonly referred to as perching birds or songbirds, which are the largest wildlife group inhabiting the project corridor and vicinity. This group includes state priority species, the sage thrasher, sage sparrow, and loggerhead shrike. These birds are associated with habitats containing dense sagebrush, which occurs only in a few areas along the project corridor.

The project corridor also contains potentially suitable habitat for the streaked horned lark and western meadowlark. Other more common passerines expected to occur along the corridor include song sparrows, brown-headed cowbirds, white-crowned sparrows, and Brewer’s blackbirds. These species are adapted to the open cropland, grasslands, grazed shrub-steppe, and shrub-steppe habitats that occur along the corridor. Passerines likely use the riparian shrub and small-tree habitats along Glade Creek, Alder Creek, Pine Creek, Chapman Creek, JU Canyon, Rock Creek, and Wood Gulch.
Mammals

Mule deer occur across a wide range of vegetation types, from shrublands to desert scrub (Wallmo 1981). However, most deer activity would occur in riparian areas where shrubs and topography provide food and hiding cover, respectively (Hamlin and Mackie 1989). Mule deer fawning areas consist of low shrubs and small trees on benches or slopes within 600 feet of water (Thomas 1976). Mule deer are known to occur in the Rock Creek watershed (PHS 2001) and in the Umatilla National Wildlife Refuge (Caballero pers. comm.). The primary mule deer concentration area is more than 2 miles north of the crossing location at Rock Creek (PHS 2001).

Other mammals known or expected to occur in the project corridor and vicinity include the black-tailed jackrabbit and white-tailed jackrabbit. Habitat occurs in the corridor for sensitive-status pygmy rabbit, western pocket gopher, Washington ground squirrel, and sagebrush vole.

During the spring 2001 surveys, four areas with burrows were identified in shrub-steppe habitat within the project corridor. Mammals known to use burrows include the pygmy rabbit, Washington pocket gopher, and Columbian and Townsend’s ground squirrel. The pygmy rabbit is a species currently under review for federal listing, and is the only rabbit known to excavate their own burrows. A historical detection of pygmy rabbit occurred about 0.5 mile south of the corridor near corridor mile 62 (PHS 2001). Pygmy rabbits are associated with deep soils and feed on sagebrush (Nowak 1983).

The Western pocket gopher is an herbivore that consumes grasses and forbs and burrows in friable soil to nest (Ingles 1965). The Townsend’s ground squirrel is common in sagebrush, rather rare in bitterbrush, and may invade croplands of alfalfa and grain in spring and winter. Like the pygmy rabbit and western pocket gopher, it excavates long burrows in sandy friable soil in shrub habitat (Whitaker 1980). The Washington ground squirrel is absent from the north side of the Columbia River.

Other common mammals expected to occur in the project corridor and vicinity include coyote, fox, badger, cottontail, skunk, and mice. Cougar may also occasionally move through the corridor to feed on deer, particularly in winter. Most wildlife activity likely occurs on uncultivated lands, although waterfowl, mice, deer, and voles are also known to feed in the irrigated areas.

Amphibians

Habitat for amphibians occurs in wetlands and riparian zones of the streams along the project corridor and vicinity. Woodhouse’s toad is a sensitive status amphibian species known to occur in the project vicinity near Rock and Alder Creeks. Great Basin spadefoot were detected in the western portion of the corridor (Klickitat County) by Jones & Stokes biologists in 1995 and are to be expected near wetlands and springs. Northern leopard frogs were historically reported south of the project corridor, but recent
surveys have failed to detect them (McAllister 1999). The nearest known Oregon spotted frog population is 32 miles northwest at Conboy National Wildlife Refuge.

Reptiles

There have not been any reports of sensitive-status reptiles in the project vicinity; however, suitable habitat is present for the following species.

The painted turtle is a state-sensitive in Oregon, but is not considered state-sensitive in Washington. Painted turtles have not reported in the project area, but could occur based on habitat and historic range. This species occurs within or near open water wetlands or slow-moving river bodies or slack-water areas of rivers. Such habitat occurs at the Corps Wildlife Natural Area. Because they lay their eggs in upland sites as far as several hundred feet from bodies of water (Nussbaum et al. 1982), they are susceptible to land use activities that cause disruption of their egg sites.

The western rattlesnake is not known to occur in the project area, but may occur within the project area occur based on habitat and historic range. This species occurs in many areas of eastern Washington and inhabits rocky slopes, sagebrush flats, grasslands, and juniper woodlands, all of which are prevalent in the project area. They are most common near den areas, which are normally south-facing rocky slopes that are not shaded by vegetation.

The striped whipsnake has not been reported in the project area, but it may occur based on habitat and historic range. The striped whipsnake occurs in grasslands, sagebrush flats and dry rocky canyons. Habitat for the striped whipsnake occurs in grasslands, sagebrush flats or dry rocky canyons, habitats that are prevalent throughout the project area.

The sagebrush lizard has not been reported in the project area, but may occur based on habitat and historic range. Sagebrush lizards are commonly found in sagebrush and juniper forests of the Columbia River basin, with detections occurring in Klickitat and Benton Counties.

Other species of snakes and lizards not classified as sensitive are expected to inhabit grassland, rocky outcrops, and shrub-steppe along the project corridor.

Habitat Types and Special Habitat Types

The five habitats present within or near the project corridor and project vicinity include ruderal areas (made up of grazed shrub-steppe, agricultural lands, and grasslands), cliffs, shrub-dominated shrub-steppe, stream riparian zones, and tree stands. These are described below.
Ruderal lands (those areas utilized for agriculture, grazing, grasslands, and irrigated cropland), include vegetation communities that are fairly typical of the Columbia River basin. The eastern half of the corridor, from corridor mile 1 to 48, passes through flat, mostly cultivated croplands and grasslands interspersed with native grazed shrub-steppe. Center pivot irrigation circles near Paterson have been planted with corn to attract waterfowl and are designated hunting areas.

Rock Outcrops/Cliffs

Outcrops and cliffs are primarily located outside the corridor along and near the western half of the project west of the town of Roosevelt. Rock outcrops and cliffs provide habitat for hawks and other birds to nest and perch. The outcrops and cliffs also provide roosting habitat for bats and habitat for mammals and reptiles.

Prairie falcons, ferruginous hawks, and golden eagles are known to nest on rock outcrops in the general project vicinity. Red-tailed hawks and turkey vultures were observed near cliffs and rock outcrops during spring 2001 field surveys. Cliff areas (shown in Figure 3-4) are located within 0.25 mile of the project corridor at corridor miles 3, 40, 55, 56, 57, 72, and 73.

Shrub-Steppe

Prior to European settlement shrub-steppe was the dominant vegetation type in the project vicinity. Historical conversion of land to agriculture has resulted in fragmentation of the shrub-steppe communities. Today, only isolated remnants of quality shrub-steppe exist along the project corridor and project vicinity (see Figure 3-4).

Shrub-steppe (even when fragmented) provides essential habitat for many native and sensitive-status birds such as sage sparrow, vesper sparrow, sage thrasher, and loggerhead shrike, as well as raptors. Four priority species inhabit shrub-steppe in the project vicinity—the ferruginous hawk, golden eagle, burrowing owl, and prairie falcon, and other species rely on this habitat seasonally, particularly during winter.

Riparian

Most stream valleys along the project corridor are dry draws. However, shrubs or small trees occur in the riparian zones of Glade Creek, Alder Creek, Pine Creek, Wood Gulch, Chapman Creek, and JU Canyon (see Figure 3-4). Passerines, deer, and waterfowl are known to use these riparian habitats. Long-billed curlew, great blue heron, coyote, and deer are known to forage in the Glade Creek riparian area. Eagles and other raptors occasionally forage in the waterfowl use areas near the Columbia River. No hawk, bald eagle, or great blue heron nesting habitat occurs in riparian areas within the project corridor.
Benton County has identified five streams within the project vicinity as Conservation Reserve Areas. Conservation Areas are areas recognized in the Benton County Comprehensive Plan as areas of high wildlife value. The County requires that a “Site Analysis” be prepared for regulated developments or activities in Fish and Wildlife Conservation areas shown on Map 13 of the Benton County Comprehensive Plan. The Conservation Reserve Area includes the Columbia River, Fourmile Canyon, Bing Canyon, Glade Creek, and Dead Canyon. Of these five riparian corridors, only Glade Creek supports shrubs or small trees within the immediate riparian zone.

Tree Stands

Trees are scarce along the project corridor, and in the project vicinity, except for a few scattered stands, cottonwood tree plantations or individual trees associated with homes or farms. Black locust and tree-of-heaven are the most common species at these scattered sites. These upland trees provide habitat for nesting and roosting birds and bats and provide forage for browsing mule deer.

Four areas of woodland have been identified within the project corridor (Figure 3-4).

- A cottonwood plantation near Glade Creek (corridor mile 21.5) that is harvested every 10 years, and provides short-term breeding and cover habitat for passerines or hawks.
- A grove of tree-of-heaven and black locust provides habitat for tree-nesting birds located at structure 69/4 (near the west end of the line).
- A small woodland near corridor mile 55 consisting of 50-foot-tall acacia and locust trees that provides nesting habitat for passerines.
- A stand of cottonwood trees, located north of the McNary Substation in the Corps’ wildlife viewing area.
- A row of poplars, perpendicular to the project corridor, just east of Chapman Creek (corridor mile 54).

Environmental Consequences—Proposed Action

Impacts to wildlife could result from construction and operation of the proposed transmission line and associated facilities. These impacts could be temporary or permanent and include loss of habitat and disturbance to wildlife.

Impacts During Construction

During construction, wildlife may be impacted by noise and human presence that cause disturbance to foraging and breeding behavior. Additionally, construction would cause disturbance to and the modification of vegetation and soils that would result in loss of
habitat. Temporary construction impacts would be associated with noise and human presence such as tower installation activities involving the use of heavy equipment, helicopters, and blasting, explosive couplers, and high levels of human activity around the construction site; construction of the substation addition and roads; clearing rights-of-way; and pulling conductors. Table 3-13, in the Vegetation section, presents the temporary impacts to wildlife habitat (based on vegetation type) associated with construction.

Permanent construction impacts would occur when an area is modified and maintained in the modified state. The removal of vegetation and replacement with towers or roads would result in the permanent loss of habitat. Table 3-12, in the Vegetation section, identifies the wildlife habitat (based on vegetation type) and acres to be permanently removed by the proposed action.

Threatened and Endangered Wildlife

The project is not likely to adversely affect the bald eagle, the only federally listed threatened or endangered species known to occur in the area. Because no bald eagle nests or typical nesting habitat are located within 0.5 mile of the right-of-way, and the nearest bald eagle roost/concentration area is greater than 2,300 feet from the right of way, construction activities are not expected to have any affect at this location.

Noise impacts from blasting along the right-of-way are unlikely to affect bald eagles at the roost site. In a study of wintering bald eagle response to military activities at Fort Lewis, Washington, Stalmaster and Keiser (1997) reported that, although some sensitive eagles left the area during firing, most were not overly disturbed by artillery and small arms fire. Habituation to regular events and the need for food and habitat in the area caused the eagles to be tolerant of firing exercises. Heavy artillery impacts as close as 0.6 mile were tolerated, but low (less than 1,000 feet) helicopter overflights and close boat encounters (less than 300 feet) caused the eagles to flush. The military activity at Fort Lewis was not disruptive to preclude high eagle use of the area.

The primary potential impact of construction activities would be to eagles foraging on the Columbia River in the area of construction. Dispersing juveniles, immatures, and adults may pass through the project area on their way to feeding areas. Based on known patterns of use, bald eagles would most likely be attracted to waterfowl and fish prey resources at the waterfowl areas near the town of Paterson, the Umatilla National Wildlife Refuge, and the areas immediately downstream of McNary Dam where waterfowl congregate in the tailrace of the dam. Bald eagles occasionally occur in the winter, but not in regular concentrations (PHS 2001), at the Umatilla National Wildlife Refuge (PHS 2001), Rock Creek (Jones & Stokes field data), and the Corps Wildlife Natural Area (Caballero pers. comm.).

Few trees in the project corridor representing potential eagle perching habitat would be removed by the proposed project. Several 40- to 50-foot cottonwoods located near the
Corps Wildlife Natural Area at the McNary Substation may need to be removed under the McNary Substation Alternative B to facilitate transmission line clearance. These trees are located approximately 700 feet from the ponds adjacent to the McNary switchyard, and 1,400 feet from the river. Potential perch trees are not a limiting factor along the river at this location, as there are cottonwoods located adjacent to the McNary switchyard and on the north side of the river.

Impacts to Other Special Status Wildlife

Some sensitive species (i.e., those species of concern to the agencies but not protected under the ESA) and habitats would be impacted by habitat removal and temporary disturbance during construction. These impacts could include modification or loss of habitat, including loss of nests or dens, and temporary displacement of wildlife during construction. Impacts would be limited to the site of construction activities, with negligible effects on local or regional populations.

Raptor Nesting

Construction of the proposed project could impact raptor nesting activities particularly near cliffs or rocky outcrops. As a general rule, nests within 0.25 mile are most vulnerable to abandonment or diminished nest success. There are six known raptor nests within 0.25 mile of the corridor: the burrowing owl nest at corridor mile 19; red-tail hawk nests at corridor miles 21, 35 and 41; and prairie falcon nest at corridor miles 55 and 66. If construction were to occur in these areas, impacts to raptors could include direct loss of nests, disturbance of nest sites leading to abandonment or reduced productivity, temporary displacement, temporary and/or permanent habitat loss.

Temporary disturbance would be caused by activities such as road and tower building construction near known burrowing owl burrows. Owls could be flushed from their nests, and road construction or tower erection in burrow areas could cause burrow abandonment and loss of recruitment for the year. An incremental amount of burrowing owl habitat could be lost from access roads and towers.

Mitigation measures could include shifting road locations to avoid activity burrowing owl burrow areas identified during pre-construction field surveys.

There would be no impact to known golden eagle, ferruginous hawk, and peregrine nest sites since all known sites are greater than 0.5 mile from the proposed corridor.

Because there is no suitable nesting habitat within the project corridor, goshawk would not be expected to nest in the project corridor.

Waterfowl

Noise and human disturbance from construction activity would be temporary and result in no permanent displacement of waterfowl from feeding or breeding areas. Habitat at the Umatilla National Wildlife Refuge occurs over 1,000 feet south of the proposed corridor,
Wildlife

and the primary feeding habitat for American white pelican occurs over 3 miles south of the project area. Displacement of waterfowl would be temporary and would be limited to the duration of construction since wetland and stream-side vegetation used by these birds would remain relatively undisturbed. Construction of access roads, conductor tensioning sites, and tower sites may result in the loss of up to 4 acres of agricultural lands used by waterfowl near Paterson.

See the Wetlands section of this chapter for a discussion on potential impacts to wetlands. Impacts associated with waterfowl collision are discussed later in the section on Impacts Associated with Operations and Maintenance.

Shorebirds and Other Waterbirds

Impacts to shorebirds and other water birds from construction would be similar to those defined above for waterfowl.

Passerines

Construction activities would have both a short-term and long-term impact on habitat used by passerines. Vegetation clearing in uplands for roads, the McNary Substation expansion, and tower sites would result in the temporary (see Table 3-13) and permanent (see Table 3-12) loss of grazed shrub-steppe, shrub-steppe, and grassland, the primary habitat used by passerines. Of the 80 to 87 acres of those habitat types to be impacted during construction, 36 acres will be permanently converted to structures or roads.

Mammals

Deer would be temporarily disturbed by construction noise and activity. Clearing of upland trees and shrubs will remove an incremental amount of forage for mule deer that use the project area. The primary mule deer concentration area is greater than 2 miles north of the crossing location at Rock Creek (see Figure 3-4). Impacts to fawning habitat are not expected since their primary habitat, riparian vegetation, would not be removed, and no new roads would be built near Rock Creek.

As with any activities involving ground disturbance, construction of the project would impact ground-dwelling small mammals.

Amphibians and Reptiles

Impacts to amphibians would be low since only approximately 0.1 acre of wetland may need to be filled, and the wetland is a stock watering pond with emergent vegetation that has been heavily trampled by cattle.

Impacts to reptiles as a result of project construction activities would occur within the construction area. Rock piles in uplands inhabited by reptiles may be impacted by clearing for roads and tower sites. The reptiles that would most likely be impacted by the project would be the Striped whipsnake, a state-monitor species, and the western rattlesnake. These two snakes inhabit grasslands, shrub-steppe, and dry rocky canyons.
Affected Environment, Environmental Consequences, and Mitigation

(Shaw and Campbell 1974), habitats that are relatively common in the project vicinity. Potential impacts would include the temporary abandonment of suitable habitat as a result of disturbance, and/or the permanent loss of habitat due to the road and/or tower placement. Approximately 38 acres of potentially suitable habitat (9 acres of grassland and 29 acres of grazed shrub-steppe scabland and shrub-dominated shrub-steppe) would be permanently converted to roads or towers (Table 3-12).

Most dry rocky canyons would be spanned, which would limit the habitat loss for northern sagebrush lizard, a federal candidate species.

Impacts to Habitats

The habitats along the corridor are the same as the vegetation communities discussed in the section on Vegetation: agriculture, grasslands, grazed shrub-steppe, riparian, scabland/lithosol, and shrub-dominated shrub-steppe. Cliffs and trees are included as subcategories to those habitats.

With the exception of the cottonwood farm west of Glade Creek, existing vegetation communities along the corridor are compatible with transmission line clearance requirements. The project will require the construction of approximately 3 miles of new access road and 270 short (each approximately 250 feet in length) spur roads, which would remove vegetation and wildlife habitat. The habitats that would be permanently impacted include agriculture, grasslands, grazed shrub-steppe, scablands, shrub-dominated shrub-steppe, and trees.

Between 31 and 39 acres of agricultural lands would be temporarily disturbed as a result of road and tower construction. Clearing of agricultural lands such as corn, alfalfa, and undisturbed patches between crop circles for roads and towers may result in some temporary impact to waterfowl and small mammals using the agricultural lands.

Cliffs

Cliffs, considered priority habitats by Washington Department of Fish and Wildlife, would not be directly altered during or after construction. Cliffs located within 0.25 mile of the project corridor occur at corridor miles 3, 55, 56, 57, 72, and 73.

Riparian

Riparian corridor, also considered Priority Habitat by Washington Department of Fish and Wildlife, would be spanned by the proposed project, thereby would not be impacted. As previously mentioned, some vegetation in dry washes (not considered riparian vegetation by WDFW definition) would be impacted by road construction; however, these areas do not represent sensitive wildlife habitat.
Wildlife

Shrub-Steppe

Shrub-steppe is common in the project vicinity, but only a few areas were identified as high quality shrub-steppe. Because it is low growing, shrub-steppe vegetation types are compatible with power line clearance requirements. Construction of the project would result in the permanent loss of 23 acres of grazed shrub-steppe and 2 acres of shrub-dominated steppe habitat (see Table 3-12).

Access Roads

Approximately 48 acres of vegetation would be temporarily removed in the construction of new roads, primarily in agricultural, grassland, and grazed-steppe habitats (see Table 3-12). Construction of new roads would disturb wildlife associated with those habitats. Disturbance from road construction would result from use of heavy equipment and use of the roads following construction. Conversion of irrigated croplands to roads would not have a measurable impact to food resources for waterfowl because of the prevalence of the croplands in the project area.

Substation

The proposed expansion of the McNary Substation would result in the loss of approximately 2 acres of grassland, which currently provides marginal habitat for small mammals and birds. The impact of this conversion would be minor since the site is disturbed and is adjacent to the existing substation.

Conductor Tensioning Sites

Temporary impacts to 26 to 39 acres of agriculture, grassland, grazed shrub-steppe, scabland and shrub-dominated shrub steppe habitat, would result from conductor tensioning (see Table 3-13). Each conductor-tensioning-site would temporarily impact about 1 acre of vegetation. Most construction impacts will occur in grazed shrub step and agricultural lands.

Impacts During Operation and Maintenance

Potential operation and maintenance impacts include impacts to threatened and endangered species, bird collisions with power lines, and avoidance of areas by wildlife due to such activities as road or vegetation maintenance and repair of towers, helicopter flights for line surveys, and replacement of insulators. Operational impacts would be less intense than during construction. However, a low level of human activity would persist permanently in association with operations and maintenance activities. Because of the existing lines within the right-of-way, there would only be an incremental increase in the operation and maintenance activities along the corridor; therefore, only an incremental increase in the impacts associated with those activities.
Threatened and Endangered Species

Operations and maintenance activities are not likely to adversely affect nesting or wintering bald eagles. The closest known nests are over 2.5 miles from the proposed project corridor nests, and no trees suitable for nesting occur in the corridor.

The nearest bald eagle concentration site is located 2,300 feet south of the right-of-way (PHS 2001). Bald eagles using this area 2,300 feet south of the right-of-way are unlikely to be affected by maintenance activities occurring in the corridor.

Maintenance of the transmission line near the McNary Substation would require the occasional removal or pruning of cottonwoods to ensure that clearance height is maintained. Bald eagles would be attracted to waterfowl and fish prey resources in the project vicinity, particularly between McNary and Paterson, where waterfowl concentrate. Bald eagles may use towers as roost sites, yet may also be susceptible to strikes with the power line (Harmata et al. 1999).

Impacts during operation and maintenance would be limited to bird collisions with power lines and potential disturbance of roosting or foraging due to maintenance activities.

Bird Collisions with Transmission Lines

Collisions typically occur in locations where conditions combine to create a high potential for birds striking lines (Avian Power Line Interaction Committee 1994). Three factors contribute to this potential; the type of power lines, the amount of use of the area by birds, and the inherent tendency of a species to collide with overhead wires.

Type of Power Lines

Because the new line would be placed within a corridor with existing lines the potential impact may be less than if the new line were placed where there is no existing line. Research has shown that location of transmission lines influences bird collision risks, and that installing new transmission lines adjacent to existing lines may reduce the risk of collisions (Thompson 1978, Avian Powerline Commission Meeting 1994, Larson pers. comm., Bevanger 1994). Other research has shown that installing the tower and lines near the base of taller features such as cliffs may also minimize impacts (Thompson 1978, Avian Powerline Interaction Commission 1994).

The proposed action for this project would include construction of the new line adjacent to existing lines. The proposed line would also be located between the existing line and cliff features on the north side of the Columbia River. These two measures will minimize the risk of bird collision associated with the installation of the proposed transmission line.

Some bird mortality is known to exist from collisions with the existing transmission lines (Browers pers. comm.). Waterfowl strikes have been reported near Crowe Butte Island, but overall, the number of waterfowl killed by wire strikes is very small compared with
the total regional population (Willdan Associates 1982). A bald eagle was found under
the lines near the McNary Dam, suggesting it struck power lines.

When there are multiple lines within a corridor, birds are more likely to strike a
conductor (wire) if the conductor heights vary. Multiple conductors at different heights
creates a “fence” effect, a larger area in which the bird most avoid. The proposed line
would add to an existing fence effect. The existing 230-kV and 345-kV towers are
80 feet and 110 feet tall respectively, and have a flat configuration (the three conductors
on the towers are strung at the same height). In areas where there is an existing 500-kV
tower, the towers are about 180 feet tall and the conductors are stacked (various heights).
For the proposed line, the towers would be about 145 feet tall, and the conductors would
have a delta configuration (one conductor higher than the other two). Please see
Chapter 2, Figure 2-2 for tower configurations. Birds tend to be more likely to strike
ground wires. Ground wires are much smaller in diameter than conductors and span the
top of the tower to protect the line from lightning strikes. The existing lines in the
corridor have ground wires for a mile on either side of the Horse Heaven Substation west
of Paterson. The proposed line would have two ground wires the length of the line.
These ground wires would increase the fence effect and contribute to potential bird
strikes. Please see Chapter 2, Figure 2-3 for the location of the ground wires on the
tower.

Amount of Use

In general, the more birds that fly in an area, the greater the risk of collisions with power
lines. The areas of highest concern are where lines span bird flight paths, including river
valleys, wetland areas, lakes and narrow corridors such as passes that connect two
valleys. Transmission lines between waterfowl feeding and roosting areas would also be
hazardous to waterbirds (McNeil 1983).

The proposed line would cross few areas of open water or wetlands and would run
primarily through upland grazed shrub-steppe and croplands. One area of high seasonal
bird use is the Umatilla National Wildlife Refuge, located between 0.1 and 4 miles south
of the project vicinity between corridor miles 11 and 28. Waterfowl use the area during
the fall and typically fly from the Toppenish Creek area to the north (Haines pers.
comm.) as well as from other locations (Browers pers. comm.). This area would
represent the highest risk areas for avian collisions because of the high seasonal use and
the species involved.

Other areas of potential collision risk would occur where lines cross center pivot
irrigation circles planted with corn to attract waterfowl and located north of the Umatilla
National Wildlife Refuge, near Crowe Butte Park, and at the Rock Creek and the
Columbia River crossing, particularly at McNary Dam. Waterfowl and raptors flying up
the Columbia River may strike the lines crossing the Columbia River. A portion of the
proposed transmission line would be located between open water loafing areas on the
Columbia River and the center pivot irrigation-feeding habitat. As a result, some
additional mortality would be expected to occur in that vicinity.
Species Risk of Collision

Migratory waterfowl have the highest incidence of mortality from collision with transmission lines, particularly near wetlands, feeding areas, or open water (Stout 1976). Such collisions primarily occur in low visibility conditions (Arend 1970, Anderson 1978, Avery et al. 1980, Brown et al. 1985, Fannes 1987). In a study of waterfowl mortality in Illinois, between 0.2 and 0.4% of the maximum number of ducks present near a power plant were killed each fall (Anderson 1978). Mallards and blue-winged teals were found to be most vulnerable to collisions. Fourteen duck species accounted for 44% of the 4,100 birds that collided with power lines in a wetland in Montana (Malcolm 1982). In a survey of birds flying past a 138-kV power line spanning the Mississippi, no birds were killed and waterfowl were observed to fly at least 50 feet from the power lines (Fredrickson 1983). In a survey in Oregon, 60 birds of 13 species were found dead beneath a 230-kV line in 89 days; however, an estimated 354,000 birds moved past the lines in 179 days; of which over 85% were observed to fly above the conductors (Lee 1978). Migratory waterfowl, including mallards and blue-winged teals, use the area along the proposed line described above and could be impacted by the addition of the proposed line.

American white pelicans that feed on islands 3 miles south of Paterson are known to nest on Crescent Island approximately 20 miles northeast of the project corridor. Mortality from collision with overhead power lines has been reported elsewhere (Brown 1993, Crivelli 1988).

Raptor collisions with overhead wires would be expected; however, collision with overhead transmission line wires is not a major cause of mortality in raptors. Raptors keen eyesight and tendency not to fly in inclement weather may contribute to the relatively low numbers of collisions reported (Olendorff and Lehman 1986), and therefore any raptor collisions would not be at levels that would change local breeding populations or distributions.

Some level of ongoing waterfowl and perhaps raptor and pelican mortality would be expected to occur as a result of the installation of the new transmission lines, however, the mitigation measures discussed later in the Mitigation section can be applied to minimize that potential impact.

Avoidance of Areas by Wildlife

Wildlife may avoid the proposed transmission facilities because of human use such as maintenance or because of the presence of the structures. Deer would temporarily avoid areas with human activity, while bird responses to power lines may vary by species. For example, waterfowl may avoid habitat areas with transmission lines above them (Willard 1982). On the other hand, raptors are often attracted to transmission towers to use them as nesting sites (Bechard 1990). Other species such as songbirds may be attracted to the shrub-steppe or grassland vegetation corridors that are undisturbed by agricultural uses or residential uses occurring in rights-of-ways.
Because of the temporary nature of maintenance activities, the noise, and human disturbance, impacts from those activities would be minor and of short duration.

Impacts to Habitat

Long-term impacts to habitat resulting from operation and maintenance activities would be minor, because most vegetation communities (habitats) are compatible with transmission line clearance requirements, so little long-term vegetation maintenance would be required.

Environmental Consequences—Short-Line Routing Alternatives

Table 3-18 summarizes the wildlife impacts associated with the short-line routing alternatives.

Table 3-18: Impacts of Short-Line Routing Alternatives: Wildlife

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>McNary Substation Alternatives</td>
<td></td>
</tr>
<tr>
<td>A. Relocate administration building presently located on north side of substation adjacent to Wildlife Natural Area</td>
<td>About 2 acres of marginal grassland habitat would be permanently lost due to the relocation of the building. There would be more impacts to small mammals and birds due to conversion of grassland to a developed site.</td>
</tr>
<tr>
<td>B. Cross Wildlife Natural Area; circumvent administration building on north side</td>
<td>Potential impacts to palustrine forested wetland dominated by willow, reed canarygrass and with some cottonwoods; would include the modification or permanent loss of nesting habitat for nesting passerine birds. Willows and cottonwoods would need to be cut to ensure adequate line clearance. There would also be an increased risk of waterfowl and water bird collisions due to the close proximity of the power line with waterfowl use areas on the wildlife refuge. Other impacts would include removal of grass and shrubs and ground compaction for towers and access roads, resulting in a loss of passerine nesting areas, and habitat for ground dwelling mammals, amphibians, and birds.</td>
</tr>
<tr>
<td>C. Place line in bus work at ground level on north side of administration building, inside Wildlife Natural Area</td>
<td>Crosses north end of wildlife area, but close to road. Negligible wildlife impacts.</td>
</tr>
</tbody>
</table>
3 Affected Environment, Environmental Consequences, and Mitigation

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanford-John Day Junction Alternatives</td>
<td></td>
</tr>
<tr>
<td>A. Move existing Hanford-John Day line north 200 feet to make room for new line on north side of corridor</td>
<td>Temporary disturbance of 1.0 acre to grazed shrub-steppe from relocating four towers and construction new access road. Permanent impact of 0.2 acre to grazed shrub-steppe. Close to highway. Negligible wildlife impacts.</td>
</tr>
<tr>
<td>B. Place new line on south side of corridor (occupied by roads and towers)</td>
<td>Temporary disturbance of 0.5 acre of grazed shrub-steppe for tower construction and permanent loss of 3.2 acres of grazed shrub-steppe for towers and access roads. Low impact to wildlife, because the line would be close to highway and through habitat of marginal wildlife value. Loss of 10 to 12 ‘tree of heaven’ and black locust trees would incrementally reduce habitat for tree-nesting birds.</td>
</tr>
<tr>
<td>C. Place new line on south side of highway</td>
<td>Same temporary impacts as Alternative B and permanent loss of 6.3 acres of grazed shrub-steppe for towers and access roads. Low impact to wildlife because shrub-steppe habitat heavily grazed. Loss of tree habitat same as Alternative B.</td>
</tr>
<tr>
<td>Corridor Mile 32 Alternatives</td>
<td></td>
</tr>
<tr>
<td>A. Keep existing and new lines on tribal land</td>
<td>No priority species documented in the area; however, this are of shrub-steppe is designated as Priority Habitat by WDFW. Grazing and fire have degraded the shrub-steppe habitat in this area, but passerines, mammals, reptiles and raptors may still nest, den, or feed in this area. Habitat quality is low as a result of disturbance from grazing, predominance of cheatgrass, and lack of continuity with other areas of shrub steppe. Potential impacts would include shrub and ground disturbance, but these would be negligible because of the degraded condition of the shrub-steppe in this area and the prevalence of this habitat type in the project area. See Vegetation section for mitigation measures.</td>
</tr>
<tr>
<td>B. Relocate existing and new lines away from tribal land</td>
<td>Temporary disturbance of about 0.9 acre of agricultural lands (vineyards) having low wildlife value. As with Alternative A, this alternative would also cross shrub-steppe designated as Priority Habitat and potential impacts to wildlife habitat would be negligible due to the degraded condition and prevalence of this habitat type in the project area.</td>
</tr>
<tr>
<td>Corridor Mile 35 Alternatives</td>
<td></td>
</tr>
<tr>
<td>A. Keep existing and new lines on tribal land</td>
<td>Negligible impacts to wildlife because line would be located in heavily grazed shrub-steppe which is marginal habitat.</td>
</tr>
<tr>
<td>B. Relocate existing and new lines away from tribal land</td>
<td>Same as Alternative A1, except more heavily grazed shrub-steppe habitat would be removed.</td>
</tr>
</tbody>
</table>
Mitigation

The following mitigation measures would be employed to minimize potential impacts to wildlife along the proposed transmission corridor.

Threatened, Endangered or Other Sensitive Species

- Prior to construction, conduct raptor nest surveys (for existing and new nests) of cliffs located within 0.25 mile of the right-of-way (corridor miles 3, 54, 56, 57, 72, 73). See potential mitigation measures below for specific species.

- Between January 1 and July 30, avoid using helicopters within 0.25 mile of cliffs identified as Priority Habitat by the Washington Department of Fish and Wildlife (use ground-based equipment near cliffs).

- Avoid blasting cliffs identified as Priority Habitat by Washington Department of Fish and Wildlife and consult with the Washington Department of Fish and Wildlife or Oregon Department of Wildlife regarding measures to minimize nest disturbance on a site-by-site basis if nests are found.

- If bald eagle nests are found on the cliffs, restrict construction during nesting season (January 1 through July 15).

- **Mitigation for burrowing owls.** If possible, avoid disturbance within 160 feet of occupied burrows during the non-breeding season of September 1 through January 31 or within 250 feet during the breeding season of February 1 through August 31.

- **Mitigation for peregrine falcon.** If possible, avoid disturbance within 0.25 mile of any active nests during the breeding season (March through June).

- **Mitigation for prairie falcon.** If possible, avoid construction activities between February 15 and July 15 within 0.25 mile of active nests.

- **Mitigation for red-tail hawk.** If possible, avoid construction activities within 320 feet between February 15 and July 15.

- **Mitigation for other raptors.** Consult with Oregon Department of Fish and Wildlife and Washington Department of Fish and Wildlife.

Avian Collisions

- If deemed appropriate, install line markers in avian flight paths or migration corridors, such as near crop circles in the vicinity of the town of Paterson (north of the Umatilla National Wildlife Refuge) and at the Columbia River crossings.

- For the McNary Substation Alternative, avoid placing towers and lines across wetlands to minimize risk of bird collision.
Shrub-Steppe Dependent Wildlife

- Minimize the amount of shrub-steppe plant communities removed by clearing only the amount of vegetation necessary to prepare tower footings or build roads.
- Minimize road construction in shrub-steppe areas with burrows. Burrows were found in the field near corridor miles 19, 21, 63, and 76.

Riparian Dependent Wildlife

- Span riparian corridors to minimize removal of shrubs or trees within riparian areas.

Unavoidable Impacts Remaining after Mitigation

Construction of new towers, access roads and substation structures would remove wildlife habitat and impact local populations of wildlife species. Other local populations of wildlife would be temporarily displaced during the construction phase. There would also be an incremental increase in the risk of avian collisions, particularly at the river crossings and at waterfowl feeding areas near Paterson. An incremental increase in disturbance to wildlife above existing conditions, would result from operations and maintenance.

Environmental Consequences—No Action Alternative

Under the No Action Alternative, wildlife and wildlife habitats will not be altered. Agricultural lands would continue to be managed for crop production. The shrub-steppe lands to the east would continue to be used as grazing lands.

Cultural Resources

Affected Environment

The 79-mile portion of project corridor that lies within Oregon and Washington State is within the Mid-Columbia Study Unit. The Mid-Columbia Study Unit is one of fourteen study units designated by the Office of Archaeology and Historic Preservation (OAHP) to identify, evaluate, and protect cultural resources throughout Washington State and the region (Galm et al. 1987).

Archival records indicate ten known archaeological sites along the corridor. Near the corridor, there are at least 70 additional archaeological sites recorded within a 1-mile radius of the proposed transmission line. Of these 70 sites, 26 (37%) are underwater behind the John Day Dam.
Historical data demonstrate continuous use of the Mid-Columbia Study Unit from the time of the first Euro-American exploration through the arrival of a trans-continental railroad, a state highway system, and construction of two federal dams.

Please see Heritage Conservation, Chapter 4 for a description of the laws and regulations regarding cultural resources.

Human Occupation

Human occupation can be broken down into four geographically and temporally designated periods (or study units):

- the Paleo-Indian Study Unit - spanning the time from the first human occupation of Washington to 8,000 years Before Present (B.P.);
- the Early Period (8,000 to 4,000 B.P.);
- the Middle Period (4,000 to 2,500 B.P.); and
- the Late Period (2,500 to 250 B.P.) (Galm et al. 1987).

These last three periods are based on major environmental fluctuations, mainly precipitation and temperature variations as described below.

The cultural chronology over the last 10,000 years for the Mid-Columbia Study Unit is a complicated concept in typology and academic discourse. For the purpose of this section, the below mentioned chronology and terminology is adopted from the Resource Protection Planning Process (RP3) document by Galm et al. (1987).

Cultural periods and their corresponding names are reflective of many factors. Periods were determined by environmental fluctuations (e.g., altithermal) observed in the natural history record. Labels (e.g., Vantage, Tucannon, Cayuse) were ascribed to sites or artifact collections dating them to an environmental period; thereby defining a phase or component within a large block of time.

Altithermal—the term used to identify the dry postglacial period extending from 7500 to 4000 years ago, during which time temperatures were believed to be distinctly higher than present temperatures. The term can also be used relating to any time period or climate characterized by high or rising temperatures.

Aquatic exploitation—fishing and/or gathering of food resources from water, in this case, from the Columbia River.
Early Period (8,000 to 4,000 B.P.) (Vantage, Cascade, Canyon)

This period corresponds with the warm dry temperatures of the Altithermal. The sites are primarily open camps, with some rockshelter, usually located on river terraces near the confluences of major streams and their tributaries. Sites are small, less than 200 square meters, and reflect brief occupancy, although some are reoccupied throughout the period.

Middle Period (4,000 to 2,500 B.P.) (Frenchman Springs, Tucannon)

This period corresponds to wetter, cooler conditions with increased terrestrial and aquatic resources. Significant changes in artifact assemblages and settlement patterns occur linked to better environmental conditions and consequent increase in human populations. Sites are larger than in the preceding period. Pithouses appear for the first time in small aggregates, aligned lineally along the Columbia usually near the mouths of large, low drainage basins. Intensive upland gathering and aquatic exploitation is indicated. The upland gathering seems primarily oriented toward root collection in the interior basin.

Late Period (2,500 to 250 B.P.) (Harder, Cayuse, Wildcat)

This was a period of increasing aridity, though not comparable to the Altithermal. Because of reduced terrestrial and aquatic resources, cultures increased storage technology and moved settlements seasonally. The largest number of sites and the largest sites belong to this period. Housepits appear by the hundreds in villages along the Columbia at the confluences of major tributaries. These housepits are aligned parallel to the river. Some houses have dense occupation debris and many floor levels (indicating long term occupancy and frequent reoccupation), but most houses have only minimal occupation debris.

There are many site varieties from this period, including pithouse villages, root gathering and processing camps, fishing stations, quarries, hunting camps, small foraging camps, etc. Quarries, hunting camps, and root camps are found in areas of rocky soil in foothills and around lakes, and the central basin is utilized for the first time in this period. Most other sites are found in close proximity to riverine environments. Most sites exhibit some form of food storage facilities such as pits. Settlement patterns are linked to fishing, upland root collecting, and hunting sites organized around a winter village, an ethnographically recognizable pattern.

The project area, in paralleling and crossing the Columbia River, transects a region with a high density of hunter-fisher-gatherer archaeological sites. These sites reflect a 10,000-year history providing evidence for archaeologies understanding of the region’s cultural chronology.

There exists a high probability for unknown archaeological sites to be within or near the project area based on the recorded evidence. The waters behind the John Day Dam inundated the majority of known archaeological sites. Remnants of the larger villages
and sites were further disturbed during construction of the regional railroad and highway systems.

Tribal Oral History

The project corridor passes through and is adjacent to terrain sacred to several Native American tribes. Archaeological sites discovered during the last century document locations that are held as traditional use areas of the Cayuse, Umatilla, Walla Walla, Yakama, and Western Columbia River Sahaptins (Tenino) groups. Many archaeological sites correspond to ethnographic place names.

Jones & Stokes, on behalf of Bonneville, contracted with the Confederated Tribes of the Umatilla Indian Reservation (herein after referred to as the Umatilla Tribes), Confederated Tribes of the Warm Springs Reservation Oregon (herein after referred to as the Warm Springs Tribes), and the Yakama Nation to provide the oral history of the project vicinity. The oral history provided by the Umatilla Tribes is summarized below.

Confederated Tribes of the Umatilla Indian Reservation

There are numerous archaeological sites in the project vicinity. The John Day Reservoir is an area of cultural importance to the peoples of the Umatilla Tribes. In 1999, the Cultural Resources Protection Plan (CRPP) conducted a baseline cultural resources data recording project of the John Day Reservoir. The CRPP gathered data of known archaeological sites and recorded many new sites and isolate finds (Dickson 1999).

Overall, there are ten Traditional Cultural Properties (TCPs) in the project vicinity. These large TCPs are large, include a vast area, and overlap each other. The Umatilla Tribes believes that the entire stretch of the Columbia River is sacred. Sacred in the sense that the spirits of our ancestors still reside within the rivers and lands that surround the river and its tributaries. This is the place our ancestors lived and traveled to and the activities that were carried out at these locations are places that would be considered sacred. Today, tribal descendents have the inherited responsibility to protect these areas for our future generations as our ancestors did for us in our lifetime.

The Umatilla Tribes believes that a TCP reflects a significant area that is traditionally and culturally important to the people of the Umatilla Tribes, traditional in the sense that is connected to our beliefs, customs, and practices that have been passed down through the generations. It is cultural in the sense that it is related to our traditions, beliefs, practices, lifeways, arts, crafts, and social institutions of our people. Therefore, we will identify below why these areas along the project corridor are considered a TCP to the peoples of the Umatilla Tribes.
3 Affected Environment, Environmental Consequences, and Mitigation

- Traditional Cultural Property 1 – Ímatalam
- Traditional Cultural Property 2 – Irrigon/Umatilla National Wildlife Refuge
- Traditional Cultural Property 3 – Táwash
- Traditional Cultural Property 4 – Boardman/Umatilla National Wildlife Refuge Area
- Traditional Cultural Property 5 – Crow Butte/Alderdale Area
- Traditional Cultural Property 6 – Pine Creek/Hurlburt Flats Area
- Traditional Cultural Property 7 – Sáq’aluksi/Nishxúwawi
- Traditional Cultural Property 8 – Sundale/Blalock Canyon Area
- Traditional Cultural Property 9 – Q’mí/Sháxuwi
- Traditional Cultural Property 10 – T’at’alíyapa

The CRPP’s greatest concern is burial sites. There is potential to encounter burial sites within the project area. Therefore, the CRPP recommends that a CRPP tribal monitor be present during all ground disturbing activities.

The Umatilla Tribes CRPP recommends not nominating the ten TCP areas to the National Register of Historic Places. This is due to the sensitive issues of publicizing culturally sacred areas.

Recent Recorded History

The project vicinity has a rich and varied history of human activity that reflects many of the central themes of the history of the American West. Fur trappers, explorers, overland emigrants, soldiers, cattlemen, sheepmen, miners, homesteaders, townsmen, and lumbermen have all left their mark on the area. The history of the proposed project area is too broad a subject for the scope of this EIS. For a comprehensive discussion, albeit dated, of the history of the Mid-Columbia Study Unit see Meinig (1968).

Meriwether Lewis and William Clark led the first recorded Euro-American expedition into Benton and Klickitat Counties. The explorers camped at present-day Wishram in October of 1805. There, they traded with the Native Americans and replenished supplies before resuming their task of charting the region around the Columbia River as it flowed to the Pacific Ocean. For the next 50 years, the only Euro-Americans in the Mid-Columbia Study Unit were adventurers, fur trappers, and traders. Euro-American settlement did not commence until the late 1850s. However, once begun, the region grew rapidly. Many towns in central Klickitat County were platted during this period, prompting the territorial legislature to establish the area as a county in 1859.
A sketch of several historic place names along the McNary to John Day Transmission project corridor is provided below. The information is taken from Washington Place Names compiled by Gary Fuller Reese of the Tacoma Public Library’s Northwest Room/Special Collections (Tacoma Public Library 2001).

Plymouth is a community near the Columbia River opposite Umatilla, Oregon in south-central Benton County. The name was chosen because of a huge basalt rock that projects into the river. The name suggested by the railroaders was Gibraltar, but patriotic settlers settled on the American name for the famous rock in Massachusetts. The Native American name for the locality is said to be “So-loo-sa.”

Whitcomb is a settlement a mile and a quarter north of the Columbia River on the south side of Canoe Ridge in southwest Benton County. The original name, Luzon, was changed to the present name at the suggestion of two landowners, James A. Moore and G. Henry Whitcomb, in honor of the latter. The Luzon Land Company platted a 40-acre townsite in February 1909. A post office was established in 1910 and was closed in 1934.

Carley was a railroad station north of the Columbia River directly south of Canoe Ridge in southwest Benton County. It was on a site settled in 1904 by Myron E. Carley who was an inventor and had a machine shop. Other family members had a store and post office that operated until September 1941. Officials of the Spokane, Portland & Seattle Railway, in honor of Mr. Carley, named their railroad station after him.

Paterson is on the north bank of the Columbia River on a south slope of Paterson Ridge directly upstream from Blalock Island in southwest Benton County. The name of Henry T. Paterson, a pioneer settler, was applied to the settlement, the ridge, and to nearby the springs. The Paterson ferry operated during the major Columbia River flood of 1948 and offered the only crossriver passage for many miles up- and downstream.

Paterson Ridge is north of the Columbia River and runs southwest to northeast above Blalock Island. It is divided by Glade Creek that runs from the north joining the Columbia River near the community of Paterson. The ridge is approximately 30 miles south of Prosser and is in a vineyard and orchard area.

Dead Canyon is in northeast Klickitat County. It runs southeasterly through the southwest corner of Benton County and terminates on the north bank of the Columbia River near Crow Butte. Local residents applied the name of Dead Horse Canyon in the winter of 1886-1887, when hundreds of horses and cattle starved or were frozen to death in the canyon. Within recent years, cartographers have dropped the “Horse” from the place name.

Alder Creek rises in the east central region of Klickitat County and flows south and east 10 miles to the Columbia River at Alderdale. It was named for the many alder trees along portions of its course.
McCredie is a community on the north bank of the Columbia River 39 miles east of Goldendale in southeast Klickitat County. It was named by Spokane, Portland & Seattle Railway officials for Judge W.W. McCredie of Vancouver, Washington.

Moonax is a small community on the north bank of the Columbia River 34 miles east of Goldendale in southeast Klickitat County. The name evidently goes back to the Lewis and Clark expedition, which found a pet woodchuck in an Native American camp. The Indian name for woodchuck is Moonax.

Sundale began as a railroad station 25 miles east-by-south of Goldendale on the Columbia River in southeast Klickitat County. The name was chosen by L.W. Hill and C.M. Levy, officials of Spokane, Portland & Seattle Railway.

Chapman Creek rises near the Oak Grove district in east central Klickitat County and flows southeasterly 10 miles to the Columbia River at Sundale. It was named for Eldon Chapman, postmaster of Six Prong (a historic community within Klickitat County) in the early 1900s.

Towal is 12 miles southeast of Goldendale near the north bank of the Columbia River in southcentral Klickitat County. The railway station at this point was named for To-whal or Too-wal, a Native American inhabitant of the region.

Cliffs was a railroad station on the north bank of the Columbia River, 5 miles east of Maryhill in south-central Klickitat County. The Spokane, Portland & Seattle Railway named their station Cliffs for a series of cliffs along the river.

The history of modern transportation to and through the project area is linked to the construction of the Burlington Northern Santa Fe Railway and SR 14. Completed in 1908, the Spokane, Portland & Seattle Railway was built by James J. Hill. The Spokane, Portland & Seattle Railway main line cost millions of dollars and provided an integral link for the people of Portland and Spokane.

Due to dam construction along the Columbia River, the original railroad bed was moved to its current location in the 1960s. In 1970, Spokane, Portland & Seattle Railway merged with Great Northern, Northern Pacific, and Chicago, Burlington & Quincy railroads to form the Burlington Northern Santa Fe Railway (Wood and Wood 1974).

SR 14 began as Secondary State Highway (SSH) 8E in 1937 commencing at the junction of Primary State Highway (PSH) 8 (currently signed US 97) between Maryhill and Goldendale. In 1943, the US 97 portion of SSH 8E was transferred to the Maryhill branch of PSH 8. In January 1964, PSH 8 was reposted as SR 12. When US 12 was extended into Washington State in 1967, SR 12 was reclassified as SR 14. When I-82 was completed from Plymouth to the Kennewick area in the mid-1980s, and US 395 was rerouted along this section of SR 14, I-82 exit 131 at Plymouth became the eastern terminus of SR 14. SR 14 is now 180 miles long stretching from Vancouver, Washington to Plymouth, Washington.
Federal dam construction during the 1950s and 1960s radically changed the Mid-Columbia River basin. The McNary Dam, completed in 1953, and the John Day Dam, completed in 1968, contributed greatly to the region’s power supply and built environment.

Field Surveys

The project corridor (including access roads) was surveyed for the presence of cultural resources. In September 2001, 25 miles of the corridor was surveyed by Jones & Stokes archaeologists and two Umatilla Tribes cultural resource specialists. In late November and early December 2001, the remaining 54 corridor miles was surveyed by Jones & Stokes. A resurvey of the 54-mile stretch may be conducted with the Yakama Nation pending a contract with the Yakama Nation.

Field Survey Results

Of the 10 previously recorded sites situated within or adjacent to the corridor, eight were reidentified in the field. The remaining two previously recorded sites were not relocated. A total of 14 cultural resource sites were newly identified during the field surveys. An additional 12 isolate finds were also documented.

Isolate find—A site is a location where human activities once took place and left some form of material evidence. For Washington State, the definition of an archaeology site is based on the ratio of 10 artifacts/10 square meters. An isolate find is a prehistoric, ethnohistoric, and/or historic object found at a specific location in densities below 10 artifacts/10 square meters. Examples of an isolate find could include a projectile point, a low-density lithic scatter, historic revolver and ammunition, and automotive parts.

Site Descriptions

The following are very brief site descriptions; to protect the cultural resource integrity of the sites, locations of the sites are not provided.

Site A is a small historic dump associated with local road construction. The site contains historic bottles, ceramics, and automotive parts.

Site B is a hunter-fisher-gatherer lithic (i.e., chipped stone, raw material, projectile points) procurement area. The site contains a moderate to heavy density of cultural artifacts. No diagnostic artifacts were identified.

Site C is a hunter-fisher-gatherer lithic scatter within a Bonneville access road. The site contains a low density of cultural artifacts. No diagnostic artifacts were identified.
Site D is a hunter-fisher-gatherer lithic scatter. The site contains a low density of cultural artifacts. Recent farming and ranching activities disturbed the portion of the site discovered. The site is adjacent to a Bonneville access road. No diagnostic artifacts were identified.

Site E is a hunter-fisher-gatherer lithic scatter. The site contains a low to moderate density of cultural artifacts. No diagnostic artifacts were identified.

Site F is a rock cairn (a small grouping of rocks stacked in a linear or circular manner) adjacent to an existing transmission tower along the McNary to Ross No. 1 power line. This circular arrangement consists of approximately 30 rocks next to a larger natural exposure of the same basaltic rock.

Site G is an ethnographic/ethnohistoric cemetery.

Site H is a hunter-fisher-gatherer camp and lithic procurement area. The site contains a high density of cultural artifacts including diagnostic stone tools. There is an existing Bonneville access road that traverses the site boundaries.

Site I is a hunter-fisher-gatherer lithic scatter and procurement area. The site contains a high density of cultural artifacts and raw stone material. Diagnostic stone tools were identified with the exposed cultural deposits.

Site J is a historic homestead situated between two proposed McNary-John Day towers. Half-exposed rock foundations indicated the presence of two possible habitation areas. Interior walls within the rectilinear structures were noted, as were discreet activity areas (e.g., a hearth) located within the absent walls. Other items of note include a refuse midden, a privy, and a collapsed red brick oven.

Site K is a hunter-fisher-gatherer multiple component site. The site covers a large area along the corridor and has a high density of cultural artifacts. There are several diagnostic stone tools manufactured from different types of raw stone material.

Site L is a hunter-fisher-gatherer lithic procurement site. The site is exposed in a road cut along the project corridor and contains a moderate density of raw stone material and a low density of cultural artifacts.

Site M is a potential traditional cultural property associated with a basalt lava tube.

Site N is a hunter-fisher-gatherer lithic procurement area. The site is an exposed outcropping of raw stone material with evidence of recent mechanized disturbance. There is a moderate density of cultural artifacts intermixed with a large quantity of naturally fractured raw stone material.
Previous Cultural Resources Studies

Over 600 archaeological sites are recorded within the Mid-Columbia Study Unit (Galm et al. 1987). These sites have been documented as a result of the last 100 years of archaeological surveys and fieldwork along the Columbia River and then subsequently along the shores of the John Day Reservoir (Lake Umatilla). Spanning from the Euro-American exploration of the Columbia River by Lewis and Clark in 1805 to the Smithsonian Institute River Basin Surveys during the early and mid-1900s and through recent federal undertakings that necessitated cultural resources assessments, a rich picture of the culture history devolution has been developed for the Mid-Columbia Study Unit.

The cultural resource studies of the John Day Reservoir can be divided into three periods (Dickson 1999). The first period of investigation extended from 1886 to 1958. During the second period (1958 to 1969), the University of Oregon’s David Cole and others excavated sites ahead of the rising waters behind the John Day Dam. The third period covers the last 32 years (1969 to present) of research along the shoreline of the reservoir in an effort to document and/or salvage sensitive resources that were/are being impacted within the lake’s fluctuation zone. (Dickson 1999).

There have been four cultural surveys along various parts of the McNary-John Day Transmission Line corridor for construction of other lines or tower relocations. Surveys were also conducted near and around the town of Roosevelt with the development of the Rebanco Regional Landfill.

Recent cultural resource work in the area continues to be driven by the economic growth and development of the Mid-Columbia Region. Wind power projects, cellular tower sitings, and upgrades to existing utility corridor facilities constitute the majority of projects that might impact sensitive sites and resources. The focus of work along the shoreline of Lake Umatilla remains the paramount issue in the on-going preservation of the Mid-Columbia’s cultural resources.

The archaeological database in the McNary to John Day Transmission Line corridor includes a wide range of resource types in a variety of settings. All hunter-fisher-gatherer villages and campsites are near water sources such as springs, streams, or the Columbia River. Special purpose sites, such as plant gathering/processing stations, can occur in areas away from water. Hunter-fisher-gatherer rock features and natural silica rock outcrops have been documented throughout the region on steep slopes and the near-vertical faces and horizontal flow tops of basalt outcrops. Hunter-fisher-gatherer campsites and low-density lithic scatters are common on alluvial floodplains in the narrow stream valleys that dissect the massive basalt-flow landforms north of the Columbia River.

Based on an assessment of environmental characteristics such as distance to water, type of substrate, landform type, and amount of previous disturbance, as well as the distribution patterns of recorded sites along the McNary to John Day Transmission Project corridor, the proposed transmission line is in a high probability area for hunter-
fisher-gatherer resources. The project is near and crosses many water sources and appears to have unique habitats for economically useful plants, for example, the extensive basalt outcrops that are prime *Lomatium* habitat.

Lomatium—Within the project area there exist microenvironments that support different species of plant based primarily on local hydrology, geology, and sun exposure. *Lomatium* habitat can be considered a microenvironment within the greater sage vegetation zone. *Lomatium*, referred to in English by Sahaptin native speakers as “Indian celeries,” comes in many shapes and sizes. The plant produces edible sprouts, stems, and shoots and would be harvested seasonally. *Lomatium* habitat in the project area constitutes portions of talus slopes and rocky lowlands along streams and creeks.

For the most part, the corridor is probably too far from the pre-inundation shoreline of the Columbia River for a village or camp to be affected but hunter-fisher-gatherer groups certainly used the corridor prior to Euroamerican contact. Hunting and plant collecting parties more than likely passed through the area on their way from the Columbia River to uplands and canyons east and west of the corridor. But, this type of land use pattern would leave only a few scattered lithic artifacts across a large area and would be difficult to detect even using state-of-the-art archaeological field techniques.

Environmental Consequences – Proposed Action

Impacts During Construction

Potential impacts to cultural resources could occur during construction of the proposed project without appropriate mitigation measures. Tower construction (see Chapter 2) would be limited to a relatively small area adjacent to existing transmission line towers. Road construction and improvements are the most likely activities to disturb unknown cultural resources. Cultural resource monitors could be provided, as necessary, to observe ground-disturbing activities associated with road improvements in areas of previously documented cultural sites.

Transmission towers and access roads would be sited so as to avoid the known cultural resource sites along the corridor. Of the 14 cultural resource sites found, 12 require avoidance and two sites require avoidance. Cultural resource monitors should be present when construction excavation and/or ground disturbing activities take place in and around archaeological sites. A monitor’s presence would ensure proper handling of sensitive cultural resources if unearthed. Of the ten previously documented cultural resource sites along the corridor, nine require avoidance and one site requires avoidance plus a cultural resource monitor during construction excavation.
The project corridor transects the ancient lands of many Columbia River basin tribes. Bonneville has consulted with the Umatilla Tribes, Warm Springs Tribes, and the Yakama Nation on this project implementing the principles and protocols set forth in their 1996 Programmatic Agreement (see Appendix A, Agency Correspondence and Policies).

Impacts should not occur to unknown sites with appropriate procedures to stop construction activities and determine appropriate protective measures (e.g., avoidance) if artifacts are found (please see Mitigation Measures).

Impacts During Operation and Maintenance

No impacts to cultural resources are anticipated during the continuing operation and maintenance of the proposed McNary-John Day Transmission Line. The towers and access roads would be sited to avoid sensitive areas, so maintenance to the towers or access roads would not affect known resources. The vegetation within the right-of-way is not dense, so it is not expected that any ground disturbing mechanical type vegetation clearing would be required. If any maintenance activities need to occur outside of the tower locations or off the access roads, a review of the sensitive areas would be required in order to avoid impacting resources.

Environmental Consequences of Short-Line Routing Alternatives

There are no significant cultural resources in the areas of the short-line routing alternatives; impacts are not expected for any of the alternatives.

Mitigation

The following mitigation measures would minimize impacts to significant cultural resources:

- Locate structures, new roads, and staging areas so as to avoid known cultural resource sites.
- Utilize existing access road system to the extent possible to reduce the need for new access roads.
- Limit construction equipment to tower sites, access roads and conductor tensioning sites.
- Limit the number of contractors to cultural resource site sensitive information on a need-to-know basis.
Continue consultation with the Umatilla Tribes and the Yakama Nation to determine appropriate tribal monitoring for ground disturbing activities.

Continue consultation with the Umatilla Tribes and the Yakama Nation to set up consultation protocols on site mitigation and management.

Continue consultation with the Umatilla Tribes and the Yakama Nation to ensure that the cultural and natural resources are protected.

Stop all construction activities in the immediate area should any previously unknown artifacts be identified during construction until the resource can be evaluated by an archaeologist meeting the Secretary of the Interior’s Qualifications Standards for Archaeology (48 FR 44738-39). Prehistoric site indicators include, but are not limited to, chipped stone, obsidian tools and tool manufacture debitage (waste flakes), grinding implements such as mortars and pestles, and darkened soil that contains organic remains of food production such as animal bone and shellfish remains. Historic site indicators include, but are not limited to, ceramic, glass, wood, bone, and metal remains.

If previously unknown artifacts are identified during construction, contact representatives of the affected tribes.

For previously unknown artifacts, identify type and significance of discovered resource for determining if avoidance is necessary, depending on the type and significance of any discovered resource, procedures may include testing the site with shovel test probes to determine site boundaries and any possible subsurface components. If results of the shovel test probes determine the presence of an extensive subsurface component, move structure location to a suitable location that avoids the site. Alternatively, develop and implement a full data recovery program for the site in consultation with the affected tribes and the Oregon and Washington State historic preservation officers.

Stop construction in the area immediately should human remains and/or burials be encountered. Secure the area, placing it off limits for anyone but authorized personnel.

Unavoidable Impacts Remaining after Mitigation

Impacts to cultural resources would be mitigated following the procedures specific in 36 CFR 800. Cultural sites identified during fieldwork would be avoided, where feasible. Bonneville would determine mitigation measures in consultation with the Washington Office of Archaeological and Historic Preservation, Oregon State Historical Preservation Office, the Advisory Council of Historic Properties, the affected Native American tribes, and the private landholders. If a large number of sites cannot be avoided, a programmatic agreement among the aforementioned parties may be developed.
If cultural resources, either archaeological or historical materials, are discovered during construction, further surface-disturbing activities in that area would cease and appropriate Bonneville personnel would be notified immediately by their construction contractor to assure proper handling of the discovery by a qualified archaeologist. In absence of a programmatic agreement, any discovered cultural resources could be subject to mitigation through data recovery.

Environmental Consequences – No Action Alternative

Under the No Action Alternative, cultural resources in the project area would not be disturbed by the proposed transmission line construction. The existing transmission line corridor would remain at its present width, with no additional disturbance to known or previously undocumented cultural resources. Continued impacts associated with operation and maintenance of the two existing lines would remain.

Visual Resources

Affected Environment

The approach taken in evaluating potential visual impacts of the proposed project follows the visual impact assessment methods developed by the U.S. Forest Service and the Bureau of Land Management. The affected environment and visual impacts of the proposed project was evaluated by assessing the visual quality of the project corridor, viewer sensitivity, and the visibility of the towers and transmission line as seen from sensitive viewpoints.

Visual Quality

In this evaluation, visual quality is described as the visual patterns created by the combination of rural landscapes and developed features in the project vicinity. Visual quality in the study area was assessed using the following descriptions.

- **Rural landscapes.** These landscapes exhibit reasonably attractive natural and developed features/patterns, although they are not visually distinctive or unusual within the region. The landscape provides positive visual experiences such as the presence of natural open space interspersed with existing agricultural areas (farms, fields, etc.).

- **Scenic/distinctive landscapes.** These exhibit distinctive and memorable visual features (such as landforms, rock outcrops, streams/rivers, scenic vistas) and patterns (vegetation, open space) that usually occur in an undisturbed rural setting but may also be found in an urban setting.
The visual quality of the project corridor is predominantly rural, with a few low-density settlement areas, including Umatilla City, Plymouth, Paterson, Roosevelt, and Rufus. In addition, there are single houses, small groupings of houses, and small farm complexes scattered along the corridor outside of these settlements.

The first 32 miles of the project corridor landscape is composed of relatively flat landscapes dominated by wheat fields and crop irrigation circles, changing to hilly/canyon-like shrub-steppe grazing land from corridor mile 32 westward. Along SR 14, there are intermittent views of the Columbia River to the south, Mt. Hood (50 miles) to the southwest, and Mt. Adams (60 miles) to the northwest of the project corridor. The highway (SR 14) is designated as a Scenic and Recreation Highway by the state of Washington.

The natural and rural landscape features and patterns in the project corridor are reasonably attractive and interesting, although the project corridor lacks unique or distinctive features that would attract viewers. However, there are unique features (Mt. Hood, Mt. Adams, Columbia River) that are visible from areas along the project corridor. Landscape alterations in the vicinity of the project corridor are numerous and include power lines on wood poles and steel-lattice towers, roads, buildings, and fences all situated in a random pattern.

Viewer Sensitivity

Viewer sensitivity, in this evaluation, is described as a combination of viewer type, viewer exposure (number of viewers and view frequency), view orientation, view duration, and viewer awareness/sensitivity to visual changes in the project vicinity. The types of viewers in the project vicinity are described below.

Residences and Passive Recreational Viewers

Residences and in the project vicinity are considered to have high visual sensitivity. The visual setting may in part contribute to these viewers’ enjoyment of the experience. Such viewers may potentially see the transmission line project facilities often and for long periods.

Residences are located in Plymouth, Paterson, and North and West Roosevelt in Washington, and Umatilla City and Rufus in Oregon, as well as single or small groups of houses along the corridor. People in residences located close to the project corridor (at corridor miles 1, 4, 6, 7, 10, 16, 22, 29, 30, 48, 49, 68, 69, and 78) would be the most visually sensitive.

Highway and Local Travelers and Recreationists

Highway and local travelers along the project corridor are considered to have moderate visual sensitivity. The number of such viewers and frequency of their views would vary depending on their location. Recreationists in the project vicinity are considered to have
comparatively high visual sensitivity because the visual setting may in part contribute to the viewers’ enjoyment of the experience.

Because of the topography, views of the project corridor are intermittent for travelers, especially west of corridor mile 32. At that point, the viewscape changes from relatively flat terrain to more hills and canyons. Viewers include travelers on SR 14 and SR 221 in Washington; I-82 and US 97, which cross the Columbia River at the east and west ends of the corridor, respectively; US 730 and I-84 in Oregon; and county roads along the project corridor.

The proposed transmission line would be seen from the following recreation facilities: Umatilla Marina Park, McNary Wildlife Viewing Area, McNary Park, Plymouth Park, Umatilla National Wildlife Refuge, Crow Butte State Park, Crow Butte CRTFAS, Pine Creek CRTFAS, Stonehenge, Maryhill State Park, Maryhill Museum of Art, John Day Dam Cliffs Park, Rock Creek Park, and the John Day Viewing Area.

Other Viewers

Agricultural workers are located in Benton and Klickitat Counties in Washington and Sherman County in Oregon and are considered to have moderate visual sensitivity. Agricultural workers would likely be engaged in work-related activities but would be able to view the proposed project site for longer periods.

Commercial workers along the project corridor—such as those working at dams, wineries, processing plants—are considered to have low visual sensitivity. Compared with other viewer types, the number of viewers with low sensitivity would be relatively small and the duration of their view would be short. Activities of these viewers would typically limit their awareness of the visual setting immediately outside the workplace. In addition, landscaping, the topography, or adjacent buildings may screen their views. See the section on Land Use and Recreation, Chapter 3, for a detailed listing of industrial/commercial facilities near the project corridor.

Sensitive Viewpoints

Sensitive viewpoints include residences in Umatilla City and Rufus, Oregon (at the east and west ends of the corridor, respectively) and in Plymouth, Paterson, and Roosevelt, Washington. There are also small groupings of houses and small farm complexes scattered along the corridor outside of these settlements.

Other sensitive viewpoints include segments of SR 14 where the project corridor is in close proximity to the highway (particularly corridor miles 1 through 16 and where the corridor crosses SR 14 at corridor miles 13 and 70) and from various recreational sites in relatively close proximity to the project corridor.
For this segment, viewers include travelers on SR 14, agricultural workers and industrial workers, recreationists at Crow Butte State Park, tribal members at the Crow Butte CRTFAS, and residents near structures 22/3, 29/3, and 30/1.

Environmental Consequences—Proposed Action

Potential visual impacts include temporary visual changes during construction and the overall permanent visual changes caused by the presence of the towers and the transmission lines. Visual quality and viewer sensitivity are combined to determine visual impacts. The most visually sensitive viewers are residents in the towns of Plymouth, Paterson, and North and West Roosevelt in Washington and Umatilla City and Rufus in Oregon, as well as individual houses/farm complexes along the project corridor. Overall, because of the existing transmission lines, the development of the new line would add humanmade elements to the corridor but would not substantially change the current visual quality.

Impacts During Construction and Operation and Maintenance

Impacts during construction and operations and maintenance have been combined because they would be relatively the same, except during construction when equipment would also be part of the viewscape. Construction activities would occur over a 1-year period, mostly during daylight hours (between dawn and dusk). During construction of the proposed transmission facility, construction equipment (cranes, trackhoes, excavators, supply trucks, boom trucks, log trucks, and lines trucks) and sky-crane helicopters would be used to install and transport facility components. Construction crews would be working in localized areas of the corridor, so views of the construction sites would be dependent on the topography of the surrounding areas.

Construction sites would be visible from a distance in Benton County, Washington from I-82 through corridor mile 13. As the line moves further away from SR 14 and as the topography changes to hills and canyons, views would be intermittent and sites would not likely be seen from a distance due to the topography. Installation of the towers by sky-crane helicopters would likely be visible from a distance regardless of the location in the corridor. Temporary staging areas, which are often located in empty parking lots or already developed sites, would be located along or near the line for construction crews to store materials and trucks and would be visible to those in the immediate vicinity.

The proposed towers and transmission lines, which would be located in an existing Bonneville transmission line corridor and would be spaced to match the existing spans and towers in the corridor where possible, would be visible for some distance. The galvanized steel towers would appear shiny for 2 to 4 years before they dull with the weather, and the transmission line wires would be treated to reduce the shininess of the metal. Because of the existing transmission lines in the corridor, and several existing humanmade elements in the viewscape, including buildings, fences, and other power
lines on wood poles the new line would contribute to the degradation of the natural visual quality of the area, but would not be out of context.

Photosimulations have been prepared depicting views of the proposed transmission line from two typical viewscapes: (1) relatively flat, agricultural terrain and (2) canyonlike terrains along the corridor. The photosimulations are presented as Figures 3-5 and 3-6.

Residences

Residences in Umatilla City would probably not notice the McNary Substation expansion or the new line leaving the substation because their views would be partially obstructed by the existing substation and several transmission lines that originate at or leave the substation.

The flat terrain in Plymouth between structures 4/1 and 4/4 would provide residents relatively unobstructed views of the proposed transmission line, especially for residences located close to the existing transmission line corridor (closest resident is about 500 feet). However, for some residents the new line would be obstructed by other humanmade objects such as buildings or other transmission lines, and the existing lines would between the new line and the residents. The new line would add more humanmade elements to the landscape.

In Paterson at corridor mile 16, orchards, farm buildings, and other transmission lines could partially obstruct some residents’ views of the new transmission line, depending on their location. In North Roosevelt and West Roosevelt (corridor mile 48), the hilly terrain would partially obstruct some residents’ views, again depending on location. In West Roosevelt, the hills would provide a backdrop for the towers, causing them to blend into the landscape. In these communities, the new line would add more humanmade elements to the landscape.

Residences located at corridor miles 1, 4, 6, 7, 10, 16, 22, 29, 30, 48, 49, 68, 69, and 78 would see the new line. The corridor crosses over to the south side of SR 14 in the vicinity of the residence located in corridor mile 69 near structure 4. (See Hanford John-Day Junction Alternatives for impacts to this resident.)

In Rufus, the transmission line would be seen on the ridgeline above the town. However, the new line would be in a corridor with six existing lines, so the addition of the new line may not be noticeable.

Travelers and Recreationists

Views of the proposed line would be more likely in the relatively flat terrain of Benton County, and only intermittent in Klickitat County due to the hills and the canyons. Views in Umatilla and Sherman County, Oregon, would be obstructed by existing transmission lines, towers, and substations.
Local or business travelers and recreationists would have views of the proposed line as they travel along SR 14 (Benton and Klickitat Counties in Washington), I-82 (Umatilla County, Oregon and Benton County, Washington), I-84 (in Morrow, Gilliam, and Sherman Counties, Oregon), US 730 (Morrow and Umatilla Counties, Oregon), SR 221 (in the vicinity of Paterson, Washington), or along the county roads. Travelers along SR 14 would be closest and would have the longest duration views (unobstructed and obstructed) of the proposed line. While the corridor is on the north side of SR 14, it would not interrupt the travelers view of the Columbia River. The corridor would also not interrupt views of Mt. Hood or Mt. Adams. It would, however, add more humanmade elements to the rural landscape.

Travelers on I-82, which runs north-south through Washington and Oregon across the Columbia River in the vicinity of the McNary Substation (Figure 3-7), would have relatively unobstructed views of the substation and approximately the first half-mile of the proposed line. However, since the substation expansion would be small relative to the existing substation, the expansion may not be noticeable. The new line would replace existing towers at the Columbia River crossing in this location. The new structures would be bigger and may be seen more easily than the existing.

Travelers and recreationists traveling west on SR 14 from I-82 would be close to the corridor and would have unobstructed views of the proposed line through corridor mile 16. In the vicinity of structure 13/5, travelers would see the corridor crossing to the north side of SR 14. The relatively flat foreground is predominantly composed of crop irrigation circles and farmland on a plateau above the Columbia River. Existing transmission lines interrupt the viewscape, which lacks a distinct background.

At corridor mile 16, the proposed line would move farther north (about 0.5 to 0.75 miles north) from SR 14 through gently rolling hills, and views of the line would become intermittent. Between corridor miles 16 and 32, the project corridor is somewhat parallel to and runs about 0.5 to 0.75 mile to the north of SR 14. It continues to pass through orchards and cropland through corridor mile 32, except for a small segment of high-quality shrub-steppe near Glade Creek (corridor mile 21, near structure 21/5). At approximately corridor mile 32 (Benton and Klickitat Counties border) and through the end of the corridor (roughly the western half of the corridor), the proposed line would traverse up and down the deeply incised canyons, becoming visible along the ridgelines at certain locations and disappearing completely in the canyons at other locations. The shrub-steppe landscape is dominated by basin big sagebrush, which is punctuated by the gray-greens of gray rabbitbrush, green rabbitbrush, bluebunch wheatgrass, and nonnative cheatgrass. At certain points along the western half of the corridor, the line would be close to SR 14 and a traveler would have unobstructed views of the line.

Travelers on SR 221 would have unobstructed views in the vicinity of Paterson. The new line would add more humanmade elements to the viewscape. In the vicinity of Roosevelt, Washington, the proposed line would be located adjacent to SR 14 but would blend into the background of the canyons. Here, the project corridor is located at the base
of the light brown hills, which serve as a background that masks the existing metal-lattice towers and power lines. Unobstructed views of the proposed line would also be possible near structure 1 in corridor mile 70 as the line crosses to the south side of SR 14. The proposed line crosses to the Oregon side across the Columbia River near corridor mile 74, and views would be reduced as the line moved farther away from SR 14.

The corridor crosses the Columbia River into Sherman County, Oregon, just west of the John Day Dam at corridor mile 76. The 500-kV Hanford-John Day transmission line spans the Columbia River on 180-foot-tall towers just downstream of John Day Dam. On the Oregon side of the Columbia River, between structures 96/2 and 97/4, the 500-kV line crosses dryland grain farmland and irrigated cropland at 99/1 and joins several transmission lines heading west to the substation.

Travelers on SR 97, which runs north-south through Washington and Oregon across the Columbia River in the vicinity of the John Day Dam, would have limited views due to the highway’s distance (approximately 8 miles) from the project corridor.

Travelers on I-84 and US 730 would have intermittent and diminished views of the proposed line, due to the line’s distance from I-84 (approximately 2 miles) and US 730 (varies from approximately 1 to 6 miles). The towers of the proposed line would blend into the background of the brown hills, making it difficult for travels to see the towers from distances of a mile or more.

Various county roads would provide unobstructed and partially obstructed views of the proposed line at specific locations along the project corridor, especially along the roads leading to Plymouth, Paterson, and North and West Roosevelt in Washington. In these areas, the new line would add to the humanmade elements in the rural landscape.

Recreationists in proximity to the proposed line would likely be engaged in focused activities but would potentially have unobstructed views of long duration, depending on their location and the topography.

Recreationists at the Corps Wildlife Natural Area, McNary Park, and the Umatilla Marina Park, all in Oregon, would be able to see the new line; however, the existing substation and power lines would already be in these recreationists viewscape. The new line would add more humanmade elements to their viewscape.

Recreationists at Plymouth Park in Plymouth, Washington would be able to see the new line, but their existing viewscape includes buildings and power lines on wood poles and steel-lattice towers. Recreationists at Crow Butte State Park would have views of the new line from the north side of the park. The new line would add more elements to the humanmade landscape.

Depending on their location, recreationists on the Columbia River between corridor miles 32 and 75 could have views of the new line. In this area, the hilly terrain blocks views of the new line as the corridor moves up and down the canyons. The new line would add to the humanmade elements. Recreationists at the John Day Recreation Area
and Wildlife Viewing Area would have views of the new river crossing near the John Day Dam looking north across the Columbia River.

Other Viewers

Agricultural workers who would have views of the proposed line would be located primarily in Benton County, where most of the irrigated cropland along the project corridor is located. Agricultural workers would be engaged in focused activities, but their views could be of long duration. The relatively sparse vertical elements in the viewscape would provide unobstructed views of the proposed line. The agricultural workers in Sherman County, Oregon, would have partially obstructed views due to their proximity to the network of transmission lines and towers leading into and out of the John Day Substation.

Commercial workers along the corridor would have obstructed and unobstructed views of the proposed line (depending on their location), and their activities would limit their duration of views. Workers at Watts Brothers Frozen Foods would have views of the corridor around corridor mile 13. Views would be most apparent from parking lots or when the workers are outside of buildings. Humanmade elements in the viewscape include existing transmission lines on wood poles and steel-lattice towers, buildings, and fences.

Environmental Consequences—Short-Line Routing Alternatives

Table 3-19 summarizes the visual resources impacts associated with the short-line routing alternatives.

Table 3-19: Impacts of Short-Line Routing Alternatives: Visual Resources

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>McNary Substation Alternatives</td>
<td></td>
</tr>
<tr>
<td>A. Relocate administration building presently located on north side of substation adjacent to Wildlife Natural Area</td>
<td>Recreationists at the Corps Wildlife Natural Area and travelers on I-82 and US 730 would have partially obstructed or unobstructed views of construction, depending on their location.</td>
</tr>
<tr>
<td>B. Cross Wildlife Natural Area; circumvent administration building on north side</td>
<td>Recreationists at the Corps Wildlife Natural Area and travelers on I-82 would potentially have obstructed views of the proposed line.</td>
</tr>
</tbody>
</table>
Visual Resources

Alternative Impacts

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Place line in bus work at ground level on north side of administration building, inside Wildlife Natural Area</td>
<td>Recreationists at the Corps Wildlife Natural Area and travelers on I-82 and US 730 would have partially obstructed or unobstructed views of construction, depending on their location. Residences on DeVore Road would have views of the bus work, but the existing substation and power lines would partially obstruct their views.</td>
</tr>
</tbody>
</table>

Hanford-John Day Junction Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Move existing Hanford-John Day line north 200 feet to make room for new line on north side of corridor</td>
<td>This would be on the opposite side of existing lines and, therefore, less visible from SR 14 and from the residence at corridor mile 69.</td>
</tr>
<tr>
<td>B. Place new line on south side of corridor (occupied by roads and towers)</td>
<td>Travelers on SR 14 and recreationists on the Columbia River would have obstructed views of the new line and would have lines on both sides of the road. Location of the new line may require the Goldendale Aluminum guesthouse, presently unoccupied, to be removed.</td>
</tr>
<tr>
<td>C. Place new line on south side of highway</td>
<td>Travelers on SR 14 would have views of lines on both sides of the road. Location of the new line may require the house to be removed.</td>
</tr>
</tbody>
</table>

Corridor Mile 32 Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Keep existing and new lines on tribal land</td>
<td>Travelers on SR 14 and agricultural workers would have partially obstructed views due to the topography.</td>
</tr>
<tr>
<td>B. Relocate existing and new lines away from tribal land</td>
<td>Agricultural workers would have partially obstructed views due to the topography. Travelers on SR 14 would be closer to the transmission lines.</td>
</tr>
</tbody>
</table>

Corridor Mile 35 Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Keep existing and new lines on tribal land</td>
<td>Travelers on SR 14 and agricultural workers would have partially obstructed views due to the topography.</td>
</tr>
<tr>
<td>B. Relocate existing and new lines away from tribal land</td>
<td>Agricultural workers would have partially obstructed views due to the topography. Travelers on SR 14 would be closer to the transmission lines.</td>
</tr>
</tbody>
</table>

Mitigation

The following mitigation measures would help minimize visual impacts.

- Site all construction staging and storage areas away from locations that would be clearly visible from SR 14 as much as practical.
- Provide a clean-looking facility following construction by cleaning-up after construction activities.
- Keep the areas around the towers clean and free of debris.
Provide regular maintenance of the access roads and fences within and leading to the corridor.

Unavoidable Impacts Remaining after Mitigation

The proposed transmission line would be a readily visible part of an existing Bonneville transmission line corridor for residents, travelers on SR 14 and the surrounding county roads and highways, agricultural workers, recreationists, and commercial workers. Depending on the viewer’s location in the viewscape, views of the proposed line and towers would be completely obstructed, partially obstructed, or unobstructed.

Environmental Consequences—No Action Alternative

Under the No Action Alternative, the visual quality and sensitivity of the viewers along the existing Bonneville corridor would not be influenced by the proposed project. Viewers would continue to see the existing transmission lines and towers in the existing Bonneville transmission line corridor.

Socioeconomics, Public Services, and Utilities

Affected Environment

The study area for this section covers six counties, four of which are where the proposed project would be located. The other two counties, Franklin County in Washington and Wasco County in Oregon, are less likely to be affected, but were also included in the population, employment, and housing analyses because they could potentially provide and house part of the construction workforce.

Population Growth

In 2000, the six-county study area had a population of 307,256 people. Benton County, Washington, was the most populated with 142,475 people and Sherman County, Oregon, was the least populated with 1,934 people.

Overall, the study area experienced a 2.3% average annual increase in population from 1990 to 2000, somewhat greater than the average annual increases for Washington and Oregon (2.1% and 2.0%, respectively). The counties with the greatest increases in average annual growth for that period were Franklin County (3.2%) and Benton County (2.7%) in Washington, and Umatilla County (1.9%) in Oregon. Unlike the rest of the study area, Sherman County experienced virtually no population change (0.08%) from 1990 to 2000.
The growth experienced in the 1990s reversed the stagnant annual average population growth in the study area, 0.3%, occurring during the 1980s.

Employment

In 2000, Oregon’s three-county study area employment was 42,135 people, of that the average annual agricultural employment was 4,350. In 1999, Washington’s three-county study area total employment (including agriculture) was 87,627 and of this total, agriculture, forestry, and fishing accounted for 11,241 people.

Oregon

The data for agricultural employment in Oregon was based on the Current Population Survey (an annual survey of households in Oregon) and was therefore not combined in a table with the nonagricultural employment, which is based on the 1987 Standard Industrial Classification (SIC) manual. In 2000, the annual average agricultural employment in Sherman County was 250 people, Umatilla County was 2,380 people, and Wasco County was 1,720 people, while it was 52,700 in the state of Oregon. All data was obtained from the Oregon Employment Department.

In 2000, employment in the agricultural sector was roughly 10.3% of the combined study area counties (when agriculture and nonagriculture data are combined). Specifically, agricultural employment was roughly 26.7% in Sherman County, 15.6% in Wasco County, and 7.8% in Umatilla County.

The remaining approximately 90% was nonagricultural employment in the three-county area in 2000. The primary nonagricultural employment sectors in the combined three-county area were wholesale and retail trade (25.8%), government (25.6%), services (20.6%), and manufacturing (14.6%). Employment in all other sectors was less than 6% each.

Specifically, the primary nonagricultural employment sectors in Sherman County were wholesale and retail trade (45.3%), government (42.3%), and services (5.8%), similar to Umatilla and Wasco Counties. In Umatilla County, government employment was 25.1%, wholesale and retail trade was 24.9%, and services was 19%. Manufacturing in Umatilla County was 15.7%. In Wasco County, the primary sectors were wholesale and retail trade (27.0%), government (26.0%), services (24.5%), and manufacturing (12.6%). All other employment sectors in Wasco County were less than 4% each. The distributions are relatively similar to the state of Oregon (see Table E-1 in Appendix E).

The 2000 average annual unemployment levels in Sherman, Umatilla, and Wasco Counties were 5.7%, 6.4%, and 6.5%, respectively, somewhat greater than the state’s 2000 annual average unemployment rate of 4.9%.
Washington

In 1999, agriculture, forestry, and fishing made up approximately 13.0% of the employment of the combined study area in Washington. The primary employment sectors in the 3-county study area combined were services (24.9%); government (17.6%); retail trade (16.4%); agriculture, forestry, and fishing (13%); and transportation and public utilities (10.1%). All other sectors are less than 10% each.

Specifically in 1999, Franklin County’s primary employment sectors were agriculture, forestry, and fishing (23.1%); services (20.8%); government (18.3%); and retail trade (12.6%). All other employment sectors were less than 8% each. This differs slightly from Klickitat County, where the primary sectors were government (27.3%); manufacturing (23.0%); agriculture, forestry, and fishing (14.6%); and retail trade (11.0%); with all other sectors representing less than 10% each. In Benton County, the primary sectors were services (27.3%), retail trade (18.0%), government (16.1%), and transportation and public utilities (12.6%), with all other sectors representing less than 10%. This is somewhat similar to the state of Washington, where services (26.9%), retail trade (17.9%), government (17.0%), and manufacturing (13.6%) in 1999 were the primary sectors, with all other sectors representing less than 6%. Agriculture, forestry, and fishing in the state of Washington in 1999 was 3.4%.

The 1999 average unemployment level in Benton County was 5.6%, slightly higher than the state’s average of 4.7%, while the unemployment levels in Klickitat and Franklin Counties in 1999 were 9.5% and 9.6%, respectively.

Environmental Justice

Federal Agencies are required to consider impacts on minority and low-income populations (Executive Order 12898).

The race distribution for Sherman and Umatilla Counties and the state of Oregon is included in Table E-1 in Appendix E. Sherman County’s minority population is 6.4%, less than the state’s population of 13.4%. Umatilla’s minority population is slightly higher than the state’s at 18%. Only 6 miles of the project corridor are located in Umatilla and Sherman Counties in Oregon.

The distribution of races in Benton and Klickitat Counties is compared to the state of Washington in Table E-2 in Appendix E. The category of “two or more races” in the 2000 census data addresses the issue of avoiding double-counting individuals, who might be of two different races (e.g., Hispanic and American Indian). Benton and Klickitat Counties have slightly lower minority populations (13.7% and 12.4%, respectively) than the state of Washington (18.2%).

The U.S. Census Bureau follows the Office of Management and Budget’s Statistical Policy Directive 14 to determine poverty status based on income level. Poverty status can be used as a measure of low income for environmental justice analyses. Poverty
thresholds do not vary geographically, but do vary according to size of family unit. In 1990 the poverty thresholds varied between $6,652 (one person) to $26,848 (nine or more persons). The number of people below the poverty level in 1990 was 11.1% in Benton County and 17.0% in Klickitat County, higher than the 10.9% in Washington, and 9.9% in Sherman County and 16.5% in Umatilla County, compared to 12.4% in Oregon. (2000 county-level poverty status data are not yet available).

Housing

Within the six-county study area there were 9,370 vacant housing units in 2000.

In general, the study area shows a moderate to high vacancy rate, with vacancy rates for the individual counties within the study area ranging from 5.5% in Benton County to 14.8% in Sherman County. Table E-3 in Appendix E compares the total number of housing units in the six-county study area to the number of vacant units.

Vacancy rates from 5% to approximately 7% typically reflect relatively few actual vacancies and are likely a result of people in transition between housing units. Vacancy rates of 7% to 10% reflect a moderate number of available housing units, and 10% or greater vacancy rates reflect a relatively high number of available units.

Lodging and Parks

In addition to the vacant housing units in the study area, there are 40 hotels and motels with more than 1,650 rooms/beds in communities surrounding the project corridor (see Table E-4 in Appendix E). These rooms/beds are located in Goldendale, Kennewick, and Pasco, Washington, and Hermiston, Wasco, Rufus, and The Dalles, Oregon. (MSN SuperPages web site)

Within the study area there are also state parks and recreational facilities, some of which have overnight camping facilities.

Schools

Within the study area, there are 14 elementary/primary schools, six middle schools, and seven high schools in Umatilla, Rufus, Moro, and The Dalles in Oregon, and Benton, Paterson, Plymouth, Prosser, Roosevelt, and Goldendale in Washington. The school enrollment varies from 12 to 827 students.

Services and Utilities

The following sections detail the public services that serve the area of the project corridor. (Franklin and Wasco Counties are not included in this discussion because they are not crossed by the proposed transmission line.)
Fire and Medical Services

In the vicinity of the McNary Substation where the project begins, Fire District 7 provides coverage for unincorporated Umatilla County near and including the City of Umatilla, Oregon. This district is staffed by one part-time firefighter, one full-time firefighter, and 28 volunteers. There are two fire stations within Fire District 7, each with seven vehicles including brush trucks, haulers, and a command vehicle. Each fire station has an aid vehicle that serves Good Shepherd Hospital (49 beds) in Hermiston, Oregon. The district responded to approximately 360 emergency calls last year. (Stokoc pers. comm.)

The Benton County Fire Department, District 6 provides service along the project corridor from the McNary Dam to the Klickitat County border. There are approximately 30 volunteers and a full-time chief. They have approximately 18 vehicles distributed among four stations, with the main station located in Paterson. Types of vehicles include water trucks, bulldozers, and Class A engines (structural pumper). Fire District 6 has two ambulances with crews that are Intermediate Life Support (ILS) certified paramedics, and helicopter emergency airlift capability out of Moses Lake (Harris pers. comm.). They also provide ambulance service for parts of Klickitat County along the project corridor. Emergency cases are transported to the nearest facility that can handle the situation. Nearby hospitals are located in Hermiston, Oregon (Good Shepherd Hospital, 49 beds), in Richland, Washington (Kadlec Hospital, 153 beds), and in Kennewick, Washington (Kennewick General Hospital, 71 beds). Fire District 6 responded last year to approximately 145 emergency calls.

Klickitat County, to the west of Benton County, has three fire districts—Districts 7, 9, and 10—that cover the project corridor along SR 14. Fire District 9, which is staffed by 30 volunteers, provides service for people in the Roosevelt area of Klickitat County. Their emergency medical technicians provide aid service and they can transport emergency cases (with permission) to Goldendale (Klickitat Valley Hospital, 31 beds) or to the nearest hospital. They responded to between 20 and 25 emergency calls last year. They have approximately nine vehicles, comprised of engines, an aid car, tanker, and wildfire rigs. (Wright pers. comm.) Districts 7 and 10 are of similar size.

In the vicinity of the John Day Substation at the western terminus of the project, in Sherman County, Oregon, the fire districts are staffed by volunteers. The Rufus Volunteer Fire Department deals with fires within the city limits, and the North Sherman Fire District provides service in north Sherman County in the Wasco area. However, it is common for more than one district to respond to the same call (for example, Rufus and North Sherman could both respond to fires in the project corridor).

There are between 10 and 12 volunteers at the North Sherman Fire District, and two of those volunteers are dispatchers. Their vehicles include one rescue rig, one engine, one tender/tanker, one Osh Kosh truck, two brush rigs, and one command vehicle (a Ford Ranger pickup). They have two ambulances stationed in the town of Moro. They
transport emergency cases to Mid Columbia Hospital (49 beds) in The Dalles. They responded to approximately 118 emergency calls last year. (Southerland pers. comm.)

Police Services

The Umatilla County sheriff’s office and the Oregon State Police patrol unincorporated Umatilla County, including the McNary Substation. The Corps provides security at the dam. The main sheriff’s office is in Pendleton. On an average day they have four to five deputies working in the field. Other duty officers include the sheriff, undersheriff, two detectives, and a sergeant. There are also two officers who work strictly on domestic violence cases. The sheriff’s office has 34 vehicles which include search and rescue vehicles, ambulances, patrol vehicles, a transport vehicle, and two boats. Four snowmobiles are also used for winter snow trail patrols. Last year they responded to 9,556 emergency calls. (Leblanc and Lieuallen pers. comms.)

Police service for the project corridor in Benton County would be provided by the Benton County sheriff’s office located in Kennewick. The sheriff’s office has four detectives, two traffic officers, two civil officers, and eight patrol officers. The sheriff’s office has approximately 44 patrol cars, two boats for its marine patrol along the Columbia River, and an airplane (P. and M. Hart pers. comm.). The sheriff’s office responded to between 17,000 and 18,000 calls last year.

The Klickitat County sheriff’s office patrols all of Klickitat County, except the cities of Goldendale, White Salmon, and Bingen. They generally have three to six people on duty during the day and two to three deputies on duty at night. Their staff includes two detectives, the sheriff, the undersheriff, and the deputies. They have 29 vehicles, two boats (not currently in service), and two jet skis. They also have a marine patrol staffed by three deputies (Paisley pers. comm.).

The Sherman County sheriff’s office is located in the city of Moro. A sheriff and three deputies patrol all of Sherman County in conjunction with the Oregon State Police. They have six vehicles and one boat that is used in the summer for marine patrols. Last year they responded to approximately 400 calls of which 200 received actual case numbers. There are no city police in Sherman County (McAllister pers. comm.).

Environmental Consequences—Proposed Action

Potential socioeconomic impacts of the proposed transmission line are addressed in the following sections.

Impacts During Construction

The proposed timeframe for construction would be a 1-year period from January to December.
The project would be constructed by one or more construction crews. A typical transmission line construction crew for the 500-kV line would likely consist of up to 60 construction workers.

The typical crew would likely construct about 10 miles of line in 3 months. To meet the proposed construction schedule for this project (1 year), two or more crews would work simultaneously on separate sections of the 79-mile-long transmission line.

For this EIS discussion it is assumed that three crews would work on the line, with one crew working at each end and one crew working in the middle, heading west. The middle section of the project corridor heading west is a very rocky area with difficult terrain and geological features that are expected to slow down installation time.

In the following paragraphs, the potential construction impacts are described for population, employment, housing, community services, utilities, and property.

During the 1-year construction period, approximately 180 workers would be required to complete the project, assuming three crews are mobilized at the start of the construction period. Of these crews, one would likely be stationed out of the Umatilla and Hermiston area (Umatilla County) and the other two would likely be stationed either in Goldendale (Klickitat County) or in the Biggs, Wasco, or Rufus area (Sherman County). Franklin and Wasco counties—which have relatively large metropolitan areas including Pasco (Tri-Cities Area) and The Dalles—could also provide workers and attract workers to stay there during construction.

Table E-5 in Appendix E shows the worker availability in the communities within the study area where potential construction workers might originate. Whether Bonneville’s construction contractors would hire local workers or bring in their own workforce for the project is unknown. Based on the data collected, there are potentially more than 400 (as of 1999/2000) unemployed workers available in the six-county study area with the skills required to perform the construction tasks for the proposed transmission line.

Assuming one-third of the construction work force is hired from local communities (60 people), that means that 120 workers will come in from outside the project area. There would be potential positive impacts to employment in the surrounding area if local people are employed for the project. A potential temporary increase in spending on goods and services in the study area would also occur. The potential influx of workers from outside the project area would create a temporary increase in population.

There would likely be an adequate number of rental units and hotel/motel rooms available for the workers who may migrate into the study area. In addition to the over 9,000 vacant housing units in the study area, there are 40 hotels and motels with over 1,600 rooms/beds potentially available within commuting distance to the three work zones for the project.

Also, the state parks and RV facilities in the project vicinity would provide construction workers with additional accommodations. Therefore, no adverse impacts to housing in
the study area are expected, and the influx of workers would create modest economic benefits to the area.

Schools are not expected to be impacted. In general construction crews coming from outside of the project area do not tend to bring families with them, so there would be no additional children enrolled in local schools.

The risk of fire along the project corridor would increase during construction of the proposed transmission line. However, there are volunteer fire units in the area to help combat fires and additional units could be brought in from surrounding areas if the need arises.

No impact to electrical services, water and sanitary sewer systems, or solid waste disposal are expected occur during construction because no new housing would be built to house construction workers.

Property Impacts

Most of the right-of-way along the existing corridor is wide enough to accommodate the proposed transmission line. However there are a few locations where Bonneville would have to acquire easements from landowners. These locations total about 14 miles of the 79-mile line. In addition, it is anticipated that some access road easements would need to be acquired. Bonneville would pay market value to nonfederal landowners for any new easements required for the project, and the market value would be established through an appraisal process.

The easements required for the project may encumber the right-of-way area with land use limitations. The easement specifies “the present and future right to clear the right-of-way and to keep the same clear of all trees, whether natural or cultivated, and all structure supported crops, other structures, trees, brush, vegetation, fire and electrical hazards, except non-structure supported agricultural crops less than 10 feet in height.” The landowner may grow most crops or graze livestock. Special written agreements may be entered into between Bonneville and the landowner to allow ornamental or orchard trees and structure-supported crops. Heights of the trees/crops and access would be controlled to maintain safe clearance for the transmission lines.

The impact of introducing a new right-of-way easement for transmission towers and lines along the corridor would vary depending on the placement of the right-of-way in relation to the property’s size, shape, and location of existing improvements. The transmission line could diminish the utility of a portion of the property if the line effectively severed this area from the remaining property (called “severance damage”).

These factors as well as any other elements unique to the property are taken into consideration to determine the loss in value within the easement area, as well as outside the easement area in cases of severance.
3-104

Affected Environment, Environmental Consequences, and Mitigation

With regard to access roads, if Bonneville acquires an easement on an existing access road along the project corridor and the landowner is the only other user, market compensation would likely be 50% of full fee value or something less than 50% if other landowners share the access road use. If Bonneville acquires an easement for the right to construct a new access road for the project, and the landowner would get equal benefit and use of the access road, market compensation would likely be 50% of full fee value. If the landowner has little or no use for the new access road to be constructed, market compensation for the easement would likely be close to full fee value. Along much of the corridor where there are existing easements, land use limitations have already been in place.

If the new transmission line crossed a portion of a property in agricultural use such as pasture or cropland, little utility would be lost between the towers, but 100% of the utility would be lost within the base of the tower. Towers may also present an obstacle for operating farm equipment and controlling weeds at tower locations. To the extent possible, the new transmission lines and towers would be designed to minimize the impact to existing and proposed (if known) irrigation systems. In areas where new right-of-way needs to be acquired, if the irrigation equipment or layout needs to be redesigned because of the proposed transmission line facility, Bonneville would compensate the landowner for the additional reasonable costs. In areas, where the new construction would be within existing right-of-way, Bonneville would follow existing agreements made with the landowner and work with them to minimize the impact to the irrigation systems.

Environmental Justice

Minority and low-income populations would not be disproportionately affected by the proposed project because the project would occur entirely within or adjacent to an existing Bonneville transmission line corridor. The population that would be crossed by the line are a mix of income levels and there are no minority groupings. Individuals from these populations may experience positive benefits if they become part of the construction workforce.

Impacts During Operation and Maintenance

During operation of the project, no impacts are expected to housing, schools, or water and sanitary sewer systems, and only minor adverse impacts could occur to emergency services, due mainly to the risk of fire. Positive benefits include increased service capacity for the Bonneville transmission grid.

Property Values

The proposed transmission line is not expected to have long-term impacts on property values in the area. Zoning is the primary means that most local governments use to
protect property values. By allowing some uses and disallowing others, or permitting them only as conditional uses, conflicting uses are avoided.

As a result of the proposed project, some short-term adverse impacts on property values (and salability) might occur on an individual basis. These impacts would be highly variable, individualized, and unpredictable.

Property Tax Impacts

The proposed action would have no direct beneficial effect on the local taxing districts because Bonneville, as a federal agency, is exempt from local taxes. Conversely, the proposed action could have a minor but negative impact on local taxing authorities if any properties are devalued as a result of limits the proposed easement might impose on the highest and best use of a parcel. Offsetting any such decrease, however, could be the increase in the amount of taxes collected by the taxing authorities as a result of the increase in development that might be enabled by the additional supply of power.

Environmental Consequences—Short-Line Routing Alternatives

In general, socioeconomic impacts would be the same for all the short-line routing alternatives described in Chapter 2, with the exception of possible use of tribal lands for the Corridor Mile 32 Alternatives and Corridor Mile 35 Alternatives routings. If Bonneville wishes to cross tribal lands in these areas, they would reach an agreement with the tribes about compensation for the use of tribal property, which would be a positive impact. No impacts from the other short-line routing alternatives are expected.

Mitigation

See the Land Use section at the beginning of Chapter 3 for mitigation measures for agricultural uses. No additional mitigation measures are required.

Unavoidable Impacts Remaining after Mitigation

No impacts are anticipated during construction or operations on schools; housing; electrical, water and sanitary sewer systems; or minority and low-income populations. Minor adverse impacts could occur to emergency services, mainly due to risk of fire. Modest economic benefits could include increased employment in the area, local purchase of goods and services, and increased service capacity for the Bonneville transmission grid.
Environmental Consequences—No Action Alternative

Under the No Action Alternative, there would not be opportunity to hire people from the area to work on the project, nor would there be an increase in goods and services and lodging revenues from workers staying in the area during construction.

Transportation

Modes of transportation identified for this analysis include

- roads in the general project vicinity,
- road systems that would be used by project personnel during project construction, operation, and maintenance,
- regional roads that would likely be used for transportation equipment and components,
- railroads,
- barges on the Columbia River, and
- local airports.

Affected Environment

Roads

Equipment and component parts for the project (such as transmission tower sections) are likely to come from all over the world. The main ports of entry for the parts would be Seattle, Washington, and Portland, Oregon. The parts would likely travel by truck to the project via I-5. I-5 provides access across the Columbia River and connects with SR 14 in Vancouver, Washington, and with I-84/US 30 in Portland, Oregon. East-west access on the south (Oregon) side of the Columbia for the project is provided by I-84/US 30. The Bonneville right-of-way and SR 14 follow the north (Washington) side of the Columbia River for more than 80% of the project length. If parts are trucked from the east, they would likely be transported via I-90, connecting to I-82/SR 97 near Ellensburg, connecting to the project site via SR 97 near Goldendale or I-82/SR 12 on east past the Tri Cities via I-82/US 295 into Hermiston.

Two bridges provide access across the Columbia River within the project area. Approximately 8 miles west of the John Day Dam, US 97—the 2-lane Biggs Rapid Bridge—crosses the river. At the eastern end of the project near Plymouth, I-82/US 395—a 4-lane divided bridge—also crosses the river.
In addition to SR 14 and I-84/US 30, likely roadway travel routes in the project vicinity (from east to west) include I-82/US 395, US 730, SR 221, and SR 97. South of the Columbia River I-82 joins with I-84/US 30. North of the Columbia River at McNary Dam, I-82/US 395 travels north toward the Tri Cities area, Washington. US 730 provides northeast access to the project area from Boardman Junction (I-84/US 30) toward and adjacent to the Columbia River until Umatilla, Oregon. SR 221 travels north from Paterson and eventually joins with I-82/SR 12, which provides access to the Tri Cities area and Yakima, Washington. US 97 provides north access to Toppenish and the Yakima Valley, Washington, while US 97 provides south access to Bend, Oregon.

Figure 3-7 shows the major regional and local transportation facilities serving the project area and the average daily traffic volumes for the roads serving the project vicinity. Load restrictions on area roadways are discussed in Chapter 4.

Data were obtained from the Washington State Department of Transportation and the Oregon Department of Transportation.

Railroads

Bonneville could choose to utilize the Burlington Northern Santa Fe Railway that follows SR 14 and the project corridor to transport materials.

Barges

The Columbia River could also be utilized to transport equipment and components via barge. As shown on Figure 3-7, there are ports in the project vicinity at Umatilla, Morrow, and Arlington.

The Port of Morrow and Port of Umatilla would be able to assist in the import or export of materials for Bonneville.

The Port of Morrow has three solid waste barges and two to three export barges scheduled per week. Weight constraints for the containers are rated at 40 to 45 tons (Gordon pers. comm.).

The Port of Umatilla has three barges scheduled per week consisting of refrigerated container barges. There are 100 receptacles on the dock and sometimes they are full. Storage is available and they have the capacity for 80 containers at 60,000 to 68,000 pounds each. Annually this port has 5,000 to 5,500 imports and exports. A Burlington Northern Santa Fe Railway run comes from the Hinkle switchyard to the port once a day (Chris, Inc. 2001).

The Port of Arlington is a grain barging facility with tie-ups and is open Tuesdays and Thursdays.
Air Transport

There are seven airports and landing strips of various sizes in the project vicinity (see Figure 3-7). From east to west, these facilities include

- Hermiston Airport (Hermiston, Oregon) located approximately 8 miles south of the Columbia River at the Plymouth bridge crossing;
- Umatilla Airport (Umatilla County, Oregon) located approximately 10 miles south of the Columbia River near the Benton, Morrow, and Umatilla county lines;
- Columbia Crest Winery Airport (Benton County) located 1 mile north of the project corridor near Paterson;
- Boardman Flight Strip (Morrow County, Oregon) located approximately 5 miles south of the corridor near Crow Butte;
- Arlington Municipal Airport (Arlington, Oregon) located approximately 2 miles from the project corridor on the south side of the Columbia River;
- A small landing strip near the John Day Dam on the south side of the Columbia River in Sherman County, Oregon; and
- Goldendale Airport located just north of Goldendale off US 97, approximately 15 miles from the corridor.

Environmental Consequences—Proposed Action

Impacts During Construction

Transportation impacts during the 12-month construction period are anticipated to be minimal. During project construction, heavy and light vehicles would access the corridor, and equipment and components would be transported to the project site via trucks, along the routes previously described in the Affected Environment section.

There are numerous transportation options for getting equipment to the project sites. Highway SR 14 in combination with local roads and the access road system provide adequate pathways for getting materials and workers to the project with minor impacts to existing traffic flows.

Bonneville would use up to 90% of the existing 90 miles of access roads along the corridor. Many of the access roads are approached from SR 14; there are 35 sites where Bonneville vehicles leave the highway directly to access roads. Staging areas would be set up along or near the corridor for construction crews to store materials and trucks.

It will not be necessary to close SR 14 or the Burlington Northern Santa Fe Railway during construction. However, the contractor would work with both the highway
department and the railroad regarding schedule. There may be short interruptions of SR 14 traffic when trucks cross the road or there is blasting (to protect cars from flying debris). If the railroad needs to be crossed, the contractors would appropriately time the crossing to avoid interrupting train service.

Impacts During Operation and Maintenance

Transportation impacts during operation and maintenance of the transmission line would be negligible. Operation and maintenance traffic would normally consist of personnel vehicles and project pickup trucks. On infrequent occasions, larger equipment, such as flatbed trucks or a crane, may be required to replace or repair the transmission line and towers.

Environmental Consequences—Short-Line Routing Alternatives

Transportation impacts for the various short-line routing alternatives would not differ from those discussed above.

Mitigation

The following mitigation measures would help minimize transportation impacts.

- Coordinate routing and scheduling of construction traffic with state and county road staff and Burlington Northern Santa Fe Railway.
- Employ traffic control flaggers and post signs warning of construction activity and merging traffic, when necessary for short interruptions of traffic.
- Repair any damage to local farm roads caused by the project.
- Install gates on access roads when requested by property owners to reduce unauthorized use.

Unavoidable Impacts Remaining after Mitigation

Potential unavoidable transportation impacts could consist of minor delays and interruptions in local traffic during construction.

Environmental Consequences—No Action Alternative

No impacts on existing transportation facilities would occur if the proposed project is not constructed.
Air Quality

Affected Environment

Air quality along the 79-mile corridor is regulated by the Washington Department of Ecology (Central Region and Eastern Region), the Benton Clean Air Authority, and the Oregon Department of Environmental Quality. Each of the agencies has regulations minimizing windblown fugitive dust from all industrial activities including construction projects. None of the agencies regulate the operation of electrical transmission lines or electrical transformers.

There are no major industrial facilities along the corridor and no significant existing air quality problems. Local air pollutant emissions are limited mainly to windblown dust from agricultural operations and tailpipe emissions from traffic along state highways and local roads.

The agencies operate a relatively small number of ambient air quality monitoring stations throughout Washington and Oregon. Monitoring stations are generally placed where the agencies anticipate air quality problems. The nearest monitoring stations are in Washington at Wallula, Kennewick, and Goldendale. Based on available data from those monitoring stations, the agencies acknowledge that air quality along the transmission line corridor complies with all regulatory limits for ambient air concentrations. The project area has been designated by the agencies as having “attainment” status.

There are a few areas in Washington and Oregon that have been designated as “nonattainment” with respect to air quality standards, but the 79-mile corridor is not in any of those areas. Air quality permitting requirements for attainment areas are relatively straightforward compared to the requirements for nonattainment areas. For this project Bonneville would not be required to conduct a “conformity analysis” to quantify emissions during construction and operation, and Bonneville would not be required to offset emissions generated during operation and maintenance.

Environmental Consequences—Proposed Action

Impacts During Construction

Air quality impacts associated with the construction of the proposed transmission line and associated facilities would be minimal. The primary type of air pollution during construction would be combustion pollutants from equipment exhaust and fugitive dust particles from disturbed soils becoming airborne.

Two or three construction crews would most likely be working simultaneously on separate sections of the line. A typical construction crew (50 to 60 workers) could construct about 10 miles of line in 3 months. Construction equipment would consist of
Air Quality

20 vehicles (pickups, vans), three bucket trucks, one conductor reel machine, three large excavators, one line tensioner, and one helicopter.

The amount of pollutants emitted from construction vehicles would be relatively small and similar to current conditions with the operation of agricultural equipment in the project site and vicinity. Such short-term emissions from construction sites are exempt from air quality permitting requirements.

Construction activities that could create dust include access road improvements and construction, and work area clearing and preparation. Most access roads would be on the native surface (dirt roads or sparse vegetation), but air quality impacts are expected to be localized, temporary, and controlled as practicable.

Impacts During Operation and Maintenance

Air quality impacts during operation and maintenance of the project would be negligible. Operation and maintenance vehicles would mainly use access roads with native surfaces, causing dust particles to be stirred up. Quantities of potential emissions would be very small, temporary, and localized.

Environmental Consequences—Short-Line Routing Alternatives

Air quality impacts for the various short-line routing alternatives would not differ from those identified above.

Mitigation

The following mitigation measures would help to control dust and reduce emissions.

- Water exposed soil surfaces if necessary to control blowing dust.
- Cover construction materials if they are a source of blowing dust.
- Limit vehicle speeds along dirt roads to 25 miles per hour.
- Shut down idling construction equipment, if feasible.

Unavoidable Impacts Remaining after Mitigation

Unavoidable impacts from the project include low levels of combustion pollutants and dust from vehicles during project construction and maintenance.
Environmental Consequences—No Action Alternative

Under the No Action Alternative, potential impacts to air quality associated with the proposed project would not occur. Minor releases of combustion byproducts and fugitive dust associated with maintenance of the existing project corridor would continue.

Noise

Affected Environment

Sources of noise associated with electrical transmission systems include construction and maintenance equipment, transmission line corona, and electrical transformer “hum.” Corona is the partial electrical breakdown of the insulating properties of air around the transmission line wires. Corona-generated noise can be characterized as a hissing, crackling sound that is accompanied by a 120 Hertz (Hz) hum under certain conditions.

Noise from transmission lines generally occurs during wet weather. Conductors can be wet during periods of rain, fog, snow, or icing. Such conditions are expected to occur infrequently in the project area.

Environmental noise, including transmission line noise, is usually measured in decibels on the A-weighted scale (dBA). This scale models sound as it corresponds to human perception. Table 3-20 shows typical noise levels for common sources expressed in dBA.

Table 3-20. Common Noise Levels

<table>
<thead>
<tr>
<th>Sound Level, dBA*</th>
<th>Noise Source or Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>Rock-and-roll band</td>
</tr>
<tr>
<td>80</td>
<td>Truck at 50 feet</td>
</tr>
<tr>
<td>70</td>
<td>Gas lawnmower at 100 feet</td>
</tr>
<tr>
<td>60</td>
<td>Normal conversation indoors</td>
</tr>
<tr>
<td>50</td>
<td>Moderate rainfall on foliage</td>
</tr>
<tr>
<td>40</td>
<td>Refrigerator</td>
</tr>
<tr>
<td>25</td>
<td>Bedroom at night</td>
</tr>
</tbody>
</table>

* Decibels (A-weighted)
Sources: Adapted from Bonneville 1986, 1996.

Noise levels and, in particular, corona-generated noise vary over time. To account for fluctuating sound levels, statistical descriptors have been developed for environmental noise. Exceedence levels (L levels) refer to the A-weighted sound level that is exceeded
for a specified percentage of the time during a specified period. Thus, L_{25} refers to a particular sound level that is exceeded 25% of the time.

Along the corridor of the proposed 500-kV transmission line, existing noise levels vary with the proximity to existing transmission lines and the proximity to other noise-generating activities. Most of the proposed corridor is near highways or freeways, so it is expected that existing fair weather noise levels are already mainly characterized by traffic noise. In addition, the proposed line would parallel existing lines for most of its length. During foul weather, these lines would be the principal source of background noise both near highways and in the more remote areas of the corridor far from highways.

The Washington Administrative Code (WAC 173-60) and the Oregon Administrative Rules (OAR 340-35) specify noise limits according to the type of property where the noise would be heard (the “receiving property”). Transmission lines are classified as industrial sources for purposes of establishing allowable noise levels at receiving property. Bonneville has established a design criterion for corona-generated audible noise from transmission lines of 50 dBA for the L_{50} (foul weather) at the edge of the right-of-way. Both the states of Washington and Oregon have interpreted this criterion to meet their respective noise regulations.

Environmental Consequences—Proposed Action

Impacts During Construction

Sources of noise associated with construction of the proposed project include

- construction of access roads and foundations at each tower site,
- erection of steel towers at each tower site,
- helicopter assistance during tower erection and stringing of conductors,
- potential blasting, and
- potential use of implosive couplers for conductor splicing.

Access roads and foundations at each tower site would be installed using conventional construction equipment. Table 3-21 summarizes noise levels produced by typical construction equipment that would likely be used for the proposed project.

To account for fluctuating sound levels, statistical descriptors have been developed for environmental noise. The equivalent sound level (L_{eq}) is generally accepted as the average sound level.
Table 3-21. Construction Equipment Noise Associated with the Proposed Project

<table>
<thead>
<tr>
<th>Type of Equipment</th>
<th>Maximum Level (dBA) at 50 Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Grader</td>
<td>85</td>
</tr>
<tr>
<td>Bulldozers</td>
<td>85</td>
</tr>
<tr>
<td>Heavy Trucks</td>
<td>88</td>
</tr>
<tr>
<td>Backhoe</td>
<td>80</td>
</tr>
<tr>
<td>Pneumatic Tools</td>
<td>85</td>
</tr>
<tr>
<td>Concrete Pump</td>
<td>82</td>
</tr>
<tr>
<td>Crane</td>
<td>85</td>
</tr>
<tr>
<td>Combined Equipment</td>
<td>89</td>
</tr>
</tbody>
</table>

Source: Thalheimer 1996.

The overall noise caused by the conventional equipment involved in construction is estimated to be 89 dB L_{eq} at a reference distance of 50 feet. Noise produced by construction equipment would decrease with distance at a rate of about 6 dB per doubling of distance from the site. Based on that assumed attenuation rate, Table 3-22 shows the estimated construction noise levels at various distances from the construction site.

Table 3-22. Construction Noise in the Vicinity of a Representative Construction Site

<table>
<thead>
<tr>
<th>Distance from Construction Site (feet)</th>
<th>Hourly Leq (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>83</td>
</tr>
<tr>
<td>50</td>
<td>89</td>
</tr>
<tr>
<td>100</td>
<td>83</td>
</tr>
<tr>
<td>200</td>
<td>77</td>
</tr>
<tr>
<td>400</td>
<td>71</td>
</tr>
<tr>
<td>800</td>
<td>65</td>
</tr>
<tr>
<td>1600</td>
<td>59</td>
</tr>
</tbody>
</table>

Note: The following assumptions were used:
Equipment used: (1) each- grader, bulldozer, heavy truck, backhoe, pneumatic tools, concrete pump, crane
Reference noise level: 89 dBA (L_{eq})
Distance for the reference noise level: 50 feet
Noise attenuation rate: 6 dBA/doubling
This calculation does not include the effects, if any, of local shielding or atmospheric attenuation.
Although daytime construction activities are excluded from noise regulations, for this evaluation it was assumed that construction noise levels exceeding the Washington state limits for permanent industrial operations would constitute a temporary (several days at most), environmental impact. The Washington noise limit for noise levels at residential areas caused by permanent daytime industrial operations is 65 dBA. Construction noise levels would exceed Washington Department of Ecology daytime industrial operations limits at distances up to 400 to 800 feet from construction activity.

Residential land use adjacent to the transmission line corridor is of low density and consists of single-family houses and houses with barns and accompanying outbuildings. The residences are concentrated in the cities of Plymouth (corridor mile 4, structure 4/1), Paterson (corridor mile 16, structures 16/1 to 16/5), and North Roosevelt and West Roosevelt (corridor miles 48 and 49, respectively) in Washington, and the cities of Umatilla (corridor mile 1) and Rufus (corridor mile 78) in Oregon. Single residences, small groupings of houses, or small farm complexes are located in the vicinity of structures 6/1, 7/2, 10/4, 22/3, 29/3 by Crow Butte Park, 30/1, 68/1, 68/5, and 69/4. Of these homes, approximately 19 could be affected by noise from construction of the proposed project.

These 19 homes would be within approximately 600 feet of construction activity and may experience noise levels at or above 65 dBA. If helicopters are used to install the towers, a wider range of residences could be affected.

Noise levels generated during erection of each tower would depend on the type of method used. If conventional construction methods were used to erect the towers, then the noise levels would be comparable to those listed in Table 3-22. However, Bonneville’s construction contractor may elect to use a large helicopter (such as the Sikorsky S-64 Sky-Crane) to assist with tower erection. In that case, all of the towers would be preassembled at one or more central staging areas, then a helicopter would transfer the assembled towers from the staging area to the remote tower sites. The helicopter would hover at each tower site for a total of 2 to 10 minutes during a 1-hour period while the tower sections are placed on the foundation. In addition, the helicopter would hover at the central staging area for 2 to 5 minutes per tower as it picked up each tower section. Assuming helicopters were used to erect all 360 towers, a total of 12 to 60 hours of hover time would be required over several weeks and several sites.

A loaded cargo helicopter flying 250 feet away produces roughly 95 dBA, which is the same amount of noise produced by a diesel locomotive 100 feet away (Helicopter Association International 1993). Homes within approximately 1 mile of the helicopters would be exposed to temporary noise levels above 65 dBA. However, helicopters operated during the daytime to support construction activity are exempted from Washington state noise regulations.

Possible occasional midday blasting might be required at some tower sites in rocky areas where conventional excavation of tower footings was not practical. Blasting would produce a short noise like a thunderclap that could be audible for 0.5 mile or more from
the site. Implosive fittings may also be used to hook conductors together. This disturbance would be localized to the immediate area.

Impacts During Operation and Maintenance

Noise impacts during operation and maintenance of the proposed project would be negligible. About every two months, a helicopter will fly the line to look for any problems or repair needs. When and if these needs arise, field vehicles would be used to access the trouble spots.

The proposed line would increase the corona-generated foul weather audible noise level at the edge of the right-of-way by 3 dBA or less. A 3 dBA increase is barely discernible.

For most of the corridor (73 miles), the edge of right-of-way foul-weather noise levels would meet or be below 50 dBA (Bonneville’s standard). In some locations, the edge-of-right-of-way noise levels would exceed 50 dBA (up to 54 dBA).

There is one building, a residence, near the Hanford-John Day Junction between corridor miles 69 and 70 in the area where the noise levels could be above 50 dBA (52 dBA). The Hanford-John-Day Junction Alternative A-North Side would not increase the existing noise levels on the south side of the right-of-way where the residence is located. Alternative B-South Side and Alternative C-South Side, Highway would increase the noise levels at the edge of the right-of-way near the house. The increase would be about 2 dBA, an increase that is barely discernable.

There is a short section of corridor between miles 65 and 67 where the proposed line would be on the opposite side of the highway from the existing lines. In this location, the corona-generated noise of the existing lines does not contribute much to the background noise, so that the new line would increase existing noise levels by about 5 dBA (for a total of 47 dBA) at the edge of the right-of-way. However, there are no residences or other buildings in this area.

During fair weather conditions, which occur most of the time, audible noise levels would be about 20 dBA below the foul weather levels and comparable with current background levels. These lower levels could be masked by ambient noise on and off the right-of-way.

No transformers are being added to the existing McNary and John Day Substations. Noise from the existing substation equipment and transmission lines would remain the primary source of environmental noise at these locations. The large-diameter tubular conductors in the station do not generate corona noise during fair weather; noise generated during foul weather would be masked by noise from the transmission lines entering and leaving the station. During foul weather, the noise from the proposed and existing lines would mask the substation noise at the outer edges of the rights-of-way.
If the proposed transmission line is found to be the source of radio or television interference in areas with reasonably good reception, measures would be taken to restore the reception to a quality as good or better than before the interference (see Federal Communications Commission, Chapter 4 for further discussion).

Environmental Consequences of Short-Line Routing Alternatives

The Hanford-John Day Junction Alternatives are the only short-line routing alternatives that differ in potential noise impacts.

Alternative A noise impacts would not differ from those described earlier in this discussion.

Alternatives B and C would cause an additional disturbance at the house in the vicinity of tower 69/4. This guest house is owned by the Goldendale Aluminum Plant and is occupied part-time. There is a possibility that the house may need to be removed (see Chapter 3, Land Use Section). This house is approximately 20 to 30 feet from the corridor and would be impacted by construction noise. At a distance of 25 feet noise levels are expected to be 83 dBA Leq (Table 3-23).

Mitigation

To reduce the potential for temporary, adverse noise impacts during construction, the following measures would be incorporated into contract specifications.

- All equipment to have sound-control devices no less effective than those provided on the original equipment.
- No equipment to have an unmuffled exhaust.
- Construction activities would be limited to daytime hours.
- No noise-generating construction activity to be conducted within 1,000 feet of a residential structure between the hours of 10:00 p.m. and 7:00 a.m.
- Landowners directly impacted along the corridor will be notified prior to construction activities.

Unavoidable Impacts Remaining after Mitigation

Potential unavoidable noise impacts include increased sound levels experienced by area residents within 400 to 800 feet from construction activities during construction of the project. In the short section where the proposed line would be on the opposite side of the highway from the existing lines, the audible noise levels during foul weather would be increased above background levels. In other sections with parallel lines, any increase in audible noise at the edge of the right-of-way would be barely discernible, if at all.
Environmental Consequences—No-Action Alternative

Under the No-Action Alternative, existing background noise levels in the project vicinity would continue without influence of the proposed project.

Public Health and Safety

Affected Environment

Transmission facilities provide electricity for heating, lighting, and other services essential for public health and safety. These same facilities can potentially harm humans. Contact with transmission lines can injure people and damage aircraft. This section describes public health and safety concerns such as electrical shocks, fires, and electric and magnetic fields related to transmission facilities or construction activities.

Potential hazards along the corridor include fire (both natural and human-caused), existing overhead transmission line crossings, and natural gas pipeline crossings.

The Federal Aviation Administration establishes requirements for towers and other tall structures that would potentially interfere with aircraft safety. Structures taller than 200 feet may require flashing warning lights for aircraft safety.

Within Umatilla County, Oregon, there is a chemical weapons stockpile. The Umatilla Army Depot stores mustard “blister” agents and nerve agents. The eastern portion of the project corridor lies within zones where an emergency preparedness program applies in case of an emergency at the stockpile (see Chapter 4 for details).

Transmission lines, like all electric devices and equipment, produce electric fields and magnetic fields (EMF). Current, the flow of electric charge in a wire, produces the magnetic field. Voltage, the force that drives the current, is the source of the electric field. The strength of electric and magnetic fields depends on the design of the line and on distance from the line. Field strength decreases rapidly with distance.

Electric and magnetic fields are found around any electrical wiring, including household wiring and electrical appliances and equipment.

Throughout a home, the electric field strength from wiring and appliances is typically less than 0.01 kilovolts per meter (kV/m). However, fields of 0.1 kV/m and higher can be found very close to electrical appliances.

There are no national (United States) guidelines or standards for electric fields from transmission lines except for the 5-milliampere criterion for maximum permissible shock current from vehicles. Oregon has a 9-kV/m limit on the maximum field under transmission lines. Washington has no electric-field limit. Bonneville designs new
transmission lines to meet its electric-field guideline of 9-kV/m maximum on the right-of-way and 5-kV/m maximum at the edge of the right-of-way.

Average **magnetic field** strength in most homes (away from electrical appliances and home wiring, etc.) is typically less than 2 milligauss (mG). Very close to appliances carrying high current, fields of tens or hundreds of milligauss are present. Typical magnetic field strengths for some common electrical appliances are given in Table 3-23. Unlike electric fields, magnetic fields from outside power lines are not reduced in strength by trees and building material. Transmission lines and distribution lines (the lines feeding a neighborhood or home) can be a major source of magnetic field exposure throughout a home located close to the line.

There are no national United States guidelines or standards for magnetic fields. The states of Washington and Oregon do not have magnetic field limits. Bonneville does not have a guideline for magnetic field exposures.

Table 3-23: Typical Magnetic Field Strengths

(1 foot from common appliances)

<table>
<thead>
<tr>
<th>Appliance</th>
<th>Magnetic Fields (mG)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coffee maker</td>
<td>1-1.5</td>
</tr>
<tr>
<td>Electric range</td>
<td>4-40</td>
</tr>
<tr>
<td>Hair dryer</td>
<td>0.1-70</td>
</tr>
<tr>
<td>Television</td>
<td>0.4-20</td>
</tr>
<tr>
<td>Vacuum cleaner</td>
<td>20-200</td>
</tr>
<tr>
<td>Electric blanket²</td>
<td>15-100</td>
</tr>
</tbody>
</table>

mG = milligauss

¹ The magnetic field from appliances usually decreases to less than 1 mG at 3 to 5 feet from appliances.

² Values are for distance from blanket in normal use (less than 1 foot away).

Source: Miler 1974; Gauger 1985

Environmental Consequences—Proposed Action

Potential health and safety risks associated with the project include those that could affect construction workers, operation and maintenance personnel, crop dusters, other agricultural workers, and others who have occasion to enter the project corridor.

Impacts During Construction

During construction and installation of the towers and conductor/ground wires, there is a risk of fire and injury associated with the use of heavy equipment, hazardous materials such as fuels, cranes, helicopters, potential bedrock blasting for towers or access roads,
Affected Environment, Environmental Consequences, and Mitigation

and other risks associated with working near high-voltage lines. There is also a potential for fire during refueling of hot equipment such as trackhoes and bulldozers that cannot be taken off-site for refueling. Connection of conductors may be accomplished using implosion bolts, which could be a source of injury to construction personnel. In addition, there are potential safety issues with more traffic on the highways and roads in the project area during construction.

Impacts During Operation and Maintenance

With the addition of the proposed transmission line, there will be slight additional risks for fire and injuries as maintenance workers and vehicles travel along the corridor to perform required maintenance.

Power lines, like electrical wiring, can cause serious electric shocks if certain precautions are not taken. These precautions include building the lines to minimize shock hazard. All Bonneville lines are designed and constructed in accordance with the National Electrical Safety Code (NESC). NESC specifies the minimum allowable distance between the lines and the ground or other objects. These requirements determine the edge of the right-of-way and the height of the line, that is, the closest point that houses, other buildings, and vehicles are allowed to the line.

People must also take certain precautions when working or playing near power lines. It is extremely important that a person not bring anything, such as a TV antenna, irrigation pipe, or water streams from an irrigation sprinkler too close to the lines. Bonneville provides a free booklet that describes safety precautions for people who line or work near transmission lines. (See Appendix F, Living and Working Safely Around High Voltage Power Lines).

Possible effects associated with the interaction of electric and magnetic fields from transmission lines with people on and near a right-of-way fall into two categories: short-term effects that can be perceived and may represent a nuisance, and possible long-term health effects.

Electric fields from high-voltage transmission lines can cause nuisance shocks when a grounded person touches an ungrounded object under a line or when an ungrounded person touches a grounded object. Transmission lines are designed so that the electric field will be below levels where primary shocks could occur from even the largest (ungrounded) vehicles expected under the line. Fences and other metal structures on and near the right-of-way would be grounded during construction to limit the potential for nuisance shocks. Questions about grounding or reports of nuisance shock received under a line should be directed to Bonneville. The proposed line would meet the Bonneville electric-field guidelines of 9-kV/m maximum on the right-of-way and 5 kV/m at the edge of the right-of-way.

Magnetic fields are subject to controversy. Although there have been decades of research, the issue of whether there are long-term health effects associated with
transmission-line fields remains somewhat controversial. Magnetic fields are most in question as possible sources of long-term effects, although studies sometimes lump the two (electric and magnetic) fields together. In recent years, considerable research on possible biological effects of electric and magnetic fields has been conducted. A review of these studies and their implications for health related effects is provided in Appendix G. In addition, the Department of Energy provides a booklet on this topic (Questions and Answers about EMF). Scientific reviews of the research on EMF health effects have found that there is insufficient evidence to conclude that EMF exposures lead to long-term health effects. However, some uncertainties remain for childhood exposures at levels above 4 mG.

An increase in public exposure to magnetic fields could occur if field levels increase and if residences or other structures draw people to these areas. The predicted field levels are only indicators of how the proposed project may affect the magnetic-field environment. They are not measures of risk or impacts on health. The 79-mile-long corridors in which the proposed line would be built is sparsely populated. There are about 40 structures within 400 feet of either side of the right-of-way edge.

Bonneville has predicted the magnetic fields of the proposed and existing transmission lines. The field levels from the existing and proposed lines change along the corridor, depending on how many lines are in the corridor, where they are located relative to one another, and the width of the right-of-way. For this project there are six different line configurations (Configurations 1, 2, 3, 4, 4A, and 4B).

A majority of the proposed line magnetic field levels would be those shown for Configuration 1 (see Figure 3-8), with an increase of about 12 mG at the edge of the right-of-way on the north side. (The 12 mG value is for maximum current and minimum line height above ground in the worst case scenario. The values would be less for average current and with higher line heights above the ground.) The magnetic fields on the south side of the right-of-way would not change. This configuration is in all the locations where the proposed line would parallel the two existing lines on the north side. Within this configuration there are about 13 structures (combination of residences and out buildings) within 400 feet of the north edge of the right-of-way.

About 4 miles of the right-of-way are represented in Configuration 2 (see Figure 3-9), with an increase of about 76 mG on the north edge of the right-of-way. The magnetic fields on the south edge of the right-of-way would not change. This configuration would be located where the Ashe-Slatt 500-kV line parallels the right-of-way (corridor miles 23 through 27). There are no homes or buildings on the north side of the right-of-way in this area.

About 3 miles of the right-of-way would be represented in Configuration 3 (see Figure 3-10), with an increase of about 76 mG on the south edge of the right-of-way and 16 mG on the north edge. This configuration would be located where the proposed line is on the opposite side of the highway from the existing lines, corridor miles 65 through 67. There are no residences or buildings in this area.
About 7 miles of the right-of-way would be represented in Configuration 4 (see Figure 3-11), with an increase of about 75 mG on the south edge of the right-of-way. The magnetic fields on the north edge of the right-of-way would not change. This configuration would be located where the Hanford-John Day 500-kV line is in the right-of-way and the proposed line moves to the south side of the corridor. There are no residences or buildings on the south side of the corridor in this area (see Configurations 4A and 4B for the first mile of the Hanford-John Day Junction).

The Hanford-John Day Junction Alternative A-North Side would be represented in Configuration 4A (see Figure 3-12). This 1-mile section would have a magnetic field increase of about 80 mG on the north edge of the right-of-way. The magnetic fields on the south edge of the right-of-way would not change. There are no buildings or residences on the north side of the right-of-way in this area.

The Hanford-John Day Junction Alternative B-South Side and Alternative C-South Side, Highway would be represented in Configuration 4B (see Figure 3-13). This 1-mile section would have a magnetic field increase of about 78 mG on the south edge of the right-of-way. The magnetic fields on the north edge of the right-of-way would not change. There is a house close by on the south side of the right-of-way in this area.

![Figure 3-8: Right-of-Way Configuration 1](image-url)
(majority of the right-of-way)
Figure 3-9: Right-of-Way Configuration 2
(about 4 miles of right-of-way where Ashe-Slatt line would parallel)

Figure 3-10: Right-of-way Configuration 3
(about 3 miles of right-of-way between corridor miles 65 and 67)
Figure 3-11: Right-of-Way Configuration 4
(about 7 miles of right-of-way where Hanford-John Day would parallel)

Figure 3-12: Right-of-Way Configuration 4A
(Hanford-John Day Junction Alternative A-North Side)
Figure 3-13: Right-of-Way Configuration 4B
(Hanford-John Day Junction Alternative A-North Side and Alternative C-South Side)

Magnetic fields from transmission and distribution facilities can also cause distortion of the image on video display terminals and computer monitors. Interference from transmission line magnetic fields is generally not a problem at distances greater than 200 to 250 feet from a line.

Environmental Consequences of Short-Line Routing Alternatives

There are no differences in potential health and safety impacts from the McNary Substation Alternatives, the Corridor Mile 32 Alternatives, and the Corridor Mile 35 Alternatives. The differences between magnetic fields of the Hanford-John Day Alternatives are discussed above.

Mitigation

The following mitigation measures would help minimize potential health and safety risks.

- Prior to starting construction, contractor would prepare and maintain a safety plan in compliance with Washington and Oregon requirements. This plan would be kept on-site and would detail how to manage hazardous materials such as fuel, and how to respond to emergency situations.
During construction, the contractors would also hold crew safety meetings at the start of each workday to go over potential safety issues and concerns.

At the end of each workday, the contractor and subcontractors will secure the site to protect equipment and the general public.

Employees would be trained, as necessary, in tower climbing, cardiopulmonary resuscitation, first aid, rescue techniques, and safety equipment inspection.

To minimize the risk of fire, fuel all highway-authorized vehicles off-site. Fueling of construction equipment that was transported to the site via truck and is not highway authorized would be done in accordance with regulated construction practices and state and local laws. Helicopters would be fueled and housed at local airfields or at staging areas.

Helicopter pilots and contractor take into account public safety during flights. For example, flight paths could be established for transport of project components in order to avoid flying over populated areas or near schools (Helicopter Association 1993).

Provide notice to public of construction activities, including blasting.

Take appropriate safety measures for blasting consistent with state and local codes and regulations. Remove all explosives from the work site at the end of the workday.

If implosion bolts are used to connect the conductors, install in such a way as to minimize potential health and safety risks.

Inform construction and operation/maintenance workers that there is a Umatilla Army Depot emergency preparedness program in the event of a chemical release.

Operation and maintenance vehicles would carry fire suppression equipment including (but not limited to) shovels and fire extinguishers.

Stay on established access roads during routine operation and maintenance activities.

Keep vegetation cleared according to Bonneville standards to avoid contact with transmission lines.

Submit final tower locations and heights to the Federal Aviation Administration for review and potential marking and lighting requirements.

Construct and operate the new transmission line to meet the National Electrical Safety Code.

During construction, follow Bonneville specifications for grounding fences and other objects on and near the proposed right-of-way.
Unavoidable Impacts Remaining after Mitigation

Potential unavoidable public health and safety risks include accidental fire that may occur during construction and operation and maintenance, the use and accidental release of hazardous materials, and accidental injury. Nuisance shocks may occur infrequently under the proposed line.

Environmental Consequences—No Action Alternative

Under the No Action Alternative, the proposed transmission line would not be built and the potential increased health and safety risks associated with the proposed transmission line project would not occur.

Cumulative Impacts

“Cumulative impact” is the impact on the environment which results from the incremental impact of an action—such as this proposed action—when added to other past, present, and reasonably foreseeable future actions regardless of what agency (federal or nonfederal) or person undertakes such other actions. Cumulative impacts can also result from individually minor, but collectively significant actions, taking place over a period of time (40 CFR 1508.7). In the following paragraphs, the existing development along the project corridor and the reasonably foreseeable future developments planned for the area are described in order to provide a context in which to assess the incremental effects of the proposed action.

Existing Development

Although much of the project corridor has remained as undeveloped rangeland during the last century, interspersed (mainly rural) development has steadily occurred along the corridor. Development continues in present times and will continue in the future. However, it is unlikely that the area along the project corridor would become urbanized in the foreseeable future.

The primary economic base of the project area and the main type of development along the corridor has been and continues to be agricultural-based industry. This includes large cereal grain farms, irrigated row crop farms, and specialty crop enterprises such as orchards and vineyards, all mainly located along the more flat eastern half of the corridor. Along the more hilly western half of the corridor, the main type of development has been the establishment of large land holdings used for cattle and horse grazing.

Other types of development that have occurred along the project corridor include

- the major hydropower dams, electrical generating facilities, and distribution systems at McNary and John Day at opposite ends of the corridor;
Affected Environment, Environmental Consequences, and Mitigation

- the electrical transmission lines and corridors that have been developed along and across the corridor, to convey power to and from the Bonneville power grid;
- the electrical distribution systems built to provide local power in the project area;
- the numerous underground and surface utility lines that traverse the existing project corridor;
- a variety of agricultural processing plants located along the eastern portion of the corridor;
- the Roosevelt Regional Landfill at Roosevelt; and
- the Goldendale Aluminum Manufacturing Plant located near the John Day Dam.

Transportation infrastructure has also developed in the project area over the last 100 years, in the form of local, county, and state roads (such as SR 14), the Burlington Northern Santa Fe Railway paralleling SR 14 and the Columbia River, the movement of barges along the river, and several rural airports.

Accompanying the agri-business, industrial, and infrastructure development in the project area have been cities, towns, villages, and other residential communities. The largest community along the corridor is the City of Umatilla (population 3,046), adjacent to the McNary Substation. The other communities located along the corridor (Plymouth, Paterson, Roosevelt, and Rufus) have considerably smaller populations, ranging from 79 to 295. The other residents of the project area occupy farmsteads and scattered individual or small cluster dwellings in the unincorporated areas of the four counties encompassing the existing project corridor.

Recreation sites (parks and marinas) have also developed in the project area, mostly associated with opportunities along the Columbia River. Examples include Crow Butte and Maryhill State Parks, and marinas at Rufus and Umatilla.

Future Development

Potential developments that may occur in the reasonably foreseeable future in the project area include

- a gas-fired electrical generation facility near the Goldendale aluminum plant;
- a gas-fired electrical generation facility near Starbuck;
- several wind power electrical generation projects in Klickitat County;
- two gas-fired electrical generation facilities in Umatilla County;
- a gas-fired electrical generation facility at Mercer Ranch in Benton County;
- a gas-fired electrical generation facility near Wallula; and
Additional conversion of selected areas of existing grazing and crop land into specialty crops such as vineyards.

Assessment of Incremental Effects of the Proposed Action

Although the potential environmental impacts associated with the proposed McNary-John Day transmission line would not be significant, the implementation of the proposed action would contribute incrementally to the environmental impacts that are already occurring due to present development and activities in the project area, combined with the impacts that would likely occur from the future developments planned in the area. In the following paragraphs, potential incremental cumulative effects from the proposed action are discussed for those environmental resources where impacts could occur.

Land Use

The majority of land in the project area is zoned for agricultural use. Changes in the types of agricultural uses would not create cumulative impacts to land use; however, changes from agricultural to nonagricultural uses, should they occur, would take agricultural land out of production. Limited development in the near future would not likely create negative cumulative impacts due to the large amount of agricultural land in the area. Cumulative impacts to land use would only be expected if nonagricultural development occurred in agricultural lands at a rapid pace over the next several years.

Geology and Soils

Soil loss through both wind and water erosion has increased throughout the project area as a result of past and present development actions. Practices inducing soil loss include construction of roads and other development, the expansion of towns and cities, and the conversion of native lands to crop and grazing land. The proposed action would incrementally increase the potential for soil erosion in the project area.

Fish

Potential cumulative impacts to fish and other aquatic resources from past, present, and future development in the watersheds along the existing project corridor include the loss of riparian habitat, increased sediment loading, increased stream temperatures, pollution from herbicide and insecticide use, changes in peak and low stream flows, fragmentation of fish habitat, decreases in streambank stability, and altered nutrient supply. Due to the linear nature of the proposed project, and thus the relatively small area of impact within individual watersheds along the corridor, and because no alteration to fish habitat is anticipated to occur because of this project, incremental cumulative impacts from the construction of this project would be negligible.
Vegetation

Native plant communities are being lost in the project area because of past and current development and actions, and these trends will likely result in the further reduction of native plant communities. The actions associated with the proposed project would contribute incrementally and in a relatively minor way to the continuing of loss of native vegetation communities.

Wildlife

The proposed project would also add incrementally to the potential disturbance to raptor, passerine, and deer foraging habitat that is already occurring due to existing human alteration of the landscape.

Because power lines have already been developed along the project corridor, the risk of avian collisions with power lines (albeit minor) has already been introduced, and the proposed new line would slightly increase the risk. However, because the new line would be placed within an existing corridor already containing the same potential risk, the impact would be less than if the new line were placed in an area where there are no existing lines.

Wetlands and Water Resources

Wetland and water resources are being impacted and lost in the project area because of past and current development and activities, wetlands filled or segmented, and sedimentation of streams due to construction or agricultural operations. Agricultural activities are becoming more intensive, with expansion into more irrigated and less dry-land crop management practices. These trends could result in the further degradation and reduction of wetlands and water resources in the area. Although the actions associated with this project would not result in the permanent loss of any wetlands or waters of the U.S., indirect impacts from construction of the transmission line and access roads would contribute incrementally (albeit slightly) to the cumulative degradation of wetlands and water resources in the area.

Cultural Resources

Cultural resources in the project area have been and are being affected because of past and current development and activities. Potential adverse effects on area cultural resources include disturbance of cultural sites, increased likelihood of vandalism, reduction of the cultural integrity of certain sites, and increased encroachment on cultural sites.

Development of the proposed action would contribute incrementally (albeit slightly) to these cumulative effects on cultural resources in the area.
Visual Resources

Existing and future development increases humanmade elements in the rural landscape of the project area, adding vertical elements such as farm/agricultural buildings, fences, and signs to the natural terrain. Since the land in the project area is comprised mainly of agricultural uses, these humanmade elements are an expected component of the rural landscape.

Impacts to visual resources potentially increase when industrial facilities not related to agriculture are constructed in a rural landscape. The proposed transmission line would therefore contribute incrementally to potential cumulative impacts on visual resources in the project area.

Socioeconomics

Development of the proposed line could contribute incrementally to a positive cumulative impact on the economy in the project area from a potential reduction in unemployment, and revenues from increased spending on accommodations, goods, and services during construction. There appears to be sufficient vacant rental dwellings and available temporary housing, hotel/motel, and RV units in the project area to accommodate potentially overlapping construction schedules between the proposed project and other anticipated developments.

Public Health and Safety

There would be an overall increase in risk of fire and injury to the public and to project. Potential unavoidable public health and safety risks include accidental fire that may occur during construction and operation and maintenance, the use and accidental release of hazardous materials, and accidental injury. Nuisance shocks may occur infrequently under the proposed line.

Short-Term Use of the Environment and the Maintenance and Enhancement of Long-Term Productivity

The proposed line and alternatives under consideration do not pose impacts that would significantly alter the long-term productivity of the affected environment. A good example of this are the existing lines. These lines were built in the early 1950s. The affected environment has recovered since then and while there is never complete recovery, the long-term productivity of the affected environment has not been significantly altered. Likewise, if the proposed line were removed and the affected areas restored, little change in the long-term environmental productivity would occur.
Irreversible or Irretrievable Commitments of Resources

The irreversible commitment of resources is the use of nonrenewable resources such as minerals and petroleum-based fuels. Irretrievable commitments of resources cause the lost production or use of renewable resources such as timber or rangeland.

The proposed line would use aluminum, steel, wood, gravel, sand, and other nonrenewable material to construct steel towers, conductors, insulators, access roads, and other facilities. The line would also require some petroleum-based fuels for vehicles and equipment and steel for structures. Development of the line would also cause commitments that result in the loss of wildlife habitat for certain species. The use of these nonrenewable resources would be irreversible.

Irretrievable commitments include small amounts of land lost to grazing and crop production. These commitments are irretrievable rather than irreversible because management direction could change and allow these uses in the future.
Chapter 4
Consultation, Review, and Permit Requirements

This chapter addresses federal statutes, implementing regulations, and Executive Orders potentially applicable to the proposed project. This draft EIS is being sent to tribes, federal agencies, and state and local governments as part of the consultation process for this project.

National Environmental Policy Act

This EIS has been prepared by Bonneville pursuant to regulations implementing the National Environmental Policy Act (NEPA) (42 U.S.C. 4321 et seq.), which requires federal agencies to assess the impacts that their actions may have on the environment. Bonneville’s proposal to construct the 79-mile transmission line requires that we assess the potential environmental effects of the proposed project, describe them in an EIS, make the EIS available for public comment, and consider the impacts and comments when deciding whether to proceed with the project.

Threatened and Endangered Species and Critical Habitat

The act is administered by the U.S. Fish and Wildlife Service and, for salmon and other marine species, by the National Marine Fisheries Service. The act defines procedures for listing species, designating critical habitat for listed species, and preparing recovery plans. It also specifies prohibited actions and exceptions.

Section (7a) requires federal agencies to ensure that the actions they authorize, fund, and carry out do not jeopardize endangered or threatened species or their critical habitats. Section 7(c) of the Endangered Species Act and the federal regulations on endangered species coordination (50 CFR Section 402.12) require that federal agencies prepare
biological assessments addressing the potential effects of major construction actions on listed or proposed endangered species and critical habitats.

Bonneville requested information on the occurrence of listed species in the project corridor and vicinity; letters from U.S. Fish and Wildlife Service and National Marine Fisheries Service are included in Appendix A. Oregon Department of Fish and Wildlife staff were also interviewed for information on special-status species. The U.S. Fish and Wildlife Service identified several terrestrial and aquatic species as potentially occurring in the project area.

Jones & Stokes biologists conducted field surveys of the project corridor during summer 2001.

Potential impacts to Threatened and Endangered plant, animal, and fish species are discussed in Chapter 3 in the sections Streams, Rivers and Fish; Vegetation; and Wildlife.

Fish and Wildlife Conservation

Fish and Wildlife Conservation Act and Coordination Act

The Fish and Wildlife Conservation Act of 1980 (16 U.S.C. 2901 et seq.) encourages federal agencies to conserve and promote the conservation of nongame fish and wildlife species and their habitats. In addition, the Fish and Wildlife Coordination Act (16 U.S.C. 661 et seq.) requires federal agencies undertaking projects affecting water resources to coordinate with the U.S. Fish and Wildlife Service and the state agency responsible for fish and wildlife resources.

Mitigation measures designed to conserve fish, wildlife, and their habitat are listed in Chapter 3 in the sections Streams, Rivers and Fish; Vegetation; and Wildlife. Standard erosion control measures would be used during construction to control sediment movement into streams, protecting water quality and fish habitat.

Essential Fish Habitat

Public Law 104-297, the Sustainable Fisheries Act of 1996, amended the Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act). This established new requirements for Essential Fish Habitat descriptions in federal fishery management plans and required federal agencies to consult with National Marine Fisheries Service on activities that may adversely affect Essential Fish Habitat. The Magnuson-Stevens Act requires all fishery management councils to amend their fishery management plans to describe and identify Essential Fish Habitat for each managed fishery. The Pacific Fishery Management Council has issued such an amendment in the form of Amendment 14 (1999) to the Pacific Coast Salmon Plan. This amendment covers Essential Fish Habitat for all fisheries under NMFS jurisdiction that would
potentially be affected by the proposed action. Specifically, within the area of the proposed project these are the chinook and coho salmon fisheries. Essential Fish Habitat includes all streams, lakes, ponds, wetlands, and other currently viable water bodies and most of the habitat historically accessible to salmon. Activities above impassable barriers are subject to the consultation provisions of the Magnuson-Stevens Act.

Under Section 305(b)(4) of the act, National Marine Fisheries Service is required to provide Essential Fish Habitat conservation and enhancement recommendations to federal and state agencies for actions that adversely affect Essential Fish Habitat. Wherever possible, National Marine Fisheries Service uses existing interagency coordination processes to fulfill Essential Fish Habitat consultations with federal agencies. For the proposed action, this goal would be met by incorporating Essential Fish Habitat consultation into the Endangered Species Act Section 7 consultation process. See the Streams, Rivers and Fish section of Chapter 3 for discussion on essential fish habitat for this project.

Migratory Bird Treaty Act

The Migratory Bird Treaty Act implements various treaties and conventions between the United States and other countries, including Canada, Japan, Mexico, and the former Soviet Union, for the protection of migratory birds (16 U.S.C. 703-712, July 3, 1918, as amended 1936, 1960, 1968, 1969, 1974, 1978, 1986, and 1989). Under the act, taking, killing, or possessing migratory birds or their eggs or nests is unlawful. Most species of birds are classified as migratory under the act, except for upland and nonnative birds such as pheasant, chukar, gray partridge, house sparrow, European starling, and rock dove.

The proposed project may impact birds. Potential impacts to migratory birds of special concern are discussed in the Wildlife section in Chapter 3. Bonneville would ensure appropriate mitigation measures are employed to minimize the risk of bird mortality.

Bald Eagle and Golden Eagle Protection Act

The Bald Eagle Protection Act prohibits the taking or possession of and commerce in bald and golden eagles, with limited exceptions (16 U.S.C. 668-668d, June 8, 1940, as amended 1959, 1962, 1972, and 1978). Because a small number of both bald and golden eagles may reside within foraging distance of the proposed project, there is a remote possibility some mortality could result to either bald and/or golden eagles. However, because the act only covers intentional acts, or acts in “wanton disregard” of the safety of bald or golden eagles, this project is not viewed as subject to its compliance.

For further discussion regarding potential impacts to eagles, see the Wildlife section of Chapter 3. Potential impacts to bald and golden eagles will be further addressed in the biological assessment prepared for this project as required under the Endangered Species Act.
Responsibilities of Federal Agencies to Protect Migratory Birds

Executive Order 13186 directs each federal agency that is taking actions which may negatively impact migratory bird populations to work with the U.S. Fish and Wildlife Service to develop an agreement to conserve those birds. The protocols developed by this consultation are intended to guide future agency regulatory actions and policy decisions; renewal of permits, contracts, or other agreements; and the creation of or revisions to land management plans. Bonneville is part of the Department of Energy, is cooperating with the department in developing a memorandum of understanding with the U.S. Fish and Wildlife Service to comply with this mandate.

Heritage Conservation

Regulations established for the management of cultural resources include

- Antiquities Act of 1906 (16 U.S.C. 431-433);
- Historic Sites Act of 1935 (16 U.S.C. 461-467);
- Section 106 of the National Historic Preservation Act (NHPA) of 1966 (16 U.S.C. 470 et seq.), as amended;
- Archaeological Data Preservation Act (ADPA) of 1974 (16 U.S.C. 469 a-c);
- Archaeological Resources Protection Act (ARPA) of 1979 (16 U.S.C. 470 et seq.), as amended;
- Native American Graves Protection and Repatriation Act (NAGPRA) (25 U.S.C. 3001 et seq.); and
- Executive Order 13007 Indian Sacred Sites.

For this project, Bonneville has undertaken the Section 106 consultation process with the State Historic Preservation Officer for both Washington and Oregon, the Advisory Council on Historic Preservation, and the affected Native American tribes. For this project, the Confederated Tribes of the Umatilla Indian Reservation; the Confederated Tribes of Warm Springs, Oregon; and the Yakama Nation were consulted. Bonneville’s 1996 government-to-government agreement with 13 federally-recognized Native American Tribes of the Columbia River basin identifies the roles and responsibilities of both parties and provides guidance for the Section 106 consultation process with the Tribes.

The NHPA amendments specify that properties of traditional religious and cultural importance to a Native American Tribe (also known as Traditional Cultural Properties) may be determined to be eligible for inclusion on the National Register of Historic Places. In carrying out its responsibilities under Section 106, Bonneville is required to
consult with any Native American Tribe that attaches religious and cultural significance to any such properties.

NAGPRA requires consultation with appropriate Native American Tribal authorities prior to the excavation of human remains or cultural items (including funerary objects, sacred objects, and cultural patrimony) on federal lands or for projects that receive federal funding. NAGPRA recognizes Native American ownership interests in some human remains and cultural items found on federal lands and makes illegal the sale or purchase of Native American human remains, whether or not they derive from federal or Indian land. Repatriation, on request, to the culturally-affiliated Tribe is required for human remains.

Executive Order 13007 addresses “Indian sacred sites” on federal and Tribal land. “Sacred site” means any specific, discrete, narrowly delineated location on federal land that is identified by a Tribe, or Tribal individual determined to be an appropriately authoritative representative of a Native American religion. The site is sacred by virtue of its established religious significance to, or ceremonial use by, a Native American religion; provided that the tribe or appropriately authoritative representative of an Indian religion has informed the agency of the existence of such a site. This order calls on agencies to do what they can to avoid physical damage to such sites, accommodate access to and ceremonial use of Tribal sacred sites, facilitate consultation with appropriate Native American Tribes and religious leaders, and expedite resolution of disputes relating to agency action on federal lands.

The Cultural Resources section in Chapter 3 of this EIS discusses cultural resources along the project corridor, potential impacts, and mitigation measures to protect archaeological and historic resources.

State, Areawide, and Local Plan and Program Consistency

The Council on Environmental Quality regulations for implementing NEPA require EISs to discuss possible conflicts and inconsistencies of a proposed action with approved state and local plans and laws.

The project corridor crosses through four counties: Benton and Klickitat Counties in Washington and Umatilla and Sherman Counties in Oregon. Of the 79-mile corridor, 72 miles are located in the state of Washington: 27 miles in Benton County and 45 miles in Klickitat County; and 7 miles are in Oregon: 1 mile in Umatilla County, and 6 miles in Sherman County.
Land Use Planning Framework

The state and local land use planning framework for the proposed project includes the following regulations:

- City of Umatilla Comprehensive Plan;
- Umatilla County Zoning Code;
- Benton County Zoning Ordinance (BCC Title 11);
- Benton County Shoreline Management Master Plan;
- Benton County Comprehensive Plan;
- Klickitat County Comprehensive Plan;
- Klickitat County Shoreline Master Plan;
- Klickitat County Zoning Ordinance (No. 62678);
- Sherman County Zoning, Subdivision, and Land Development Ordinance;
- Oregon Statewide Planning Goal 11 (Public Facilities);
- Oregon Statewide Planning Goal 3 (Agricultural Lands);
- Oregon Administrative Rules; and
- Washington Administrative Codes.

Please see the Land Ownership and Uses within Project Corridor section of Chapter 3 for a discussion on whether the proposed action is consistent with the state and local plans. The proposed project would be undertaken solely by Bonneville, which is a federal entity. Pursuant to the federal supremacy clause of the U.S. Constitution, Bonneville is not obligated to apply for local development or use permits in such circumstances. Therefore, Bonneville would not make formal application to any of the local jurisdictions for permits such as conditional use permits or shoreline development permits. However, Bonneville is committed to plan the project to be consistent or compatible to the extent practicable with state and local land use plans and programs and would provide the local jurisdictions with information relevant to these permits. (Bonneville would apply for county shoreline permits if the provisions of the Federal Water Pollution Control Act apply, such as for discharges into waters of the U.S.)

Critical Areas Ordinances

The project corridor falls within Seismic Zone 2B of the 1997 Uniform Building Code. The counties in Oregon do not have critical areas ordinances that would address potential geologic hazards in the project site and project corridor. There are no specific
requirements or guidelines issued by the counties with respect to geologic conditions. Current Oregon building codes are specified in Oregon Regulatory Statute (ORS) 455.010 through 455.895. Geologic hazard regulations are overseen by the Oregon Department of Land Conservation and Development, as defined in ORS 660.015.

Klickitat and Benton Counties in Washington have critical areas ordinances that pertain to geologically hazardous areas. Klickitat County’s critical areas ordinance provides standards for classification and designation of significant geologically hazardous areas and guidance for reducing or mitigating hazards to public health and safety. Benton County’s critical areas ordinance addresses minimum setbacks for development within or adjacent to a geologically hazardous area. See the Geology section of Chapter 3 for further discussion of geology and soils.

Transportation Permits

Width and/or height restrictions occur on SR 14 at the Cook-Underwood Tunnels (Skamania County, Washington), the Hood River/White Salmon toll bridge (Klickitat County, Washington), the Lyle Tunnel (Klickitat County, Washington), and the I-205 to US 97 junction at Maryhill (Klickitat County, Washington). Trucks traveling westbound toward the project corridor on SR 14 will likely pass through most of these areas. The Columbia River bridges also have load weight and size restrictions.

The construction contractor and transmission line facilities manufacturers would consult with the Oregon and Washington Departments of Transportation as well as the Benton, Klickitat, Umatilla, and Sherman Counties Public Works Departments. Necessary permits for transportation of large loads on the roadways would be secured as required. See the Transportation section in Chapter 3 of this EIS for further discussion of transportation issues.

Coastal Zone Management Program Consistency

As an agency of the federal government, Bonneville follows the guidelines of the Coastal Zone Management Act (16 U.S.C. Sections 1451-1464) and would ensure that projects would be, to the maximum extent practicable, consistent with the enforceable policies of state management programs. The proposed project is not in the coastal zone, nor would it directly affect the coastal zone.

Floodplains and Wetlands Protection

The Department of Energy mandates that impacts to floodplains and wetlands be assessed and alternatives for protection of these resources be evaluated. Regulations are provided through 10 CFR 1022.12, and Federal Executive Orders 11988 and 11990. Portions of
the proposed project fall within the 100-year floodplain of the Columbia River as mapped by the Federal Emergency Management Agency. There are 15 streams that cross the proposed transmission line corridor and flow toward the Columbia River. These streams range from having deeply incised channels to low gradient, meandering channel patterns. Associated floodplains are generally limited to narrow riparian fringes. A total of 25 wetlands (45.0 acres) are present within the proposed transmission line corridor, of which 0.2 acre is located where either construction or operations activity would occur. If a wetland of over 0.10 acres would have to be filled (which is unlikely), appropriate permits from the Corps would be sought. Streams, floodplains, and wetlands are discussed in Chapter 3 of this EIS.

Farmlands

The Farmland Protection Policy Act (7 U.S.C. 4201 et seq.) directs federal agencies to identify and quantify adverse impacts of federal programs on farmlands. The act’s purpose is to minimize the number of federal programs that contribute to the unnecessary and irreversible conversion of agricultural land to nonagricultural uses.

The location and extent of prime and other important farmlands is designated by the Natural Resource Conservation Service (NRCS) and can be found in NRCS soil survey information.

There are no lands designated as prime farmland within the proposed right-of-way. Please see the Land Ownership and Uses within Project Corridor section of Chapter 3 for more discussion on impacts to agricultural lands.

Recreation Resources

None of the project components would interrupt formal existing recreation facilities. Upland bird hunting may be interrupted in the project corridor in Benton County, Washington during construction.

Global Warming

The proposed project would not generate emissions of gases (such as carbon dioxide) that contribute to global warming. The proposed project would clear 54 acres of grassland, agricultural and shrub-steppe vegetation, and an additional 25 acres of mature hardwood trees. A total of 50 acres would be removed from mature hardwood production. The removal of these trees and plants would result in a net reduction in the collectors of carbon in the project area. However, because the amount of clearing would be relatively
small, and because low-growing vegetation would regrow in cleared areas, the proposed project's contribution to global warming would be negligible.

Permit for Structures in Navigable Waters

Section 10 of the Rivers and Harbors Act of 1899 (33 U.S.C. 403) regulates all work done in or structures placed below the ordinary high water mark of navigable waters of the U.S. No work associated with the proposed project would occur in such water bodies. However, the proposed project includes conductors that would span the navigable waters of the Columbia River, a “water of the United States” as defined in the Rivers and Harbors Act. Overhead utility lines constructed over Section 10 waters require a Section 10 permit.

Permit for Discharges into Waters of the United States

The Clean Water Act (33 U.S.C. 1251 et seq.) regulates discharges into waters of the U.S.

Section 401 of the Clean Water Act, the State Water Quality Certification program, requires that states certify compliance of federal permits and licenses with state water quality requirements. A federal permit to conduct an activity that results in discharges into waters of the U.S., including wetlands, is issued only after the affected state certifies that existing water quality standards would not be violated. Bonneville is not expecting any discharges into waters of the U.S.

Section 402 of the act authorizes storm water discharges associated with industrial activities under the National Pollutant Discharge Elimination System (NPDES). For Washington, EPA has a general permit authorizing federal facilities to discharge storm water from construction activities disturbing land of 5 acres or more into waters of the U.S., in accordance with various set conditions. Bonneville would comply with the appropriate conditions for this project, such as issuing a Notice of Intent to obtain coverage under the EPA general permit and preparing a Storm Water Pollution Prevention (SWPP) plan.

Section 404 requires authorization from the Corps in accordance with the provisions of Section 404 of the Clean Water Act when there is a discharge of dredged or fill material into waters of the U.S., including wetlands. Bonneville does not expect any waters (including wetlands) to be impacted by access road or tower construction. Water bodies/wetlands field surveys would ensure that full compliance with the Clean Water Act. If there would be potential impacts, authorization would be sought from the Corps and the appropriate state and local government agencies in Washington and Oregon.
Please see the Wetlands and Groundwater section of Chapter 3 for further discussion of potential wetland impacts for the project.

The Safe Drinking Water Act

The Safe Drinking Water Act (42 U.S.C. Section 200f et seq.) protects the quality of public drinking water and its source. Bonneville would comply with state and local public drinking water regulations. The proposed project would not affect any sole source aquifers or other critical aquifers, or adversely affect any surface water supplies.

Permits for Right-of-Way on Public Lands

The proposed project crosses mostly privately owned land, with some Tribal, state, and federal land. Bonneville would obtain easements and permits as appropriate for public lands.

Air Quality

The Clean Air Act as revised in 1990 (PL 101-542, 42 U.S.C. 7401) requires EPA and states to carry out programs intended to ensure attainment of National Ambient Air Quality Standards. In the project vicinity, authority for ensuring compliance with the act is delegated to the Oregon Department of Environmental Quality, the Washington Department of Ecology (Central Region and Eastern Region), and the Benton Clean Air Authority. Each of those agencies has regulations requiring all industrial activities (including construction projects) to minimize windblown fugitive dust. None of those agencies regulate the operation of electrical transmission lines or electrical transformers.

The General Conformity Requirements of the Code of Federal Regulations require that federal actions do not interfere with state programs to improve air quality in nonattainment areas. There are no nonattainment areas in the vicinity of the project.

Chapter 70.94 RCW-Washington Clean Air Act and Chapter 173-400 WAC require owners and operators of fugitive dust sources to prevent fugitive dust from becoming airborne and to maintain and operate sources to minimize emissions (AGC, Fugitive Dust Task Force). Benton County Clean Air Authority adheres to an Urban Fugitive Dust Policy and Oregon Revised Statutes (ORS) Chapter 468A outline Air Pollution Control.

Air quality impacts of the proposed project would not be significant, as discussed in the Air Quality section in Chapter 3 of this EIS.
Noise

The Noise Control Act of 1972 as amended (42 U.S.C. 4901 et seq.) sets forth a broad goal of protecting all people from noise that jeopardizes their health or welfare. It places principal authority for regulating noise control with states and local communities. Noise standards applicable to the proposed project are established under ORS Chapter 467 (Noise Control) and the Oregon Administrative Rules (OAR) Division 35 (Noise Control Regulations). Responsibility for enforcement of applicable regulations is assigned to the local sheriff’s department. The Oregon Department of Environmental Quality provides assistance and guidance as required.

The allowable hourly noise levels under state law, and potential noise impacts associated with the project, are described in the Noise section in Chapter 3 of this EIS.

Hazardous Materials

The Spill Prevention Control and Countermeasures Act, Title III of the Superfund Amendments and Reauthorization Act, and the Resource Conservation and Recovery Program potentially apply to the proposed project, depending on the exact quantities and types of hazardous materials stored onsite. Regulations would be enforced by the Oregon Department of Environmental Quality, Oregon Department of Health, and the Washington Department of Ecology. In addition, development of a Hazardous Materials Management Plan in accordance with the Uniform Fire Code may be required by the local fire district. Small amounts of hazardous wastes may be generated (paint products, motor and lubricating oils, herbicides, solvents, etc.) during construction or operation and maintenance. These materials would be disposed of according to state law and Resource Conservation and Recovery Act.

In response to the 1989 passage of Public Law 99-145, which mandated the destruction of certain types of chemical warfare agents throughout the U.S., Congress identified the need to upgrade emergency preparedness in cities and counties surrounding chemical stockpiles in the unlikely emergency resulting from storage or subsequent destruction. Within Umatilla County, Oregon, there is a chemical weapons stockpile. The Umatilla Army Depot stores mustard “blister” agents and nerve agents. The eastern portion of the project corridor lies within zones where an emergency preparedness program applies in case of an emergency at the stockpile. For this reason the Oregon’s Chemical Stockpile Emergency Preparedness Program was begun. The area surrounding the depot is divided into zones and sectors. The Immediate Response Zone covers an 8-mile radius from the depot; the Protective Action Zone covers a 20-mile radius from the depot; the Marine Safety Zone covers the Columbia River approximately 20 miles above and below McNary Dam. The majority of the proposed transmission line lies within the Protective Action Zone in Benton County with a small area around the McNary Substation in the Immediate Response Zone and the Marine Safety Zone (CSEPP 1999).
Environmental Justice

In February 1994, Executive Order 12898, Federal Actions to Address Environmental Justice in Minority and Low-Income Populations, was released to federal agencies. This order states that federal agencies shall identify and address as appropriate, disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority populations and low-income population. (Minority populations are considered members of the following groups: American Indian or Alaskan Native; Asian or Pacific Islander; Black, not of Hispanic origin; or Hispanic if the minority population of the affected area exceeds 50%, or is meaningfully greater than the minority population in the project area.)

The proposed project has been evaluated for potential disproportionately high environmental effects on minority and low-income populations (see the Socioeconomics section of this EIS in Chapter 3). There would not be a human health or environmental impact on minority and low-income populations from the proposed project.

Notice to the Federal Aviation Administration

As part of the transmission line design, Bonneville seeks to comply with Federal Aviation Administration procedures. Final locations of structures, structure types, and structure heights would be submitted to the Federal Aviation Administration for the project. The information includes identifying structures taller than 200 feet above ground and listing all structures within prescribed distances of airports listed in the Federal Aviation Administration airport directory. Bonneville also would assist the Federal Aviation Administration in field review of the project by identifying structure locations. The Federal Aviation Administration would then conduct its own study of the project and make recommendations to Bonneville for airway marking and lighting. General Bonneville policy is to follow Federal Aviation Administration recommendations.

Federal Communications Commission

Federal Communications Commission regulations require that transmission lines be operated so that radio and televisions reception would not be seriously degraded or repeatedly interrupted. Further, Federal Communications Commission regulations require that the operators of these devices mitigate such interference. Bonneville would comply with Federal Communications Commission requirements relating to radio and television interference from the proposed transmission line if any such interference occurs. While none of the proposed alternatives are expected to increase electromagnetic
interference above existing levels, each complaint about electromagnetic interference would be investigated.
Chapter 5
References

Printed References

References

BPA (Bonneville Power Administration). 1986. *Electrical and biological effects of transmission lines: a review.* (DOE/BP 524.) Portland, OR.

——. 1996. *Electrical and biological effects of transmission lines: a review.* (DOE/BP 2938.) Portland, OR.

References

BPA McNary-John Day Transmission Project
Draft EIS
February 2002

_____. 2000. Shrub-steppe habitats draft report. Olympia, WA.

_____. 2001. Review of priority habitats and species maps from Washington Department of Fish and Wildlife Priority Habitats and Species Program. Olympia, WA.

Personal Communications

5 References

Chapter 6
Agencies, Organizations, and Persons Receiving this EIS

The project mailing list contains about 500 potentially interested or affected landowners; tribes; local, state, and federal agencies; utilities; public officials; interest groups; businesses; special districts; libraries and the media. They have directly received or have been given instructions on how to receive all project information made available so far, and they will have an opportunity to review the Draft and Final EIS.

Federal Agencies

- Bureau of Land Management
- Corps of Engineers
- Fish & Wildlife Service
- National Marine Fisheries Service
- Environmental Protection Agency
- Bureau of Indian Affairs

Tribes or Tribal Groups

- Burns Paiute Tribe
- Confederated Tribes of Umatilla
- Confederated Tribes of Warm Springs
- Nez Perce Tribe
- Shoshone Bannock Tribes of Fort Hall
- Yakama Indian Nation

State Agencies, Oregon

- Department of Fish and Wildlife
- Department of Transportation
- Department of Water Resources
Agencies, Organizations, and Persons Receiving this EIS

State Agencies, Washington

Department of Ecology
Department of Fish and Wildlife
Department of Natural Resources
Department of Transportation

Public Officials, Oregon

Federal Congressional
US House of Representatives, Greg Walden
US Senate, Gordon Smith
US Senate, Ron Wyden

Governor
John A Kitzhaber

State Senator and Representatives
Greg Smith
Bob Jensen
Ted Ferrioli
David Nelson

Public Officials, Washington

Federal Congressional
US House of Representatives, Richard Hastings
US Senate, Maria Cantwell
US Senate, Patty Murray

Governor
Gary Locke
State Agencies, Washington/
Special Districts

State Senator and Representatives
Jim Honeyford
Bruce Chandler
Barb Lisk

Local Governments, Oregon
Cities
Arlington
Boardman
Umatilla
Morrow
Sherman
Umatilla

Counties
Gilliam

Local Governments, Washington
Cities
Goldendale
Prosser

Counties
Benton
Klickitat

Special Districts
Klickitat County Utility District
Northern Wasco Utility District
Sherman County Soil & Water Conservation District
Umatilla County Soil & Water Conservation District
Umatilla County Special Library District
Agencies, Organizations, and Persons Receiving this EIS

Businesses

Aero Power Services
Columbia Gorge Economic Development Association
Glahe & Associates
Jim Deason, Attorney at Law
Jones & Stokes Associates Inc.
Weyerhaeuser Paper Company
Ruen Yeager & Associates Inc.

Utilities

Klickitat County PUD
Umatilla Electric Coop
Wasco Electric Coop

Libraries

Arlington Public Library
Oregon Trail Public Library
State of Oregon Library
The Dalles Wasco County Public Library
Umatilla Public Library

Interest Groups

Lower Columbia Basin Audubon Society
Nature Conservancy
Oregon Chapter Sierra Club
Oregon Trout
Pacific Northwest Electric Power & Conservation Planning Council
Port of Umatilla 1940 Industrial Development
Rebound
Roosevelt Community Council
Sierra Club Northwest
Trout Unlimited Blue Mountain 619
Media

East Oregonian (Pendleton)
Goldendale Sentinel (Goldendale)
Hermiston Herald (Hermiston)
Prosser Record Bulletin (Prosser)
Tri-Cities Herald (Pasco)
Chapter 7
List of Preparers

The McNary-John Day Project EIS is being prepared by Bonneville with the technical assistance of environmental consultants. Individuals responsible for preparing the draft EIS, along with their affiliation, experience, and education, are listed below in alphabetical order.

T. Dan Bracken—Principal, T. Dan Bracken, Inc. Responsible for section on electrical effects of proposed action. Education: B.S. Physics; M.S. and Ph.D. Physics. Experience: Twenty-seven years experience undertaking research on and characterization of electric and magnetic field effects from transmission lines.

David Broadfoot—Project Manager. Responsible for EIS project management. Education: B.A. Biology; M.S. Ecology. Experience: Twenty years of experience in land use planning and environmental analysis; land use, public policy, and regulatory support for NEPA and SEPA documents; land use and environmental permit applications; and design and implementation of public involvement and education programs. With Jones & Stokes since 1999.

Jeannie Brush—Land Use Planner. Responsible for coordination of built environment EIS team for land use/recreation, visual resources, socioeconomics, transportation, and public health sections of EIS. Education: B.A. Art History; Master of Community and Regional Planning (M.C.R.P.); M.S. Historic Preservation. Experience: Five years of experience in planning, permitting, cultural resources management, and historic preservation. With Jones & Stokes since 1999.
Jason Cooper—Cultural Resource Specialist. Responsible for cultural resources field surveys, tribal coordination, cultural resource section of EIS. Education: B.A. History; M.A. Anthropology/Archaeology. Experience: Ten years of experience in archaeology and cultural resource inventory, with expertise in chipped stone technologies. With Jones & Stokes since 2000.

Laurens Driessen—Project Manager. Responsible for project management of transmission line portion of the project. Education: B.S. Civil Engineering. Experience in facility siting and project management. With Bonneville since 1969.

Marc Egli—Geologist. Responsible for geologic field mapping, evaluation of potential adverse geologic conditions, aerial photo analysis and report review for the EIS. Education: B.A. Geology; six years graduate studies in Geology. Experience: Twenty-one years on geologic, hydrogeologic and geotechnical projects. With GeoEngineers, Inc. since 2000.

Jamie Gray—Environmental Planner. Responsible for transportation, air quality, and noise sections of EIS. Education: B.A. Environmental Policy. Experience: Two years of experience in environmental planning and policy analysis, transportation, air, noise, socioeconomics, and impact assessments. With Jones & Stokes since 1999.

Galan McInelly—Geologist. Responsible for review of geology section of EIS. Education: B.S. Geology; M.S. Geology. Experience: Seventeen years of experience as a geologist on hydrogeologic, environmental and geotechnical projects. With GeoEngineers, Inc. since 1989.

Thomas Noland—Environmental Specialist. Responsible for visual resources and socioeconomics section of EIS. Education: B.S. Zoology. Experience: Two years experience in land use, permitting, visual analyses, socioeconomics, and impact analysis. With Jones & Stokes since 2000.

John Soden—Wetland Biologist. Responsible for coordination of natural resource EIS team, water resources, and wetland sections of EIS. Education: B.S. Environmental Policy and Assessment; M.S. Forestry. Experience: Six years experience in delineating and assessing aquatic resources, resource inventory and classification, riparian and wetlands research, impact assessment, and permitting assistance. With Jones & Stokes since 1999.

James Wilder—Air/Noise Specialist. Responsible for air quality and noise sections of EIS. Education: B.S. Civil Engineering; M.S. Air Resources Engineering. Experience: Twenty-three years of experience in air quality and noise control engineering, facility design, preconstruction permitting, environmental impact assessments, and operational compliance monitoring. With Jones & Stokes since 2001.

Chapter 8
Glossary and Acronyms

Glossary

Alluvial fan: a fan-shaped geological deposit consisting of material deposited by a moving stream and which radiates downslope from the point where the stream emerges from a narrow valley onto a plain.

Alluvium: sediments deposited by a river anywhere along its course; also called alluvial deposit.

Altithermal: the dry postglacial period extending from 7500 to 4000 years ago, during which time temperatures were believed to be distinctly higher than present temperatures. The term can also be used relating to any time period or climate characterized by high or rising temperatures.

Anadromous: fish that hatch rear in fresh water, migrate to the ocean (salt water) to grow and mature, and migrate back to fresh water to spawn and reproduce.

Aquatic exploitation: the fishing and/or gathering of food resources from water, in this case, from the Columbia River.

Armoring: to give protection using a surface layer of gravel in a river bed preventing erosion of the material below.

Average daily traffic: the total number of cars passing over a segment of roadway, in both directions, on a typical day. In this report, all average daily traffic volumes are two-way counts at the indicated locations.

Best management practices: a practice or combination of practices that is the most effective and practical means of preventing or reducing the amount of pollution generated by nonpoint sources to a level compatible with water quality goals.

Burn, The: a geographical area between Rock Creek and Chapman Creek in southeastern Washington characterized by an elevated plateau.

Cairn: a small grouping of rocks stacked in a linear or circular manner.

Combustion pollutants: gases or particles that come from burning materials.
Compaction: the result of rolling, tamping, or use of heavy equipment on soil. Soils become hardened, difficult to cultivate, and impermeable to air and water.

Corridor: a strip of land forming a passageway for transportation or utility facilities.

Cryptogamic crust: a fragile layer: a thin crust made up of mosses, lichens, algae, and bacteria.

Cultural resources: a general term frequently used to refer to a wide range or archeological sites, historic structures, museum objects, and traditional cultural places.

Cumulative impacts: the impact on the environment which results from the incremental impact of the action when added to the past, present, and reasonably foreseeable future actions, regardless of who or what undertakes such actions.

Decibel (dB): a unit of sound measurement. In general, a sound doubles in loudness for every increase of ten decibels.

Diagnostic artifacts: an artifact that maintains a distinguishing mark or displays a certain characteristic that allows the object to be placed with some certainty into a chronological period.

Double-circuit towers: towers that can hold two transmission lines

Downcutting: when streams cut channels down into the rock, steepening valley walls. Downcutting typically produces narrow valleys.

Dry wash: a streambed that carries water only during and immediately following rainstorms.

Electrofishing: employing an electric current to attract or stun fish in order to take a census of a population.

Endangered species: (see Threatened and endangered species)

Eolian sands: sands that are the product of wind erosion.

Ephemeral stream: a channel that carries water only during and immediately following rainstorms. Sometimes referred to as a dry wash.

Ethnographic: dealing descriptively with specific cultures, especially those of nonliterate people or groups.

Ethnohistoric: pertains to the study of development of past cultures and lifeways prior to contact with European explorers.
Glossary

Exceedence levels (L levels): refers to the A-weighted sound level that is exceeded for a specified percentage of the time during a specified period. Thus, L_{10} refers to a particular sound level that is exceeded 10% of the time.

Fiberoptic cable: a fiberoptic technology using light pulses instead of radio or electrical signals to transmit messages.

Fish-bearing stream: any water that has fish presence, or is utilized by fish, even if for only one day a year.

Floodplain: that portion of a river valley adjacent to the stream channel that is covered with water when the stream overflows its banks during flood stage.

Ford: a shallow place in a stream, river, etc., where one can cross by wading or by riding on horseback, in an automobile, etc.

Fugitive dust: any solid particulate matter that becomes airborne, other than that emitted from an exhaust stack, directly or indirectly as a result of the activities of people.

Geologic unit: geologic units are physiographic units and rock lithology or coarse stratigraphy of exposed bedrock.

Glacial outburst flooding: a hydrological phenomenon that refers to the sudden release of water stored in glaciers.

Herbaceous: plants whose growing stems possess little or no woody tissue.

Herbicide: a chemical substance used to kill, slow, or suppress the growth of plants.

Housepits: is an aboriginally excavated house floor.

Hydroperiod: within wetlands, the hydroperiod is the duration of soil saturation or inundation.

Indigenous: existing naturally in a region, state, country, etc.

Insulators: bell-shaped devices that prevent the electricity from jumping from the conductors to the tower and going to the ground.

Irreversible commitment of resources: the use of nonrenewable resources such as minerals and petroleum-base fuels. Irretrievable commitments of resources cause the lost production or use of renewable resources such as timber or rangeland.

Isolate finds: a singular artifact (e.g., projectile point, historic bottle, or 1922 Model T) or a grouping of artifacts that do not meet a specific density ratio to be classified as a site.

Liquefaction: the fluid-like behavior of soils during a seismic event.

Lithic: being made of stone.
Lithosol: a group of shallow soils lacking well-defined horizons and composed of imperfectly weathered fragments of rock.

Loess: an unstratified usually buff to yellowish brown loamy deposit found in North America, Europe, and Asia and believed to be chiefly deposited by the wind.

Lomatium: within the project area there exist microenvironments that support different species of plant based primarily on local hydrology, geology, and sun exposure. Lomatium habitat can be considered a microenvironment within the greater sage vegetation zone. Lomatium, referred to in English by Sahaptin native speakers as “Indian celeries,” comes in many shapes and sizes. The plant produces edible sprouts, stems, and shoots and would be harvested seasonally. Lomatium habitat in the project area constitutes portions of talus slopes and rocky lowlands along streams and creeks.

Midden: the layer of soil which contains the byproducts of human activity as the result of the accumulation of these materials on their living surface. For prehistoric sites, a layer of soil that was stained to a dark color by the decomposition of organic refuse which also contained food bones, fragments of stone tools, charcoal, pieces of pottery, or other discarded materials. For historic sites, a similar layer of soil but with appropriate historic material remains often in a much thinner deposit.

Miocene epoch: a subdivision of geologic time within the Tertiary Period, between approximately 26 and 7 million years ago.

Mitigation measures: steps taken to lessen the impacts of proposed activities on a specific resource. Measures may include reducing the impact, avoiding it completely, or compensating for the impact.

Native plant/native species: species of plants, animals, or birds that originated in a given ecological area. Native plants or species are often best adapted to a given area.

Nonnative species: species that have migrated or have been imported to an ecological area. Nonnative plants or species may compete for space and nutrients with a (more desirable) native species.

Noxious weeds: plants that are injurious to public health, crops, livestock, land, or other property.

Ordinary high water mark (OHWM): an elevation that marks the boundary of a lake, marsh, or streambed. It is the highest level at which the water has remained long enough to leave its mark on the landscape. Typically, it is the point where the natural vegetation changes from predominantly aquatic to predominantly terrestrial.

Outage: interruption of the power flow such that electric facilities stop operating.

Perennial streams: a watercourse that flows throughout a majority of the year in a well-defined channel.
Glossary

Power circuit breakers: a breaker is a switching device that can automatically interrupt power flow on a transmission line at the time of a fault, such as a lightning strike, tree limb falling on the line, or other unusual events. The breakers would be installed at the substation to redirect power as needed.

Prime farmland: land that has the best combination of physical characteristics for producing food, feed, forage, fiber and oilseed crops and is also available for these uses.

Privy: an outdoor bathroom facility.

Raptor: a bird of prey.

Right(s)-of-way: an easement for a certain purpose over the land of another, such as a strip of land used for a road, electric transmission line, pipeline, and so on.

Riparian areas: vegetated ecosystems along a water body through which energy, materials, and water pass. Riparian areas characteristically have a high water table and are subject to periodic flooding and influence from the adjacent water body. These systems encompass wetlands, uplands, or some combination of these two land forms; they do not in all cases have all of the characteristics necessary for them to be classified as wetlands (Mitsch and Gosselink, 1986; Lowrance et al., 1988).

Ruderal: growing where the natural vegetation cover has been disturbed by humans.

Scabland: elevated land that is essentially flat-lying and covered with basalt and has only a thin soil cover, sparse vegetation, and usually deep, dry channels.

Scoping: an early opportunity for the public to tell a federal agency what issues they thing are important and should be considered in the environmental analysis of a proposed federal action.

Sensitive species: those plants and animals identified by the Regional Forester for which population viability is a concern, as evidenced by significant current or predicted downward trend in populations or density and significant or predicted downward trend in habitat capability.

Shrub-steppe: is the largest natural grassland in North America. It extends from southeastern Washington and eastern Oregon, through Idaho, Nevada, and Utah, and into western Wyoming and Colorado. Shrub-steppe lands are covered with grasses and shrubs, the most common of which is sagebrush.

Substation dead-end towers: these are the towers within the substation where incoming or outgoing transmission lines end. Substation dead-ends are typically the tallest structure within the substation.
Substation fence: a chain-link fence with barbed wire on top surrounds the substation for security and public safety.

Substation rock surfacing: a 3-inch layer of rock, selected for its insulating properties, is placed on the ground within the substation to protect operation and maintenance personnel from danger during substation electrical failures.

Switches: these devices are used to mechanically disconnect or isolate equipment. Switches are normally located on both sides of circuit breakers.

Threatened and endangered species [birds/animals/plants]: the Endangered Species Act provided a means to identify, list, and protect certain species whose low population numbers made them vulnerable to extinction. Endangered species are those species officially designated by the U.S. Fish and Wildlife Service or the National Marine Fisheries Service that are in danger of extinction through all or a significant portion of their range; threatened species are those so designated that are likely to become endangered within the foreseeable future through all or a significant portion of their range. Both species are protected by Federal law.

Turbidity: the extent to which a body of water is muddy or cloudy with particles of sediment stirred up or suspended in it.

Wetlands: an area where the soil experiences anaerobic (no oxygen) characteristics because water inundates the area during the growing season. Indicators of a wetland includes types of plants, soil characteristics, and hydrology of the area.

Woody debris: materials left over from cutting or harvesting, such as limbs of branches of a tree. Woody debris may be placed in stream channels to slow and divert water flow and improve habitat for fish.

Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.P.</td>
<td>Before Present</td>
</tr>
<tr>
<td>BLM</td>
<td>U.S. Bureau of Land Management</td>
</tr>
<tr>
<td>BPA</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>Corps</td>
<td>U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>CRPP</td>
<td>Cultural Resources Protection Plan</td>
</tr>
<tr>
<td>dB</td>
<td>decibel</td>
</tr>
<tr>
<td>dBA</td>
<td>decibel A-weighted scale</td>
</tr>
<tr>
<td>DNR</td>
<td>Washington Department of Natural Resources</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Ecology</td>
<td>Washington State Department of Ecology</td>
</tr>
<tr>
<td>EFH</td>
<td>Essential Fish Habitat</td>
</tr>
<tr>
<td>EFU</td>
<td>Exclusive Farm Use</td>
</tr>
<tr>
<td>EIS</td>
<td>environmental impact statement</td>
</tr>
<tr>
<td>ESU</td>
<td>Evolutionarily Significant Unit</td>
</tr>
<tr>
<td>GMA</td>
<td>Growth Management Act</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>ILS</td>
<td>Intermediate Life Support</td>
</tr>
<tr>
<td>kV</td>
<td>kilovolts</td>
</tr>
<tr>
<td>kV/m</td>
<td>kilovolts per meter</td>
</tr>
<tr>
<td>L levels</td>
<td>exceedence levels</td>
</tr>
<tr>
<td>L_{eq}</td>
<td>equivalent sound level</td>
</tr>
<tr>
<td>mG</td>
<td>milligauss</td>
</tr>
<tr>
<td>MW</td>
<td>megawatts</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NHPA</td>
<td>National Historic Preservation Act</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>OAHP</td>
<td>Office of Archaeology and Historic Preservation</td>
</tr>
<tr>
<td>OAR</td>
<td>Oregon Administrative Rules</td>
</tr>
<tr>
<td>PSH</td>
<td>Primary State Highway</td>
</tr>
<tr>
<td>PUD</td>
<td>Public Utility District</td>
</tr>
<tr>
<td>RP3</td>
<td>Resource Protection Planning Process</td>
</tr>
<tr>
<td>SIC</td>
<td>Standard Industrial Classification</td>
</tr>
<tr>
<td>SSH</td>
<td>Secondary State Highway</td>
</tr>
<tr>
<td>TCP</td>
<td>Traditional Cultural Properties</td>
</tr>
<tr>
<td>Umatilla Tribes</td>
<td>Confederated Tribes of the Umatilla Indian Reservation</td>
</tr>
<tr>
<td>USFWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>UTM</td>
<td>Universal Transverse Mercator</td>
</tr>
<tr>
<td>WAC</td>
<td>Washington Administrative Code</td>
</tr>
<tr>
<td>WARC</td>
<td>Washington Archaeological Research Center</td>
</tr>
<tr>
<td>Warm Springs Tribe</td>
<td>Confederated Tribes of the Warm Springs Reservation Oregon</td>
</tr>
<tr>
<td>WNHP</td>
<td>Washington Natural Heritage Program</td>
</tr>
</tbody>
</table>