Mid-Columbia
Coho Restoration Program

Draft Environmental Impact Statement

June 2011

Cooperating Agencies:
The Confederated Tribes and Bands of the Yakama Nation
Okanogan County
Mid-Columbia Coho Restoration Program

Draft
Environmental Impact Statement
DOE/EIS-0425

Bonneville Power Administration
Okanogan County
The Confederated Tribes and Bands of the Yakama Nation

June 2011
Abstract - Mid-Columbia Coho Restoration Program

Environmental Impact Statement

Responsible Agency: U.S. Department of Energy - Bonneville Power Administration (BPA)

Title of Proposed Project: Mid-Columbia Coho Restoration Program

Cooperating Tribe: The Confederated Tribes and Bands of the Yakama Nation

State Involved: Washington

Lead State Agency: Okanogan County

Abstract: The Draft Environmental Impact Statement (DEIS) describes a coho salmon restoration program sponsored by the Confederated Tribes and Bands of the Yakama Nation (YN). BPA proposes to fund the construction, operation and maintenance of the program to help mitigate for anadromous fish affected by the Federal Columbia River Power System dams on the Columbia River. The YN wants to restore naturally spawning populations of coho salmon in harvestable numbers to the Methow and Wenatchee river basins in north central Washington State. The DEIS discloses the environmental effects expected from facility construction and program operations and a No Action alternative.

The Proposed Action is to implement the remaining phases of the restoration program as outlined in the Mid-Columbia Coho Restoration Master Plan (YN 2010). This would involve building a new, small, in-basin adult holding/spawning, incubation and rearing facility on the Wenatchee River at one of two potential sites; and constructing and improving several sites in both the Wenatchee and Methow river basins for acclimating coho in key habitats in the upper portions of the basins.

Public review of and comment upon this Draft EIS will continue through August 8, 2011. Responses to comments will be made part of the Final EIS, which is scheduled for completion in December 2011. BPA expects to issue a Record of Decision whether to implement the project in January 2012.

For more information about the Draft EIS, please contact:

Stephanie Breeden, Environmental Protection Specialist
Bonneville Power Administration
P. O. Box 3621, KEC-4
Portland, OR 97208-3621
Telephone: (503) 230-5192
Email: sfbreeden@bpa.gov

For additional copies of this document, please call 1-800-622-4520 and ask for the document by name. You may also request additional copies by writing to:

Bonneville Power Administration
P.O. Box 3621
Portland, Oregon 97208
ATT: Public Information Center – CHDL-1

The EIS is also on the Internet at: http://efw.bpa.gov/environmental_services/Document_Library/Mid-Columbia_Coho_Restoration_Project/.

For additional information on DOE NEPA activities, please contact Carol M. Borgstrom, Director, Office of NEPA Policy and Compliance, GC-54, U.S. Department of Energy, 1000 Independence Avenue S.W., Washington D.C. 20585-0103, phone: 1-800-472-2756 or visit the DOE NEPA Web site at www.eh.doe.gov/nepa.
Table of Contents

EXECUTIVE SUMMARY .. ES-1
Underlying Need for Action ... ES-1
Purposes .. ES-3
History of Coho in the Mid-Columbia Region .. ES-3
 Historical Conditions and Extirpation ... ES-3
 Current Conditions .. ES-3
Coho Reintroduction Feasibility Studies ... ES-4
Current Experimental Program ... ES-4
Proposed Action .. ES-5
 Vision and Biological Approach .. ES-5
 Facilities ... ES-6
 Program Costs .. ES-8
No Action Alternative ... ES-8
 Biological Approach .. ES-8
 Facilities ... ES-8
Comparison of Alternatives ... ES-10
Summary of Environmental Effects ... ES-11

CHAPTER 1. PURPOSE OF AND NEED FOR ACTION ... 1-1
 1.1 Underlying Need for Action ... 1-1
 1.2 Purposes ... 1-3
 1.3 History of Coho in the Mid-Columbia Region .. 1-3
 1.3.1 Historical Conditions and Extirpation ... 1-3
 1.3.2 Current Conditions ... 1-5
 1.4 Coho Reintroduction Feasibility Studies .. 1-5
 1.5 Decisions to be Made and Responsible Officials ... 1-6
 1.6 Public Involvement and Scoping ... 1-7
 1.7 Issues Beyond the Scope of this EIS .. 1-9

CHAPTER 2. ALTERNATIVES INCLUDING THE PROPOSED ACTION 2-1
 2.1 Current Experimental Program .. 2-1
 2.2 Proposed Action .. 2-7
 2.2.1 Biological Approach: Phased Reintroduction ... 2-7
 2.2.2 Facilities ... 2-12
 2.2.3 Monitoring and Evaluation Plan .. 2-27
 2.2.4 Program Cost Summary .. 2-27
 2.3 No Action Alternative .. 2-28
 2.3.1 Biological Approach .. 2-28
 2.3.2 Facilities ... 2-28
 2.4 Alternatives Considered but Eliminated from Detailed Evaluation 2-29
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>Wetlands</td>
<td>3-86</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Affected Environment</td>
<td>3-86</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Types of Impact</td>
<td>3-87</td>
</tr>
<tr>
<td>3.9.3</td>
<td>Impacts of the Proposed Action</td>
<td>3-87</td>
</tr>
<tr>
<td>3.9.4</td>
<td>Impacts of the No Action Alternative</td>
<td>3-93</td>
</tr>
<tr>
<td>3.9.5</td>
<td>Mitigation for the Proposed Action</td>
<td>3-93</td>
</tr>
<tr>
<td>3.10</td>
<td>Floodplains</td>
<td>3-94</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Affected Environment</td>
<td>3-94</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Types of Impact</td>
<td>3-94</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Impacts of the Proposed Action</td>
<td>3-95</td>
</tr>
<tr>
<td>3.10.4</td>
<td>Impacts of the No Action Alternative</td>
<td>3-100</td>
</tr>
<tr>
<td>3.10.5</td>
<td>Mitigation for the Proposed Action</td>
<td>3-100</td>
</tr>
<tr>
<td>3.11</td>
<td>Visual Quality and Recreation</td>
<td>3-101</td>
</tr>
<tr>
<td>3.11.1</td>
<td>Visual Quality</td>
<td>3-101</td>
</tr>
<tr>
<td>3.11.2</td>
<td>Recreation</td>
<td>3-105</td>
</tr>
<tr>
<td>3.12</td>
<td>Socioeconomics</td>
<td>3-109</td>
</tr>
<tr>
<td>3.12.1</td>
<td>Affected Environment</td>
<td>3-109</td>
</tr>
<tr>
<td>3.12.2</td>
<td>Impacts of the Proposed Action</td>
<td>3-109</td>
</tr>
<tr>
<td>3.12.3</td>
<td>Impacts of the No Action Alternative</td>
<td>3-111</td>
</tr>
<tr>
<td>3.12.4</td>
<td>Mitigation for the Proposed Action</td>
<td>3-111</td>
</tr>
<tr>
<td>3.13</td>
<td>Cultural Resources</td>
<td>3-111</td>
</tr>
<tr>
<td>3.13.1</td>
<td>Affected Environment</td>
<td>3-111</td>
</tr>
<tr>
<td>3.13.2</td>
<td>Impacts of the Proposed Action</td>
<td>3-114</td>
</tr>
<tr>
<td>3.13.3</td>
<td>Impacts of the No Action Alternative</td>
<td>3-115</td>
</tr>
<tr>
<td>3.13.4</td>
<td>Mitigation for the Proposed Action</td>
<td>3-115</td>
</tr>
<tr>
<td>3.14</td>
<td>Public Health and Safety</td>
<td>3-115</td>
</tr>
<tr>
<td>3.14.1</td>
<td>Noise</td>
<td>3-115</td>
</tr>
<tr>
<td>3.14.2</td>
<td>Air Quality</td>
<td>3-117</td>
</tr>
<tr>
<td>3.14.3</td>
<td>Climate Change</td>
<td>3-120</td>
</tr>
<tr>
<td>3.15</td>
<td>Cumulative Effects</td>
<td>3-124</td>
</tr>
<tr>
<td>3.16</td>
<td>Unavoidable Adverse Effects and Irreversible and Irretrievable Commitment of Resources</td>
<td>3-130</td>
</tr>
<tr>
<td>3.17</td>
<td>Short-Term Use of the Environment and Effects on Long-Term Productivity</td>
<td>3-130</td>
</tr>
</tbody>
</table>

CHAPTER 4. CONSULTATION AND COORDINATION ... 4-1

4.1 Environmental Policy ... 4-1
| 4.1.1 | National Environmental Policy Act | 4-1 |
| 4.1.2 | State Environmental Policy Act | 4-1 |

4.2 Northwest Power Act ... 4-1

4.3 Wildlife and Habitat ... 4-2
| 4.3.1 | Endangered Species Act | 4-2 |
Appendices

Appendix 1. Rearing and Brood Capture Site Descriptions
Appendix 2. Wenatchee Acclimation Site Descriptions
Appendix 3. Methow Acclimation Site Descriptions
Appendix 4. Resource Maps
Appendix 5. Monitoring and Evaluation Program
Appendix 6. Water Quality Data
Appendix 7. Water Quality Impacts
Appendix 8. Flood Impacts
Appendix 9. Impact of Fish Culture on ESA-Listed Fish
Appendix 10. Effect of Surface Water Withdrawals on ESA-Listed Fish
Appendix 11. Climate Change Adaptation
List of Figures

Table ES-1. Facilities used in current coho restoration program ... ES-5
Table ES-2. Summary of facilities: Proposed Action ... ES-6
Table ES-3. Peak operating costs (2013) by basin .. ES-8
Table ES-4. No Action Alternative release numbers and locations ... ES-9
Table ES-5. Comparison of the Proposed Action and the No Action Alternative to Purposes ES-10
Table ES-6. Summary of Impacts of the Proposed Action and the No Action Alternative ES-11
Table 1-1. Summary of feasibility study goals and results .. 1-6
Table 2-1. Facilities used in current coho restoration program ... 2-2
Table 2-2. Coho production timetable ... 2-2
Table 2-3. Wenatchee basin program summary ... 2-10
Table 2-4. Methow basin program summary ... 2-11
Table 2-5. Proposed smolt release numbers (in millions) by basin and project phase 2-12
Table 2-6. Summary of facilities: Proposed Action .. 2-14
Table 2-7. Peak operating costs (2013) by basin ... 2-27
Table 2-8. No Action Alternative release numbers and locations ... 2-29
Table 2-9. Comparison of the Proposed Action and the No Action Alternative to the Purposes 2-32
Table 3-1. Summary of Impacts of the Proposed Action and the No Action Alternative 3-2
Table 3-2. TP loads from two existing acclimation sites in Nason Creek .. 3-15
Table 3-3. TP loads estimated for proposed acclimation sites in the Wenatchee basin 3-17
Table 3-4. TP loads estimated at backup acclimation sites: Wenatchee basin 3-19
Table 3-5. Estimation of effluent phosphorus loads for proposed hatchery at Dryden 3-22
Table 3-6. Estimated contribution of TP loads from 50 days of acclimation activity in the three upper Wenatchee acclimation sites ... 3-27
Table 3-7. TP loads estimated for proposed acclimation activity in the Methow basin ..3-32
Table 3-8. TP loads estimated for backup sites in the Methow basin ...3-35
Table 3-9. TP loads estimated for the Methow basin with and without POTW loads ..3-37
Table 3-10. TP loads estimated for No Action Alternative sites in Wenatchee basin ..3-38
Table 3-11. TP loads estimated for No Action Alternative sites in Methow basin ...3-38
Table 3-12. Summary of potential impacts in the Wenatchee and Methow basins from new groundwater withdrawals at primary acclimation and hatchery sites ...3-41
Table 3-13. Fish species documented in the Wenatchee and Methow basins...3-52
Table 3-14. PHS Fish Species ..3-53
Table 3-15. ESA-listed fish by life stage present during construction of project facilities3-56
Table 3-16. ESA-listed fish by life stage present during overwinter rearing and spring acclimation in the Wenatchee basin ...3-58
Table 3-17. ESA-listed juveniles potentially displaced from existing Wenatchee basin habitat November - May ..3-58
Table 3-18. ESA-listed juveniles potentially displaced from existing Wenatchee basin habitat March - May ..3-59
Table 3-19. ESA-listed fish by life stage present during overwinter rearing and spring acclimation activities in the Methow basin ..3-60
Table 3-20. ESA-listed juveniles potentially displaced from existing habitat at primary Methow basin sites November - May ..3-60
Table 3-21. ESA-listed juveniles potentially displaced from existing habitat at proposed primary Methow basin sites March - May ..3-60
Table 3-22. Currently accessible habitat, habitat added by proposed new sites, and habitat excluded during coho overwinter rearing and spring acclimation ..3-62
Table 3-23. Juvenile Chinook, steelhead, and bull trout potentially displaced from currently accessible habitat at proposed primary rearing and acclimation sites in the Wenatchee basin3-63
Table 3-24. Juvenile Chinook, steelhead, and bull trout potentially displaced from currently accessible habitat at proposed primary rearing and acclimation sites in the Methow basin3-63
Table 3-25. Impacts on PHS Fish from the Proposed Action ...3-69
Table 3-26. ESA-listed juveniles potentially displaced from existing habitat in spring: No Action3-70
Table 3-27. Federal and state listed species: plants ..3-73
Table 3-28. Federal and state listed species: wildlife ..3-74
Table 3-29. Critical Habitats ..3-75
Table 3-30. Project sites with documented occurrences of USFWS ESA-listed species and habitat3-77
Table 3-31. Sites with documented occurrences of state-listed Priority Habitat and Species3-78
Table 3-32. Wetland conditions at or near project sites with construction activity ..3-88
Table 3-33. Total estimated square feet of temporary and permanent wetland impacts3-92
Table 3-34. Wenatchee acclimation and hatchery sites with development activities in floodplains3-96
Table 3-35. Methow acclimation sites with development activities in floodplains3-99
Table 3-36. Recreational resources near proposed acclimation sites ..3-108
Table 3-37. County income and employment ..3-109
Table 3-38. Maximum permissible noise levels (dBA) at three classes of property3-116
Table 3-39. National and state ambient air quality standards ...3-118
Table 3-40. Estimated annual greenhouse gas emissions from the Mid-Columbia Coho Restoration Program ...3-122
Table 4-1. Acclimation and hatchery sites with development activities in floodplains4-5
Table 4-2. Estimated wetlands effects at project sites: temporary, permanent, and new created4-7
Table 4-3. Total estimated square feet of temporary and permanent wetland impacts4-8
Table 4-4. Construction sites (primary and backup) designated as farmland ...4-14
Executive Summary

Bonneville Power Administration (BPA), in partnership with the Yakama Nation (YN), proposes to fund transition of the Mid-Columbia Coho Restoration Program from its feasibility phase to a comprehensive program to restore naturally spawning populations of coho salmon in harvestable numbers to the Wenatchee and Methow river basins in north central Washington State. Construction of a new hatchery on the Wenatchee River in Chelan County, and construction and use of small acclimation facilities in natural settings in Chelan and Okanogan counties, are included in this proposal. Figure ES-1 shows the general project area.

Since 1996, BPA has funded the Yakama Nation to study the feasibility of reintroducing coho in north central Washington, from which natural populations were extirpated. The studies show a reasonable likelihood of success for full-scale coho reintroduction, so the YN prepared a Master Plan (YN 2010) for a program to increase local adaptation and self-sustainability of the newly developed Mid-Columbia coho broodstock and to increase their abundance in the upper tributaries of the two basins. This Environmental Impact Statement (EIS) analyzes the effects of the Proposed Action as described in the Master Plan and the No Action Alternative required by the National Environmental Policy Act (NEPA).

Underlying Need for Action

BPA’s underlying need for action is to return naturally spawning, locally adapted populations of coho to the Wenatchee and Methow basins as a way to help fulfill its obligations under the Pacific Northwest Electric Power Planning and Conservation Act (Act), 16 U.S.C. § 839 et seq., Section 4(h)(10)(A); and the 2008 Columbia Basin Fish Accords Memorandum of Agreement with the YN and others.

Under the Act, BPA must protect, mitigate, and enhance fish and wildlife affected by the development, operation, and management of federal hydroelectric facilities on the Columbia River and its tributaries. BPA must fulfill this duty in a manner consistent with the Columbia River Basin Fish and Wildlife Program developed by the Northwest Power and Conservation Council. The Council and its Independent Science Review Panel reviewed drafts of the Master Plan, and on March 9, 2010, the Council recommended that BPA implement the project as described in the plan.

On May 2, 2008, BPA, Bureau of Reclamation, and U.S. Army Corps of Engineers signed the 2008 Columbia Basin Fish Accords Memorandum of Agreement with three of the Treaty Tribes—the Confederated Tribes and Bands of the Yakama Nation, the Confederated Tribes of Warm Springs Reservation, and the Confederated Tribes of the Umatilla Indian Reservation. The agreement includes funding for the YN’s Mid-Columbia Coho Restoration Program. BPA conditioned its funding commitment on securing a favorable recommendation from the Council and on compliance with all its other mandates, including NEPA. Salmon are a part of the spiritual and cultural identity of the Columbia River tribes. Salmon also play an important role in the economic well-being of tribal members. Restoring coho salmon to north central Washington would help the tribes to exercise their fishing rights as well as provide for fishing by sport and commercial fishers. Reintroducing coho in these basins could also contribute to restoring the ecological balance of the system. The Wenatchee Subbasin Plan recognizes that “Restoration of individual populations may not be possible without restoration of other fish and wildlife populations with which they co-evolved.” (NPCC 2004a).
Figure ES-1. Project Area Overview
Purposes

In meeting the underlying need, the alternatives considered should achieve the purposes listed below. BPA will base its choice among alternatives on how well each one meets them.

- Develop a locally adapted, self-sustaining, naturally spawning coho stock that occupies its historical habitat in the Wenatchee and Methow river basins.
- Increase the abundance of Mid-Columbia coho salmon to numbers sufficient to sustain a mainstem and terminal harvest in most years.
- Maintain consistency with the Council’s Columbia River Basin Fish and Wildlife Program and its recommendations as well as with the visions and goals of other regional plans, including subbasin plans.
- Minimize harm to natural or human resources, including species listed under the Endangered Species Act.

History of Coho in the Mid-Columbia Region

Historical Conditions and Extirpation

Mullan (1984) estimated historical mid-Columbia River adult coho populations as follows:

- Wenatchee basin—6,000 - 7,000
- Methow basin—23,000 - 31,000.

Prior to the establishment of BPA in 1937, mid-Columbia coho salmon populations were decimated by impassable dams, harmful forestry practices, and unscreened irrigation diversions in the tributaries, along with an extremely high harvest rate in the lower Columbia River. The loss of natural stream flow degraded habitat quality and further reduced coho productivity. Over the years, irrigation, livestock grazing, mining, timber harvest, road and railroad construction, residential and other development, and fire management also contributed to destruction of salmon habitat. By the 1930s, coho were considered extirpated from the mid-Columbia region.

Current Conditions

In the past two decades, conditions and practices have changed and improved to a certain degree.

- Some of the local habitat causes of coho depletion have been corrected: many irrigation diversions have been screened, tributary dams have been removed, new logging practice regulations have provided increased environmental protection, mining has ended, and grazing practices have been improved.
- Habitat Conservation Plans have been negotiated between fisheries resource managers and Mid-Columbia Public Utility Districts (PUDs)\(^1\) to ensure that the hydroelectric projects associated with each plan can be considered to have No Net Impact on anadromous species.

\(^1\) Grant County PUD, Chelan County PUD, and Douglas County PUD.
The listings under the Endangered Species Act (ESA) of several salmonid species that migrate through the lower Columbia River have curtailed coho fisheries in the ocean that once over-harvested the mid-Columbia stocks of coho. Fisheries restrictions based on ESA-listings have curtailed ocean harvest of Lower Columbia River coho from an annual average of 80% between 1970 and 1983; to 49% from 1984 to 1993; to 10% from 1994 to 2007 (NMFS 2008a). These restrictions are likely to be in effect for a number of years.

Recent improvements in artificial production practices would also improve efforts aimed at supporting natural production.

Coho Reintroduction Feasibility Studies

In 1996, BPA began funding the Yakama Nation to study the feasibility of reintroducing coho to the mid-Columbia region. BPA analyzed the effects of a proposed plan for feasibility studies in the Mid-Columbia Coho Reintroduction Feasibility Project Final EA, completed in April 1999 (DOE/EA-1282). Supplemental Analyses (DOE/EA-1282/SA-01, -02, -03, and -04) were prepared to analyze effects of additional activities and facilities proposed for the studies. Feasibility studies were designed to achieve two primary goals:

1) **Determine whether a broodstock can be developed from lower Columbia River coho stocks whose progeny can survive in increasing numbers to return as adults to the mid-Columbia region.**

2) **Initiate natural reproduction in areas of low risk to sensitive species and in other select areas to study the risks and interactions with sensitive species.**

The feasibility goals have been met (see Table 1-1 in Chapter 1). The Yakama Nation prepared a Master Plan based on the results of the feasibility studies (YN 2010). The Master Plan, with review and assistance by a number of scientists and fish and wildlife agencies, developed the approach and biological rationale for building on the feasibility studies to realize the YN’s long term vision for coho in the region (see Proposed Action below and in Chapter 2).

Current Experimental Program

During the feasibility phase of the project, a local coho broodstock was developed. A total of 1.5 million smolts are acclimated and released in the two basins annually. In 2009, approximately 22,000 coho adults passed Rock Island Dam, the closest mainstem Columbia River dam downstream from the Wenatchee River mouth (Figure ES-1). Facilities used in the current program are listed in Table ES-1.

2 Years after this project began (and was named), many entities in the region began using the term “upper Columbia” to refer to the region in which the Wenatchee and Methow subbasins lie. We have chosen to continue using “mid-Columbia” to refer to this project in order to demonstrate the continuity of the project from the feasibility studies onward. As well, because the Columbia River originates hundreds of miles upstream in Canada, the term “mid-Columbia” seems to be more geographically accurate.
Table ES-1. Facilities used in current coho restoration program

<table>
<thead>
<tr>
<th>BROODSTOCK COLLECTION</th>
<th>Methow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenatchee</td>
<td>Fish Hatchery (FH)</td>
</tr>
<tr>
<td>Tumwater Dam</td>
<td>Wells Fish Hatchery (FH)</td>
</tr>
<tr>
<td>Dryden Dam</td>
<td>Wells Dam ladders</td>
</tr>
<tr>
<td>Leavenworth National Fish Hatchery (NFH)</td>
<td>Winthrop National Fish Hatchery (NFH)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HOLDING, INCUBATION AND/OR REARING</th>
<th>Note: Rearing facilities provide coho for both basins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leavenworth NFH</td>
<td></td>
</tr>
<tr>
<td>Winthrop NFH</td>
<td></td>
</tr>
<tr>
<td>Peshastin Incubation Facility</td>
<td></td>
</tr>
<tr>
<td>Cascade FH</td>
<td></td>
</tr>
<tr>
<td>Willard NFH</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SMOLT RELEASES</th>
<th>Wenatchee</th>
<th>Methow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 500,00 above Tumwater Dam in Nason Creek and Beaver Creek</td>
<td>• 300,000 from Winthrop NFH</td>
</tr>
<tr>
<td></td>
<td>• 500,000 from Icicle Creek</td>
<td>• 75,000 from Lower Twisp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 125,000 from Wells FH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACCLIMATION</th>
<th>Wenatchee</th>
<th>Methow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Leavenworth NFH (Icicle Creek)</td>
<td>Winthrop NFH</td>
</tr>
<tr>
<td></td>
<td>Rohling</td>
<td>Lower Twisp</td>
</tr>
<tr>
<td></td>
<td>Coulter</td>
<td>Wells FH</td>
</tr>
<tr>
<td></td>
<td>Butcher</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beaver</td>
<td></td>
</tr>
</tbody>
</table>

Proposed Action

Vision and Biological Approach

The Yakama Nation’s long-term vision for the Mid-Columbia Coho Restoration program, as stated in the Master Plan (YN 2010), is:

To re-establish naturally spawning coho populations in mid-Columbia tributaries to biologically sustainable levels which provide significant harvest in most years.

Building on the feasibility studies that have been conducted since 1996, the proposal would maintain a phased approach to reintroducing coho into the Wenatchee and Methow basins: two broodstock development phases and three natural production phases. The broodstock development phases were designed to eliminate transfers of lower Columbia brood coho and to encourage broodstock adaptation so that returning coho can reach key habitat within the basins. The first phase of broodstock development has been accomplished and lower Columbia broodstock are no longer used in the program; however, the second phase continues the process of increasing broodstock stamina. After all broodstock development goals are met (see Section 2.2.1.2), the natural production phases would manage broodstock composition so that eventually the percent of natural-origin fish in the hatchery broodstock exceeds the percent of hatchery-origin fish on the spawning grounds (HSRG 2004). The numbers of smolts released would increase from 1.5 million to 2.16 million for the first three years of the natural production phase, then return to 1.51 million and eventually decrease (see Table 2-5). This short-term increase would begin the local adaptation process by releasing enough smolts in the natural environment to increase the number of adults returning to each tributary to spawn without the aid of a
hatchery. The coho restoration program is designed to end when a self-sustaining naturally reproducing population that supports harvest is established. This goal would be met when there is a natural-origin return escapement of more than 1,500 coho to each basin, with a terminal and mainstem harvest in most years; it is expected to be achieved by approximately 2028.

Facilities

Facility requirements for the Proposed Action are listed in Table ES-2 and described in detail in Section 2.2.2. No new facilities would be required during the ongoing broodstock development phase. During the natural production phases, the plan proposes to continue rearing most program fish at existing hatcheries. A new, small, in-basin adult holding/spawning, incubation and rearing facility also is proposed for these phases at a site on the Wenatchee River near Dryden Dam or a site on the Wenatchee River downstream of Lake Wenatchee.

Acclimation is planned at a combination of existing and new sites. Most acclimation sites would be existing water bodies (e.g., beaver ponds, side channels, etc.) and small constructed ponds.

The project proposes to use existing broodstock capture sites in upstream areas in addition to those used during the broodstock development phase, all of which are owned by other entities and operated by the YN and/or other fisheries resource agencies. One broodstock capture site (Chiwawa Weir) would need to extend its period of operation in order to capture coho adults.

Juvenile trapping for monitoring and evaluation of the program would take place at existing traps in both basins, with one exception: a new trap is proposed for the Little Wenatchee River, the site to be determined.

<table>
<thead>
<tr>
<th>Table ES-2. Summary of facilities: Proposed Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROODSTOCK COLLECTION</td>
</tr>
<tr>
<td>Wenatchee</td>
</tr>
<tr>
<td>Dryden Dam</td>
</tr>
<tr>
<td>Leavenworth NFH</td>
</tr>
<tr>
<td>Tumwater Dam</td>
</tr>
<tr>
<td>Chiwawa Weir</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INCUBATION/REARING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascade FH</td>
</tr>
<tr>
<td>Willard NFH</td>
</tr>
<tr>
<td>Winthrop NFH</td>
</tr>
<tr>
<td>Leavenworth NFH</td>
</tr>
<tr>
<td>Peshastin</td>
</tr>
<tr>
<td>Entiat NFH Backup</td>
</tr>
<tr>
<td>Proposed Dryden Hatchery</td>
</tr>
<tr>
<td>Backup George Hatchery</td>
</tr>
</tbody>
</table>

Note: Rearing facilities provide coho for both basins

a. C = Currently in use; F = Future
Table ES-2. Summary of facilities: Proposed Action (continued)

<table>
<thead>
<tr>
<th>Wenatchee</th>
<th>C or F</th>
<th>Construction?</th>
<th>Methow</th>
<th>C or F</th>
<th>Construction?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leavenworth NFH</td>
<td>C</td>
<td>No</td>
<td>Winthrop NFH</td>
<td>C</td>
<td>No</td>
</tr>
<tr>
<td>Beaver</td>
<td>C</td>
<td>No</td>
<td>Lower Twisp</td>
<td>C</td>
<td>No</td>
</tr>
<tr>
<td>Butcher</td>
<td>C</td>
<td>New well, 50-ft surface water channel</td>
<td>Goat Wall</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>Clear</td>
<td>C</td>
<td>No</td>
<td>Gold</td>
<td>F</td>
<td>Expand pond</td>
</tr>
<tr>
<td>Coulter</td>
<td>C</td>
<td>No</td>
<td>Heath</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>Rohlfing<sup>b</sup></td>
<td>C</td>
<td>No</td>
<td>Lincoln<sup>b</sup></td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>Brender</td>
<td>F</td>
<td>No</td>
<td>Mason</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>Chikamin</td>
<td>F</td>
<td>New pond, water intake, 120-ft buried pipe, 70-ft surface discharge channel</td>
<td>MSWA Eightmile</td>
<td>F</td>
<td>New well, 500-ft surface water channel, 450-ft buried power line</td>
</tr>
<tr>
<td>Minnow</td>
<td>F</td>
<td>New pond, 600-ft road</td>
<td>Parmley</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>Scheibler</td>
<td>F</td>
<td>Expand pond</td>
<td>Pete Creek Pond</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>Tall Timber</td>
<td>F</td>
<td>New water intake, 800-ft buried pipe</td>
<td>Twisp Weir</td>
<td>F</td>
<td>New pond, well, water intake on diversion ditch, 400-ft surface water channel, buried water (500 ft) & power (400 ft) lines, 20-ft road</td>
</tr>
<tr>
<td>Two Rivers<sup>c</sup></td>
<td>F</td>
<td>No</td>
<td>Hancock (adults)</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>White River Springs</td>
<td>F</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dirty Face (adults)</td>
<td>F</td>
<td>No</td>
<td>Hancock (adults)</td>
<td>F</td>
<td>No</td>
</tr>
</tbody>
</table>

ACCLIMATION (Backup)

<table>
<thead>
<tr>
<th>Wenatchee</th>
<th>C or F</th>
<th>Construction?</th>
<th>Methow</th>
<th>C or F</th>
<th>Construction?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen</td>
<td>F</td>
<td>No</td>
<td>Balky Hill</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>Coulter/ Roaring</td>
<td>F</td>
<td>No</td>
<td>Biddle</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>Dryden<sup>d</sup></td>
<td>F</td>
<td>New ponds, well, 850-ft buried water supply & discharge pipes</td>
<td>Chewuch AF</td>
<td>F</td>
<td>New pond, well, 300-ft buried water delivery and discharge pipes, 50-ft buried power line</td>
</tr>
<tr>
<td>McComas<sup>e</sup></td>
<td>F</td>
<td>No</td>
<td>MSRF Chewuch</td>
<td>F</td>
<td>New pond, well, 1,000-ft surface water delivery & discharge channels, 100-ft buried power line</td>
</tr>
<tr>
<td>Squadroni</td>
<td>F</td>
<td>New pond, well, 50-ft water supply & 20-ft discharge channels</td>
<td>Newby</td>
<td>F</td>
<td>New pond, intake structure, 400-ft surface water channel, 350-ft buried discharge pipes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poorman</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Utley</td>
<td>F</td>
<td>New 80-ft long channel as outlet for existing pond.</td>
</tr>
</tbody>
</table>

^a C = Currently used; F = Future
^b Construction at Rohlfing and Lincoln in 2011 is done under a different program; impacts are evaluated in other NEPA processes.
^c Previously used by project; not in use currently.
^d Activities refer to those required if the Dryden site is used for acclimation only and not as a hatchery site.
^e McComas is a new site proposed to be constructed by Grant PUD; impacts will be evaluated in other permitting processes.
Program Costs

The program currently is funded by BPA, Grant County PUD, and Chelan County PUD. (Douglas County PUD contributed $600,000 in 2008 towards capital costs related to the feasibility studies.) The current program also shares rearing costs with National Oceanic and Atmospheric Administration Fisheries Service (NOAA Fisheries). The total amount from NOAA Fisheries and Grant and Chelan PUDs is close to $1.5 million annually. The current program also shares monitoring and evaluation costs with Washington Department of Fish and Wildlife (WDFW). If the Proposed Action is implemented, cost sharing with all these entities is expected to continue. Table ES-3 shows expected operating costs for 2013, the year they are likely to be at their peak.

<table>
<thead>
<tr>
<th></th>
<th>Wenatchee</th>
<th>Methow</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning, Design, Permits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rearing</td>
<td>$530,870</td>
<td>$388,385</td>
<td>$919,255</td>
</tr>
<tr>
<td>Tagging</td>
<td>$513,820</td>
<td>$375,911</td>
<td>$889,731</td>
</tr>
<tr>
<td>O&M</td>
<td>$955,706</td>
<td>$699,196</td>
<td>$1,654,902</td>
</tr>
<tr>
<td>M&E</td>
<td>$429,586</td>
<td>$314,286</td>
<td>$743,872</td>
</tr>
<tr>
<td>TOTAL OPERATING</td>
<td>$2,429,982</td>
<td>$1,777,778</td>
<td>$4,207,760</td>
</tr>
</tbody>
</table>

No Action Alternative

NEPA requires federal agencies to consider the effects of not taking the proposed action. BPA is the main funding source for this coho restoration project, although not the only one, as described above. If BPA were to choose the No Action Alternative, BPA would discontinue funding. A coho program would continue in the mid-Columbia basins, but at a reduced scope from the current program because funding would essentially be cut in half. Some existing cost-sharing might be reduced as well, commensurate with the program level. The reduced funding would require cutting staff numbers. The result would be reductions in all aspects of the current program.

Biological Approach

The program would be reduced from the current program. Reduced staff levels would mean that fewer fish could be incubated and reared, even if existing capacity remained unchanged. As a result, fewer fish would be released: 500,000 in the Wenatchee basin and 200,000 in the Methow basin, as opposed to the current level of 1 million in the Wenatchee and 500,000 in the Methow. No attempt would be made to expand production into new habitat; with reduced staff and funding, the program could not operate new acclimation facilities in natural production areas. The program primarily would be propagating hatchery fish and probably would be replaced by a hatchery program to promote fisheries only. The amount of monitoring and evaluation would be limited.

Facilities

The program would continue to rely on existing facilities. The new facilities proposed as part of the Proposed Action would not be constructed, and it is unlikely that existing facilities would be
modified. While most of the existing infrastructure would be available, the lack of personnel would dictate its use.

- **Broodstock capture**: The current broodstock capture locations—Tumwater, Dryden, Leavenworth National Fish Hatchery (NFH), Wells, Winthrop NFH—would remain available; however, the reduced budget would limit staff numbers, thus likely reducing the number of sites where broodstock would be collected. Numbers of broodstock collected would be half that of the current program. New broodstock capture locations would not be added.

- **Incubation/Rearing**: Willard NFH, which receives 60% of its operating costs from BPA’s coho program dollars, would not be used as an incubation/rearing facility, and use of the in-basin Peshastin Incubation Facility would be eliminated. Instead, Cascade FH, Winthrop NFH, and Leavenworth NFH would be used at a reduced capacity.

- **Smolt releases**: Table ES-4 shows a potential production program for the No Action Alternative and the acclimation sites that could be used. All but two of these sites are currently being used to acclimate coho. The exceptions, Lincoln and Heath in the Methow basin, currently are planned for spring Chinook and steelhead acclimation only; however, the Yakama Nation could choose to add coho acclimation at these sites sometime in the future. While the program depicted in Table ES-4 is possible, given the availability of sites, the reduced budget, with fewer staff available to stock and monitor sites, would probably allow use of only one or two release sites and the hatchery.

- **Monitoring and Evaluation**: Until 2011, the Integrated Status & Effectiveness Monitoring Program (ISEMP) (BPA project #2003-017-00) contributed a quarter of the funding for the Nason Creek smolt trap; that contribution has now ended. Currently, Grant County PUD and BPA through the coho project are the only remaining funding agencies for this trap; without the BPA contribution, it is unclear whether Grant PUD would continue funding the trap without a cost-share available. No new traps would be installed.

<table>
<thead>
<tr>
<th>Location</th>
<th>Facility Name</th>
<th>Smolt Release</th>
<th>Total Basin Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenatchee River<sup>a</sup></td>
<td>Leavenworth NFH</td>
<td>100,000</td>
<td>500,000</td>
</tr>
<tr>
<td></td>
<td>Butcher Creek</td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coulter Pond</td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beaver Creek</td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rohlfing Pond</td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td>Methow River<sup>b</sup></td>
<td>Winthrop NFH</td>
<td>100,000</td>
<td>200,000</td>
</tr>
<tr>
<td></td>
<td>Lincoln</td>
<td>60,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heath</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower Twisp</td>
<td>20,000</td>
<td></td>
</tr>
</tbody>
</table>

^a Wenatchee production would be spawned and eggs early-incubated at Leavenworth NFH and transferred to Cascade Hatchery (funded by Mitchell Act) for final incubation and rearing to the pre-smolt stage prior to transfer to acclimation/release sites identified above.

^b Methow production would be spawned and eggs early-incubated at Winthrop NFH and transferred to Cascade NFH for final incubation and rearing to the pre-smolt stage prior to transfer to acclimation/release sites identified above. Some fish may be able to be reared at Winthrop NFH but at a very reduced number.
Comparison of Alternatives

Table ES-5 compares the two alternatives considered in detail in this EIS—No Action and the Proposed Action—in terms of how well they meet the purposes defined in Section 1.2.

Table ES-5. Comparison of the Proposed Action and the No Action Alternative to Purposes

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Proposed Action</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop a locally adapted, self-sustaining, naturally spawning coho stock that occupies its historical habitat in the Wenatchee and Methow river basins</td>
<td>By providing funding for expanding coho distribution into natural production areas of the basins, model results indicate that a locally adapted, self-sustaining, naturally spawning coho stock has an excellent chance of being established.</td>
<td>Without funding to expand into natural production areas, a locally adapted, self-sustaining, naturally spawning coho stock is unlikely to be established. The majority of fish produced by the project would be hatchery fish.</td>
</tr>
<tr>
<td>Increase the abundance of Mid-Columbia coho salmon to numbers sufficient to sustain a mainstem and terminal harvest in most years</td>
<td>Program projections indicate that by funding increased coho production for a limited period and expanding their distribution into natural production areas, natural coho abundance would be increased by 2028 sufficient to sustain harvests.</td>
<td>Without BPA funding, numbers of juveniles reared would be reduced, thus reducing the likelihood that natural coho abundance would be increased sufficiently to provide significant harvest.</td>
</tr>
<tr>
<td>Maintain consistency with the Council’s Columbia River Basin Fish and Wildlife Program and its recommendations as well as with the visions and goals of other regional plans, including subbasin plans</td>
<td>Would be consistent with the Council’s recommendation to implement the program proposed in the Master Plan. Would be consistent with subbasin plans by restoring coho as part of ecologically balanced systems.</td>
<td>Would not be consistent with the Council’s recommendation to implement the program proposed in the Master Plan. Would not be consistent with subbasin plans because naturally spawning populations of coho are unlikely to be restored.</td>
</tr>
<tr>
<td>Maintain consistency with the coho production objectives specified in the 2008-2017 United States v. Oregon Fish Management Agreement for the Wenatchee and Methow subbasins</td>
<td>Continued BPA funding would provide the personnel, equipment, and facilities needed to maintain the U.S. v. Oregon production goal of 1.5 million smolts released from the Wenatchee and Methow subbasins.</td>
<td>Without BPA funding, the U.S. v. Oregon production goal of 1.5 million smolts would not be met because personnel, equipment, and facilities would have to be reduced below current levels.</td>
</tr>
<tr>
<td>Minimize harm to natural or human resources, including species listed under the Endangered Species Act</td>
<td>Proposed mitigation measures would minimize harm to natural and human resources. Approvals by and reporting to regulatory agencies would minimize the risk of adverse effects to listed species. Could provide ecological benefits that would aid in listed species recovery.</td>
<td>With no construction of new facilities, natural and human resources would not be adversely affected. Low numbers of naturally produced coho could reduce the risk of adverse effects to listed species but also would not provide potential ecological benefits.</td>
</tr>
</tbody>
</table>
Summary of Environmental Effects

Table ES-6 summarizes the environmental effects, discussed in detail in Chapters 3 and 4.

<table>
<thead>
<tr>
<th>Impact</th>
<th>Proposed Action</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects on water quality from facility discharges</td>
<td>There would be minor, localized impacts from phosphorus in effluent, but model simulations show that the maximum possible impact of all facilities, including the proposed hatchery, would be undetectable downstream in the sections of the river that are water quality limited.</td>
<td>No change from current program, or reduced impacts: existing facilities would continue to be used, but fewer fish would be produced, resulting in lower discharges of fish waste and chemicals attributable to the coho project.</td>
</tr>
<tr>
<td>Effects of surface and groundwater withdrawals on surface water quantity</td>
<td>Local reduction in flows at withdrawal points for groundwater and in bypass reaches for surface water, offset by return flows from facilities.</td>
<td>No change from existing conditions because no new withdrawals are proposed.</td>
</tr>
<tr>
<td>Effects of water withdrawals on groundwater supply</td>
<td>Local reductions at 5 acclimation sites and the hatchery; no regional reductions.</td>
<td>No change from existing conditions because no new wells would be developed.</td>
</tr>
<tr>
<td>Effects of surface and groundwater withdrawals on water rights</td>
<td>Potential impact to ground water rights at Dryden; potential impact to on- or off-site wells at 5 acclimation sites. No impacts to surface water rights at any of the sites.</td>
<td>No change from existing conditions because no new wells would be developed.</td>
</tr>
<tr>
<td>Sedimentation effects on fish</td>
<td>Minimal or no effects on ESA-listed and other fish from temporary sedimentation due to excavation and construction; best management practices would be used for erosion control.</td>
<td>No sedimentation effects because no new facilities would be constructed.</td>
</tr>
<tr>
<td>Effects of surface water withdrawal on ESA-listed and other fish</td>
<td>- Relatively small withdrawal volumes at acclimation sites would not substantially reduce in-stream flow quantities, change habitat availability including hiding/resting/foraging habitats, or affect migratory movements (fry, juvenile, and adult) of listed salmonids.</td>
<td>No change from current conditions because no new surface water withdrawals would be made.</td>
</tr>
</tbody>
</table>
| Reduced access to migration or rearing habitat for ESA-listed and other fish | Fish other than coho would be excluded from 2.5 acres of 4.6 acres of currently accessible habitat at proposed acclimation sites in both basins. For ESA-listed fish, this translates to:
- Up to 113 spring Chinook juveniles and 237 steelhead juveniles excluded annually from Wenatchee basin sites out of a total annual wild population of 55,619 – 311,669 Chinook smolts and 17,499 - 85,443 steelhead smolts.
- Approx. 314 spring Chinook juveniles and 201 steelhead juveniles excluded annually from Methow basin sites out of a total annual wild population of 15,306 – 33,710 Chinook smolts and 8,809 - 15,003 steelhead smolts.
- Juvenile bull trout numbers excluded from sites in each basin are very small (Wenatchee 3; Methow 10). | Approximately ½ acre of currently accessible habitat at acclimation sites would be excluded from use by fish other than coho, for a total of 2 acres excluded from use for 6 weeks each year, due to potential use of 2 Methow basin acclimation sites not in 2010 program. |
| Trapping of fish at adult traps | Trapping at all but one trap is occurring under existing operations. Potential take of bull trout at Chiwawa Weir if operations are extended to allow coho trapping. | Trapping could be reduced at Dryden Dam and Wells FH; without coho trapping, the traps would be open less, with potential for incidental take of listed fish reduced. |

ES-11
<table>
<thead>
<tr>
<th>Impact</th>
<th>Proposed Action</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapping of fish at juvenile traps</td>
<td>Incidental take of spring Chinook or bull trout is possible at a potential new trap on the Little Wenatchee R.; impacts would be evaluated when location is proposed.</td>
<td>No change in current conditions; existing traps are operated with or without coho project. No new traps proposed.</td>
</tr>
<tr>
<td>Coho predation on ESA-listed fish</td>
<td>Studies show that approximately 0.28% of hatchery coho smolts and 2.7% of naturally produced coho prey on listed species, with less than 1% of the Chinook fry population consumed. Listed populations would be monitored and changes evaluated to determine if increasing numbers of coho increase predation with adverse effects on listed species.</td>
<td>Minimal predation by hatchery smolts as in existing program. Minimal predation by naturally produced smolts, as significant numbers of naturally produced coho are unlikely to be established.</td>
</tr>
<tr>
<td>Competition between naturally produced coho and ESA-listed species</td>
<td>Studies show species use different microhabitats, so competition is not expected at low densities. Listed species would be monitored to determine if adverse effects occur with increasing densities.</td>
<td>Without the expanded program, naturally produced coho numbers and densities would remain low, so potential competition with listed species would be limited or non-existent.</td>
</tr>
<tr>
<td>Effects on ecological balance</td>
<td>The addition of coho carcasses at the onset of winter might provide an increased marine-derived source of nutrients and improve over-winter survival for all species. Juvenile and adult coho provide prey for fish-eating predators including bald eagles, mergansers, otters, and bears. Ecological balance could improve with coho occupying a critical niche in the natural environment.</td>
<td>Current conditions would continue; e.g., in Nason Creek, there is very little carcass production, leaving a potential void in the nutrient balance prior to the onset of winter. Little potential for improvement in ecological balance.</td>
</tr>
<tr>
<td>Habitat reductions for ESA-listed wildlife</td>
<td>Slight potential reduction in spotted owl habitat possible at Tall Timber (w/in 1 mi. of management circle); qualified biologist would confirm presence or absence of nests in any trees needing removal.</td>
<td>No change in current conditions.</td>
</tr>
<tr>
<td>Habitat reductions for state-listed wildlife</td>
<td>No noticeable reductions in available habitat for any species listed under WDFW Priority Habitat and Species program. Slight increase in aquatic habitat due to new ponds.</td>
<td>No change in current conditions.</td>
</tr>
<tr>
<td>Disturbance to wildlife</td>
<td>Construction noise could cause certain species to avoid 9 sites for 1-60 days, May-October of 2012. Operations, including use of noise-baffled generators, would not noticeably disturb wildlife because all primary sites currently experience human activity.</td>
<td>No change in current conditions.</td>
</tr>
<tr>
<td>Effects on wetlands</td>
<td>Total estimated wetland impacts at primary sites: - Temporary: 1,350 sq ft. would be replanted - Permanently removed: 3,179 sq ft. - New wetland created: 52,272 sq ft.</td>
<td>No change in current conditions.</td>
</tr>
<tr>
<td>Changes to floodplain function</td>
<td>Construction would occur in floodplains, requiring permits at up to 6 primary sites in the Wenatchee and 1 primary site in the Methow. - Flood elevations are not expected to change. - New ponds could add a small amount of flood storage. - Excavated material would be disposed outside of floodplains and not change grade that could divert flood flows to nearby properties.</td>
<td>No change in current conditions.</td>
</tr>
<tr>
<td>Effects on aesthetic/visual quality</td>
<td>Dryden Hatchery could reduce the contrast of the site with the surrounding area and add to the aesthetic appeal for viewers. Acclimation sites would not change visual quality.</td>
<td>No change in current conditions.</td>
</tr>
<tr>
<td>Effects on recreation</td>
<td>No interference with current recreation uses. Generators at noise-sensitive acclimation sites would be enclosed in noise-muffling structures to meet state noise standards.</td>
<td>No change in current conditions.</td>
</tr>
<tr>
<td>Economic effects</td>
<td>Minimal increase in employment, temporary and permanent. No new infrastructure or services required.</td>
<td>Loss of 11 permanent and 10 seasonal YN jobs.</td>
</tr>
<tr>
<td>Impact</td>
<td>Proposed Action</td>
<td>No Action Alternative</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Effects on harvest</td>
<td>Potential terminal, mainstem, and ocean tribal, commercial, and sport harvest by 2028.</td>
<td>No harvest of naturally produced fish; potential harvest of hatchery fish if program changes to harvest augmentation.</td>
</tr>
<tr>
<td>Effects on cultural resources</td>
<td>Unknown. Surveys scheduled for 2011 before Final EIS.</td>
<td>No effect.</td>
</tr>
<tr>
<td>Noise effects</td>
<td>Construction noise at residences or properties near acclimation sites 8 a.m. – 5 p.m. M-F, for 1 day to 4 months in 2012. Construction noise likely not noticeable for the 5-month hatchery construction period due to noise from surrounding uses at Dryden. Noise from generators would be muffled to meet state standards.</td>
<td>No change in current conditions.</td>
</tr>
<tr>
<td>Effects on air quality</td>
<td>Minor short-term increases in dust during spring and summer of 2012 from construction activities. Undetectable increases in greenhouse gases.</td>
<td>No change in current conditions.</td>
</tr>
<tr>
<td>Consistency with comprehensive plans</td>
<td>Proposed activities would be consistent with goals and policies in Chelan County and Okanogan County comprehensive plans.</td>
<td>Current program is consistent with comprehensive plans in Chelan and Okanogan counties.</td>
</tr>
<tr>
<td>Consistency with subbasin plans</td>
<td>If successful, the program would restore naturally spawning coho populations to the Methow and Wenatchee subbasins as envisioned in both subbasin plans.</td>
<td>Would not restore natural populations of coho as called for in Wenatchee and Methow subbasin plans.</td>
</tr>
<tr>
<td>Consistency with Council F&W Program</td>
<td>Would implement Council recommendations regarding this program which began with its identification as a high-priority project in the 1994 Fish and Wildlife Program.</td>
<td>Would not implement Council recommendations regarding this program.</td>
</tr>
</tbody>
</table>
Chapter 1. Purpose of and Need for Action

Bonneville Power Administration (BPA), in partnership with the Yakama Nation (YN), proposes to fund transition of the Mid-Columbia Coho Restoration Program from its feasibility phase to a comprehensive program to restore naturally spawning populations of coho salmon in harvestable numbers to the Wenatchee and Methow river basins in north central Washington State. Construction of a new hatchery on the Wenatchee River in Chelan County, and construction and use of small acclimation facilities in natural settings in Chelan and Okanogan counties, are included in this proposal. Figure 1-1 shows the general project area.

Since 1996, BPA has funded the Yakama Nation to study the feasibility of reintroducing coho in north central Washington, from which natural populations were extirpated. The studies show a reasonable likelihood of success for full-scale coho reintroduction, so the YN prepared a Master Plan (YN 2010) for a program to increase local adaptation and self-sustainability of the newly developed Mid-Columbia coho broodstock and to increase their abundance in the upper tributaries of the two basins. This Environmental Impact Statement (EIS) analyzes the effects of the Proposed Action as described in the Master Plan and the No Action Alternative required by the National Environmental Policy Act (NEPA).

1.1 Underlying Need for Action

BPA’s underlying need for action is to return naturally spawning, locally adapted populations of coho to the Wenatchee and Methow basins as a way to help fulfill its obligations under the Pacific Northwest Electric Power Planning and Conservation Act (Act), 16 U.S.C. § 839 et seq., Section 4(h)(10)(A); and the 2008 Columbia Basin Fish Accords Memorandum of Agreement with the YN and others.

Under the Act, BPA must protect, mitigate, and enhance fish and wildlife affected by the development, operation, and management of federal hydroelectric facilities on the Columbia River and its tributaries. BPA must fulfill this duty in a manner consistent with the Columbia River Basin Fish and Wildlife Program developed by the Northwest Power and Conservation Council. The Council and its Independent Science Review Panel reviewed drafts of the Master Plan, and on March 9, 2010, the Council recommended that BPA implement the project as described in the plan.

On May 2, 2008, BPA, Bureau of Reclamation, and U.S. Army Corps of Engineers signed the 2008 Columbia Basin Fish Accords Memorandum of Agreement with three of the Treaty Tribes—the Confederated Tribes and Bands of the Yakama Nation, the Confederated Tribes of Warm Springs Reservation, and the Confederated Tribes of the Umatilla Indian Reservation. The agreement includes funding for the YN’s Mid-Columbia Coho Restoration Program. BPA conditioned its funding commitment on securing a favorable recommendation from the Council and on compliance with all its other mandates, including NEPA. Salmon are a part of the spiritual and cultural identity of the Columbia River tribes. Salmon also play an important role in the economic well-being of tribal members. Restoring coho salmon to north central Washington would help the tribes to exercise their fishing rights as well as provide for fishing by sport and commercial fishers. Reintroducing coho in these basins could also contribute to restoring the ecological balance of the system. The Wenatchee Subbasin Plan recognizes that “Restoration of individual populations may not be possible without restoration of other fish and wildlife populations with which they co-evolved.” (NPCC 2004a).
Mid-Columbia Coho Restoration Program

Chapter 1 – Purpose and Need

Figure 1-1. Project Area Overview
1.2 Purposes

In meeting the underlying need, the alternatives considered should achieve the purposes listed below. BPA will base its choice among alternatives on how well each one meets them.

- Develop a locally adapted, self-sustaining, naturally spawning coho stock that occupies its historical habitat in the Wenatchee and Methow river basins.
- Increase the abundance of Mid-Columbia coho salmon to numbers sufficient to sustain a mainstem and terminal harvest in most years.
- Maintain consistency with the Council’s Columbia River Basin Fish and Wildlife Program and its recommendations as well as with the visions and goals of other regional plans, including subbasin plans.
- Maintain consistency with the coho production objectives specified in the 2008-2017 United States v. Oregon Fish Management Agreement for the Wenatchee and Methow subbasins.
- Minimize harm to natural or human resources, including species listed under the Endangered Species Act.

1.3 History of Coho in the Mid-Columbia Region

1.3.1 Historical Conditions and Extirpation

Mullan (1984) estimated historical mid-Columbia River adult coho populations as follows:

- Wenatchee basin—6,000 - 7,000
- Methow basin—23,000 - 31,000

Prior to the establishment of BPA in 1937, mid-Columbia coho salmon populations were decimated by impassable dams, harmful forestry practices, and unscreened irrigation diversions in the tributaries, along with an extremely high harvest rate in the lower Columbia River. The loss of natural stream flow degraded habitat quality and further reduced coho productivity. Over the years, irrigation, livestock grazing, mining, timber harvest, road and railroad construction, residential and other development, and fire management also contributed to destruction of salmon habitat. By the 1930s, coho were considered extirpated from the mid-Columbia region.

For several reasons, self-sustaining coho populations were not re-established in mid-Columbia basins despite plantings of 46 million fry, fingerlings, and smolts from Leavenworth, Entiat, and Winthrop National Fish Hatcheries between 1942 and 1975:

- A substantial amount of critical physical fish habitat was lost or severely degraded (Tyus 1990; Petts 1980; Diamond and Pribble 1978).
- Existing coho programs were unsuccessful or lower priority than programs for other salmonid species. For example, the most recent coho hatchery program in the mid-Columbia region was at Turtle Rock Hatchery, funded by Chelan Public Utility District. The coho program was terminated due to poor adult returns, thought to be caused in part by pathogenic water supplies resulting in disease problems at the hatchery. Because fall Chinook and steelhead were higher priority species, they were given priority use of the
limited supply of high quality hatchery water. The last coho releases from this program were in 1994.

- Fish culture practices in general resulted in poor adult return rates. Rearing at high densities in concrete raceways, an incomplete understanding of fish health and nutritional needs, the use of water supplies with unnatural temperature profiles, and un-acclimated, non-volitional releases directly from hatcheries into the wild environment produced smolts with low survival rates.

- Release locations did not support returns to high quality coho habitat. Releases from hatcheries did not imprint smolts with migratory clues that would encourage them to populate habitats that were far upstream of the release sites.

- The construction and operation of mainstem Columbia River hydropower projects were detrimental to mid-Columbia River salmonid populations. Coho had to pass through a number of dams and reservoirs, leading to deaths from turbines, predation, migration delays, gas bubble trauma, and so forth.

- Hatchery spawning protocols did not support the development of coho stocks that would be successful in the natural environment and migrate long distances to the upper Columbia basin.

- Harvest was not managed for the protection of weak stocks. Open ocean troll and gill net fisheries, the lack of near real-time catch monitoring, and the limited ability to predict run sizes resulted in over-harvest of wild fish and weak hatchery stocks.

Since Priest Rapids Dam northeast of Yakima, Washington, was completed in 1960, the peak escapement of adult coho upstream of the dam was probably never greater than 10,000 coho and, as of 1998, had not exceeded 1,300 since 1974 (WDFW/ODFW 1998). From 1988 to 1994, adult counts at Priest Rapids Dam averaged only 16 coho, probably a result of releases from Turtle Rock Hatchery, which annually produced about 600,000 coho smolts until the program was terminated in 1994 (WDFW/ODFW 1995).

While no one knows for sure why natural populations of spring Chinook and steelhead persisted (admittedly at low levels) when coho did not, possible reasons include:

- Very high harvest rates on coho in the lower Columbia River in the late 19th and early 20th centuries—as much as 90-95%; other species were not harvested at this rate.

- The fixed three-year coho life cycle. Spring Chinook and steelhead have greater variability in their life cycles than do coho. Spring Chinook can return as age 3, 4, or 5 adults. Steelhead can be residents in freshwater for up to 3 years and then migrate to the ocean, or they can be freshwater residents for their entire life cycle and still have progeny that migrate to the ocean. This variability in life cycles allows more potential for at least some members of a generation of spring Chinook or steelhead to survive adverse local or regional environmental conditions. For coho, however, the production from any one spawning year would occupy the same habitat at the same time throughout their life cycle. Thus all would be exposed to extreme conditions at the same time, with the potential to significantly reduce the survival rate of the entire generation.

- Unscreened irrigation diversions on small tributaries in mid-Columbia basins. Coho spawn in smaller tributaries than spring Chinook or steelhead, so these small diversions
could have diverted and trapped more coho juveniles than juveniles of other species that might not occupy small tributaries. This entrainment could have reduced the numbers of juveniles that survived to negotiate the other hazards that affect all salmonids in their life cycle.

1.3.2 Current Conditions

In the past two decades, conditions and practices have changed and improved to a certain degree. Some of the local habitat causes of coho depletion have been corrected, although there is still work to be done. For example, many irrigation diversions have been screened, tributary dams have been removed, new logging practice regulations have provided increased environmental protection, mining has ended, and grazing practices have improved.

Habitat Conservation Plans have been negotiated between fisheries resource managers and Mid-Columbia Public Utility Districts (PUDs). The plans have strict performance standards (survival criteria) for both project passage and hatchery compensation so that the hydroelectric projects associated with each plan can be considered to have No Net Impact on anadromous species.

The ESA listings of several salmonid species that migrate through the lower Columbia River have curtailed coho fisheries in the ocean that once over-harvested the mid-Columbia stocks of coho. Fisheries restrictions based on ESA-listings have curtailed ocean harvest of Lower Columbia River coho from an annual average of 80% between 1970 and 1983; to 49% from 1984 to 1993; to 10% from 1994 to 2007 (NMFS 2008a). These restrictions are likely to be in effect for a number of years.

Recent improvements in artificial production practices would also improve efforts aimed at supporting natural production. Supplementation techniques, featuring refined genetic objectives, the production of “natural-like” hatchery smolts, and acclimation and release in wild habitat, are being used.

1.4 Coho Reintroduction Feasibility Studies

In 1996, BPA began funding the Yakama Nation to study the feasibility of reintroducing coho to the mid-Columbia region. BPA analyzed the effects of a proposed comprehensive plan for feasibility studies in the Mid-Columbia Coho Reintroduction Feasibility Project Final EA, completed in April 1999 (DOE/EA-1282). Supplemental Analyses (DOE/EA-1282/SA-01, -02, -03, and -04) were prepared to analyze effects of additional activities and facilities proposed for the studies.

Feasibility studies were designed to achieve two primary goals:

1) **Determine whether a broodstock can be developed from lower Columbia River coho stocks whose progeny can survive in increasing numbers to return as adults to the mid-Columbia region.**

3 Grant County PUD, Chelan County PUD, and Douglas County PUD.
4 Years after this project began (and was named), many entities in the region began using the term “upper Columbia” to refer to the region in which the Wenatchee and Methow subbasins lie. We have chosen to continue using “mid-Columbia” to refer to this project in order to demonstrate the continuity of the project from the feasibility studies onward. As well, because the Columbia River originates hundreds of miles upstream in Canada, the term “mid-Columbia” seems to be more geographically accurate.
2) **Initiate natural reproduction in areas of low risk to sensitive species and in other select areas to study the risks and interactions with sensitive species.**

The feasibility goals have been met; results are summarized in Table 1-1.

<table>
<thead>
<tr>
<th>Feasibility Study Goals</th>
<th>Results</th>
<th>Goal Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Determine whether a broodstock can be developed from Lower Columbia River stocks.</td>
<td>Lower Columbia River (LCR) coho were transferred to the Wenatchee Basin in 1999, 2000, and 2001. A limited number of LCR transfers were used to supplement local broodstocking efforts in 2002. Since 2003, no LCR broodstock have been released in the Wenatchee basin (YN 2010 Table 3-4). The program is currently releasing third generation local broodstock. Releases of LCR coho salmon smolts were discontinued in the Methow River basin in 2006. Broodstock collection goals have been met or exceeded since 2006 in the Wenatchee basin and since 2009 in the Methow basin. By no longer relying on the transfer of coho from Lower Columbia River hatcheries, YN has demonstrated that a local broodstock can be developed from Lower Columbia River stocks. Smolt-to-adult returns (SARs) have trended upwards with each generation of broodstock development (YN 2010 Figures 3-1 & 3-2).</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>The YN has documented spawning escapement in the Wenatchee and Methow basins (YN 2010 Figures 3-4 & 3-5). In the Wenatchee basin, redds counts have ranged from a low of 28 in 2002 to a high of 1,666 in 2007 (mean = 627; YN 2010 Figure 3-4). While redds numbers are lower in the Methow (a maximum of 306 redds in 2007), the annual fluctuations are similar to the Wenatchee. Juvenile production has been documented in the Wenatchee (Methow analysis is incomplete). Annual population estimates of naturally produced coho emigrating from the Wenatchee River range from a low of 5,826 in 2002 to a high of 48,708 in 2007 (YN 2010 Table 3-7). The naturally produced coho smolts have survived to return as adults. SARs for naturally produced coho range from 0.15% to 1.64% (YN 2010 Table 3-7). Studies of interactions with sensitive species (spring Chinook, steelhead, and sockeye) were developed under the direction, guidance, review and approval of the Mid-Columbia Coho Technical Work Group. Critical uncertainties answered include rates of residualism, redds superimposition, predation by hatchery coho on naturally produced spring Chinook fry, and competition for space and food during freshwater rearing. The YN detected no significant impacts on listed fish throughout the evaluations (YN 2010 section 3.2).</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1.5 Decisions to be Made and Responsible Officials

BPA will use the final EIS to decide whether to fund continued coho reintroduction efforts, including the construction of new facilities, in the Wenatchee and Methow basins. The Responsible Official is the Administrator and Chief Executive Officer.

The EIS is part of the second step in a 3-step project planning process established by the Council. The first step was preparation of the project Master Plan (YN 2010) which provides the basis for the proposal analyzed in this EIS. The third step is the final design and cost estimate review leading to construction of the proposed facilities, should BPA decide to fund the program.

The Yakama Nation is a cooperating agency and assisted with preparation of this EIS. The YN must decide whether to support BPA’s decision on a preferred alternative for the Mid-Columbia Coho Restoration Program. As co-manager of fish and wildlife resources in the Wenatchee and Methow basins, along with the Washington Department of Fish and Wildlife; and because of its
long-term cultural interest in the project; the YN must consider the potential effects of the project on the tribal community and the natural resources it manages.

Okanogan County is a cooperating agency and has agreed to serve as the lead agency to satisfy Washington State Environmental Policy Act (SEPA) procedural requirements.

Information in this EIS may also be used by other agencies to base decisions on permits, authorizations, management plans and other approvals associated with the project.

1.6 Public Involvement and Scoping

Over the years, the Mid-Columbia Coho Restoration Program has involved state and federal agencies, other tribes, Mid-Columbia public utilities, the Northwest Power and Conservation Council, and interested residents and citizens in developing and reviewing the scope of the feasibility studies, methods used, and monitoring and evaluation studies and results. The YN also consulted with these organizations and individuals, as well as with a variety of scientists throughout the region, to develop the Master Plan (YN 2010), on which the proposed action is based.

On July 30, 2009, the public process for the NEPA review of the current proposed action began with the publication in the Federal Register of a Notice of Intent to Prepare an Environmental Impact Statement. Meetings to provide an opportunity for the public to contribute to defining the scope of the EIS analysis and alternatives were held in Leavenworth, Washington, on August 20, 2009 and in Twisp, Washington, on August 21, 2009. At those meetings, YN staff presented an overview of the proposed project, and oral and written comments were recorded at both meetings. Written comments were accepted by BPA until September 15, 2009 and are posted on BPA’s web site.

The following summary lists the general issues raised at the meetings and in written comments and where they are addressed in the EIS. Complete comments are accessible through the BPA website. http://www.bpa.gov/applications/publiccomments/CommentList.aspx?ID=79

Need for Project

YN has access to adequate supplies of coho and other species on the lower Columbia; the tribes have plenty of money from casinos and should pay for the project themselves; too many ratepayer dollars are spent on salmon restoration projects that benefit only a small number of people; money should be spent on salmon programs in the lower Columbia, not here. (See Sections 1.1 and 1.2)

Reviewers and Decision-makers

Does the project receive an independent scientific review; who makes the decision on this project; which agencies have been involved in this project. (See Sections 1.4, 1.5, and 1.6)

Alternatives to consider

Can you get wild donor fish from out of the area, like Alaska or Canada; can you use egg boxes instead of hatcheries as an alternative rearing method. (See Section 2.4)

No Action Alternative

Effect on Yakama Nation’s ability to implement the program; effect on BPA’s ability to meet Power Act responsibilities. (See Section 2.5)
Results of Feasibility Studies

(Summarized briefly in Section 1.4; more detail in Master Plan [YN 2010]; greatest detail in project annual reports, cited in Chapter 5, References)

Biological Program Design

Manage composition of the return to incorporate more natural fish than hatchery fish in the broodstock; need clear production goals; number of adults for harvest vs. for broodstock; likelihood that population will be self-sustaining. (See Section 2.2.1)

Facilities Location, Design, and Operation

Provide details on project design and location of new and temporary facilities; water quality and temperature requirements for coho; how will acclimation ponds be maintained; are fish fed in the ponds; techniques of predator control, including use of paid employees or volunteers. (See Section 2.2.2 and Appendices 1, 2, and 3)

Monitoring Program

Compare survival rates of hatchery and natural fish; amount of mortality caused by dams; percent of fish released that return as adults; techniques used to monitor competition between naturally produced coho and other species; coho escapement; coho losses to predation; coho production numbers in small tributaries; superimposition of coho redds on summer Chinook redds. (See Section 2.2.3 and Appendix 5 [monitoring program techniques]; Section 3.7 [redd superimposition]; Master Plan and annual reports [detailed monitoring results])

Existing Environment

History of coho in basins; reasons for coho extirpation and how or if conditions are different now; why spring Chinook and steelhead persisted in the basins and coho did not; current status of coho; numbers of spring Chinook, steelhead and bull trout in Icicle Cr.; status of spring Chinook in Mission Cr.; existing water quality. (See Sections 1.3.1, 1.3.2, 3.4 [history and status of coho]; 3.5 [water quality]; and 3.7 and Appendix 9 [status of other fish species])

Impacts

Fish: predation by coho on at-risk and/or ESA-listed species, including steelhead, spring Chinook, lamprey, bull trout; interspecies competition, specifically coho with steelhead and spring Chinook; differences in competition between hatchery and natural fish; benefits to listed fish from coho carcasses; benefits of volitional releases to other salmonids. (See Section 3.7)

Water quality: effects of existing, new, and temporary facilities; effects of runoff contaminants on fish; effects of discharge from ponds; types of contaminants from ponds; disposal of carcasses from acclimation ponds; proposed mitigation. (See Section 3.5 [project effects on water quality]; 3.7 [discharge effects on fish])

Water use/quantity: effects of existing, new, and temporary facilities; effects of use of water from storage in riparian areas, ponds, irrigation; effects of project on water rights of irrigation districts; availability of water rights; proposed mitigation. (See Section 3.6)

Floodplains: impacts to floodplain function, channel migration, riparian habitat. (See Section 3.10 and 4.5)

Visual quality: effects on riverfront view of property owner. (See Section 3.11)
Recreation: effect of the Dryden facility on boaters. (See Section 3.11)

Land use: effects on farmers; effects on state highway rights-of-way; access and mitigation issues on private property used for acclimation sites. (See Sections 3.11, 3.12, and 4.8)

Socioeconomic: effect of project costs on electricity and irrigation rates. (See Section 3.12)

Consistency with local, regional, and national plans and programs: consistency of this project and MOA projects in general with Northwest Power Act, ESA, and the Columbia Basin fish and wildlife program. (See Sections 1.1, 4.2, 4.3, and the last bullet in Section 1.7 below)

Harvest: effect of harvest on native runs of salmon, steelhead, walleye, and sturgeon in Wenatchee area; location of harvest; condition of fish for harvest; who can participate in harvest. (See Section 3.12 and the first bullet in Section 1.7 below)

1.7 Issues Beyond the Scope of this EIS

The following issues were raised during scoping but are beyond the scope of this EIS; the issues are more appropriately addressed in other forums or with other agencies, as specified below.

- Potential for increase in gillnetting in the project area; effects of various harvest techniques, including gillnetting, on other species; how harvest is regulated on lower Columbia to protect mid-Columbia fish: (Harvest methods, timing, and numbers would be regulated by state, federal, and tribal agencies through the Columbia River Fish Management Plan (CRFMP), as part of Court-supervised requirements of *U.S. v. Oregon*).
- Use of surplus coho for Colville Tribal programs: (The potential for the Colville Tribe to use surplus coho to build a broodstock for programs under their jurisdiction is a short-term activity currently being negotiated and would not affect the number of coho available for this proposal).
- Purchase of conservation easements in the lower Methow: (Habitat protection activities, including purchase of conservation easements, are part of other BPA and YN programs focused on protecting habitat of the ESA-listed mid-Columbia spring Chinook salmon).
- Effects on wild coho: (No wild coho exist in these basins).
- Effects on landowners of regulations regarding activities in riparian areas, e.g., cutting trees and keeping cattle out: (Washington State and federal agencies have regulations governing forestry and grazing practices in riparian areas. Coho in a stream would not change a stream classification or the state regulations governing forestry or grazing adjacent to the stream.)
- Consistency of MOA projects with Northwest Power Act, ESA, and Columbia Basin fish and wildlife program. (Projects other than the one that is the subject of this EIS are beyond the scope of the analysis.)
Chapter 2. Alternatives Including the Proposed Action

This EIS analyzes in detail the Proposed Action and the No Action alternatives. Other options considered and eliminated from detailed analysis in this EIS are briefly discussed in Section 2.4.

2.1 Current Experimental Program

Chapter 1, Sections 1.3 and 1.4 describe the history of the Yakama Nation’s coho reintroduction experiments that BPA has funded to date. The history includes feasibility studies to determine if the Yakama Nation could succeed in developing a local coho stock, originating from lower Columbia River hatchery stocks, that would return to mid-Columbia tributaries with increasing survival rates. That goal was achieved (YN 2010): in 2009, 100% of the coho smolts released in both basins were progeny of second- and third-generation mid-Columbia broodstock (see Section 1.4).

The program currently is collecting more of its broodstock from upstream capture sites than during the feasibility studies. The objective is to determine if spawning more adults from upstream sites selects for characteristics that allow their progeny to exceed what might be the current limits of stamina and run timing for the reintroduced population. Such characteristics might allow coho to return to the better quality habitat in the upstream portions of the basins if they are acclimated in those areas as proposed in the Proposed Action (Murdoch et al. 2004).

A total of 1.5 million smolts are acclimated and released in the two basins annually. In 2009, approximately 22,000 adults passed Rock Island Dam, the closest mainstem Columbia River dam downstream from the Wenatchee River mouth (Figure 2-1). Facilities used in the current program are listed in Table 2-1 and shown in Figures 2-2 through 2-4.

The schedule of fish culture activities is shown in Table 2-2. The timing of egg and fish transfers between facility components is guided by this schedule. Adults are moved from capture sites to holding facilities in the fall for ripening and spawning. Green eggs are incubated at or near these holding facilities. All eyed eggs from the Wenatchee program and a portion of the Methow production are transported to hatcheries in late fall/early winter for final incubation and rearing to the pre-smolt stage. The following fall, some of the hatchery production can be moved to target watersheds for over-winter/intermediate rearing to take advantage of a prolonged period of imprinting on natal waters and rearing in a semi-natural environment. Site locations may vary depending on which rearing strategy is employed. In late winter to early spring (mostly weather dependent), the remaining pre-smolts are moved to final acclimation/release sites.
Table 2-1. Facilities used in current coho restoration program

<table>
<thead>
<tr>
<th>BROODSTOCK COLLECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenatchee</td>
</tr>
<tr>
<td>Tumwater Dam</td>
</tr>
<tr>
<td>Dryden Dam</td>
</tr>
<tr>
<td>Leavenworth National Fish Hatchery (NFH)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HOLDING, INCUBATION AND/OR REARING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leavenworth NFH</td>
</tr>
<tr>
<td>Winthrop NFH</td>
</tr>
<tr>
<td>Peshastin Incubation Facility</td>
</tr>
<tr>
<td>Cascade FH</td>
</tr>
<tr>
<td>Willard NFH</td>
</tr>
</tbody>
</table>

Note: Rearing facilities provide coho for both basins

<table>
<thead>
<tr>
<th>SMOLT RELEASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenatchee</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACCLIMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenatchee</td>
</tr>
<tr>
<td>Leavenworth NFH (Icicle Creek)</td>
</tr>
<tr>
<td>Rohlfing</td>
</tr>
<tr>
<td>Coulter</td>
</tr>
<tr>
<td>Butcher</td>
</tr>
<tr>
<td>Beaver</td>
</tr>
</tbody>
</table>

Table 2-2. Coho production timetable

<table>
<thead>
<tr>
<th>BROOD AND EGGS</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult Holding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spawning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-basin incubation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out-of-basin incubation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HATCHERY REARING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raceway/Tanks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grow Out</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCLIMATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overwinter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2-1. Wenatchee and Methow Basins in Relation to Upper Columbia River Dams
Figure 2-2. Current Program: Broodstock Collection Sites
Figure 2-3. Current Program: Incubation and Rearing Sites
Figure 2-4. Current Program: Acclimation Sites
2.2 Proposed Action

The Yakama Nation’s long-term vision for the Mid-Columbia Coho Restoration program, as stated in the Master Plan (YN 2010) is:

To re-establish naturally spawning coho populations in mid-Columbia tributaries to biologically sustainable levels which provide significant harvest in most years.

Building on the feasibility studies that have been conducted since 1996, the proposal would maintain a phased approach to reintroducing coho into the Wenatchee and Methow basins: two broodstock development phases and three natural production phases. The broodstock development phases were designed to eliminate transfers of lower Columbia brood coho and to encourage broodstock adaptation so that returning coho can reach key habitat within the basins. The first phase of broodstock development has been accomplished and lower Columbia broodstock are no longer used in the program; however, the second phase continues the process of increasing broodstock stamina. After all broodstock development goals are met (see Section 2.2.1.2), the natural production phases would manage broodstock composition so that eventually the percent of natural-origin fish in the hatchery broodstock exceeds the percent of hatchery-origin fish on the spawning grounds (HSRG 2004). The coho restoration program is designed to end when a self-sustaining naturally reproducing population that supports harvest is established. This goal would be met when there is a natural-origin return escapement of more than 1,500 coho to each basin, with a terminal and mainstem harvest in most years; it is expected to be achieved within five coho generations (by approximately 2028).

2.2.1 Biological Approach: Phased Reintroduction

2.2.1.1 Objective and Measures of Success

Biological Objective: By 2028, develop a locally adapted, naturally spawning coho stock in the Wenatchee and Methow river basins capable of supporting harvest.

The Yakama Nation proposes to increase the fitness of reintroduced coho salmon by reducing the effects of hatchery breeding and emphasizing local adaptation. Broodstock composition would be managed to incorporate natural-origin fish in the broodstock and limit the proportion of hatchery-origin adults on the spawning ground. Ultimately, the natural environment must have a greater influence on the population than the hatchery environment. The objective would be considered successful when the following numeric goals have been achieved:

Metric 1. The 3-year mean escapement of natural-origin returns in the Wenatchee (upstream of Tumwater Dam) and the Methow river basins exceeds 1,500 per basin.

This metric predicts the abundance and effective population size required to satisfy the restoration goal without further hatchery supplementation. The figure of 1,500 per basin is supported by modeling results detailed in the Master Plan (YN 2010). Briefly, the All H’s Analyzer (AHA) model calculations predict a level of sustainability based on:

- inputs from a habitat analysis system (Ecosystem Diagnosis and Treatment [EDT]) that predicts an individual stream’s capacity for coho production;
- on harvest rates; and
- on hydro-system and marine survival (YN 2010).

5 One coho generation = 3 years.
Metric 2. Achieve a total harvest rate of 23%, which includes a 10% mixed stock harvest, 10% mainstem harvest, and 5% terminal harvest in most years.

The harvest management plan was developed to ensure that exploitation rates are based on forecasts of survival, abundance, and escapement goals, and are responsive to fluctuations in abundance (e.g., due to fluctuating ocean conditions). A detailed description of the harvest management schedule throughout the phases of the project can be found in the Master Plan (YN 2010).

2.2.1.2 Phased Approach

The proposed project, first described in the draft Master Plan submitted to the NW Power and Conservation Council (Council) in 2006, originally included five distinct phases. Since that version of the Master Plan was written, the first phase (Broodstock Development Phase 1), has been completed in both basins (YN 2010). The description of that phase is provided to show a complete picture of how each project phase is designed to build on the previous one. The program is projected to be discontinued after a minimum of five generations of natural production.

The objectives of each phase are described in more detail below.

- **Broodstock Development Phase 1** was designed to develop a mid-Columbia broodstock from lower Columbia River coho, so that they would become increasingly adapted to the longer migration to mid-Columbia tributaries. This phase focused on eliminating reliance on lower Columbia stocks and transitioning to a local broodstock and has been completed in both basins; lower Columbia-origin broodstock are no longer used. Broodstock collection goals have been met or exceeded since 2006 in the Wenatchee basin and since 2009 in the Methow basin (see detailed summary of feasibility study results in the Master Plan (YN 2010).

- **Broodstock Development Phase 2** would increase the percentage of broodstock captured from sites further upstream. The objective is to ensure that the reintroduced stock can reach the preferred habitat in the upstream portions of the basins (Murdoch et al. 2004), in preparation for the Natural Production phases. Both Wenatchee and Methow basins are expected to operate in this phase until 2013 or later.

- **Natural Production Phases** focus on decreasing domestication selection and increasing fitness in the natural environment. These phases differ from broodstock development in that broodstock development selects for coho that can return to the Wenatchee and Methow rivers but does not address loss of fitness and adaptation to the natural environment. During the natural production phases, hatchery coho would be introduced to areas predicted by a habitat analysis system (Ecosystem Diagnosis and Treatment [EDT]) to be the most successful for coho. Broodstock compositions would be managed to increase the proportion of natural influence (PNI) in the population, with the goal of having a PNI value greater than 0.5; that is, the natural environment must have a greater influence on the population than the hatchery environment. Harvest could be used as a mechanism to manage the broodstock composition. Potential harvest schedules are detailed in the Master Plan but are only theoretical until actual

6 These three types of harvest do not add up to 23% because the harvests occur sequentially. Harvest on 10% of the mixed stocks would leave the remaining 90% of the run subject to a 10% mainstem harvest; after the mainstem harvest, the remaining 80% of the run would be subject to a 5% terminal harvest.
returns of hatchery-origin and natural-origin coho occur. The natural production phases are described below.

- **Natural Production Implementation Phase** proposes high smolt release numbers into most habitat areas for one generation (3 years). The goal is to begin the local adaptation process by releasing enough hatchery smolts in the natural environment to result in a sufficient number of adult coho returning to each tributary to spawn without the aid of a hatchery. Their progeny would in turn produce enough returning first-generation natural-origin adults to be incorporated into the broodstock as the natural production phases continue. This phase is expected to begin in both basins in 2013.

- **Natural Production Support Phases 1 and 2** would emphasize further local adaptation and naturalization. Initially, release numbers would be reduced by 30% from the numbers released during the Natural Production Implementation Phase. The goal would be to increase the proportion of natural-origin fish in the broodstock (pNOB) to 35% and to limit the proportion of hatchery-origin fish on the spawning grounds (pHOS) to 75%. When this initial goal is reached, managers would continue to reduce the hatchery program size, increase the proportion of natural-origin broodstock and decrease the proportion of hatchery-origin coho in the spawning grounds to the point that the PNI value is greater than 0.5 (pNOB = 80%, pHOS less than 65%). A PNI greater than 0.5 is predicted to result in increased natural fitness and survival rates for the population (L. Mobrand, pers. comm.). The Wenatchee and Methow basins are expected to begin this phase in 2016. The total expected duration of the Support Phases is 4 generations (12 years).

Tables 2-3 and 2-4 summarize key goals and management strategies for the five phases in each basin. These goals and strategies are the Yakama Nation’s best estimate of a program that has a realistic ultimate goal while acknowledging that many unknowns exist because of the experimental nature of this goal. A contingency plan was developed that suggests alternate courses of action in case goals of each phase are not met within the timeframe proponents believe is reasonable. This plan is detailed in the Master Plan (YN 2010). It suggests a decision-making process that includes evaluating reasons the goal was not achieved, determining if the cause can be ameliorated, and considering alternate courses of action or program changes. See Section 4.3.5 of the Master Plan for the detailed contingency plan.

Although water quality data collected for this project indicate that flows and temperatures currently are more than adequate to support this project (see Appendix 6), one of the potential reasons a goal might not be achieved could be related to water temperature and flow changes resulting from climate change. For example, Karl et al. (2009) suggest that approximately “one-third of the current habitat for the Northwest’s salmon and other cold water fish will no longer be suitable for them by the end of this century as key temperature thresholds are exceeded.” It has also been suggested that up to 40 percent of Northwest salmon populations may be lost by 2050 (Battin et al. 2007). These projections could result in more emphasis on regional hatchery production. In light of these concerns, it is important to understand how climate change could affect the Proposed Action, how it can be monitored, and the types of actions that may be necessary in the future to respond to those changes. Appendix 11 describes potential climate change adaption strategies that could be pursued based on projected changes in conditions.
If program or facility changes are required to respond to climate change or other contingencies, project proponents recognize that decision-makers must take into account political policies and ramifications as well as scientific methods and practices. If the Proposed Action is implemented, any changes to the approved original program must fall within legal limits established for the program, must still meet policy goals of many organizations at many levels, and must be scientifically credible. Changes are likely to require additional environmental review.

Table 2-3. Wenatchee basin program summary

<table>
<thead>
<tr>
<th>Management Goal</th>
<th>Broodstock Development Phase 1 (Completed)</th>
<th>Broodstock Development Phase 2</th>
<th>Natural Production Implementation</th>
<th>Natural Production Support</th>
<th>Fully Restored Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Goal</td>
<td>-Eliminate transfers of Lower Columbia River broodstock.</td>
<td>-“Fine tune” broodstock so that returning coho can reach key habitat in the basins.</td>
<td>-Initiate natural production in key habitat areas.</td>
<td>-Develop locally adapted fully integrated stock.</td>
<td>-Self-sustaining, naturally reproducing population is established.</td>
</tr>
<tr>
<td></td>
<td>-Broodstock collection = 1,312.</td>
<td>-Broodstock collection = 1,050.</td>
<td>-NOR b escapement >600.</td>
<td>-NOR escapement >900</td>
<td>-NOR escapement >1,500.</td>
</tr>
<tr>
<td>Management Strategy</td>
<td>-Primary release site in Icicle Creek.</td>
<td>-Release 50% of smolts above Tumwater Dam, 50% in Icicle Creek.</td>
<td>-Release Wenatchee broodstock in areas predicted by EDT to be most productive for coho in sufficient numbers to seed habitat and begin local adaptation.</td>
<td>-Continue local adaptation and reduce effects of hatchery breeding.</td>
<td>-Harvest according to the matrix schedule.</td>
</tr>
<tr>
<td></td>
<td>-Broodstock collected at Dryden Dam and Leavenworth NFH.</td>
<td>-Broodstock collected at Dryden and Tumwater Dam.</td>
<td>-Implement schedule for harvest and broodstock management.</td>
<td>-Convert to integrated hatchery program and move towards PNI >0.5.</td>
<td>-Implement hatchery supplementation as needed to prevent extirpation and achieve harvest goals, subject to condition that PNI >0.5.</td>
</tr>
</tbody>
</table>

\[a\] Broodstock Development Phase 2 would be considered completed when 50% of the broodstock are available for trapping at Tumwater Dam.

\[b\] NOR = natural-origin recruits: the number of natural-origin coho allowed to pass collection points and proceed to spawning grounds.

\[c\] pNOB = proportion of natural-origin fish in broodstock; pHOS = proportion of hatchery-origin fish on spawning grounds.

\[d\] PNI = proportionate natural influence (in the population).
<table>
<thead>
<tr>
<th>Management Goal</th>
<th>Broodstock Development Phase 1 (Completed)</th>
<th>Broodstock Development Phase 2</th>
<th>Natural Production Implementation</th>
<th>Natural Production Support</th>
<th>Fully Restored Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Eliminate transfers of Lower Columbia River broodstock.</td>
<td>-Encourage broodstock adaptation so that returning coho can reach key habitat within the basins.</td>
<td>-Initiate natural production in key habitat areas.</td>
<td>-Develop locally adapted, fully integrated stock.</td>
<td>Self-sustaining naturally reproducing population is established.</td>
<td>-NOR escapement >1,500.</td>
</tr>
<tr>
<td>-Broodstock collection = 656.</td>
<td>-Broodstock collection = 1,312 trappable coho: at least 656<sup>a</sup> at Winthrop NFH, the remainder at Wells FH.</td>
<td>-NOR<sup>b</sup> escapement >600.</td>
<td>-NOR escapement >900.</td>
<td>-Terminal and mainstem harvest in most years.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Management Strategy</th>
<th>-Primary release site(s) at Winthrop NFH and Wells FH.</th>
<th>-Primary release site(s) at Winthrop NFH and selected tributaries (Twisp, Chewuch, etc.).</th>
<th>-Release Methow broodstock in areas predicted by EDT to be most productive for coho in sufficient numbers to seed habitat and begin local adaptation.</th>
<th>-Continue the local adaptation process and reduce effects of hatchery breeding.</th>
<th>-Harvest according the matrix schedule.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Primary broodstock collection site is Wells Dam.</td>
<td>-Primary collection site(s) at Winthrop NFH and tributary weirs.</td>
<td>-Implement matrix schedule for harvest and broodstock management.</td>
<td>pNOB<sup>c</sup> = 10% pHOS<sup>c</sup> = 90%</td>
<td>-Convert to integrated hatchery program and move towards PNI >0.5<sup>d</sup></td>
<td>-Implement matrix schedule for harvest and broodstock management.</td>
</tr>
<tr>
<td>-Release Methow broodstock in areas predicted by EDT to be most productive for coho in sufficient numbers to seed habitat and begin local adaptation.</td>
<td>pNOB<sup>c</sup> = 10% pHOS<sup>c</sup> = 90%</td>
<td></td>
<td></td>
<td>pNOB = 80% pHOS = 65%</td>
<td></td>
</tr>
</tbody>
</table>

^a A total of 1,312 broodstock would be needed to increase release numbers during the Natural Production Implementation Phase, some of which may be trapped at Wells FH.

^b NOR = natural-origin recruits.

^c pNOB = proportion of natural-origin fish in broodstock; pHOS = proportion of hatchery-origin fish on spawning grounds.

^d PNI = proportionate natural influence (in the population).
Table 2-5 shows proposed smolt release numbers for each phase in both the Wenatchee and Methow basins.

<table>
<thead>
<tr>
<th>Table 2-5. Proposed smolt release numbers (in millions) by basin and project phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>WENATCHEE</td>
</tr>
<tr>
<td>Broodstock Dev</td>
</tr>
<tr>
<td>Phase 1</td>
</tr>
<tr>
<td>1.00 1.00 1.00 1.00 1.00 1.00</td>
</tr>
<tr>
<td>Phase 2</td>
</tr>
<tr>
<td>Natural Production</td>
</tr>
<tr>
<td>Implementation</td>
</tr>
<tr>
<td>1.16 1.16 1.16</td>
</tr>
<tr>
<td>Support Phase 1</td>
</tr>
<tr>
<td>0.81 0.81 0.81 0.81 0.81 0.81</td>
</tr>
<tr>
<td>Support Phase 2</td>
</tr>
<tr>
<td>0.40 0.40 0.40 0.40 0.40 0.40</td>
</tr>
<tr>
<td>WEN. SUBTOTAL</td>
</tr>
<tr>
<td>1.00 1.00 1.00 1.00 1.00 1.16 1.16 1.16 0.81 0.81 0.81 0.81 0.81 0.81</td>
</tr>
<tr>
<td>METHOW</td>
</tr>
<tr>
<td>Broodstock Dev</td>
</tr>
<tr>
<td>Phase 1</td>
</tr>
<tr>
<td>0.50 0.50</td>
</tr>
<tr>
<td>Phase 2</td>
</tr>
<tr>
<td>0.50 0.50 0.50</td>
</tr>
<tr>
<td>Natural Production</td>
</tr>
<tr>
<td>Implementation</td>
</tr>
<tr>
<td>1.00 1.00 1.00</td>
</tr>
<tr>
<td>Support Phase 1</td>
</tr>
<tr>
<td>0.70 0.70 0.70 0.70 0.70 0.70</td>
</tr>
<tr>
<td>Support Phase 2</td>
</tr>
<tr>
<td>0.35 0.35 0.35 0.35 0.35 0.35</td>
</tr>
<tr>
<td>MET. SUBTOTAL</td>
</tr>
<tr>
<td>0.50 0.50 0.50 0.50 0.50 1.00 1.00 1.00 0.70 0.70 0.70 0.70 0.70 0.70 0.35 0.35 0.35 0.35 0.35</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
<tr>
<td>1.50 1.50 1.50 1.50 1.50 2.16 2.16 2.16 1.51 1.51 1.51 1.51 1.51 1.51 0.75 0.75 0.75 0.75 0.75</td>
</tr>
</tbody>
</table>

2.2.2 Facilities

The ongoing Broodstock Development Phase does not require construction of new facilities. The Natural Production phases, beginning in approximately 2013, would require additional acclimation facilities, some of which currently exist, a few of which would require new construction. A new in-basin incubation and rearing facility also is proposed.

Additional acclimation facilities are needed in order to acclimate juveniles in tributaries throughout the basins so that they return to those tributaries to spawn as adults, thus increasing the distribution of naturally spawning coho throughout the basins. An in-basin incubation and rearing facility is proposed to replace the Entiat NFH, which is no longer available to the coho program. Such a facility located within the project area reduces the transfer of fish and gametes between watersheds and reduces transportation stress for part of the juvenile coho population, but capital costs would be minimized by keeping the size of the new facility small and continuing to use additional rearing capacity at existing available facilities.

2.2.2.1 Facility Locations

Broodstock Development Phase

Fish produced for the ongoing broodstock development phase are captured at existing adult traps, produced from existing hatcheries, and released from acclimation sites that do not require new construction. Locations of the facilities are shown under the description of the current program (Section 2.1) in Figures 2.2 through 2.4.

- Broodstock capture:
 - Wenatchee: traps at Leavenworth NFH, Tumwater Dam and Dryden Dam.
 - Methow: trapping facilities at Wells Dam and FH and at Winthrop NFH.

7 Entiat NFH is not available to the coho program because the hatchery’s focus is changing to a summer Chinook program which overlaps with coho spawn timing, causing logistical problems with holding and spawning.
• Broodstock holding and incubation:
 Winthrop NFH for adult holding, spawning, and incubation; Leavenworth NFH for adult holding, spawning and early incubation (green to eyed egg); Peshastin Incubation Facility for early incubation only. Entiat NFH would be used only as a backup site.
• Rearing to pre-smolt size:
 Cascade FH and Willard and Winthrop NFHs.
• Acclimation:
 Wenatchee: Rohlfing, Coulter, Butcher, and Beaver ponds in the upper Wenatchee and the Leavenworth NFH on Icicle Creek.
 Methow: Winthrop NFH, Lower Twisp, and Wells FH.

Natural Production Implementation Phases

The plan proposes to continue rearing most program fish at existing hatcheries during the Natural Production Implementation Phases. A new, small, in-basin adult holding/spawning, incubation and rearing facility also is proposed for these phases at a site on the Wenatchee River near Dryden Dam or a site on the Wenatchee River downstream of Lake Wenatchee. See Figure 2-6 and “Facility Designs” later in this section.

Acclimation is planned at a combination of existing and new sites. Most acclimation sites would be existing water bodies (e.g., beaver ponds, side channels, etc.) and small constructed ponds. See Section 3.3.2 for a brief description of each site, or Appendices 2 and 3 for more detailed descriptions and photographs. For locations, see Figures 2-7 and 2-8.

The project proposes to use existing broodstock capture sites in upstream areas in addition to those used during the broodstock development phase, all of which are owned by other entities and operated by the YN and/or other fisheries resource agencies. One broodstock capture site (Chiwawa Weir) would need to extend its period of operation in order to capture coho adults. Figure 2-5 shows their locations.

Juvenile trapping for monitoring and evaluation of the program would take place at existing traps in both basins, with one exception: a new smolt trap is proposed for the Little Wenatchee River, the site to be determined.

The proposed acclimation and release system has the following characteristics:
• At least two acclimation/release sites are proposed in each major tributary stream (one low in the system and one as far upstream as is practical); and one site is proposed in most minor streams.
• A total of 24 acclimation sites are proposed in the Wenatchee and Methow basins: 13 in the Wenatchee and 11 in the Methow.
• In each basin, one additional site would be for adult plants (Hancock and Dirty Face).
• Nine of the 24 acclimation sites would require some kind of construction, as follows:
 ○ A new pond at three sites (Minnow, Chikamin, Twisp Weir)
 ○ Expansion of existing ponds at two sites (Scheibler, Gold)
 ○ New wells at three sites (Butcher, MSWA Eightmile, Twisp Weir)
 ○ New water delivery systems at five sites (Butcher, Tall Timber, Chikamin, MSWA Eightmile, Twisp Weir)
 ○ New buried power lines at 2 sites (Butcher, MSWA Eightmile)
 ○ New road at 2 sites (Minnow, Twisp Weir)
- New groundwater rights are required at 5 sites (1 Wenatchee, 4 Methow); new surface water rights at 3 sites (2 Wenatchee, 1 Methow).
- Six sites require generators (Rohlfing, Butcher, Two Rivers, MSWA Eightmile, Lincoln, Twisp Weir).
- Twelve sites are potentially capable of over-winter acclimation (ten sites are proposed to be used in any one year, five in each basin).
- Eight of the sites have been used in the past by the current coho program.

Table 2-6 lists all the facilities that might be used for the proposed program, including alternative (backup) sites that might be used if one or more of the preferred (primary) sites is unavailable. The table shows those currently in use as of 2010 (C), those proposed for use in the future (F), potential backup sites, and whether any require new construction. Locations are shown on Figure 2-5 (Broodstock Collection Sites), Figure 2-6 (Hatchery and Rearing Sites) and Figures 2-7 and 2-8 (Primary and Backup Project Sites). Further detail is provided in Appendix 1 (Rearing and Brood Capture Site Descriptions); Appendix 2 (Wenatchee Acclimation Site Descriptions) and Appendix 3 (Methow Acclimation Site Descriptions).

Table 2-6. Summary of facilities: Proposed Action

<table>
<thead>
<tr>
<th>BROODSTOCK COLLECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenatchee</td>
</tr>
<tr>
<td>Dryden Dam</td>
</tr>
<tr>
<td>Leavenworth NFH</td>
</tr>
<tr>
<td>Tumwater Dam</td>
</tr>
<tr>
<td>Chiwawa Weir</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INCUBATION/REARING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascade FH</td>
</tr>
<tr>
<td>Willard NFH</td>
</tr>
<tr>
<td>Winthrop NFH</td>
</tr>
<tr>
<td>Leavenworth NFH</td>
</tr>
<tr>
<td>Peshastin</td>
</tr>
<tr>
<td>Entiat NFH Backup</td>
</tr>
<tr>
<td>Proposed Dryden Hatchery</td>
</tr>
<tr>
<td>Backup George Hatchery</td>
</tr>
</tbody>
</table>

Note: Rearing facilities provide coho for both basins

\(a. \ C = \text{Currently in use}; \ F = \text{Future}\)
Table 2-6. Summary of facilities: Proposed Action (continued)

ACCLIMATION/ADULT PLANTS (Primary)

<table>
<thead>
<tr>
<th>Wenatchee</th>
<th>C or F</th>
<th>Construction?</th>
<th>Methow</th>
<th>C or F</th>
<th>Construction?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leavenworth NFH</td>
<td>C</td>
<td>No</td>
<td>Winthrop NFH</td>
<td>C</td>
<td>No</td>
</tr>
<tr>
<td>Beaver</td>
<td>C</td>
<td>No</td>
<td>Lower Twisp</td>
<td>C</td>
<td>No</td>
</tr>
<tr>
<td>Butcher</td>
<td>C</td>
<td>New well, 50-ft surface water channel</td>
<td>Goat Wall</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>Clear</td>
<td>C</td>
<td>No</td>
<td>Gold</td>
<td>F</td>
<td>Expand pond</td>
</tr>
<tr>
<td>C outlaw</td>
<td>C</td>
<td>No</td>
<td>Heath</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>RohlFling</td>
<td>C</td>
<td>No</td>
<td>Lincoln</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>Brender</td>
<td>F</td>
<td>No</td>
<td>Mason</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>Chikamin</td>
<td>F</td>
<td>New pond, water intake, 120-ft buried pipe, 70-ft surface discharge channel</td>
<td>MSWA Eightmile</td>
<td>F</td>
<td>New well, 500-ft surface water channel, 450-ft buried power line</td>
</tr>
<tr>
<td>Minnow</td>
<td>F</td>
<td>New pond, 600-ft road</td>
<td>Parmley</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>Scheibler</td>
<td>F</td>
<td>Expand pond</td>
<td>Pete Creek Pond</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>Tall Timber</td>
<td>F</td>
<td>New water intake, 800-ft buried pipe</td>
<td>Twisp Weir</td>
<td>F</td>
<td>New pond, well, water intake on diversion ditch, 400-ft surface water channel, buried water (500 ft) & power (400 ft) lines, 20-ft road</td>
</tr>
<tr>
<td>Two Rivers</td>
<td>F</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White River Springs</td>
<td>F</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dirty Face (adults)</td>
<td>F</td>
<td>No</td>
<td>Hancock (adults)</td>
<td>F</td>
<td>No</td>
</tr>
</tbody>
</table>

ACCLIMATION (Backup)

<table>
<thead>
<tr>
<th>Wenatchee</th>
<th>C or F</th>
<th>Construction?</th>
<th>Methow</th>
<th>C or F</th>
<th>Construction?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen</td>
<td>F</td>
<td>No</td>
<td>Balky Hill</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>Coulter/Roaring</td>
<td>F</td>
<td>No</td>
<td>Biddle</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>Dryden</td>
<td>F</td>
<td>New ponds, well, 850-ft buried water supply & discharge pipes</td>
<td>Chewuch AF</td>
<td>F</td>
<td>New pond, well, 300-ft buried water delivery and discharge pipes, 50-ft buried power line</td>
</tr>
<tr>
<td>McComas</td>
<td>F</td>
<td>No</td>
<td>MSRF Chewuch</td>
<td>F</td>
<td>New pond, well, 1,000-ft surface water delivery & discharge channels, 100-ft buried power line</td>
</tr>
<tr>
<td>Squadroni</td>
<td>F</td>
<td>New pond, well, 50-ft water supply & 20-ft discharge channels</td>
<td>Newby</td>
<td>F</td>
<td>New pond, intake structure, 400-ft surface water channel, 350-ft buried discharge pipes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poorman</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Utley</td>
<td>F</td>
<td>New 80-ft long channel as outlet for existing pond.</td>
</tr>
</tbody>
</table>

*a. C = Currently used; F = Future
b. Construction at RohlFling and Lincoln in 2011 is done under a different program; impacts are evaluated in other NEPA processes.
c. Previously used by project; not in use currently.
d. Activities refer to those required if the Dryden site is used for acclimation only and not as a hatchery site.
e. McComas is a new site proposed to be constructed by Grant PUD; impacts will be evaluated in other permitting processes.*
Figure 2-5. Proposed Action: Broodstock Collection Sites
Figure 2-6. Proposed Action: Hatchery and Rearing Sites
Figure 2-7. Proposed Action: Wenatchee Basin Primary and Backup Sites
Draft Environmental Impact Statement

Chapter 2 – Proposed Action

Figure 2-8. Proposed Action: Methow Basin Primary and Backup Sites
2.2.2.2 Factors Considered in Facility Location

Incubation/rearing sites

- Water quality and quantity.
- Proximity to other program facilities, especially acclimation sites.
- Availability of power: Three-phase power is required to operate water pumps, chillers, and other major motor-driven machinery.
- Environmental impacts.
- Environmental liability: Sites that have previously been used in other ways may have ground contamination, resulting in potential liability.
- Flexibility to adapt to future fish culture needs and changes in fish culture practices.
- Access in winter and high water periods.
- Cost.

Acclimation sites

Ecosystem Diagnosis and Treatment (EDT, a habitat analysis system) was used to quantify the capacity of tributaries in each basin that would be expected to provide high-quality coho habitat. Factors considered in identifying potential acclimation sites included the following:

- Water quality and quantity.
- Proximity to expected habitat based on model predictions, local experience, and professional judgment.
- Flexibility to adapt to monitoring results. For example, little is known about the preferred habitat of coho in snow-dominated watersheds, despite a thorough literature review and visits to Fraser River tributaries in British Columbia with First Nation groups and the interior Fraser coho recovery group. Ponds in multiple locations in the tributaries and sites scattered throughout the basins help maintain flexibility. If monitoring shows that habitat in certain areas is more productive, then those areas can be emphasized as the program progresses.
- Potential for low rearing densities, i.e., maximum density of 0.3 pounds of fish per cubic foot (lb/ft³) at release for water supplies with high reliability, and 0.1 lb/ft³ for sites without backup water supply systems.\(^8\)
- Natural rearing environment.
- Environmental impacts.
- Accessibility by staff and by smolt trucks.
- Potential for overwintering coho.
- Distribution throughout the basins.
- Cost.
- Willing property owners.

\(^8\) Studies have shown a survival benefit to low rearing densities, but it is unclear why both low volume densities and large rearing units perform well. They may reduce stress by providing escape areas when fish perceive threats (YN 2010 Appendix A).
2.2.2.3 Facility Designs

Hatchery Design

- **Site functions**: All captured local Wenatchee brood would be trucked to the proposed facility for holding and spawning. Eggs would be reared to the eyed stage, after which most would be moved to the lower river facilities, Cascade FH and Willard NFH, for hatching and early rearing. Eggs that remained would be reared until ready to be moved to acclimation sites. Some juvenile coho would also be trucked back to Dryden from the lower river hatcheries after spawning season for rearing through the winter.
- **Production numbers**: 1,300 adults, 1,400,000 eyed eggs, 200,000 smolts reared full-term.
- **Development timing**: Current plans call for hatchery construction to start in 2012 and operation to begin in 2013.

Dryden (Proposed Site)

Site Information

- **Location, elevation**: Near the mouth of Peshastin Creek at Wenatchee River (river mile [RM] 18.6); in T24N, R18E, SW ¼ of S22 in Chelan County; adjacent to Dryden Dam; elevation 984 feet.
- **Ownership**: The 24-acre Washington State Department of Transportation (WSDOT) property is lot number 241822745006, zoned Commercial Agricultural Lands (AC).
- **Flood designation**: Zone X500 (between 100- and 500-year floods).
- **Land use**: Used in the past by WSDOT for storage of highway sand. The site currently provides access to Dryden Dam and Fishway, portage for river rafters, and fishermen’s access to the Wenatchee River.
- **Access**: Plowed, paved roads.
- **Utilities**: 3-phase power is available at the nearby Dryden right bank ladder facility.

Water Supplies

- **Groundwater availability**: Drill logs for nearby wells and the geology of the site suggest productive groundwater conditions. Historic gravel deposition at the Peshastin alluvial fan may have left layers of clean gravel.
- **Groundwater withdrawal**: Shallow wells near the river are proposed, minimizing impacts to deeper wells in the vicinity and producing water with some seasonal temperature variation. The production goal is 3.3 cubic feet per second (cfs) (including a 50% safety factor).
- **Surface water supply**: Wenatchee River water is proposed to be pumped from the Dryden fishway. An intake would be built into the existing concrete structure. This location allows water to be pumped at all river flow conditions without affecting fishway operation and does not require excavation in the river bank for construction. Water would be delivered to the hatchery in an 850-foot-long buried pipeline. Modeling for the hatchery estimates that a minimum flow of 3.1 cubic feet per second (cfs) is needed. Applying a 50% safety factor results in a water requirement of 4.7 cfs.
- **Water Return**: The option of returning water (and fish) upstream of the removal location in Peshastin Creek, at the dam, or just downstream of the dam would be possible by installing various return pipelines.
Facilities

- **Adult holding**: Four concrete raceways (100 x 10 x 4 feet deep), with multiple divisions in the raceways to allow sorting.

- **Incubation**: Vertical stack incubators and deep troughs inside a hatchery building would be fed with aerated, chilled groundwater.

- **Rearing**: The four concrete raceways would be used for fish production when adults are not present. Also, two ponds (40 x 120 x 3 feet deep) would add low-density rearing space.

- **Predator control and cover**: The site would be fenced and an overhead net system installed over the rearing units.

- **Waste treatment**: Discharge water treatment would likely require a high degree of nutrient removal to meet conditions of the Total Maximum Daily Load restrictions in place for the Wenatchee River (see Chapter 3, Section 3.5.1). Two treatment systems are proposed. An off-line treatment tank (10 x 20 x 4 feet deep) would hold and settle wastes vacuumed from the rearing units. Water from the hatchery would be directed to a 2-acre constructed wetland for additional nutrient removal. The waste treatment system would meet National Pollutant Discharge Elimination System (NPDES) permit requirements.

- **Support systems**: A 3,000-square-foot hatchery building would enclose the incubators, rearing troughs, offices, and a small shop. Generators would provide backup power. Parking would be provided for up to 10 vehicles.

- **Site footprint**: The Yakama Nation would acquire approximately 18.5 acres of the 24-acre parcel owned by WDOT, the purchase funded by other YN habitat projects in addition to the coho project. The hatchery site would require 1.5 acres of land. The full hatchery facility, including pipelines, water supply construction, the constructed wetland, and hatchery facilities, would require construction disturbance to a total of 4 acres of land. The additional 14.5 acres of the acquired parcel could be used by the YN in the future to re-establish a connection between an historic side-channel and Peshastin Creek.
Figure 2-9. Proposed Dryden Hatchery: Draft Site Plan with Flood Boundaries
George (Backup Site)

A facility would be constructed at this site only if the Dryden site becomes infeasible.

Site Information

- **Location, elevation:** Downstream of Lake Wenatchee at Wenatchee River (RM 51.6); T27N, R17E, NW ¼ of S26 in Chelan County; elevation 1,870 feet.
- **Ownership:** The 150-acre parcel is currently in private ownership. The Yakama Nation is considering buying the site for habitat mitigation.
- **Flood designation:** Most of the site is in Zone A3, in the 100-year flood hazard area. The Base Flood Elevation near the proposed hatchery site is 1,875 feet.
- **Land use:** The site is undeveloped and has been logged in the past. It is zoned RR20, rural residential with a minimum lot size of 20 acres.
- **Access:** Un-surfaced, primitive roads provide limited access.
- **Utilities:** 3-phase power is 4,000 feet away.
- **Soils:** The Natural Resources Conservation Service classifies soils on the site as adfluvial (NRCS 2010).

Water Supply

- **Groundwater:** A preliminary evaluation would identify the potential for developing groundwater on the site. Two or more new wells could produce the required 3.3 cfs.
- **Surface water:** 4.7 cfs of surface water would be pumped from the Wenatchee River. A submerged intake screen would be built into an existing rock barb in the river (Figure 2-10).
- **Pipelines:** Surface water and groundwater would be delivered to the hatchery in separate pipelines approximately 1,500 feet long.

Facilities

- **Adult holding:** Four concrete raceways (100 x 10 x 4 feet deep).
- **Incubation:** Vertical stack incubators and deep troughs inside a hatchery building would be fed with aerated, chilled groundwater.
- **Rearing:** The four concrete raceways would be used for fish production when adults are not present. Two ponds measuring 40 x 120 x 3 feet deep would add low-density rearing space.
- **Predator control and cover:** The site would be fenced and an overhead net system installed over the rearing units.
- **Waste treatment:** Discharge water treatment would likely require a high degree of nutrient removal to meet conditions of the Total Maximum Daily Load restrictions in place for the Wenatchee River. An off-line treatment tank measuring 10 x 20 x 4 feet would hold and settle wastes vacuumed from the rearing units. Treated water from the hatchery would be directed to the existing 5,600-foot-long side channel on the site for further nutrient removal prior to entering the Wenatchee River.
- **Support systems:** A 3,000-square-foot hatchery building would enclose the incubators, rearing troughs, offices, and a small shop. Generators would provide backup power. Parking would be provided for up to 10 vehicles.
- **Site footprint:** Hatchery facilities would require 1.5 acres of land. Including pipelines, water supply construction, and hatchery facilities, a total of 2.5 acres of land would be disturbed.
Figure 2-10. George Hatchery (Backup Site): Draft Site Plan
Acclimation Site Designs

Details of designs for each acclimation site (primary and backup) are outlined in Appendix 2 for Wenatchee basin sites and Appendix 3 for Methow basin sites. Photographs accompany the site descriptions. Figures 2-11 and 2-12 show a typical acclimation pond used by this program.

Net systems would be used to confine coho during the acclimation period at most sites. They can be configured in one of two ways (Figures 2-11 and 2-12). Both types are temporary and are in place only during acclimation. They would be designed to minimize premature escape and would include jump barriers and double lead lines. Double lead lines are weighted lines woven into the bottom of the net to maintain a sealed barrier across the earthen bottom of the pond.

Where loss of habitat and/or coho interaction with listed fish species is not expected to have negative impacts, nets that fully block fish passage in the ponds (barrier nets) could be installed. They are placed perpendicular to the flow (Figure 2-11).

![Figure 2-11. Barrier Net Example](image1)

Where free passage of fish up- and downstream is required, seine nets could be used: they form an enclosed impoundment of only a portion of the pond (Figure 2-12).

![Figure 2-12. Seine Net Example](image2)
2.2.3 Monitoring and Evaluation Plan

The success of the proposed coho reintroduction plan depends on extensive monitoring and evaluation to answer key questions such as:

- which acclimation sites are most successfully producing fish that return to coho habitat;
- when the program in each basin can move into a new phase;
- whether continued supplementation would be appropriate; and
- whether naturally produced coho are adversely affecting listed and sensitive species.

The monitoring and evaluation plan is outlined in Appendix 5, but is not discussed further in this EIS because it is essentially the same as the current program.

2.2.4 Program Cost Summary

This section summarizes estimated costs for all the program elements. Costs are based on a fish release plan that is expected to last until 2028, as shown in Table 2-5 (Section 2.2.1).

The program currently is funded by BPA, Grant County PUD, and Chelan County PUD. (Douglas County PUD contributed $600,000 in 2008 towards capital costs related to the feasibility studies.) The current program also shares rearing costs with National Oceanic and Atmospheric Administration Fisheries Service (NOAA Fisheries). The total amount from NOAA Fisheries and Grant and Chelan PUDs is close to $1.5 million annually. The current program also shares monitoring and evaluation costs with Washington Department of Fish and Wildlife (WDFW). If the Proposed Action is implemented, cost sharing with all these entities is expected to continue.

Estimates of the capital and operating costs cover the proposed project period from 2012 through 2028. Capital costs are expected to total $6,730,000 and would include land purchase and facility construction. All capital costs are expected to be incurred in 2012. To minimize capital costs, the Proposed Action makes extensive use of existing regional facilities, including those for brood capture, rearing, and acclimation.

Operating expenses include the operation and maintenance of these facilities, as well as the monitoring and evaluation program, and general and administrative project costs. Operating costs would change over time. Expenses during years when release numbers and operating costs would be at their maximum are shown in Table 2-7. Of these costs, approximately 27% is projected to be contributed by Chelan County and Grant County PUDs. Their share of the operating costs gradually increases so that by 2017 they would contribute approximately 36% of the operating costs. After 2018, contributions are less certain; for example, Douglas County PUD is expected to contribute funding but the amount is unknown at this time.

Table 2-7. Peak operating costs (2013) by basin

<table>
<thead>
<tr>
<th></th>
<th>Wenatchee</th>
<th>Methow</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning, Design, Permits</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rearing</td>
<td>$530,870</td>
<td>$388,385</td>
<td>$919,255</td>
</tr>
<tr>
<td>Tagging</td>
<td>$513,820</td>
<td>$375,911</td>
<td>$889,731</td>
</tr>
<tr>
<td>O&M</td>
<td>$955,706</td>
<td>$699,196</td>
<td>$1,654,902</td>
</tr>
<tr>
<td>M&E</td>
<td>$429,586</td>
<td>$314,286</td>
<td>$743,872</td>
</tr>
<tr>
<td>TOTAL OPERATING</td>
<td>$2,429,982</td>
<td>$1,777,778</td>
<td>$4,207,760</td>
</tr>
</tbody>
</table>
2.3 **No Action Alternative**

NEPA requires federal agencies to consider the effects of not taking the proposed action. Presently, BPA is the main funding source for this coho restoration project, although not the only one, as described in the previous section. The total amount from NOAA Fisheries and Grant and Chelan PUDs is close to $1.5 million annually. If BPA were to choose the No Action Alternative, BPA would discontinue funding. A coho program would continue in the mid-Columbia basins, but at a reduced scope from the current program because funding would essentially be cut in half. Some existing cost-sharing might be reduced as well, commensurate with the program level. The reduced funding would require cutting staff numbers. Full-time staff would be reduced from 18 to a maximum of 7; up to 10 seasonal positions would be eliminated. The result would be reductions in all aspects of the current program.

2.3.1 **Biological Approach**

The program would be reduced from the current program (see Section 2.1 for a description of the current program). Reduced staff levels would mean that fewer fish could be incubated and reared, even if existing capacity remained unchanged. As a result, fewer fish would be released: 500,000 in the Wenatchee basin and 200,000 in the Methow basin, as opposed to the current level of 1 million in the Wenatchee and 500,000 in the Methow. No attempt would be made to expand production into new habitat; with reduced staff and funding, the program could not operate new acclimation facilities in natural production areas. The program’s broodstock currently is essentially a domesticated hatchery stock, not adapted to conditions in the wild. Without acclimation and release of coho from more sites in high-quality habitat, coupled with the deliberate selection for increased percentages of natural-origin fish in the broodstock that originate from that habitat, the likelihood that viable natural populations of coho would be established is low. The program primarily would be propagating hatchery fish and probably would be replaced by a segregated hatchery program to promote fisheries only.

The amount of monitoring and evaluation would be limited. In addition to reduced staffing levels, no PIT tags would be used, compared to 3,500-8,000 juveniles PIT-tagged per site under the current program (50,000 total for both basins); and only 50% of the hatchery releases would be marked with coded wire tags (CWTs), compared to a 100% CWT marking scheme with BPA funding. Spawning ground surveys likely would be reduced from the current program, and no monitoring of interactions between naturally produced coho and listed species would be done.

2.3.2 **Facilities**

The program would continue to rely on existing facilities. The new facilities proposed as part of the Proposed Action would not be constructed, and it is unlikely that existing facilities would be modified. While most of the existing infrastructure would be available, the lack of personnel would dictate its use.

- **Broodstock capture**: The current broodstock capture locations—Tumwater, Dryden, Leavenworth NFH, Wells FH, Winthrop NFH—would remain available; however, the reduced budget would limit staff numbers, thus probably reducing the number of sites where broodstock would be collected. Numbers of broodstock collected would be half that of the current program. New broodstock capture locations would not be added.

9 A segregated hatchery program manages hatchery-origin fish as a reproductively distinct population. Only hatchery-origin adults are used for broodstock and are not allowed to spawn in the wild.
- **Incubation/Rearing**: Willard NFH, which receives 60% of its operating costs from BPA’s coho program dollars, would not be used as an incubation/rearing facility, and use of the in-basin Peshastin Incubation Facility would be eliminated. Instead, Cascade FH, Winthrop NFH, and Leavenworth NFH would be used at a reduced capacity.

- **Smolt releases**: Table 2-8 shows a potential production program for the No Action Alternative and the acclimation sites that could be used. All but two of these sites are currently being used to acclimate coho. The exceptions, Lincoln and Heath in the Methow basin, currently are planned for spring Chinook and steelhead acclimation only; however, the Yakama Nation could choose to add coho acclimation at these sites sometime in the future. While the program depicted in Table 2-8 is possible given the availability of sites, the reduced budget, with fewer staff available to stock and monitor sites, would probably allow use of only one or two release sites and the hatchery.

<table>
<thead>
<tr>
<th>Location</th>
<th>Facility Name</th>
<th>Smolt Release</th>
<th>Total Basin Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenatchee River<sup>a</sup></td>
<td>Leavenworth NFH</td>
<td>100,000</td>
<td>500,000</td>
</tr>
<tr>
<td></td>
<td>Butcher Creek</td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coulter Pond</td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beaver Creek</td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rohlfing</td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td>Methow River<sup>b</sup></td>
<td>Winthrop NFH</td>
<td>100,000</td>
<td>200,000</td>
</tr>
<tr>
<td></td>
<td>Lincoln</td>
<td>60,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heath</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower Twisp</td>
<td>20,000</td>
<td></td>
</tr>
</tbody>
</table>

^a Wenatchee production would be spawned and eggs early-incubated at Leavenworth NFH and transferred to Cascade Hatchery (funded by Mitchell Act) for final incubation and rearing to the pre-smolt stage prior to transfer to acclimation/release sites identified above.

^b Methow production would be spawned and eggs early-incubated at Winthrop NFH and transferred to Cascade NFH for final incubation and rearing to the pre-smolt stage prior to transfer to acclimation/release sites identified above. Some fish may be able to be reared at Winthrop NFH but at a very reduced number.

- **Monitoring and Evaluation**: Until 2011, the Integrated Status & Effectiveness Monitoring Program (ISEMP) (BPA project #2003-017-00) contributed a quarter of the funding for the Nason Creek smolt trap; that contribution has now ended. Currently, Grant County PUD and BPA through the coho project are the only remaining funding agencies for this trap; without the BPA contribution, it is unclear whether Grant PUD would continue funding the trap without a cost-share available. No new traps would be installed.

2.4 Alternatives Considered but Eliminated from Detailed Evaluation

2.4.1 Independent Science Review Panel Alternative

During reviews of the Master Plan prepared for the Northwest Power and Conservation Council (Council), its Independent Science Review Panel (ISRP) suggested modifications to the program design. In some cases, their suggestions became part of the proposal. The most recent and significant alternative suggested by the ISRP is reproduced below from the ISRP letter of November 24, 2009 (Memorandum ISRP 2009-47 to Tony Grover, Director, Fish and Wildlife Division, Northwest Power and Conservation Council from Eric Loudenslager, ISRP Chair).
Under ideal circumstances one program design would involve splitting the combined production into lower and upper releases, each with unique tags, in the first generation. These two groups would be genetically identical for all practical purposes. The proportions (or numbers) of each of these two groups that arrive at Tumwater Dam would be compared. In this first generation, this would measure the environmental effect of the different release sites on the migration distance within the subbasin. In the second generation, fish that returned to Dryden and fish that returned to Tumwater would be mated within return locations. Paired releases of the progeny of these parents would be conducted both in the upper and lower sites in the river. The contrast of return site between the two subpopulations released from the same location would serve as a measure of response to selection (adaptation). The magnitude of the response would serve to predict the number of generations required to achieve the goals for each of the program phases and facilitate establishing causation, which is needed if the contingency plan needs to be implemented. If a program like this was used it would make a significant contribution to documenting genetic and environmental sources of variation influencing an attempt to reestablish a self-sustaining extirpated population.

While this approach to program design could provide interesting data, it delays practical results in favor of a scientific exercise that develops alternative program designs in order to model their potential differing outcomes in advance. In addition, it would be difficult to evaluate the effect of migration distance on adult coho survival within the two basins. After surviving the hundreds of miles of migration from the Columbia River mouth to the mid-Columbia basins, it is unlikely that adult migration distance within the basins would be a significant survival factor. For example, in the Wenatchee basin, the distance between Dryden Dam and Tumwater Dam is only 15 miles, compared to the 486 miles and 7 dams from the mouth of the Columbia River to Dryden Dam. More likely, the in-basin key to survival would be the habitat conditions within the basins, and, for the Wenatchee, the hydrographic difficulty for adults (rather than the distance) of reaching high quality spawning and rearing habitat above Tumwater Canyon (K. Murdoch, YN Fisheries Biologist, personal communication, November 2009).

This ISRP alternative does not require detailed evaluation in this EIS because the effects on the environment would fall within the range of effects already being analyzed.

2.4.2 Use of Egg Boxes

During scoping, it was suggested that egg boxes could be used instead of building a hatchery. This is not a feasible alternative. Egg boxes could not replace a hatchery in this case for two main reasons. Due to the time of year and locations where coho spawn, egg boxes placed in those areas probably would freeze and the eggs would be killed. Even if egg boxes were used, the project still would need to capture, hold, spawn, and early-incubate the eggs, which would require the same infrastructure as proposed.

2.4.3 Use of Out-of-Area Wild Donor Fish

During scoping, a commenter suggested that the project use wild donor fish from other regions such as Alaska or Canada. At the outset of the feasibility studies, the project investigated using coho from the Fraser River in British Columbia to develop a locally adapted broodstock. This stock was the only remaining wild stock in the Northwest that migrates long distances, similar to the coho that used to occupy the mid-Columbia basins. At the time (mid-1990s), such fish were
unavailable. With declining coho populations in the Fraser system, it is currently unlikely that an international agreement could be negotiated.

2.4.4 Alternative Rearing Systems

The Master Plan for the coho reintroduction program evaluated several alternative rearing systems, including the following:

- Existing public hatcheries
- A central conventional hatchery
- Small watershed rearing facilities
- Natural habitat rearing facility
- Long-term rearing at acclimation sites
- Constructed habitat

The analysis in the Master Plan shows that the alternative of using existing hatcheries has a much lower overall cost than the other options. It has no capital cost and a moderate operating cost. The construction and use of multiple small watershed hatcheries is estimated to have a very high total cost; all the other options are intermediate (YN 2010, Appendix B.1).

The differences in operating costs reflect the higher expense of producing fish from multiple locations. There is a certain fixed base cost associated with operating a facility that is independent of the numbers of fish produced. The difference between producing all the fish at one location versus at multiple locations may be in excess of $6,000,000 over a 20-year period. Differences in capital cost result from the number of facilities and their complexity.

Important factors used to evaluate rearing system options include the ability to produce fish that return to targeted areas at high survival rates. The degree of difference between the various systems’ adult survival rates is unknown. Adult return rates are expected to be affected by the type and length of acclimation: long acclimation periods in natural conditions would improve the performance of fish produced from conventional hatcheries (YN 2010, Appendix B.2).

The central, conventional hatchery and the small watershed rearing facility had too many disadvantages related to cost and operational difficulties. Also, the natural habitat rearing facility is an untested concept. These alternatives were eliminated as rearing options. The program combined and modified the remaining options into the proposal evaluated in this EIS.
2.5 Comparison of Alternatives in this EIS

Table 2-9 compares the two alternatives considered in detail in this EIS—the Proposed Action and the No Action Alternative—in terms of how well they meet the purposes defined in Section 1.2. Table 3-1, at the beginning of Chapter 3, summarizes the environmental effects of both alternatives.

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Proposed Action</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop a locally adapted, self-sustaining, naturally spawning coho stock that occupies its historical habitat in the Wenatchee and Methow river basins</td>
<td>By providing funding for expanding coho distribution into natural production areas of the basins, model results indicate that a locally adapted, self-sustaining, naturally spawning coho stock has an excellent chance of being established.</td>
<td>Without funding to expand into natural production areas, a locally adapted, self-sustaining, naturally spawning coho stock is unlikely to be established. The majority of fish produced by the project would be hatchery fish.</td>
</tr>
<tr>
<td>Increase the abundance of Mid-Columbia coho salmon to numbers sufficient to sustain a mainstem and terminal harvest in most years</td>
<td>Program projections indicate that by funding increased coho production for a limited period and expanding their distribution into natural production areas, natural coho abundance would be increased by 2028 sufficient to sustain harvests.</td>
<td>Without BPA funding, numbers of juveniles reared would be reduced, thus reducing the likelihood that natural coho abundance would be increased sufficiently to provide significant harvest.</td>
</tr>
<tr>
<td>Maintain consistency with the Council’s Columbia River Basin Fish and Wildlife Program and its recommendations as well as with the visions and goals of other regional plans, including subbasin plans</td>
<td>Would be consistent with the Council’s recommendation to implement the program proposed in the Master Plan. Would be consistent with subbasin plans by restoring coho as part of ecologically balanced systems.</td>
<td>Would not be consistent with the Council’s recommendation to implement the program proposed in the Master Plan. Would not be consistent with subbasin plans because naturally spawning populations of coho are unlikely to be restored.</td>
</tr>
<tr>
<td>Maintain consistency with the coho production objectives specified in the 2008-2017 United States v. Oregon Fish Management Agreement for the Wenatchee and Methow subbasins</td>
<td>Continued BPA funding would provide the personnel, equipment, and facilities needed to maintain the United States v. Oregon production goal of 1.5 million smolts released from the Wenatchee and Methow subbasins.</td>
<td>Without BPA funding, the U.S. v. Oregon production goal of 1.5 million smolts would not be met because personnel, equipment, and facilities would have to be reduced below current levels.</td>
</tr>
<tr>
<td>Minimize harm to natural or human resources, including species listed under the Endangered Species Act</td>
<td>Proposed mitigation measures would minimize harm to natural and human resources. Approvals by and reporting to regulatory agencies would minimize the risk of adverse effects to listed species. Could provide ecological benefits that would aid in listed species recovery.</td>
<td>With no construction of new facilities, natural and human resources would not be adversely affected. Low numbers of naturally produced coho could reduce the risk of adverse effects to listed species but also would not provide potential ecological benefits.</td>
</tr>
</tbody>
</table>

The intent of the Proposed Action is to further mitigate the adverse effects of the Federal Columbia River Power System on fish in the Wenatchee and Methow basins by restoring naturally spawning coho salmon runs to these basins. Coho runs to these basins were virtually non-existent by the end of the 20th century due to a combination of factors discussed in detail in
Section 1.3.1. By applying the most current findings regarding acclimation and integrated hatchery reform, the Yakama Nation, through the Proposed Action, endeavors to establish self-sustaining, naturally reproducing coho populations in the Wenatchee and Methow basins. To that end, the YN would implement best available science for production and acclimation to encourage a locally adapted population that would eventually rebuild the coho runs to harvestable numbers. By reintroducing coho in these basins, BPA and the Yakama Nation also hope to contribute to restoring the ecological balance of the system. The Wenatchee Subbasin Plan recognizes that “Restoration of individual populations may not be possible without restoration of other fish and wildlife populations with which they co-evolved.” (NPCC 2004a). By funding the Proposed Action, BPA would make continued progress toward meeting its obligations under the Pacific Northwest Electric Power Planning and Conservation Act and the 2008 Columbia Basin Fish Accords.

The No Action Alternative would be unlikely to achieve a self-sustaining, naturally reproducing population. The broodstock currently used by the coho program in the Wenatchee and Methow basins is essentially a domesticated hatchery stock, not adapted to conditions in the wild. Without the acclimation and release of coho from new sites in key habitat coupled with deliberate selection for increased percentages of natural-origin fish in the broodstock, with increased numbers of those fish originating from high-quality habitat, the likelihood that viable natural populations of coho would be established is low. This alternative would likely further reduce the very low risk to listed fish posed by naturally spawning coho. A harvestable number of coho could be produced if the current program were replaced by a program to produce only hatchery fish, funded by other entities. However, such an outcome is not predictable, would not help restore natural populations as envisioned in the subbasin plans, and would not meet BPA’s obligations under the Northwest Power Act and the 2008 Fish Accords.
Chapter 3. Affected Environment and Environmental Consequences

3.1 Introduction: How this Chapter is Organized

This chapter analyzes the potential effects of the Proposed Action and the No Action Alternative on the physical, biological, and human environments.

- Section 3.2 summarizes the environmental effects analyzed in the remainder of the chapter.
- Section 3.3 provides an overview of the geography of the two basins and a brief description of each project site.
- Section 3.4 discusses the past and current status of coho salmon in the basins.
- Sections 3.5 through 3.14 evaluate the effects of the Proposed Action and the No Action Alternative on environmental and human resources.
- Section 3.15 discusses the cumulative effects of the project.
- Sections 3.16 and 3.17 identify adverse effects that cannot be avoided, irreversible and irretrievable commitments of resources, short-term uses of the environment, and effects on long-term productivity.

The analysis considers the effects of the alternatives in the following categories of action:

- development and operation of a new small hatchery for adult holding/spawning, incubation and rearing;
- development and operation of new, expanded, and existing acclimation and adult plant sites;
- changes in the numbers and locations of coho being released into the basins.

Direct, indirect, and combined effects are described for each resource affected.

Effects of program use of facilities that are not proposed for physical modification or change in current operations are not evaluated. These facilities include:

- hatcheries near Bonneville Dam on the Columbia River (Willard and Cascade), impacts of which have been evaluated in other processes;
- Winthrop NFH and Leavenworth NFH;
- existing juvenile and broodstock capture sites in the two basins where operations would remain the same;
- the monitoring and evaluation program, because it is essentially the same as the current program, effects of which were evaluated in previous NEPA processes.

Although impacts of these sites and programs are not evaluated in this EIS, maps in the main document and in Appendix 4 show the locations of all facilities proposed for use in this program, and Appendix 5 describes the monitoring and evaluation program in detail.

The Mid-Columbia Coho Restoration Master Plan (Master Plan) (YN 2010) is incorporated by reference in this EIS in its entirety. It includes biological data, ecological rationale, and environmental and engineering research used to support much of the analysis in this EIS.
3.2 **Summary of Environmental Effects**

Table 3-1 summarizes the environmental effects that are discussed in detail in Chapters 3 and 4.

<table>
<thead>
<tr>
<th>Impact</th>
<th>Proposed Action</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects on water quality from facility discharges</td>
<td>There would be minor, localized impacts from phosphorus in effluent, but model simulations show that the maximum possible impact of all facilities, including the proposed hatchery, would be undetectable downstream in the sections of the river that are water quality limited.</td>
<td>No change from current program, or reduced impacts: existing facilities would continue to be used, but fewer fish would be produced, resulting in lower discharges of fish waste and chemicals attributable to the coho project.</td>
</tr>
<tr>
<td>Effects of surface and groundwater withdrawals on surface water quantity</td>
<td>Local reduction in flows at withdrawal points for groundwater and in bypass reaches for surface water, offset by return flows from facilities.</td>
<td>No change from existing conditions because no new withdrawals are proposed.</td>
</tr>
<tr>
<td>Effects of water withdrawals on groundwater supply</td>
<td>Local reductions at 5 acclimation sites and the hatchery; no regional reductions.</td>
<td>No change from existing conditions because no new wells would be developed.</td>
</tr>
<tr>
<td>Effects of surface and groundwater withdrawals on water rights</td>
<td>Potential impact to ground water rights at Dryden; potential impact to on- or off-site wells at 5 acclimation sites. No impacts to surface water rights at any of the sites.</td>
<td>No change from existing conditions because no new wells would be developed.</td>
</tr>
<tr>
<td>Sedimentation effects on fish</td>
<td>Minimal or no effects on ESA-listed and other fish from temporary sedimentation due to excavation and construction: best management practices would be used for erosion control.</td>
<td>No sedimentation effects because no new facilities would be constructed.</td>
</tr>
</tbody>
</table>
| Effects of surface water withdrawal on ESA-listed and other fish | - Relatively small withdrawal volumes at acclimation sites would not substantially reduce in-stream flow quantities, change habitat availability including hiding/resting/foraging habitats, or affect migratory movements (fry, juvenile, and adult) of listed salmonids.
- Withdrawals from Dryden fishway and discharge into Peshastin Cr. could increase spawning habitat for summer Chinook in Peshastin Cr. but have little or no effect on species in Wenatchee R.
- Water intake systems would follow NMFS 2008 guidelines to reduce potential to entrain all fish species. | No change from current conditions because no new surface water withdrawals would be made. |
| Reduced access to migration or rearing habitat for ESA-listed and other fish | Fish other than coho would be excluded from 2.5 acres of 4.6 acres of currently accessible habitat at proposed acclimation sites in both basins. For ESA-listed fish, this translates to:
- Up to 113 spring Chinook juveniles and 237 steelhead juveniles excluded annually from Wenatchee basin sites out of a total annual wild population of 55,619 – 311,669 Chinook smolts and 17,499 - 85,443 steelhead smolts.
- Approx. 314 spring Chinook juveniles and 201 steelhead juveniles excluded annually from Methow basin sites out of a total annual wild population of 15,306 – 33,710 Chinook smolts and 8,809 - 15,003 steelhead smolts.
- Juvenile bull trout numbers excluded from sites in each basin are very small (Wenatchee 3; Methow 10). | Approximately ½ acre of currently accessible habitat at acclimation sites would be excluded from use by fish other than coho, for a total of 2 acres excluded from use for 6 weeks each year, due to potential use of 2 Methow basin acclimation sites not in 2010 program. |
| Trapping of fish at adult traps | Trapping at all but one trap is occurring under existing operations. Potential take of bull trout at Chiwawa Weir if operations are extended to allow coho trapping. | Trapping could be reduced at Dryden Dam and Wells FH; without coho trapping, the traps would be open less, with potential for incidental take of listed fish reduced. |
Chapter 3 – Summary of Effects

<table>
<thead>
<tr>
<th>Impact</th>
<th>Proposed Action</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapping of fish at juvenile traps</td>
<td>Incidental take of spring Chinook or bull trout is possible at a potential new trap on the Little Wenatchee R.; impacts would be evaluated when location is proposed.</td>
<td>No change in current conditions; existing traps are operated with or without coho project. No new traps proposed.</td>
</tr>
<tr>
<td>Coho predation on ESA-listed fish</td>
<td>Studies show that approximately 0.28% of hatchery coho smolts and 2.7% of naturally produced coho prey on listed species, with less than 1% of the Chinook fry population consumed. Listed populations would be monitored and changes evaluated to determine if increasing numbers of coho increase predation with adverse effects on listed species.</td>
<td>Minimal predation by hatchery smolts as in existing program. Minimal predation by naturally produced smolts, as significant numbers of naturally produced coho are unlikely to be established.</td>
</tr>
<tr>
<td>Competition between naturally produced coho and ESA-listed species</td>
<td>Studies show species use different microhabitats, so competition is not expected at low densities. Listed species would be monitored to determine if adverse effects occur with increasing densities.</td>
<td>Without the expanded program, naturally produced coho numbers and densities would remain low, so potential competition with listed species would be limited or non-existent.</td>
</tr>
<tr>
<td>Effects on ecological balance</td>
<td>The addition of coho carcasses at the onset of winter might provide an increased marine-derived source of nutrients and improve over-winter survival for all species. Juvenile and adult coho provide prey for fish-eating predators including bald eagles, mergansers, otters, and bears. Ecological balance could improve with coho occupying a critical niche in the natural environment.</td>
<td>Current conditions would continue; e.g., in Nason Creek, there is very little carcass production, leaving a potential void in the nutrient balance prior to the onset of winter. Little potential for improvement in ecological balance.</td>
</tr>
<tr>
<td>Habitat reductions for ESA-listed wildlife</td>
<td>Slight potential reduction in spotted owl habitat possible at Tall Timber (w/in 1 mi. of management circle); qualified biologist would confirm presence or absence of nests in any trees needing removal.</td>
<td>No change in current conditions.</td>
</tr>
<tr>
<td>Habitat reductions for state-listed wildlife</td>
<td>No noticeable reductions in available habitat for any species listed under WDFW Priority Habitat and Species program. Slight increase in aquatic habitat due to new ponds.</td>
<td>No change in current conditions.</td>
</tr>
<tr>
<td>Disturbance to wildlife</td>
<td>Construction noise could cause certain species to avoid 9 sites for 1-60 days, May-October of 2012. Operations, including use of noise-baffled generators, would not noticeably disturb wildlife because all primary sites currently experience human activity.</td>
<td>No change in current conditions.</td>
</tr>
<tr>
<td>Effects on wetlands</td>
<td>Total estimated wetland impacts at primary sites: - Temporary: 1,350 sq ft. would be replanted - Permanently removed: 3,179 sq ft. - New wetland created: 52,272 sq ft.</td>
<td>No change in current conditions.</td>
</tr>
<tr>
<td>Changes to floodplain function</td>
<td>Construction would occur in floodplains, requiring permits at up to 6 primary sites in the Wenatchee and 1 primary site in the Methow. - Flood elevations are not expected to change. - New ponds could add a small amount of flood storage. - Excavated material would be disposed outside of floodplains and not change grade that could divert flood flows to nearby properties.</td>
<td>No change in current conditions.</td>
</tr>
<tr>
<td>Effects on aesthetic/visual quality</td>
<td>Dryden Hatchery could reduce the contrast of the site with the surrounding area and add to the aesthetic appeal for viewers. Acclimation sites would not change visual quality.</td>
<td>No change in current conditions.</td>
</tr>
<tr>
<td>Effects on recreation</td>
<td>No interference with current recreation uses. Generators at noise-sensitive acclimation sites would be enclosed in noise-muffling structures to meet state noise standards.</td>
<td>No change in current conditions.</td>
</tr>
<tr>
<td>Economic effects</td>
<td>Minimal increase in employment, temporary and permanent. No new infrastructure or services required.</td>
<td>Loss of 11 permanent and 10 seasonal YN jobs.</td>
</tr>
</tbody>
</table>
Chapter 3 – Summary of Effects

<table>
<thead>
<tr>
<th>Impact</th>
<th>Proposed Action</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects on harvest</td>
<td>Potential terminal, mainstem, and ocean tribal, commercial, and sport harvest by 2028.</td>
<td>No harvest of naturally produced fish; potential harvest of hatchery fish if program changes to harvest augmentation.</td>
</tr>
<tr>
<td>Effects on cultural resources</td>
<td>Unknown. Surveys scheduled for 2011 before the Final EIS.</td>
<td>No effect.</td>
</tr>
<tr>
<td>Noise effects</td>
<td>Construction noise at residences or properties near acclimation sites 8 a.m. – 5 p.m. M-F, for 1 day to 4 months in 2012. Construction noise likely not noticeable for the 5-month hatchery construction period due to noise from surrounding uses at Dryden. Noise from generators would be muffled to meet state standards.</td>
<td>No change in current conditions.</td>
</tr>
<tr>
<td>Effects on air quality</td>
<td>Minor short-term increases in dust during spring and summer of 2012 from construction activities. Undetectable increases in greenhouse gases.</td>
<td>No change in current conditions.</td>
</tr>
<tr>
<td>Consistency with comprehensive plans</td>
<td>Proposed activities would be consistent with goals and policies in Chelan County and Okanogan County comprehensive plans.</td>
<td>Current program is consistent with comprehensive plans in Chelan and Okanogan counties.</td>
</tr>
<tr>
<td>Consistency with subbasin plans</td>
<td>If successful, the program would restore naturally spawning coho populations to the Methow and Wenatchee subbasins as envisioned in both subbasin plans.</td>
<td>Would not restore natural populations of coho as called for in Wenatchee and Methow subbasin plans.</td>
</tr>
<tr>
<td>Consistency with Council F&W Program</td>
<td>Would implement Council recommendations regarding this program which began with its identification as a high-priority project in the 1994 Fish and Wildlife Program.</td>
<td>Would not implement Council recommendations regarding this program.</td>
</tr>
</tbody>
</table>

3.3 Overview of Wenatchee and Methow Basins and Project Sites

3.3.1 General Characteristics of the Basins

The Wenatchee basin is located within Chelan County in north central Washington. It consists of five sub-watersheds (the Chiwawa, White, Little Wenatchee, and Wenatchee rivers and Nason Creek), which drain a combined total of approximately 1,300 square miles (NPCC 2004a). The headwaters of the basin are in the Cascade Mountains and include portions of the Glacier Peak and Alpine Lakes wilderness areas. The Wenatchee River joins the Columbia River at river mile (RM) 470 between Rocky Reach and Rock Island dams. The majority of the basin is forested; the composition of forest species changes as distance from the Cascade crest increases and elevations decrease. Vegetation and wildlife habitat types consist of wet mixed-coniferous forests (mountain hemlock, silver fir and western hemlock), dry mixed coniferous forests (subalpine fir, grand fir, Douglas-fir, and/or ponderosa pine), grasslands, shrub steppe, herbaceous wetlands (sedges and rush), montane coniferous wetlands, and riparian wetlands (willow, black cottonwood, alder and red osier dogwood, with quaking aspen and bigleaf maple at the edges) (NPCC 2004a). These diverse habitats support an estimated 341 species of fish and wildlife (NPCC 2004a). Topography in the basin varies from mountainous alpine slopes (10,541 feet elevation at Glacier Peak in the White River watershed) to wide river valleys (600 feet elevation at the town of Wenatchee).

Land uses in the Wenatchee basin consist of commercial forest (86 percent areal coverage), commercial agriculture (1 percent), rural (12 percent), urban (0.5 percent), and open water (0.3 percent). Approximately 76 percent of the lands in the basin are managed by the U.S. Forest
Service (USFS). Approximately 18.5 percent of the basin is privately owned. Private lands border almost two-thirds of the mostly lower-gradient streams that support anadromous (sea-run) fish such as salmon and steelhead. Agriculture consists primarily of orchards (93 percent) with some production of hay, grains and row crops (6.5 percent) (NPCC 2004a).

The Methow basin is in Okanogan County in north central Washington. It consists of five sub-watersheds (the Methow, Twisp, Chewuch and Lost rivers and Early Winters Creek), which drain a combined total of approximately 1,825 square miles (NPCC 2004b and 2004c). The Methow River joins the Columbia River at the town of Pateros. Vegetation and wildlife habitat types consist of mixed coniferous forests (upper-montane and mid-montane), lodgepole and ponderosa pine woodlands, upland aspen forests, grasslands, shrub-steppe, herbaceous wetlands, montane coniferous wetlands, riparian wetlands, agriculture and urban/mixed use. These diverse habitats support well over 300 species of fish and wildlife. Topography in the basin varies from mountainous alpine slopes with elevations greater than 8,500 feet, to wide river valleys with elevations of approximately 800 feet. Land use in the basin consists of forest land (86.5 percent), rangeland (9.6 percent), other land uses (2.3 percent), and cropland (1.6 percent). More than 80 percent of the basin is managed by the USFS. Grazing and croplands are primarily in the lower and mid reaches of the basin. Agriculture consists of orchards, alfalfa and other irrigated crops.

3.3.2 Land Use at Proposed Project Sites

Figures 2-5 through 2-8 show the general locations of project sites in each basin. Large-scale maps of each proposed and backup site can be found in Appendix 4. The specific map number for each site is identified in the descriptions below.

3.3.1.1 Hatchery Sites

Dryden (Primary): The site is on property that contains an existing adult trapping facility adjacent to Dryden Dam at the mouth of Peshastin Creek (Figure 10c). The Washington State Department of Transportation (WSDOT) currently uses the site for gravel storage. Highway 2 passes by the site. The majority of the site is disturbed bare ground with small patches of grass and weedy species. Land use in the vicinity is dominated by light industrial development associated with the dam, residential and commercial development associated with the community of Dryden, and agricultural use. The hills south of Highway 2 contain second growth coniferous forest.

George (Backup): The George site is an undeveloped property consisting of multiple parcels totaling 150 acres along a large bend in the Wenatchee River (Figure 10ad). The site is accessed via gravel roads from State Route (SR) 207 and Beaver Valley Road. The topography is relatively flat; a majority of the site is below the base flood elevation for the Wenatchee River. Habitat is diverse and includes forested, shrub-scrub, emergent and open-water wetland and mixed deciduous and coniferous upland forest. Land use in the vicinity of the George site includes recreational areas, residences, farms and ranches, and private and federal forest lands. The landscape is dominated by mature forest, wetland systems, and riparian habitat associated with the Wenatchee River.

3.3.1.2 Primary Wenatchee Basin Acclimation and Adult Plant Sites

Beaver: This site contains a pond currently used by the project for coho acclimation (Figure 10h). The pond is on property owned by a recreation-oriented guest facility. An un-surfaced
road extends 1,000 feet from the guest lodge to the pond. Chiwawa Loop Road is also within about 1,000 feet of the site but is not visible from it.

Brender: The Brender site includes an existing pond on an undeveloped parcel in the community of Cashmere (Figure 10b). Brender Creek flows through the site and an unpaved road provides access. Land use in the vicinity is dominated by residential and commercial development associated with the community of Cashmere. Highway 97 is about a quarter mile to the north.

Butcher: The Butcher site includes an existing pond currently used by the project for coho acclimation (Figure 10e). Highway 2 is a few hundred feet to the south and visible from the site. A paved access road from Highway 2 runs along the north side of the site and provides access to it. Butcher Creek flows into the pond and Nason Creek flows adjacent to the east side of the pond. Additional land use near the site includes a vacation home, an electrical transmission corridor, and a highway rest stop about a mile west of the site.

Chikamin: The Chikamin site, on the same property as the Minnow site (described below), is in a rural undeveloped area more than 15 miles from Highway 2 (Figure 10l). Chiwawa River Road provides access to the site. There is no existing pond. Timber has been harvested on the property and on the surrounding parcels.

Clear: The Clear site includes several existing ponds on property with a private campground, small cabins, and mowed lawns. The site is about 10 miles from Highway 2 (Figure 10i). Public roads provide access.

Coulter: The Coulter site is less than a mile from Highway 2 and includes an existing pond currently used by this project for coho acclimation (Figure 10e). Coulter Creek flows into and out of the pond. A vacation home that is part of a community of vacation homes is located near the site. An unpaved road associated with the vacation homes provides access.

Dirty Face: The Dirty Face site includes creeks that flow through an open field before entering the White River. The mouth of the creek is in the Chelan Wildlife Area - White River Unit and is owned and managed by the Washington Department of Fish and Wildlife (Figure 10k). A vacation home is on adjacent property. The property is about 10 miles north of Highway 2. White River Road provides access.

Leavenworth National Fish Hatchery: The Leavenworth National Fish Hatchery (NFH), operated by the U.S. Fish and Wildlife Service (USFWS), is on Icicle Creek Road, about 2 miles south of the city of Leavenworth (Figure 10d). The coho program currently acclimates and releases coho in Icicle Creek on hatchery property.

Minnow: The site, with no existing pond, is on the same undeveloped property as the Chikamin site, from which timber was harvested in the past (Figure 10l).

Rohlfing: The Rohlfing site is less than a mile from Highway 2 and includes an existing pond fed by a seasonal creek where the project currently acclimates coho (Figure 10g). A vacation home is at the site; an unpaved road associated with a community of vacation homes provides access. An electrical transmission corridor and railroad tracks are nearby.

Scheibler: The Scheibler site includes an existing pond associated with Chumstick Creek (Figure 10ab). Chumstick Highway provides access to the site.
Tall Timber: The site is on the Tall Timber Ranch more than 15 miles from Highway 2 (Figure 10j). A church camp is operated at the ranch. White River Road provides access.

Two Rivers: The Two Rivers property, about a mile from Lake Wenatchee, contains an operating gravel mine (Figure 10ak). The site includes an existing acclimation pond with a connection to the Little Wenatchee River that the coho project has used in the past. Little Wenatchee Road provides access. There is no public power at the site.

White River Springs: Beaver dams created ponds from springs that flow into the White River (Figure 10k). The site is on property with residential structures about 11 miles north of Highway 2.

3.3.1.3 Backup Wenatchee Basin Acclimation Sites

Allen: The Allen pond is in the Valley Hi residential community, in open space used for recreation by the community (Figure 10a).

Coulter/Roaring: The Coulter/Roaring site includes a pond system created by beaver dams on Yakama Nation property (Figure 10e). While the wetland is owned by the Yakama Nation, access to potential acclimation sites is through private property on an unpaved road. The site is less than a mile from Highway 2. Land use on YN property is habitat preservation; on adjacent properties it is recreation and rural residential.

McComas: The site includes existing ponds located near the White River about 5 miles north of Highway 2 (Figure 10ak). Land use is habitat preservation and rural residential. Little Wenatchee Road provides access.

Squadroni: The Squadroni site is on residential property near Highway 2, which is visible from the site (Figure 10f). If the site is used, a pond would be constructed that would connect to an existing ditch that connects to Nason Creek. An electrical transmission corridor and railroad tracks are located on the south side of Nason Creek.

3.3.1.4 Primary Methow Basin Acclimation and Adult Plant Sites

Goat Wall: A residence is adjacent to an existing pond; access is via Lost River Road (Figure 10y).

Gold: The site contains a series of small, man-made ponds adjacent to the South Fork of Gold Creek (Figure 10n). It is in a rural residential area, with several homes adjacent to the acclimation site. Walking trails and benches are located along the ponds and the creek.

Hancock: The Hancock site is a parcel of rural residential property associated with Hancock Spring, which flows into the Methow River (Figure 10t). A farm house is on the property, the majority of which is comprised of grass hay or pasture.

Heath: The Heath site includes existing ponds associated with springs that flow into the Methow River. The site is a ranch located near Highway 20 (Figure 10w). The highway provides access to the site and is visible from it. Structures associated with the ranch occupy part of the site, but the majority of the property is comprised of grass or hay/pasture. The adjacent upstream property is the Big Valley Unit of the Methow State Wildlife Area, owned and managed by WDFW for riparian habitat protection and wildlife conservation.
Lincoln: The Lincoln site includes existing ponds adjacent to the Twisp River (Figure 10ai). The property includes a conservation easement purchased by the Methow Conservancy. A farm and residence is adjacent to the ponds.

Lower Twisp: The Lower Twisp site is owned by the Methow Salmon Recovery Foundation and includes several ponds used for steelhead acclimation and one pond used for coho acclimation for this project. The site is less than a mile from the center of the town of Twisp and is adjacent to the Twisp River (Figure 10q). Twisp River Road provides access. A building associated with the Methow Salmon Recovery Foundation occupies part of the site.

Mason: The Mason site includes three man-made ponds near the mouth of Eightmile Creek; the ponds were used for coho acclimation in 1998. The site is about 10 miles north of the town of Winthrop; West Chewuch River Road provides access (Figure 10z). A vacation home is located at the site.

MSWA Eightmile: The site is in the Methow State Wildlife Area (MSWA), which is owned and managed by WDFW property managed for wildlife conservation and public recreation (Figure 10z). The well proposed for the site would be on private land in a field near the existing side channel; the side channel is on property owned by WDFW.

Parmley: The Parmley site includes an existing farm pond adjacent to Beaver Creek, about 6 miles from the community of Twisp (Figure 10m). Beaver Creek Road provides access to the site, which also contains a rural home with several farm structures.

Pete Creek Pond: The Pete Creek site includes a pond on a disconnected side channel of the Chewuch River about 4 miles north of the town of Winthrop (Figure 10v). An unpaved road off of the West Chewuch River Road provides access to the site. A rural home with several building structures and a nine-hole golf course is located adjacent to the pond. The MSRF Chewuch site (a backup site) is about 2,000 feet to the south.

Twisp Weir: The site is on the south side of Twisp River Road approximately 5.5 miles from Highway 20 (at Twisp) (Figure 10p). It includes an existing man-made acclimation pond for spring Chinook salmon, a salmon weir, and a smolt trap owned by Douglas County PUD and operated by WDFW. The existing acclimation pond and weir are accessible from Twisp River Road via existing gravel roads. A residence is located on the portion of the Twisp Weir site north of Twisp River Road. The western portion of the site, south of Twisp River Road, is a fenced mowed grassy field, with a shed covering a camping trailer close to the Twisp River.

Winthrop National Fish Hatchery: Winthrop NFH, about half a mile from the center of the town of Winthrop, is operated by USFWS; it has ponds associated with a back channel of the Methow River (Figure 10s). The coho project currently uses the hatchery facilities for broodstock collection, incubation, rearing, and acclimation.

3.3.1.5 Backup Methow Basin Acclimation Sites

Balky Hill: The site includes an existing pond near Beaver Creek about 3 miles north of Highway 20 (Figure 10r). Land use is agriculture. Structures associated with the farm are adjacent to the pond. The site is accessed via Beaver Creek Road.

Biddle: The site contains two existing ponds; a rural vacation home overlooks the ponds. Access is via Wolf Creek Road (Figure 10x).
Chewuch Acclimation Facility: The Chewuch AF site, on the east side of the Chewuch River, is on a parcel occupied by a recreational vehicle campground (Figure 10u). An existing acclimation pond operated by WDFW is adjacent to the site. Access is via the Eastside Chewuch Road bridge.

Methow Salmon Recovery Foundation - Chewuch: The mission of MSRF, which owns the site, is to enhance and preserve salmon habitat. A large estate is adjacent to the site (Figure 10v).

Newby: Newby is a small high-gradient tributary of the Twisp River just upstream of the Twisp trap. The site is recreation property. Access is via the Twisp River Road and the Newby Creek Road (Figure 10p).

Poorman: The site includes four large ponds near the Twisp River located about 3 miles from the community of Twisp (Figure 10o). Twisp River Road provides access to the site. A rural home with several farm structures is on the site.

Utley: The site contains a large pond fed by spring water adjacent to the Twisp River. A rural home is adjacent to the ponds. Access is via a 1,200-foot gravel road from Twisp River Road (Figure 10ah).

3.4 Coho Status, Life Cycle and Distribution in Wenatchee and Methow Basins

Timing of project activities and their impacts depends on the coho life cycle, abundance, and expected distribution. This section summarizes current conditions for coho in the two basins.

3.4.1 Coho Population Status

Historically 120,000-166,500 coho were attributed to the mid- and upper Columbia tributaries (Yakima, Wenatchee, Entiat, Methow, and Spokane rivers) (Mullan 1984). Mullan (1984) estimated that the Wenatchee River supported adult returns of approximately 6,000 – 7,000 coho and the Methow River supported 23,000 – 31,000.

By the 1930s, coho populations in the mid-Columbia region were considered extirpated. As discussed in Chapter 1, Section 1.3.1, although no one knows for sure why natural populations of spring Chinook and steelhead persisted when coho did not, possible reasons include:

- Very high harvest rates on coho in the lower Columbia River;
- Unscreened irrigation diversions on small tributaries in mid-Columbia basins;
- The fixed three-year coho life cycle versus the variable life cycles of spring Chinook and steelhead which provide more adaptability to changes in the environment.

Before the current coho reintroduction program began in the Wenatchee and Methow basins, two attempts were made to rebuild coho populations. Between the early 1940s and the mid-1970s, the USFWS raised and released coho as part of the mitigation for the construction of Grand Coulee Dam (Mullan 1984). Chelan PUD also had a coho hatchery program until the early 1990s. While some natural production might have occurred from these releases, fish were not released in natural production habitats in the watersheds. The programs overall were not designed or intended to re-establish naturally spawning populations—they were for harvest augmentation—so coho populations in mid-Columbia basins continued to be considered extirpated.
The Yakama Nation, funded by BPA, began a feasibility study in 1996 to evaluate coho reintroduction in mid-Columbia tributaries. Since the reintroduction of coho to the Wenatchee River in 1999, the number of adult returns has ranged between an estimated 350 to 5,031 (C. Kamphaus, YN Fisheries Biologist, personal communication, Feb. 28, 2011). A portion of these fish are taken into the hatchery for broodstock development; the remainder are allowed to spawn naturally. The first generation of naturally produced coho smolts emigrated from the Wenatchee River basin in 2002 with an estimated population size of 17,000 (Murdoch et al. 2004). In 2003, approximately 36,700 naturally produced coho smolts emigrated from the Wenatchee River (T. Miller, WDFW, unpublished data).

Since 1999, adult returns to the Methow River have ranged from 140 to 1,680 (C. Kamphaus, YN, personal communication, Feb. 28, 2011). Similar to the Wenatchee, a portion of the coho returning to the Methow River are used for broodstock development. At this point in the reintroduction process, neither population could sustain itself without hatchery supplementation.

3.4.2 Coho Life Cycle

Because the historical stocks of coho salmon were decimated near the turn of the 20th century, most life history information was obtained through affidavits from older residents of the Wenatchee and Methow basins. The historical information suggests that these fish were probably early-returning-type adults, ascending the mid-Columbia tributaries in August and September (Mullan 1984). The coho currently occupying these basins that were developed from lower Columbia River stocks spawn from October to mid-December. Coho are reported to use a varied size range of substrate for spawning, from fine gravel to coarse rubble; the material typically is 6 inches (15 cm) in diameter or smaller (Groot and Margolis 1991).

In general, coho salmon emerge from eggs February through April. They rear in their natal tributaries. A portion of juvenile coho migrate downstream during the fall, presumably seeking over-winter habitat (Sandercock 1991). Some juvenile coho may also migrate upstream to overwinter in small tributaries (Tripp and McCart 1983). In studies done in the Wenatchee basin, the diets of both hatchery and naturally produced juveniles were dominated by insects (Murdoch et al. 2005); to a lesser extent juveniles prey on crustaceans and other juvenile fish (Groot and Margolis 1991, Murdoch et al. 2005). Typically, Columbia River coho spend a year in freshwater before out-migrating as yearling smolts in the spring (April and May). After out-migrating, coho spend approximately 18 months at sea before returning to their natal tributaries to spawn. Sexually precocious males (jacks) return to spawn after six months at sea.

3.4.3 Coho Distribution

Historically, many of the two basins’ tributaries supported coho production, although little is known about their spatial distribution. Since the YN’s program of coho feasibility studies began, coho have been found to spawn in the mainstem Wenatchee River (near the Wenatchee River confluence to Lake Wenatchee); in Nason, Beaver, Icicle, Peshastin, Chumstick and Mission creeks; and possibly in Chiwawa River. In 2004, coho also returned to the Little Wenatchee River to spawn. Coho salmon returning to the Methow basin are spawning in the mainstem Methow, Chewuch and Twisp rivers and in small tributaries such as Gold, Libby, and Beaver creeks.
3.5 Surface Water Quality

The analysis of water quality impacts is extensive due to the concerns raised during scoping by agencies and citizens. Consultants were hired to evaluate discharges from existing coho acclimation sites and current water quality in the vicinity of proposed new sites; and to assess project impacts to water quality in both basins using several methods, including modeling based on the QUAL-2K model developed by Washington State Department of Ecology (WDOE). The consultants provided two detailed reports which are appended to this EIS (Appendix 6 Water Quality Data and Appendix 7 Water Quality Impacts). Their data, analyses, and conclusions are incorporated by reference and summarized in this section. Please consult the appendices if more detail is desired.

3.5.1 Affected Environment

Washington’s water quality standards are the basis for protecting and regulating the quality of the state’s surface waters. The standards identify designated and potential uses of water bodies, such as aquatic life, swimming, fishing, domestic and agricultural water supplies, etc.; they set water quality criteria to protect those uses; they contain anti-degradation policies to protect high quality waters; and in many cases they specify how criteria are to be implemented, for example in permits (Washington Dept. of Ecology website: http://www.ecy.wa.gov/water.html).

Under section 303(d) of the 1972 federal Clean Water Act, states, territories, and authorized tribes are required to develop lists of impaired waters, known as 303(d) lists. The listed impaired waters do not meet water quality standards that regulatory entities have set for them. The law requires that these jurisdictions establish priority rankings for waters on the lists and develop TMDLs (Total Maximum Daily Loads) for them. TMDLs determine the amounts of pollutants that a given water body (river, marine water, wetland, stream, or lake) can receive and still meet water quality standards (EPA website: http://www.epa.gov/lawsregs/laws/cwa.html).

In the Wenatchee watershed, the lower section of the Wenatchee River below the city of Leavenworth, portions of Icicle Creek, Mission Creek, and Brender Creek are on the State of Washington’s 303(d) list of impaired water bodies for dissolved oxygen (DO), acidity/alkalinity (pH), and temperature. In other words, at times, especially during the low-flow summer and fall period, these waters have too little dissolved oxygen, have high pH levels, and are too warm for designated uses including aquatic life. WDOE has determined that the most critical impairments are in the lower Wenatchee River downstream of the City of Leavenworth, and in Icicle Creek below the Leavenworth NFH (Carroll et al. 2006, Carroll and Anderson 2009).

Water quality deterioration in the Wenatchee River and the lower portion of Icicle Creek more severely affects aquatic life compared to Mission and Brender Creeks because of the volume of water carried and the fact that these water bodies provide important travel pathways for salmonids during their migration to spawning grounds in the upper portions of the watershed. Therefore, to improve the water quality in the lower sections of the Wenatchee River and Icicle Creek, WDOE produced load allocations for total phosphorus originating from point and non-point sources that affect the water quality of the lower Wenatchee River. The WDOE TMDL study recommended load allocations to Mission and Brender creeks to reduce the phosphorus loading to the lower Wenatchee River (Carroll and Anderson 2009). Given the importance of water quality in the lower Wenatchee River and WDOE’s focus on it in the TMDL study, water quality analyses for this EIS emphasize the water quality impacts of discharges in this section of the Wenatchee River.
The Wenatchee River upstream of Leavenworth is not included in the State’s 303(d) list for DO and pH violations (Carroll and Anderson 2009). However, the WDOE TMDL document has recommended a limit for the total phosphorus (TP) loads entering the lower Wenatchee River from sources upstream of Leavenworth to help alleviate water quality degradation in the lower section of the Wenatchee River where the TMDL is in effect.

The Methow River is not listed in the State’s 303(d) list of impaired water bodies for pH or dissolved oxygen violations. However, it is currently listed for temperature.

Aquatic organisms are very sensitive to reductions in DO levels in the water. The health of aquatic species depends on maintaining an adequate supply of oxygen dissolved in the water. Oxygen levels affect growth rates, swimming ability, susceptibility to disease, and the relative ability to endure other environmental stressors and pollutants (Carroll and Anderson 2009).

The pH value is a measure of the relative acidity or alkalinity of water (hydrogen ion concentration); it both directly and indirectly affects the ability of waters to have healthy populations of fish and other aquatic species. A lower pH value (below 7) indicates that an acidic condition is present, while a higher pH (above 7) indicates a basic or alkaline condition. A pH of 7 is considered to be neutral. Since the pH scale is logarithmic, a water sample with a pH of 8 is ten times more basic than one with a pH of 7 (Carroll and Anderson 2009).

Aquatic organisms, including fish and the food they eat, are at times exposed to high pH levels in parts of the lower Wenatchee watershed. High pH stresses aquatic organisms by impairing their salt and water balancing processes and increasing the toxicity of some contaminants. Anadromous (sea-run) species of fish encounter this stress in their adult upstream migration, and as juveniles in rearing areas and during downstream migration. In addition, salmonid eggs in the substrate are exposed to the high pH as surface water flows through spawning gravels (Carroll and Anderson 2009).

Nutrients such as phosphorus and nitrogen are essential for plant growth and aquatic community health. However, as in the lower Wenatchee River, too much of one or both of these nutrients (phosphorus in the lower Wenatchee and Icicle Creek) can cause excessive aquatic plant growth (Carroll and Anderson 2009).

In streams affected by eutrophication, natural re-aeration processes cannot compensate for plant and bacterial respiration, and DO levels become too low at night. Additionally, pH becomes high at night and too low during the day. These 24-hour (day to night) swings in DO and pH can be harmful, and even fatal, to fish and aquatic insects (Carroll and Anderson 2009).

Nutrients can also create nuisance conditions in streams by choking them with excessive plant and algae growth. These conditions may interfere with water intake structures, water conveyance in irrigation canals, and fishing, boating, and swimming (Carroll and Anderson 2009).

Washington state law provides protection for surface water quality through an anti-degradation policy (WAC 173-201A-300 of Washington Administrative Code; WAC 2006). Under this law, three levels of protection are provided: Tier I protection extends to all water bodies and maintains the current and designated uses for a given water body and prevents any further pollution; Tier II does not allow degradation of surface waters that are of exceptional quality (that exceed the water quality standards) through new or proposed actions unless such degradation is necessary and in the overriding public interest; and Tier III protection applies to water bodies classified as outstanding resource waters.
Much of the upper Wenatchee subbasin and nearly the entire Methow basin exceed the water quality standards for temperature, DO, and pH. Thus, these waters are protected by the Tier II anti-degradation policy. The lower Wenatchee River and portions of Icicle Creek where the TMDL is in effect (to prevent pH and DO violations) are protected under the Tier I policy.

Most of the existing and proposed acclimation-related sites are located in waters protected by the Tier II anti-degradation policy. Washington State requires the permit applicant to perform a Tier II anti-degradation evaluation if the proposed activity has the potential to cause a measurable change in water quality. The measurable changes relevant to this project are defined in the Washington Administrative Code as:

- temperature increase of 0.3 degree Celsius (C) or greater;
- DO decrease of 0.2 milligrams per liter (mg/L) or greater;
- pH change of 0.1 unit or greater.

For Tier I waters, human-caused discharges must not affect the existing and designated uses.

3.5.2 Types of Impact

Project activities could cause the following kinds of impacts to water quality.

Construction

- Construction can increase sediment levels where construction activity is in the stream or in riparian areas, with resulting effects on fish and other aquatic species. See analysis and impact avoidance measures in Section 3.7 Fish.

- Construction equipment operating in or near streams can leak petroleum products and other pollutants. Such leakage would be minimized by proper equipment maintenance, use of absorbents, and refueling away from the water body.

Operation

- Discharges from the proposed hatchery and acclimation sites could increase nutrient levels in streams.

- Carcasses from returning adult coho could increase the nutrient content of the waters in which they spawn. Because this is part of a natural ecological process, it is presumed to be on balance a desirable condition and was not a factor in the analysis of water quality impacts. See discussions in Section 3.7 Fish.

- Chemicals used at the proposed new hatchery could affect water quality if not properly handled or disposed. This issue is addressed in Chapter 4, Section 4.11.

The analysis of potential water quality impacts in this EIS focuses on increases in pH and DO attributable to nutrients added from the proposed coho rearing and acclimation sites in the Wenatchee and Methow basins. WDOE determined that phosphorus is the primary nutrient causing growth of algae in the lower river and therefore is the primary concern for water quality degradation. For that reason, phosphorus was the primary nutrient considered in the analysis.

Discharges from coho rearing and acclimation facilities might contain nutrients (phosphorus and nitrogen) at levels that promote growth of algae. Algal photosynthesis and respiration cycles can induce changes in pH and DO beyond the ranges found under natural conditions. Such changes may violate water quality standards and can negatively impact the designated uses of water.
bodies in the basins, which include swimming; domestic, industrial, and agricultural water supply; aesthetic values; wildlife habitat; harvesting of aquatic life; and spawning, rearing, and migration for ESA-listed fish.

Whether discharges from acclimation sites contribute measurably to phosphorus loads depends not only on the amount of nutrients discharged but on the amount of flow in the receiving stream, the stream’s temperature, the bioavailability of the nutrient form, and the amount of time the nutrients remain in the system. Cooler water is less conducive to algae growth than warm water. Higher volumes of water tend to flush the nutrients through the system more quickly and thus reduce concentrations, which reduces the potential for algae to grow. All these factors were considered in the analysis.

3.5.3 Impacts of the Proposed Action

The following process was used to evaluate the local and combined impacts of the acclimation sites:

- For discharges from existing project sites that are in waters protected by the Tier II policy, compare the phosphorus levels to existing background conditions to assess whether acclimation-related discharges produce algal blooms that could cause a change in DO and pH beyond the mixing zone of the discharge that would violate the state standards.

- For discharges from proposed sites in waters protected by the Tier II policy, compare estimated phosphorus load from those sites to existing background load to assess the likelihood of change in DO and pH that would violate the state standards.

- For the lower Wenatchee River (currently protected by Tier I policy), determine whether proposed activities are likely to cause a measurable change in DO and pH, as defined in the state standards, that is sufficient to affect the existing and designated uses.

In order to assess the impacts of proposed coho acclimation activity on water quality, analysts estimated nutrient loading (total phosphorus [TP]) at two operating coho acclimation sites in the Wenatchee basin, Rohlfing and Butcher. Estimates from these operating Nason Creek sites were used to forecast the amount of nutrients that could be contributed to downstream waters by proposed new sites in both basins. To estimate these loads, data were collected in 2009 and 2010 on stream flow and water quality both upstream and downstream of the two operating sites. Where appropriate, water quality modeling was used to facilitate the evaluation.

Using data from active coho acclimation sites as a way to assess water quality impacts of the proposed sites is reasonable because: 1) the sites would be used to acclimate the same species; 2) feeds are expected to be similar or identical to those used in the operating Nason Creek sites; 3) climatic conditions are similar, which would result in similar metabolism; and 4) the majority of the acclimation sites are small, natural ponds that are fed by small tributary streams.

Table 3-2 shows estimates of TP loads from the Rohlfing and Butcher sites. Based on these data, the TP load contributed to the receiving stream was estimated to be 0.32 milligrams (mg) per day.

10 Phosphorus is an essential nutrient for algal growth. However, not all forms of phosphorus can be taken up by algae. Any form of phosphorus that is readily available for biological uptake is said to be bioavailable (i.e., available for ready assimilation by algae).
To estimate the contribution of each proposed site, this average per-day figure was multiplied by the number of fish to be acclimated at that site. This contribution was evaluated against the phosphorus loads calculated at the mouth of the major creeks that carried these loads into the Wenatchee and the Methow rivers in order to assess the significance of the loads relative to the background loads in the system.

Table 3-2. TP loads from two existing acclimation sites in Nason Creek

<table>
<thead>
<tr>
<th></th>
<th>Rohlfing</th>
<th>Butcher(^a)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2009</td>
<td>2010</td>
<td>Overall</td>
</tr>
<tr>
<td>Total number of fish acclimated</td>
<td>101,000</td>
<td>85,656</td>
<td>186,656</td>
</tr>
<tr>
<td>Average TP load (g/d)</td>
<td>35.72</td>
<td>38.53</td>
<td>74.25</td>
</tr>
<tr>
<td>TP load per fish acclimated (mg/d/fish)</td>
<td>0.35</td>
<td>0.45</td>
<td>0.40</td>
</tr>
</tbody>
</table>

\(^a\) Coulter is also an existing site, to be used alternately with Butcher in the Proposed Action. Number of fish acclimated would be the same as Butcher; therefore TP loads would be the same.

\(g/d\) = grams per day
\(mg/d/fish\) = milligrams per day per fish

3.5.3.1 Wenatchee Basin Acclimation Sites (Primary)

Table 3-3 shows the estimated TP loads at the primary sites proposed in the Wenatchee basin. The estimates for each site are discussed in the following subsections. Sites are grouped according to the rivers or streams into which discharge from the sites empties.

White River (3 sites)

Two acclimation ponds and an adult plant site are proposed in the White River watershed. The White River flows into Lake Wenatchee (Figure 2-7 in Chapter 2). Flows in the White River were estimated based on the WDOE gauge near Plain. Water quality data were derived from multiple sources, including data collected by the Yakama Nation (Appendix 6, Water Quality Data), supplemented by monitoring data collected in Lake Wenatchee by Grant County Public Utility District (Grant PUD 2009) and Chelan PUD (2009 – unpublished data).

Tall Timber: This site is the most upstream of the three proposed acclimation ponds and does not flow directly into the White River, but it is located close to the confluence of the Napeequa and White rivers. The estimated TP load from this acclimation site is 19.1 g/d, which is less than one fifth of a percent of the average TP loads delivered by the White River to Lake Wenatchee during the acclimation periods in 2009 and 2010 (Table 3-3). This level is well within the natural variability of the TP loads in the White River. Moreover, loads released at this site would have to travel more than 10 miles before entering Lake Wenatchee. Nutrient loading in Lake Wenatchee is of concern because it can promote growth of algae. In-stream processes between Tall Timber and the lake, such as dilution, settling, or use by organisms, would reduce the load downstream from the discharge. Downstream phosphorus data collected from active sites in Nason Creek suggest that concentrations can be expected to return to background levels within a few miles downstream of the discharge. Given this evidence and the distance of the discharge from Lake Wenatchee, it is reasonable to conclude that loads from the Tall Timber discharge are unlikely to cause a measurable change at the mouth of White River when it enters Lake Wenatchee.
White River Springs: This is one of the smallest proposed ponds, with acclimation of 50,000 coho. Loads from this site are expected to be quite small, at less than one-tenth of a percent of the average White River loads.

Dirty Face: Data from Nason Creek are not applicable to the Dirty Face site because the project proposes to enclose adult fish at this site. Adult fish are not fed, so water quality impacts associated with the acclimation and feeding of juvenile fish are not relevant here.

Little Wenatchee River – Two Rivers

The Two Rivers site is located upstream of the Little Wenatchee River’s confluence with Lake Wenatchee (see Figure 2-7, Chapter 2). This is one of the larger sites, with an estimated 120,000 coho proposed for acclimation.

WDOE’s gauge at Little Wenatchee River below Rainy Creek was used to estimate flows. As with White River, water quality data came from data collected for this project, as well as from the Grant and Chelan PUD monitoring programs (Grant PUD 2009; Chelan PUD 2009 – unpublished data).

The estimated loads contributed by this proposed site are higher than for individual White River sites because of the greater number of fish proposed for acclimation. Nevertheless, the TP loads from acclimation activity are estimated to be about one-third of a percent of the average TP loads carried by Little Wenatchee River during the acclimation period (Table 3-3).

Chiwawa River (3 sites)

Three sites are proposed in the Chiwawa River watershed. The Chiwawa flows directly into the Wenatchee River near Plain, Washington. Flow data for this site were obtained from the U.S. Geological Survey (USGS) gauge at the Chiwawa River near Plain. Water quality data were collected by the Yakama Nation near the mouth of the Chiwawa River.

Minnow: This is the most upstream of the three proposed acclimation ponds and enters the Chiwawa River through Chikamin Creek. TP contributions from this site are expected to be less than one half of a percent of the load carried by the Chiwawa River during the acclimation period (Table 3-3). Also, given its distance from the mouth of the Chiwawa River (Figure 2-7), loads from this site are likely to be reduced by in-stream processes and are unlikely to impact the Wenatchee River.

Chikamin: The Chikamin site is close to the Minnow site and similarly enters the Chiwawa River through Chikamin Creek. Because the number of fish acclimated at this site is the same as at the Minnow site, the TP contributions from this site are expected to be similarly less than one half of a percent of the load carried by the Chiwawa River during the acclimation period. As with the Minnow site, TP loads would be assimilated in-stream due to the distance from the confluence with the Wenatchee River, and therefore are unlikely to impact its water quality.
Table 3-3. TP loads estimated for proposed acclimation sites in the Wenatchee basin

<table>
<thead>
<tr>
<th>Proposed Site</th>
<th>No. of Fish (thousands)</th>
<th>TP Load(^a) (kg/d)</th>
<th>Receiving Stream(^b)</th>
<th>No. of Days(^c)</th>
<th>No. of Sampling Events(^d)</th>
<th>Record Start Date</th>
<th>Record End Date</th>
<th>Receiving Stream Load(^e) (kg/d)</th>
<th>Relative Contribution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tall Timber</td>
<td>110</td>
<td>0.035</td>
<td>White River</td>
<td>84</td>
<td>14</td>
<td>3/15/2009</td>
<td>4/12/2010</td>
<td>19.1</td>
<td>0.18</td>
</tr>
<tr>
<td>White River Springs</td>
<td>50</td>
<td>0.016</td>
<td>White River</td>
<td>84</td>
<td>14</td>
<td>3/15/2009</td>
<td>4/12/2010</td>
<td>19.1</td>
<td>0.08</td>
</tr>
<tr>
<td>Two Rivers</td>
<td>120</td>
<td>0.038</td>
<td>Little Wenatchee</td>
<td>83</td>
<td>12</td>
<td>3/23/2009</td>
<td>5/9/2010</td>
<td>11.8</td>
<td>0.33</td>
</tr>
<tr>
<td>Chikamin</td>
<td>100</td>
<td>0.032</td>
<td>Chiwawa</td>
<td>71</td>
<td>7</td>
<td>4/4/2009</td>
<td>5/9/2010</td>
<td>7.3</td>
<td>0.44</td>
</tr>
<tr>
<td>Minnow</td>
<td>100</td>
<td>0.032</td>
<td>Chiwawa</td>
<td>71</td>
<td>7</td>
<td>4/4/2009</td>
<td>5/9/2010</td>
<td>7.3</td>
<td>0.44</td>
</tr>
<tr>
<td>Clear</td>
<td>150</td>
<td>0.048</td>
<td>Chiwawa</td>
<td>71</td>
<td>7</td>
<td>4/4/2009</td>
<td>5/9/2010</td>
<td>7.3</td>
<td>0.66</td>
</tr>
<tr>
<td>Beaver</td>
<td>100</td>
<td>0.032</td>
<td>Beaver</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Scheibler</td>
<td>65</td>
<td>0.021</td>
<td>Chumstick</td>
<td>23</td>
<td>2</td>
<td>4/11/2009</td>
<td>5/3/2009</td>
<td>2.7</td>
<td>0.77</td>
</tr>
<tr>
<td>Leavenworth NFH(^f)</td>
<td>100</td>
<td>0.032</td>
<td>Icicle</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>1.5</td>
<td>2.21</td>
</tr>
<tr>
<td>Brender(^g)</td>
<td>50</td>
<td>0.016</td>
<td>Brender</td>
<td>N/A</td>
<td>11</td>
<td>3/10/1997</td>
<td>5/3/2004</td>
<td>1.2</td>
<td>1.39</td>
</tr>
</tbody>
</table>

Notes:

a. Estimated from average load of 0.32 mg per fish per day calculated from measured data at active discharges in Nason Creek. kg/d = kilograms per day
b. Nearest stream for which estimation of TP load at the downstream end of the receiving stream was possible.
c. Number of days in the acclimation period over which interpolation of loads was possible with available flow and concentration data.
d. Number of water quality sampling events during the acclimation period (3/10/2009 through 5/10/2009 and 3/23/2010 through 5/9/2010). To maximize data coverage, this period was extended to include additional samples. Some events included collection of duplicates.
e. TP load estimated at the mouth of the receiving stream was based on nutrient data collected during the acclimation period.
f. Loads for the receiving stream (Icicle Creek) represent the total load at the mouth of Icicle Creek for 2002 as determined in WDOE TMDL.
g. Average TP load for receiving stream (Brender) was calculated over the acclimation months (March through May) based on historical flow and TP data reported by WDOE for Brender Creek near Cashmere Station (45D070).
Clear: Discharge from the Clear Creek site would enter the Chiwawa River through Clear Creek close to the confluence with the Wenatchee River. This is the largest site proposed in the Wenatchee basin, with 150,000 coho planned for acclimation. Therefore, this site has the highest estimated TP load of all the sites. However, in terms of relative magnitude, this load is about two-thirds of a percent of the average TP loads carried by the Chiwawa River. Therefore, this site, on its own, is not expected to significantly alter loads to the Wenatchee system.

Beaver

Water quality data for this site is limited and was not sufficient to estimate background TP loads in the stream. Beaver Creek drains a watershed that is smaller but geographically similar to nearby streams where it was possible to compare TP loads from acclimation ponds to background TP loads (for example Chiwawa and Chumstick). Assuming background TP concentrations in Beaver Creek are comparable to nearby streams, where water quality impacts from acclimation discharges with similar numbers of fish were estimated to be negligible, a similar impact can be expected for TP loads from the proposed facility on Beaver Creek.

Chumstick Creek - Scheibler

The Scheibler site is 8.1 miles upstream of the confluence of Chumstick Creek with the Wenatchee River. Water quality data collected by the Yakama Nation at the mouth of Chumstick Creek and flow estimated by WDOE near the river mouth were used to calculate background loads (Appendix 6 Water Quality Data). Even though nutrient data were collected in 2010, the loading calculations used data from 2009 only, due to lack of flow measurements in 2010 (WDOE has suspended the gauge operation). The loads from acclimation pond activity are estimated to be less than one percent of the average background load carried by Chumstick Creek (Table 3-3). Therefore, the water quality impacts are expected to be negligible.

Icicle Creek – Leavenworth National Fish Hatchery

Facilities at the Leavenworth NFH currently are being used for acclimation as part of this project. Discharges from this facility flow through the main hatchery outfall that dominates the Icicle Creek flow during low-flow season. Data at Icicle Creek were not collected as part of this project, and Leavenworth NFH discharge reports for its National Pollution Discharge Elimination System (NPDES) permit contained no nutrient data. Thus, TP load specified at the Icicle Creek mouth in the WDOE TMDL (Carroll et al. 2006) was used as a basis for comparison.

The proposed coho acclimation is estimated to contribute about 2 percent of the TP loads used in the WDOE TMDL for summer low stream flows (“7Q10 conditions”). However, because coho are acclimated over the winter and during spring, a large portion of the load would enter Icicle Creek during spring high flow; therefore, it is likely to be rapidly flushed from the system and would be unlikely to directly affect water quality in the lower Wenatchee River and Icicle Creek.

Brender Creek

Brender Creek site discharge would reach the Wenatchee River through Mission Creek. Mission Creek is on the state’s 303(d) list for violations in DO and pH under low-flow conditions. The water quality surveys for this EIS focused on the upper watersheds where the majority of the sites are proposed and did not include Mission or Brender creeks. A comparison to historical water quality and flow data available for this site from WDOE suggests that TP loads discharged from the acclimation site could contribute up to two percent of the loads carried by the creek, indicating
that loads from this site could exacerbate the local water quality problems. However, most of the nutrient discharges would occur during spring high flow, so dilution and flushing of the nutrients through the system would play a major role in mitigating the local impacts. Further, the estimated average contribution of 16 g/d of TP is a negligible proportion of the loads carried by the Wenatchee River. Thus impacts in the critical portions of the lower Wenatchee River are also likely to be negligible.

3.5.3.2 Wenatchee Basin Acclimation Sites (Backup)

Table 3-4 shows TP loads estimated for acclimation activity at backup sites in the Wenatchee basin. One or more of these sites might be used if any of the proposed sites cannot be used. Each site is discussed separately in the following subsections.

Table 3-4. TP loads estimated at backup acclimation sites: Wenatchee basin

<table>
<thead>
<tr>
<th>Proposed Site</th>
<th>No. of Fish</th>
<th>TP Load (^a) (kg/d)</th>
<th>Receiving Stream(^b)</th>
<th>No. of Days(^c)</th>
<th>No. of Sampling Events(^d)</th>
<th>Record Start Date</th>
<th>Record End Date</th>
<th>Receiving Stream Load(^e) (kg/d)</th>
<th>Relative Contribution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McComas</td>
<td>50,000</td>
<td>0.016</td>
<td>White R.</td>
<td>84</td>
<td>14</td>
<td>3/15/2009</td>
<td>4/12/2010</td>
<td>19.1</td>
<td>0.08</td>
</tr>
<tr>
<td>Squadroni</td>
<td>105,000</td>
<td>0.034</td>
<td>Nason Cr.</td>
<td>112</td>
<td>22</td>
<td>3/14/2009</td>
<td>5/9/2010</td>
<td>6.3</td>
<td>0.53</td>
</tr>
<tr>
<td>Coulter/</td>
<td>105,000</td>
<td>0.034</td>
<td>Nason Cr.</td>
<td>112</td>
<td>22</td>
<td>3/14/2009</td>
<td>5/9/2010</td>
<td>6.3</td>
<td>0.53</td>
</tr>
<tr>
<td>Roaring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allen(^f)</td>
<td>50,000</td>
<td>0.016</td>
<td>Peshastin Cr.</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.2</td>
<td>10.46</td>
</tr>
</tbody>
</table>

a. Estimated from average load of 0.32 mg per fish per day calculated from measured data at active discharges in Nason Cr.

b. Nearest stream for which estimation of TP load at the downstream end of the receiving stream was possible.

c. Number of days in the acclimation period over which interpolation of loads was possible with available flow and concentration data.

d. Number of water quality sampling events during the acclimation period (3/10/2009 through 5/10/2009 and 3/23/2010 through 5/9/2010). To maximize data coverage, this period was extended to include nearby samples. Some events included collection of duplicates.

e. TP load estimated at the mouth of the receiving stream was based on nutrient data collected during the acclimation period.

f. There were no data available for the receiving stream. Loads from the WDOE TMDL model for the 7Q10 natural conditions simulation (summer low stream flows) are used here for comparison.

McComas

The McComas site is located on White River; it might be used to acclimate up to 50,000 juvenile fish. The corresponding phosphorus loads are expected to be less than one-tenth of a percent of the loads carried by White River (Table 3-4). Therefore, the impacts are not expected to adversely affect water quality.

Squadroni

The Squadroni site is located on Nason Creek. If used, 105,000 fish are expected to be acclimated at this site. Based on the active Nason Creek sites, the TP load due to acclimation activity is expected to be 34 g/d (see Table 3-2). This is about half a percent of the TP loading from Nason Creek to the Wenatchee River. Moreover, as discussed previously, analysis of loads shows that the active acclimation sites at Rohlfing and Butcher, with more than twice the number of fish...
(237,000 in 2009 and about 230,000 in 2010), did not adversely affect water quality in Nason Creek. Thus, the Squadroni site, if developed, is not likely to adversely affect water quality.

Coulter/Roaring

The Coulter/Roaring site is part of a wetland complex owned by the Yakama Nation. As with Squadroni, if used, up to 105,000 fish could be acclimated here; impacts are likely to be similar to those at Squadroni. However, because this site is in a wetlands complex, the TP loads from ponds probably would be assimilated within the marsh environs. Thus, impacts from acclimation activity are expected to be minimal.

Allen

The Allen site, if used, would acclimate up to 50,000 fish, which could result in phosphorus loading of up to 16 g/d to Peshastin Creek. No nutrient or flow data were available for Peshastin Creek for the month of March. To obtain a general idea of the relative contribution of nutrients from this site to the total load in the stream, the loading estimate for the site was compared to the loads specified in the WDOE TMDL summer natural conditions model (Carroll and Anderson 2009). The model specifies a TP load of 200 g/d under 7Q10 low-flow conditions in Peshastin Creek. At summer flow levels, acclimation activity at the Allen site could contribute about 10 percent of the total phosphorus load carried by the stream during the summer season. Summer flows are substantially lower than typical spring flows when acclimation would actually occur. For example, based on 1990 – 2010 flow records from the USGS gauge on the Wenatchee River at Monitor, average flow in August-September is roughly 16% of the average flow in April-May. Thus, even if background concentrations of phosphorus remain at 4.7 micrograms per liter as estimated in WDOE TMDL study (Carroll and Anderson 2009), one can expect that loads in spring would be roughly 5 times higher. Based on this calculation, it can be expected that the acclimation-related loads would be less than 2% of the background loads carried by the stream. When viewed in light of the flushing effect from higher flows, this small proportional increase in TP loading is unlikely to produce a measurable change in the water quality.

3.5.3.3 Hatchery Sites

Dryden (Primary)

The Dryden site is proposed for use as a year-round rearing operation. Therefore, it was necessary to evaluate impacts during low-flow conditions when water quality is most vulnerable to increases in nutrient loading.

The QUAL-2K model was used in the WDOE TMDL process (Carroll et al. 2006; Carroll and Anderson 2009) to allocate nutrient loading of point and non-point sources to bring DO and pH into compliance with existing state regulations. A phased implementation of load reductions has been recommended in the TMDL. Based on discussion with WDOE (November 12, 2009, meeting with Ryan Anderson, Yakima Regional office, Yakima), it is assumed for this evaluation that the load reduction measures will be implemented as recommended in the TMDL.

The QUAL-2K model was set up for 7Q10 low-flow conditions, with publicly owned treatment works (POTW) discharging at design flow and a phosphorus concentration of 90 micrograms per liter. Other sources were set to the estimated maximum natural condition values as determined in the WDOE TMDL (Carroll and Anderson 2009).
Nutrient loading for the proposed hatchery was estimated based on rearing approximately 220,000 smolts, with about 110,000 smolts removed in November and 110,000 removed the following March. Table 3-5 presents the details on the nutrient loading expected from hatchery operation. The average flow for the month of September, estimated at about 0.06 cubic meter per second (m3/s) (about 1,000 gallons per minute), was specified for the QUAL-2K model. Discharge from the hatchery was assumed to occur immediately upstream of Dryden Dam at river kilometer (RKM) 56.5 (RM 35.1).

The Skretting Nutra Fry feed proposed for use at the hatchery contains about 1.42% phosphorus by weight. Tipping and Shearer (2007) report a phosphorus retention range of 29% to 36% for coho fed commercial diets with similar phosphorus content (range 1.1% to 1.3%). Similar research on rainbow trout estimated phosphorus retention at 50% (Flimlin et al. 2003). This analysis assumed the average of these values, 39% phosphorous retention. The effluent from the hatchery would be treated prior to discharge to the Wenatchee River. For analysis purposes, a treatment efficiency of 50% was assumed, which is the minimum requirement for any treatment system.

The phosphorus loads estimated for the month of September (see Table 3-5) were specified as a point source in the QUAL-2K model. Other water quality parameters were set to the same values as those used for Leavenworth NFH in the Icicle Creek water quality model used in the WDOE TMDL analysis (Carroll et al 2006). This is appropriate because the level of treatment at Dryden Hatchery is expected to be similar or better than what is being implemented at Leavenworth NFH. All other settings remained unchanged from the 7Q10 simulations in the WDOE TMDL analysis (Carroll and Anderson 2009).

Model simulations for flow, TP, DO, pH, and temperature over the length of the Wenatchee River are shown in graphs in Appendix 7, Section 4.2.9. The modeling shows that effluent from the hatchery is unlikely to significantly change flows and water quality in the lower Wenatchee River due to the relatively small flows out of the proposed Dryden Hatchery. Indeed, DO remains in compliance downstream of the hatchery discharge, and the change in minimum DO meets the “no measurable change” criterion laid out in state standards. Hatchery effluent would have no effect on temperature.

The model predicts that pH could exceed the upper limit of 8.5 units downstream of the Cashmere public treatment works (POTW) discharge. After about RKM 60 (RM 37.3), there is little difference in the model predictions with and without the proposed hatchery discharge. This suggests that the pH excursion does not result from the hatchery loads, but is rather a consequence of the Cashmere treatment works loads. This interpretation is reinforced by the WDOE TMDL, which acknowledges that Cashmere POTW discharge should release phosphorus at less than 90 micrograms per liter to prevent pH excursion downstream of the city of Cashmere.

In the vicinity of the hatchery as well as downstream of the Cashmere POTW, the difference in the pH range marginally exceeds the measurable change criterion (by much less than 0.1 unit which is well below the limits of instrument accuracy—see Chapter 5 in Appendix 6) and is well within the typical ranges encountered within a day (Figure 3-1).

Based on the analysis provided here, it is expected that the discharges from the Dryden Hatchery would have minimal impacts on the water quality of the lower Wenatchee River even under critical low-flow conditions.

11 Excursion is the word used to indicate that a water quality limit has been exceeded.
Table 3-5. Estimation of effluent phosphorus loads for proposed hatchery at Dryden

<table>
<thead>
<tr>
<th>Month</th>
<th>Number of Fish</th>
<th>Flow (m³/s)</th>
<th>Total Weight of Fish (kg)</th>
<th>Feed Rate (g feed/g fish/d)</th>
<th>Phosphorus Feed Rate (g/d)</th>
<th>Phosphorus Concentration (mg/L)</th>
<th>Effluent Phosphorus Load (g/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Feed</td>
<td>Untreated Effluent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.051</td>
<td>0.16</td>
</tr>
<tr>
<td>Mar</td>
<td>236703</td>
<td>0.010</td>
<td>106.5</td>
<td>2.9%</td>
<td>43.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td>235135</td>
<td>0.015</td>
<td>190.5</td>
<td>2.8%</td>
<td>75.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>233578</td>
<td>0.020</td>
<td>315.3</td>
<td>2.7%</td>
<td>120.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td>232031</td>
<td>0.028</td>
<td>511.6</td>
<td>2.6%</td>
<td>188.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td>230495</td>
<td>0.033</td>
<td>663.8</td>
<td>2.6%</td>
<td>245.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td>228968</td>
<td>0.041</td>
<td>906.7</td>
<td>2.5%</td>
<td>321.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td>227452</td>
<td>0.060</td>
<td>1627.4</td>
<td>2.4%</td>
<td>554.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td>225946</td>
<td>0.079</td>
<td>2420.8</td>
<td>2.2%</td>
<td>756.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td>224449</td>
<td>0.089</td>
<td>2929.1</td>
<td>2.0%</td>
<td>831.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td>112963</td>
<td>0.048</td>
<td>1626.7</td>
<td>1.9%</td>
<td>438.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td>112215</td>
<td>0.049</td>
<td>1666.4</td>
<td>1.9%</td>
<td>449.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td>111472</td>
<td>0.049</td>
<td>1705.5</td>
<td>1.9%</td>
<td>460.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td>110733</td>
<td>0.052</td>
<td>1843.7</td>
<td>1.9%</td>
<td>497.43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Numbers back-calculated to produce 220,000 smolts, and assuming mortality of 0.7 percent per month, with 110,000 fish removed in November and the remaining 110,000 removed in March.
- Skretting Nutra Fry diet contains 1.42 percent phosphorus by weight.
- Assumes assimilation of 39 percent based on a highly digestible diet.
- Assumes treatment efficiency of 50 percent.

mg/L = milligrams per liter
m³/s = cubic meters per second
kg = kilograms
g feed/g fish/d = grams of feed per gram of fish per day
g/d = grams per day
Figure 3-1. Difference from natural conditions in range of pH (top graph) and minimum DO (bottom graph) at permissible POTW loading with and without proposed hatchery at Dryden.
George (Backup)

The George site is being considered as an alternative to the Dryden site if a small hatchery at Dryden is determined to be infeasible. Discharge from the George facility would enter the Wenatchee River 1.8 miles downstream of the Lake Wenatchee outlet. Discharges from this hatchery, if operated, would flow through an existing flood overflow side channel for about a mile before entering the Wenatchee River.

The hatchery is expected to be operated under the same conditions as Dryden, so the same QUAL-2K modeling approach was used to evaluate the discharge impacts. The impact of hatchery operation was evaluated for 7Q10 summer low flow conditions. The only difference between this model setup and the one employed for Dryden is the location of the discharge.

The discharge from the facility would enter a channel that is vegetated significantly and flows only during flood events. Therefore, it is unlikely that the entire hatchery discharge would enter the Wenatchee River during critical summer conditions, due to infiltration losses to the underlying aquifer. Also, significant amounts of nutrients would be assimilated in the 20 acres of side-channel habitat between the hatchery discharge and the river. However, for the purposes of this evaluation it is assumed that the entire discharge would reach the Wenatchee River without any assimilation of phosphorus and without any loss in flow. This is likely a substantial over-estimate of the loading to the Wenatchee River but provides a worst-case scenario.

Analysis shows that changes to flow are minimal given the small quantity of flow expected from the discharge, and the predicted temperature range showed negligible change over the simulation of natural conditions. Phosphorus concentration was predicted to increase downstream of the discharge, but the differences over natural conditions are imperceptible past Tumwater Dam, approximately 35 kilometers (km) (22 miles) downstream. In the same section of the river, both dissolved oxygen and pH show significantly wider ranges compared to the natural condition predictions. Graphs in Section 4.2.10 in Appendix 7 demonstrate these differences.

Figure 3-2 shows the difference from maximum natural conditions when hatchery discharges are included. In the section of the river upstream of Tumwater Dam, the hatchery discharge noticeably changes the existing condition, particularly between RKM 5 through 15 (RM 3.1 through 9.3), where the changes are predicted to exceed the threshold for measurable change.

These differences can be explained from the context of the hatchery loading relative to the background phosphorus load. The hatchery loading contributes about 9% of the background load in the upstream section. The relative contribution for the Dryden Hatchery was calculated to be about 3% of the predicted background load immediately upstream of the discharge. Thus, the higher background concentration downstream of the George Hatchery discharge could produce a measurable change in DO and pH on a localized scale.

Because a very conservative estimate was used for specifying the load (i.e., the entire hatchery discharge and all phosphorous would reach the Wenatchee River); and because in the downstream reaches, particularly in the TMDL domain (i.e., downstream of the city of Leavenworth), the water quality changes resulting from the hatchery loads are imperceptible from the background condition; it is concluded that, while localized impacts are possible due the hatchery, impacts farther downstream are unlikely.
Figure 3-2. Difference from natural conditions in range of pH (top graph) and minimum DO (bottom graph) at permissible POTW loading with and without George Hatchery discharge.
3.5.3.4 Combined Impacts of Wenatchee Basin Hatchery and Acclimation Sites

The combined impact of the proposed coho restoration activities on water quality in the Wenatchee basin is expected to be negligible for the reasons listed below. Explanation of these conclusions follows the list.

- The nutrient load is negligible. The maximum total addition of phosphorous due to the project, at peak production levels, is estimated to be 0.38 kilogram per day during the acclimation period, which is about 1% of average Wenatchee River load when acclimation activity is ongoing.
- Despite the conservative modeling assumptions used, impacts to DO and pH due to upstream acclimation are estimated to be negligible in the TMDL domain (the lower Wenatchee River downstream of the city of Leavenworth).
- Lower water temperatures during the acclimation period limit in-stream biological activity.
- An analysis of travel times suggests that the residence times of any nutrients discharged to the system would be small during spring high flows that are prevalent when feed rates are highest. Therefore, most of the loads would be removed during spring high flows and impacts are not expected later in the year, including the summer low-flow period.
- In-stream data collected from the Wenatchee basin showed that most of the phosphorous being discharged is not in a readily bio-available form. Even the travel times calculated under low-flow conditions were not expected to provide a sufficiently long residence of the total phosphorus loading in the system, thereby keeping it largely unavailable for biological uptake during transport through the basin.

The analysis supporting these conclusions is discussed below.

The QUAL-2K model developed by WDOE for the purpose of establishing load allocations (Carroll et al. 2006; Carroll and Anderson 2009) was applied to assess both the combined and cumulative impacts for the Wenatchee River (referred to as the lower Wenatchee subbasin). The portion of the Wenatchee basin composed of Lake Wenatchee and its tributaries, the White River and the Little Wenatchee River (referred to as the upper Wenatchee subbasin), was evaluated based on mass balance analyses using existing water quality and flow data.

Upper Wenatchee Subbasin to Lake Wenatchee

Lake Wenatchee is a deep water lake (maximum depth of nearly 100 feet) that is fed by the Little Wenatchee River and the White River and discharges to the Wenatchee River. Three of the proposed acclimation sites discharge to this receiving water system: the Two Rivers site in the Little Wenatchee River and the Tall Timber and White River Springs sites in the White River. While the Dirty Face site is in the White River system, it is an adult plant site, not a juvenile acclimation site. Adults are not fed, so nutrient additions to the river from feed would not occur from that site.

Given the relatively large size of the lake and its associated long hydraulic retention period, it is unlikely that loads entering the lake would reach the Wenatchee River directly; instead, they are likely to be cycled within the lake. Data comparing pH levels flowing into and out of the lake show that pH levels are substantially lower when leaving the lake. The lake likely buffers the upstream phosphorus loads and transmits only a fraction of the upstream loads to the Wenatchee River. Therefore, the water quality impact of concern within the upper Wenatchee subbasin is Lake Wenatchee proper.
To estimate the combined impact of the three proposed locations, the total phosphorus loads anticipated from acclimation activity were calculated based on the proposed number of coho to be acclimated. Table 3-6 shows the relative contribution of the loads from combined acclimation activity in the White River and the Little Wenatchee River. In 2009, these loads were estimated to contribute less than 0.25% of the total background loads that entered the lake over the acclimation period (March through May) from these two tributaries. This calculation does not account for in-stream assimilation, which, if considered, would further reduce the relative contribution from acclimation activity.

Table 3-6. Estimated contribution of TP loads from 50 days of acclimation activity in the three upper Wenatchee acclimation sites

<table>
<thead>
<tr>
<th>Location</th>
<th>No. of Fish</th>
<th>TP Loading from Acclimation(^a) (kg)</th>
<th>TP Load In System(^b) (kg)</th>
<th>Contribution to Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little Wenatchee River</td>
<td>120,000</td>
<td>1.92</td>
<td>604.50</td>
<td>0.32%</td>
</tr>
<tr>
<td>White River</td>
<td>160,000</td>
<td>2.56</td>
<td>1242.86</td>
<td>0.21%</td>
</tr>
</tbody>
</table>

\(^a\) Assumes 0.32 mg/d/fish (derived from active sites in Nason Creek; see Table 3-2)
\(^b\) Loads calculated using 2009 flows and TP measurements from 3/23/2009 to 5/10/2009

Lower Wenatchee Subbasin – Wenatchee River

The WDOE TMDL model was used with minimal changes to determine the Wenatchee River and Icicle Creek phosphorus load allocations (Carroll and Anderson 2009) and to assess the potential impacts of the proposed acclimation sites on water quality in the lower Wenatchee subbasin. Changes to the model focused on representing conditions for the month of March, as represented by the assumptions listed below. Modifications were also made to air and water temperature functions to reflect March conditions. Using these assumptions to set up the evaluation model ensured that the maximum potential impact was identified in the results.

1. March was chosen as the critical period for evaluation. All the proposed acclimation sites would be operational at this time. Flows later in the spring increase significantly, diluting nutrient loads and scouring attached algae from the system. Approximately half the sites might be operated through the winter, but due to the smaller number of fish being acclimated, low water temperatures, and low feed rates, water quality impacts in winter are expected to be lower than during March.
2. Flows in March were specified as the 7Q10 summer low flow calculated by WDOE for the TMDL evaluation (typically, March flows are somewhat higher).
3. Phosphorus discharged due to acclimation activity was considered to be 100% bioavailable (i.e., phosphorus discharges are all in the orthophosphate form such that they can be readily taken up by algae during photosynthesis).
4. Phosphorus released from the acclimation ponds is not assimilated in the receiving stream before it reaches the Wenatchee River. This assumption ensures that, in the model, the entire phosphorus load discharged from the ponds reaches the Wenatchee River; normally, however, some phosphorus would be assimilated before reaching the Wenatchee River.
5. Average phosphorus loads from the proposed acclimation ponds that were developed based on the data collected from the active ponds in Nason Creek from late March through early May are applicable in March, even though feed levels in March are lower than later in the acclimation period because fish are smaller in March.
To assess the combined impacts, TP loads were estimated for the active sites (Table 3-2) and proposed sites (Table 3-3). Dryden facility inputs for the month of March (Table 3-5) were also used. The estimated TP loads from the discharges were included with the background orthophosphate load in the model. The final orthophosphate concentrations were calculated using the flows used in the model and the combined load estimate.

Even though a separate analysis was done for upper Wenatchee subbasin sites in White River and Little Wenatchee River (see previous subsection), and given that Lake Wenatchee would buffer TP loads originating from the upper subbasin sites, discharges from these sites were represented in the model as being 100% available at the outlet of Lake Wenatchee. These assumptions provide an estimate of the maximum potential impacts in the Wenatchee River.

Figure 3-3 presents predictions for combined TP impacts and compares them to background conditions. TP is higher in the upper reaches (upstream of Leavenworth) and declines steadily after an initial increase. The increase in the first 10 kilometers (6 miles) of the river reflects inputs from the Nason Creek, the upper Wenatchee subbasin, and the Chiwawa River sites. Much of the phosphorus appears to be assimilated around RKM 27 (RM 16.8), which is upstream of Tumwater Canyon.

Differences in the range of DO simulated with and without the project-related loads are negligible; the maximum difference is less than 0.1 milligram per liter (mg/L). The daily minimum DO is well above the water quality threshold for DO. These results indicate that in the absence of other nutrient sources, the project alone is not expected to adversely impact DO resources within the Wenatchee River.

The range of pH with the project is generally equal to the range simulated for the natural conditions (Figure 3-4). At approximately RKM 27 (RM 16.8), the upper bound of the pH appears to be somewhat higher than the pH simulated for background conditions. This is a consequence of the higher algal levels simulated in this reach over background conditions.

Finally, there is no appreciable difference in the range of the temperature simulated with and without the project loads.

The measurable change criterion defined in Section 3.5.1 was the basis for determining potential water quality impacts of the proposed project. The range of pH evaluated against the measurable change criterion of 0.1 unit is presented in Figure 3-5. The model simulations are generally well below the criterion. The minor increase in the difference in range near RKM 27 can be attributed to induced biological activity associated with project loads. Nonetheless, these increases are well below the criterion. Figure 3-5 also shows that the DO concentrations simulated by the model do not produce any deficit that exceeds 0.2 mg/L. The only deviation from the background conditions appears to be at RKM 27 and is associated with algal activity.

The spatial differences in TP, DO, and pH simulated by the model with and without the loads from the proposed project show that the majority of the phosphorus load from the project enters in the upstream reaches, and much of it is assimilated in the Wenatchee River prior to entry into the lower reaches (below the city of Leavenworth). These results indicate that even under the worst-case flow and project-related loading conditions simulated here, the proposed project would not adversely impact water quality. The model simulations demonstrate that the maximum predicted impact from the proposed project, including discharges from the proposed hatchery at Dryden, is so small as to be undetectable.
Figure 3-3. Maximum (top line) and minimum (bottom line) total phosphorus concentrations simulated by QUAL-2K model compared for cases with and without the proposed project for 7Q10 low-flow and March climatic condition with maximum background loadings determined in WDOE TMDL.
Figure 3-4. Maximum (top line) and minimum (bottom line) pHs simulated by QUAL-2K model compared for cases with and without the proposed project for 7Q10 low-flow and March climatic condition with maximum background loadings determined in WDOE TMDL.
Figure 3-5. Difference from March background conditions in the range of pH (top graph) and minimum DO (bottom graph) with and without the proposed project in the Wenatchee basin.
3.5.3.5 Methow Basin Sites (Primary)

The site-specific acclimation-related nutrient loads for the Methow sites were calculated using an approach similar to that of the Wenatchee sites. Loads estimated from measured data at active acclimation sites in Nason Creek (see Table 3-2) were used for this analysis. The TP loads estimated for the proposed sites in the Methow basin are shown in Table 3-7.

<table>
<thead>
<tr>
<th>Proposed Site</th>
<th>No. of Fish (thousands)</th>
<th>TP Loada (kg/d)</th>
<th>Receiving Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goat Wall</td>
<td>50</td>
<td>0.016</td>
<td>Methow</td>
</tr>
<tr>
<td>Heath</td>
<td>200</td>
<td>0.064</td>
<td>Methow</td>
</tr>
<tr>
<td>Winthrop NFH</td>
<td>100</td>
<td>0.032</td>
<td>Methow</td>
</tr>
<tr>
<td>MSWA</td>
<td>87.5</td>
<td>0.028</td>
<td>Chewuch</td>
</tr>
<tr>
<td>Mason</td>
<td>87.5</td>
<td>0.028</td>
<td>Chewuch</td>
</tr>
<tr>
<td>Pete Creek Pond</td>
<td>125</td>
<td>0.040</td>
<td>Chewuch</td>
</tr>
<tr>
<td>Lincoln</td>
<td>110</td>
<td>0.035</td>
<td>Twisp</td>
</tr>
<tr>
<td>Twisp Weir</td>
<td>110</td>
<td>0.035</td>
<td>Twisp</td>
</tr>
<tr>
<td>Lower Twisp</td>
<td>30</td>
<td>0.010</td>
<td>Twisp</td>
</tr>
<tr>
<td>Parmley</td>
<td>50</td>
<td>0.016</td>
<td>Beaver</td>
</tr>
<tr>
<td>Gold</td>
<td>50</td>
<td>0.016</td>
<td>Gold</td>
</tr>
</tbody>
</table>

a. Estimated from average load of 0.32 mg per fish per day calculated from measured data at active discharges in Nason Creek

kg/d = kilograms per day

Methow River Mainstem (3 sites)

Goat Wall: This is the most upstream site proposed that would discharge directly into the Methow River. For the relatively small number of smolts (50,000) acclimated, the TP loading to the Methow River is expected to be about 16 g/d. The average flow from 1990 through 2010 for the months of March through May in this section of the Methow River (USGS Gage 12447383, Methow River near Goat Creek) is about 900 cfs, which is comparable to the flow at the mouth of the White River in the Wenatchee basin (WDOE Station 45K090, March through May average from 2003 through 2010 is about 1,000 cfs). Given the predominantly forested nature of the upper portions of the Wenatchee and Methow basins, the background phosphorus concentrations are likely to be similar. It was shown that a TP load of up to 35 g/d (see Table 3-3) from individual acclimation-related discharges in the White River would comprise only a very small fraction (less than a fifth of a percent) of the background load. Given the similarity in the flows and land type between the two watersheds, the impacts of discharges from Goat Wall are expected to be similarly negligible in this reach of the Methow River.

Heath: About 200,000 smolts are expected to be acclimated in a large pond at the Heath site. The TP loads from this site are estimated to be four times that of Goat Wall at about 64 g/d. This site is located upstream of the city of Winthrop in the same section of the river as Goat Wall (although farther downstream). Therefore, the assessment applied for Goat Wall can be
applied here. Even though the load is almost double, it is still expected to be a small fraction of the background conditions and comparable in magnitude to the largest load expected for the White River sites. Similar to Goat Wall, the impacts are expected to be negligible.

Winthrop National Fish Hatchery: Discharges from this public hatchery are covered by a discharge permit. The loads from acclimation activity are expected to be about 32 g/d. Some level of treatment of the discharge that is associated with hatchery operations is expected. Thus, the loads from this site would be even smaller. Therefore, potential impacts related to acclimation activity are expected to be negligible.

Chewuch River (3 sites)

Methow State Wildlife Area (MSWA) Eightmile: The MSWA Eightmile site is the most upstream proposed site on the Chewuch River, located in a side channel above the confluence with Eightmile Creek. About 87,500 smolts are proposed to be acclimated, for which the estimated TP load to the system is 28 g/d. The watershed for the Chewuch is similar to the upper portions of the Methow River (predominantly forested with very little human influence). Thus, a similar approach as that used for the upper Methow sites (Goat Wall and Heath) was used here. The long-term (1991 through 2010) average flow for March through May reported at the USGS Gage in Winthrop is about 700 cfs, which is lower than but comparable to the upper Methow River flows. Given the similarity in the subbasin characteristics, background loads, and acclimation-related nutrient loads, water quality impacts from acclimation activity are expected to negligible.

Mason: Discharges from Mason would enter the Chewuch River through Eightmile Creek. The number of smolts to be acclimated at this site is identical to MSWA Eightmile. Given Mason’s proximity to that site and their similar in-stream conditions, impacts are also expected to be similar.

Pete Creek Pond: Approximately 125,000 smolts are expected to be acclimated at this site, corresponding to a TP load of 40 g/d. This site is proposed on the lower Chewuch River where the watershed and background loads would be comparable to the other two Chewuch River sites. While the acclimation-related loads are expected to be higher (by 40% compared to MSWA) due to the greater number of fish acclimated, the background loads in the Chewuch River are much higher than the proposed new loads. Therefore, acclimation-related impacts on the receiving stream are expected to be negligible.

Twisp River (3 sites)

Lincoln: This site is the most upstream among the proposed sites on the Twisp River. The TP load in the discharge associated with the proposed acclimation of 110,000 smolts is expected to be about 35 g/d.

The primary human influence in the Twisp River occurs near the city of Twisp, which is at the confluence of the Twisp and Methow rivers, leaving much of the Twisp River watershed as forest—similar to the upper section of the Methow River and the Chewuch River. Therefore, background phosphorus concentrations in the Twisp River likely would be similar. The Twisp River flows are smaller than those in the upper Methow River and Chewuch River (average flow at the USGS Gage 12448998 on the Twisp River near the city of Twisp for March through May in 1990 through 2010 is about 440 cfs). Therefore, background loads in the Twisp River would be smaller, and the acclimation-related loads can
be a larger proportion of the background loads than what would be encountered in the Chewuch River and upper Methow River sites. Even if the proportion is double what is expected at the upper Methow River and Chewuch River sites, it is still expected be a small fraction of the background conditions (see proportions calculated for the upper Wenatchee River sites in Table 3-3 for an order of magnitude estimate). Impacts on the receiving stream are therefore expected to be negligible.

Twisp Weir: This site is approximately midway between the Lincoln site and the confluence of the Twisp River with the Methow. As with Lincoln, the TP load in the discharge associated with the proposed acclimation of 110,000 smolts is expected to be about 35 g/d. Given that in-stream conditions are similar to the Lincoln site and the same number of fish is proposed, impacts resulting from the Twisp Weir site are expected to be negligible.

Lower Twisp: The site is close to the Twisp River confluence with the Methow River. For the 30,000 fish proposed at this site, the acclimation-related TP loads are expected to be similar—less than 10 g/d. Given the site’s proximity to the Methow River, greater dilution of the TP load can be expected downstream of the confluence. Therefore, impacts for this site would likely be lower than for the Lincoln site.

Beaver Creek – Parmley

The Parmley site is expected to acclimate 50,000 smolts. The TP load associated with this site is an estimated 16 g/d. Beaver Creek is smaller than the other streams considered thus far; however, the number of fish proposed for acclimation at this site is proportionally smaller. Consequently, the nutrient loading that could occur as a result of acclimation at this site is also expected to be smaller than the other sites previously discussed. Impacts are therefore likely to be negligible. A more definitive evaluation was not possible due to the lack of sufficient data for calculating background loads in the creek.

Gold Creek – Gold

This proposed site is located in the lower Methow basin. About 50,000 smolts would be acclimated here, with a corresponding TP load of about 16 g/d to Gold Creek. Gold Creek is similar in size to Beaver Creek. Also, because this is the only acclimation site proposed on Gold Creek with the same number of fish as proposed for the Parmley site on Beaver Creek, localized impacts are expected to be similarly negligible.

3.5.3.6 Methow Basin Sites (Backup)

Seven backup sites are being considered for the Methow basin, one or more of which would be used if one or more of the proposed sites is determined to be infeasible. The TP loads estimated for these sites are presented in Table 3-8 and discussed in the following sections.

Chewuch Acclimation Facility

This existing acclimation facility might be expanded if other sites on the Chewuch River are not developed. About 125,000 smolts would be acclimated at the site. The TP loads associated with this activity would be about 40 g/d. The assessments from the other Chewuch River sites would apply here due to the similar location and number of fish. Impacts are expected to be negligible.
<table>
<thead>
<tr>
<th>Proposed Site</th>
<th>No. of Fish</th>
<th>TP Load(^a) (kg/d)</th>
<th>Receiving Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chewuch AF</td>
<td>125,000</td>
<td>0.040</td>
<td>Chewuch</td>
</tr>
<tr>
<td>MSRF</td>
<td>125,000</td>
<td>0.040</td>
<td>Chewuch</td>
</tr>
<tr>
<td>Biddle</td>
<td>50,000</td>
<td>0.016</td>
<td>Wolf</td>
</tr>
<tr>
<td>Utley</td>
<td>83,000</td>
<td>0.027</td>
<td>Twisp</td>
</tr>
<tr>
<td>Newby</td>
<td>83,000</td>
<td>0.027</td>
<td>Twisp</td>
</tr>
<tr>
<td>Poorman</td>
<td>83,000</td>
<td>0.027</td>
<td>Twisp</td>
</tr>
<tr>
<td>Balky Hill</td>
<td>50,000</td>
<td>0.016</td>
<td>Beaver</td>
</tr>
</tbody>
</table>

\(^a\) Estimated from average load of 0.32 mg per fish per day calculated from measured data at active discharges in Nason Creek.

Methow Salmon Recovery Foundation (MSRF) Chewuch

The number of fish acclimated at the MSRF site would be the same as for the Chewuch Acclimation Facility (about 125,000). Given the site’s proximity to the confluence with the Methow River and the similarity of the estimated TP loads to the other Chewuch sites, localized impacts on the Chewuch River due to TP loading from this site are expected to be negligible.

Biddle

This site is on Wolf Creek. About 16 g/d of TP would be discharged due to acclimation of about 50,000 smolts. This site is on a relatively small creek, and the impacts are likely to be similar to those estimated for the Parmley and Gold Creek sites. Lack of data prevented a detailed evaluation of localized impacts associated with this site.

Balky Hill

This site is located on Beaver Creek, and impacts are expected to be similar to those at the Biddle and Parmley sites. As with the Biddle site, due to lack of sufficient data, a detailed evaluation of localized impacts was not possible.

Utley

The Utley site would acclimate 83,000 smolts, if used. For those 83,000 smolts, the TP loads are expected to be about 27 g/d. The number of fish would be less than at Lincoln and Twisp Weir (the two primary sites) on the Twisp River, which are projected to have negligible impacts, so this site would also be expected to have a negligible impact.

Newby

The Newby site is downstream of the Utley site and would acclimate the same number of smolts, if used. The TP loads and the impacts are expected to be similar to the Utley site.

Poorman

This acclimation site is the farthest downstream of all backup sites on the Twisp River. Because the site would acclimate the same number of fish as the other Twisp sites, Poorman would also be expected to have a negligible impact.
3.5.3.7 Combined Impacts of Methow Basin Acclimation Sites

A rigorous mass balance model, such as the one developed by WDOE for the Wenatchee basin, was not undertaken for the Methow basin due to the lack of data for model development and calibration. The evaluation for the Methow basin applied existing data. Historical information on phosphorus concentrations for the acclimation months was limited. Therefore, the evaluations of the potential for the acclimation-related TP loads to dominate the background conditions are based on a comparison to the impacts assessed for the Wenatchee basin. This method is possible because the characteristics of the Wenatchee and Methow basins are comparable.

Both watersheds are predominantly forested. Both have the high peaks of the Cascade Mountains that contribute the majority of flows through snowmelt in spring. In both basins, much of the precipitation occurs during the months of October through March, and this precipitation is predominantly in the form of snow (Andonaegui 2001; Konrad et al. 2003).

Although the Methow basin is somewhat drier than the Wenatchee, the flow patterns are consistent between the two basins, with similar peak-flow and low-flow periods. This indicates that flow-driven processes such as mobilization of particulates, dilution of nutrients, in-stream re-aeration, and habitat conditions for attached algae are likely to be similar between the two basins.

The Methow basin is sparsely populated, even between Winthrop and Pateros. Konrad et al. (2003) concluded, based on an analysis of water quality data collected throughout the basin, that human-caused impact is generally low. The major human sources of water pollutants in the basin are the publicly operated treatment works (POTWs) at Twisp and Winthrop and the Winthrop NFH.

Based on data collected by WDOE for March, April, and May 2005-2009, the average TP load over the 3-month period was estimated at approximately 39 kg/d. As with the Wenatchee basin, the loads generally followed the flow, with peaks in May that were much larger than March and April.

In order to estimate the combined impact of the proposed project, the TP loads from POTWs were separated from the overall loads to provide an estimate of background conditions. Based on discharge monitoring reports (DMR), the average daily loads from the POTWs were estimated and subtracted from the average loads calculated for the Methow River at Pateros. A DMR was not available for Winthrop NFH. Thus, the loads from this facility could not be differentiated.

Acclimation activity may contribute about 0.9% of the average background loads (Table 3–9). Noting that loads from Winthrop NFH and other minor point sources were not included, this is likely an overestimate of the relative contribution of the acclimation activity loads. In addition, discharge monitoring report data from fall were used for estimation of the loads due to lack of data for spring periods. Despite these limitations, the estimate of loads is considered reasonable, because loads from municipal POTWs generally do not show strong seasonal variability and basin flows in October through February are generally comparable to flows in early spring.

12 Population of less than 5,000, based on 2000 census.
As a check on the load estimates for the Methow basin, a similar loading calculation was performed for the Wenatchee basin, where point source discharge data were available for spring, and the results for the two basins were compared. Once the human influences were subtracted from the loads, the background load at the downstream reaches of the Wenatchee and Methow basins are 25.6 kg/d and 37.3 kg/d respectively (see Table 15 in Appendix 7 Water Quality Impacts and Table 3-9 above). The similarity in the characteristics of the two basins is supported further by the fact that the geographic areas and the background TP loads are proportional between the two basins; i.e., the background TP load in the Wenatchee basin is 69% of the Methow basin load, and the Wenatchee basin covers an area 73% the size of the Methow basin.

Project sites in the Wenatchee basin contribute approximately 1.5% of the background load. This is higher than the Methow basin estimate of 0.9%. This difference is expected because a larger number of fish are proposed for acclimation in the Wenatchee basin (about 1.15 million versus 1 million in Methow) and because of the contribution of TP loads from the proposed year-round rearing activities at the Dryden facility in the Wenatchee basin.

The modeling for the Wenatchee basin suggests that, even for critical conditions, acclimation-related nutrient loads are not expected to produce a measurable change in DO and pH (see discussion in Section 3.5.3.4 “Combined Impacts to Water Quality of Wenatchee Basin Acclimation Sites”). Based on the analysis in this section and considering the similarities between the two basins, it is concluded that the TP loads introduced to the Methow basin from this project are unlikely to produce a measurable change in DO and pH (defined in Section 3.5.1).

3.5.4 Impacts of the No Action Alternative

3.5.4.1 Wenatchee Basin

The mechanistic modeling approach used for estimating the combined and cumulative impacts for the Proposed Action (see Section 3.5.3 Impacts of the Proposed Action) was used for the No Action Alternative sites in the Wenatchee basin. The estimated phosphorus loads for the sites in the No Action Alternative (Table 3-10) were used to calculate the phosphorus concentrations of the respective tributaries receiving the discharge in the QUAL-2K model. Loading from any other site in the Proposed Action that is not listed in Table 3-10 was excluded. All other simulation conditions and modeling assumptions remained unchanged from the Proposed Action simulations.

<table>
<thead>
<tr>
<th>Source</th>
<th>TP Load (kg/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methow River at Pateros</td>
<td>39.20</td>
</tr>
<tr>
<td>Twisp POTW</td>
<td>1.30</td>
</tr>
<tr>
<td>Winthrop POTW</td>
<td>0.58</td>
</tr>
<tr>
<td>Estimated Background Load</td>
<td>37.31</td>
</tr>
<tr>
<td>Acclimation Activity Loads</td>
<td>0.32</td>
</tr>
</tbody>
</table>

a. Average over March - May calculated from paired TP and flow data collected respectively by WDOE (48A070) and USGS (12449950) in the Methow River at Pateros in 2005 through 2009.

b. Based on NPDES discharge monitoring report information from October 2009 through February 2010.

c. Based on NPDES discharge monitoring report information from November 2009.

d. Sum of the loads estimated for the individual sites in Table 3-7.
Table 3-10. TP loads estimated for No Action Alternative sites in Wenatchee basin

<table>
<thead>
<tr>
<th>No Action Site</th>
<th>No. of Fish</th>
<th>TP Load(^a) (kg/d)</th>
<th>Receiving Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohlfing</td>
<td>100,000</td>
<td>0.032</td>
<td>White River</td>
</tr>
<tr>
<td>Coulter</td>
<td>100,000</td>
<td>0.032</td>
<td>White River</td>
</tr>
<tr>
<td>Butcher</td>
<td>100,000</td>
<td>0.032</td>
<td>Little Wenatchee River</td>
</tr>
<tr>
<td>Beaver</td>
<td>100,000</td>
<td>0.032</td>
<td>Beaver</td>
</tr>
<tr>
<td>Leavenworth NFH</td>
<td>100,000</td>
<td>0.032</td>
<td>Icicle</td>
</tr>
<tr>
<td>Total</td>
<td>500,000</td>
<td>0.16</td>
<td></td>
</tr>
</tbody>
</table>

\(a\). Uses an estimate of 0.32 mg/d/fish derived from active sites in Nason Creek; see Table 3-2.

3.5.4.2 Methow Basin

Under the No Action Alternative, 200,000 fish would be acclimated in the Methow basin (Table 3-11), which is 20% of the number of fish for the Proposed Action (Table 3-7). Therefore, the TP loads for the No Action Alternative are expected to be lower by 80%. Based on the background and basin loads estimated for the Methow basin in Table 3-9, it is expected that the No Action Alternative would contribute less than 0.2% of the basin loads. Therefore, water quality impacts on the Methow River are expected to be negligible if the No Action Alternative is implemented.

Table 3-11. TP loads estimated for No Action Alternative sites in Methow basin

<table>
<thead>
<tr>
<th>No Action Site</th>
<th>No. of Fish</th>
<th>TP Load(^a) (kg/d)</th>
<th>Receiving Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heath</td>
<td>20,000</td>
<td>0.006</td>
<td>Twisp River</td>
</tr>
<tr>
<td>Lincoln</td>
<td>60,000</td>
<td>0.019</td>
<td>Twisp River</td>
</tr>
<tr>
<td>Lower Twisp</td>
<td>20,000</td>
<td>0.006</td>
<td>Methow River</td>
</tr>
<tr>
<td>Winthrop NFH</td>
<td>100,000</td>
<td>0.032</td>
<td>Methow River</td>
</tr>
<tr>
<td>Total</td>
<td>200,000</td>
<td>0.064</td>
<td></td>
</tr>
</tbody>
</table>

\(a\). Uses an estimate of 0.32 mg/d/fish derived from active sites in Nason Creek; see Table 3-2; numbers don’t add up due to rounding.

3.5.4.3 Combined Impacts

The combined impact simulation showed that the impacts to water quality are negligible if the project were to continue without the changes in the Proposed Action (see Appendix 7, Section 6.1.1). This is to be expected, given that the results discussed in previous sections demonstrated that, even with the greater number of sites in the Proposed Action, impacts would be negligible.

3.5.5 Mitigation for the Proposed Action

The project proposes several practices to reduce nutrient levels, several of which are already incorporated into the design of the project:

- Acclimate and release small numbers of coho smolts from multiple sites to dilute the loads and reduce local effects.
- Select ponds with flow rates that are higher than those used in constructed regional fish facilities so that there is substantial dilution of nutrients in the discharges.
- Acclimate in large, natural ponds; their higher water volumes provide greater dilution of fish feed and wastes and buffer nutrient loading to the receiving stream.
- Feed high-phosphorus-digestibility foods.
- Periodically remove sediments from some acclimation ponds to eliminate potential long-term accumulation of nutrients.
- At the Dryden Hatchery, treat water at a level comparable to Leavenworth NFH.
3.6 Surface and Groundwater and Water Rights

3.6.1 Affected Environment

The potential affected environment for this resource includes surface water flows, surface water temperatures, water quality, local groundwater levels, and existing users (water rights) in the immediate vicinity and downstream of the sites where new groundwater sources are developed. The potential affected environment at individual sites is discussed in Section 3.6.3 Impacts of Proposed Action. Only two acclimation sites in the Wenatchee basin (one primary and one backup) would require new groundwater development as part of this project; four acclimation sites in the Methow would require new groundwater sources. Other facilities that could be used by the project use groundwater, but the impacts of their development and use have been or will be evaluated as part of other permitting processes. Only the sites requiring new development are discussed, except in the cumulative impacts section (Section 3.15).

Washington State’s Administrative Code establishes stream management units, maximum future allocations, basins that are closed to further water right appropriation, and in-stream flow regulations for the two basins. In the Wenatchee River basin, the Chumstick Creek subbasin is closed to future appropriations. Several stream basins and lakes within the Methow River basin also are closed to future appropriations (WAC 173-545 [Wenatchee] and WAC 173-548 [Methow]).

3.6.2 Types of Impact

New water supplies to acclimation sites and the proposed hatchery that are based on new groundwater wells could have the following impacts:

- Reduction in the production capacity of nearby wells
- Reduction or increase in surface water flows
- Reduction in surface water quality

Reduction in the production capacity of nearby wells. Such impacts are considered to be an adverse effect on the existing well-owner’s water rights. The criteria used to evaluate the potential impacts of proposed groundwater withdrawals on existing groundwater users are based on the amount of drawdown interference the withdrawal would cause in the existing wells. Drawdown interference of less than one foot likely would not affect the production capacity of existing wells. Drawdown interference of greater than one foot would require case-specific analysis to evaluate whether the drawdown would impact production capacity.

The Washington Department of Ecology (WDOE) is charged with administering state water rights laws. The term “impairment” is used by WDOE as the criterion for assessing impacts to groundwater rights. Washington Administrative Code (WAC) 173-150-060 describes how to determine whether a groundwater right has been impaired. Specifically: “A ground water right which pertains to qualifying withdrawal facilities, shall be deemed to be impaired whenever:

1) there is an interruption or an interference in the availability of water to said facilities, or a contamination of such water, caused by the withdrawal of ground water by a junior water right holder or holders; and

2) significant modification is required to be made to said facilities in order to allow the senior ground water right to be exercised.”
Reduction in surface water flows. The criterion for surface water flow impacts (local, downstream, in-stream, and low-flow) used in this analysis is any measurable or theoretical reduction in surface water flow rates.

Reduction in surface water quality. Water quality criteria are established in Washington State by WAC 173-200 for groundwater and WAC 173-201A for surface water. The criterion for assessing potential impacts to surface water quality is any measurable or theoretical change to surface water quality resulting from groundwater usage.

Groundwater withdrawals can affect surface water levels depending on the degree to which the groundwater source is in hydraulic continuity with surface water. Hydraulic continuity is a scientific term that describes how easily water flows between groundwater and surface water (streams, rivers, lakes, and wetlands). When hydraulic continuity is high, water flows easily between groundwater and surface water. This impacts how water should be managed because anything done to the groundwater (such as, pumping from wells or pollution seeping into the groundwater) will affect the surface water, and vice versa (Chehalis Basin Watershed Planning Issue Paper, accessed at www.crcwater.org/cbp).

New water supplies to acclimation sites and the proposed hatchery that are based on new surface water withdrawals could reduce surface water flows.

3.6.3 Impacts of the Proposed Action

Four primary sites and one backup site in the Wenatchee basin (Tall Timber, Chikamin, Dryden [primary] and George [backup]); and one primary and one backup site in the Methow basin (Twisp Weir [primary] and Newby [backup]) require new surface water intakes. The stream reaches between the intakes and outlets would have slightly lower total flow when water is diverted, but these distances are generally 1,500 feet or less. Because the water used would be returned close to the intakes, the withdrawals are essentially water neutral and would have no regional impact on flows. In-stream flows required by WDOE would be maintained. For these reasons, surface water withdrawals will not be discussed further.

Table 3-12 summarizes potential impacts from new groundwater withdrawals at primary sites.
Table 3-12. Summary of potential impacts in the Wenatchee and Methow basins from new groundwater withdrawals at primary acclimation and hatchery sites

<table>
<thead>
<tr>
<th>Site</th>
<th>Proposed Groundwater Withdrawal (gpm)</th>
<th>Potential Groundwater Level Impacts</th>
<th>Potential Surface Water Flow Impacts</th>
<th>Potential Groundwater Right Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenatchee River Basin Primary Sites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryden Hatchery</td>
<td>1,485</td>
<td>Local: depends on amount and type of withdrawal; no regional impacts</td>
<td>Slight reduction within drawdown cone; no impacts downstream</td>
<td>Potential impacts to nearby groundwater rights</td>
</tr>
<tr>
<td>Butcher</td>
<td>225</td>
<td>Potential local: no regional impacts</td>
<td>Slight reduction within drawdown cone; no impacts downstream</td>
<td>Impacts to existing off-site wells unlikely</td>
</tr>
<tr>
<td>Basin Total</td>
<td>1,710</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methow River Basin Primary Sites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSWA Eightmile</td>
<td>800</td>
<td>Potential local: no regional impacts</td>
<td>Slight reduction within drawdown cone; no impacts downstream</td>
<td>Potential impact to existing on-site well</td>
</tr>
<tr>
<td>Mason</td>
<td>225</td>
<td>Potential local: no regional impacts</td>
<td>Slight reduction within drawdown cone; no impacts downstream</td>
<td>Minimal potential impact to nearby well</td>
</tr>
<tr>
<td>Twisp Weir</td>
<td>225</td>
<td>Potential local: no regional impacts</td>
<td>Slight reduction within drawdown cone; no impacts downstream</td>
<td>Low potential for impact to existing on-site well and off-site well</td>
</tr>
<tr>
<td>Lower Twisp</td>
<td>225</td>
<td>Potential local: no regional impacts</td>
<td>Slight reduction within drawdown cone; no impacts downstream</td>
<td>Low potential for impact to existing on-site well and off-site well</td>
</tr>
<tr>
<td>Basin Total</td>
<td>1,475</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. gpm = gallons per minute

3.6.3.1 Wenatchee Basin Acclimation Sites

This and subsequent sections discuss only sites where the project proposes new groundwater wells.

Butcher (Primary Site)

The Butcher site is in an east-west trending basin occupied by Nason Creek and underlain by Quaternary alluvium, terrace deposits or alpine glacial drift. No site-specific studies are available; however, reports by Anchor QEA, LLC (2009) and GeoEngineers (2009) summarize the results of a geophysical investigation and the drilling of two test wells located approximately 500 and 1,000 feet to the southeast of the Butcher site. The Quaternary deposits cover a northeast-southwest trending normal fault that appears to run beneath the site. The underlying bedrock is banded gneiss to the west of the fault and sedimentary rocks to the east of the fault. The groundwater source for the Butcher site would be the unconsolidated deposits overlying the bedrock. The unconsolidated alluvium is composed of sand, gravel, silt and clay layers. Several water-bearing layers of sand and gravel appear to have the potential to be moderately productive based on nearby well log descriptions and pumping tests. Though the thickness, lateral extent
and other characteristics of the aquifer at the site are not known, the aquifer is likely to be in hydraulic continuity with Nason Creek.

The proposed groundwater supply well at the Butcher site probably would be less than 250 feet deep. The proposed pumping rate is approximately 225 gallons per minute (gpm).

Groundwater Levels. Groundwater withdrawals at the Butcher site could cause localized impacts to groundwater levels. The extent of the potential impacts depends on aquifer characteristics, which are not known at this time. Based on limited information that indicates a potential for a moderately productive aquifer and the assumed hydraulic continuity with Nason Creek, the area of groundwater level change (area of greater than 1 foot of drawdown) would likely extend laterally approximately 300 to 1,500 feet within the source aquifer.

Surface Water Flows. Groundwater withdrawals could affect stream flow locally due to the potential that the source aquifer is in hydraulic continuity with surface water (Nason Creek). The potential change in groundwater levels discussed above may result in a localized reduction in stream flow. The percentage of the proposed 225 gpm withdrawn from the well that comes indirectly from the stream depends on the degree of hydraulic continuity between aquifer and surface water. This potential reduction in stream flow would be completely offset and balanced by return flows from the acclimation site. As a result, there would be no regional impacts to stream flow within the Wenatchee River basin.

Water Rights. The proposed activities at the Butcher site are not likely to impact groundwater rights. Based on state well records, there are five existing water-supply wells within ½ mile that are in the unconsolidated deposits. There are no known groundwater rights within 1,500 feet of the Butcher site. The expected drawdown at the nearest wells is not enough to impair the wells, or even have measurable impact on the production capacity of the wells.

The proposed activities at the Butcher site would not impact surface water rights. Because of the water-balance neutrality of the proposed withdrawal of groundwater from an aquifer in hydraulic continuity with the stream and discharge of the groundwater into the stream, there would be no regional impacts to stream flow upstream or downstream of the Butcher site.

Squadroni (Backup Site)

The site is within the northwest-southeast trending basin occupied by Nason Creek and underlain by Quaternary alluvium or alpine glacial drift. The underlying bedrock is tonalite of the Mount Stuart batholith of Cretaceous age. The proposed groundwater source at the Squadroni site, located near the confluence of Nason and Gill Creeks, is the unconsolidated alluvium or glacial deposits overlying the bedrock. The lateral extent of the aquifer is generally restricted to the valley floor adjacent to Nason Creek.

There is an existing domestic well and residence at the site. If the site is used, a new well or wells would terminate in the unconsolidated alluvium composed of sand, gravel, silt and clay layers. It is likely that multiple wells would be needed to meet the proposed demand of 720 gpm (1.6 cfs). Several water-bearing layers of sand and gravel appear to have the potential to be moderately productive based on nearby well log descriptions. Although the thickness, lateral extent and other characteristics of the aquifer at the site are not known, the aquifer is likely to be in hydraulic continuity with Nason Creek.

Groundwater Levels. Groundwater withdrawals could cause localized impacts to groundwater levels, with specific water level reductions in the existing domestic well at the site. Based on
existing information on the source aquifer, the drawdown cone, defined by drawdown greater than 1 foot, would reach approximately 500 to 1,500 feet depending on aquifer characteristics and the degree of confinement of the source aquifer.\footnote{A confined aquifer has limited continuity with other aquifers and surface waters.}

Surface Water Flows. Groundwater withdrawals could cause localized impacts to stream flows due to the potential that the source aquifer is in hydraulic continuity with surface water (Nason and Gill Creeks). A change in groundwater levels would reduce stream flow, the magnitude of which depends on the degree of hydraulic continuity between aquifer and surface water. However, any reduction in stream flow would be completely offset and balanced by return flows from the acclimation pond and would result in no regional impact to stream flow in the Wenatchee River basin.

Water Rights. The proposed activities at the Squadroni site could impact groundwater water rights. Logs of eight wells were located within the radius of influence of the proposed Squadroni point of withdrawal (500 – 1,500 feet), plus the Squadroni domestic well; these wells could be impaired by the proposed well. There are two known groundwater rights within the potential groundwater source area of the Squadroni site.

The proposed activities at the Squadroni site would not impact surface water rights. Because of the water-balance neutrality of the proposed withdrawal of groundwater from an aquifer in hydraulic continuity with the stream and discharge of the groundwater back into the stream, there would be no regional impacts to stream flow upstream or downstream of the Squadroni site.

3.6.3.2 Methow Basin Acclimation Sites

MSWA Eightmile (Primary Site)

In order to supply the site’s proposed water need of 800 gpm (1.8 cfs), multiple new wells could be required.

The surface geology of the MSWA Eightmile site is recent Chewuch River alluvium and older Quaternary alluvium underlain by orthogneiss bedrock of Cretaceous-Jurassic age. The unconsolidated alluvium is composed of sand, gravel, silt and clay layers. Water-bearing layers of sand and gravel may have the potential for groundwater supply based on well log descriptions.

An existing 6-inch-diameter well is located approximately 300 feet west of the proposed acclimation pond on the alluvial terrace with an elevation of approximately 2,120 feet mean sea level (MSL). The well, referred to as Mason Well 1, was drilled in August 1999 to 60 feet below the ground surface (bgs). Unconsolidated materials interpreted to be the Quaternary alluvium deposits were encountered to 60 feet bgs. No bedrock was encountered. An existing 6-inch well, referred to as Mason Well 2 (see analysis for the Mason site below), is located near the residence approximately 1,400 feet south of the Mason Well 1.

The depth to bedrock and the thickness of the unconsolidated deposits are unknown at this time. Bedrock is exposed locally along Eightmile Creek and in the hills surrounding the MSWA Eightmile site. The aquifer in which the existing Mason Well 1 is completed is assumed to be unconfined and at least 30 feet thick based on the well log information. Most likely the local alluvial aquifer is in direct continuity with the Chewuch River. Groundwater levels are expected to fluctuate in elevation, magnitude and timing similar to the nearby surface water elevations.
Groundwater Levels. Groundwater withdrawals at the site could cause localized impacts to groundwater levels. Based on existing information on the source aquifer, the drawdown cone, defined by drawdown greater than 1 foot, would reach approximately 500 to 1,500 feet depending on aquifer characteristics, the degree of confinement of the source aquifer and the degree of hydraulic continuity with the Chewuch River. The production capacity of the existing Mason Well 1 could be affected by drawdown interference. The amount of the effect is unknown until the well is drilled and tested, although it might be on the order of 1 to 5 feet.

Surface Water Flows. Due to the potential that the source aquifer is in hydraulic continuity with the Chewuch River, groundwater withdrawals at the site could cause localized impacts to stream flows. A preliminary analysis of the theoretical drawdown within the aquifer at 300 feet from the pumping well indicates that the drawdown would be between 1 and 5 feet, depending on the amount of confinement of the aquifer. This change in groundwater levels would result in minimal reduction in stream flow (perhaps hundreds of gallons per day), which depends on the degree of hydraulic continuity between aquifer and surface water. This minor reduction in stream flow (the Chewuch has a daily flow on the order of tens of millions of gallons per day) would be completely offset and balanced by return flows from the facility; there would be no regional impacts to stream flow in the Methow River basin.

Water Rights. The Mason Wells 1 and 2 are the only known groundwater supply wells close enough to be affected by a new well near the proposed MSWA Eightmile acclimation pond. There is less potential for impacting the Mason Well 2 because a new well or wells would be located more than 1,500 feet from Mason Well 2 (outside the zone of influence). Also, the proposed wells would be close to the Chewuch River, a recharge boundary\(^{14}\) that would reduce drawdown interference at distances of greater than 100 feet from the proposed wells. Drawdown interference at Mason Well 1 could be on the order of 1 to 5 feet assuming a distance of 300 feet and a conservative transmissivity\(^{15}\) of 40,000 gallons per day per foot (gpd/ft). However, Mason Well 1 currently is not used. Discussions with the landowner would determine whether mitigation is needed, and if so, what would be done. The drawdown at Mason Well 2 would be effectively unmeasurable under the same assumptions.

The proposed activities at the MSWA Eightmile site would not impact surface water rights. Because of the water-balance neutrality of the proposed withdrawal of groundwater from an aquifer in hydraulic continuity with the stream and discharge of the groundwater back into the stream, there would be no regional impacts to stream flow upstream or downstream of the MSWA Eightmile site.

Mason (Primary Site)

The proposed demand on groundwater for the existing well at this site is a maximum of 225 gpm (0.5 cfs). The geology is the same as for the MSWA Eightmile site described above.

The existing 6-inch-diameter well, Mason Well 2, is located at the site adjacent to Eightmile Creek. The well was drilled in 1990 to 100 feet bgs. Unconsolidated materials interpreted to be the Quaternary alluvium deposits were encountered to 100 feet bgs. No bedrock was

\(^{14}\) The recharge boundary is where the drawdown cone intersects a stream. The drawdown cone cannot spread beyond the recharge boundary.

\(^{15}\) Transmissivity is a measure of the ability of groundwater to flow in a horizontal direction.
encountered. Mason Well 2 is completed with an open bottom within a coarse sand and gravel deposit encountered from 96 to 100 feet.

The aquifer in which Mason Well 2 is completed is assumed to be unconfined and at least 42 feet thick based on the well log information. Most likely the local aquifer is in direct continuity with the Chewuch River and the mouth of Eightmile Creek. Groundwater levels are expected to fluctuate in elevation, magnitude, and timing similar to the nearby surface water.

Groundwater Levels. Groundwater withdrawals could affect groundwater levels locally. Based on existing information on the source aquifer, the drawdown cone, defined by drawdown greater than 1 foot, would reach approximately 300 to 1,000 feet depending on aquifer characteristics and the degree of confinement of the source aquifer.

Surface Water Flows. Stream flows from groundwater withdrawals could be locally affected due to the potential that the source aquifer is in hydraulic continuity with surface water (Chewuch River and Eightmile Creek). Based on the water level and screened elevation, the aquifer would intersect Eightmile Creek near the confluence with the Chewuch River to the east. A preliminary analysis of the theoretical drawdown within the aquifer at 300 feet from the pumping well indicates that the drawdown would be between 0.1 to 1 foot, depending on aquifer characteristics and the amount of confinement of the aquifer. This change in groundwater levels would minimally reduce stream flow (by perhaps a few hundred gallons per day); the amount depends on the degree of hydraulic continuity between aquifer and surface water. This minor reduction in stream flow of the Chewuch River would be completely offset and balanced by return flows from the facility, with no regional impacts to stream flow in the Methow River basin.

Water Rights. Mason Well 1 is the only groundwater supply well close enough to be affected by increased groundwater withdrawals for the proposed Mason acclimation pond. There is minimal potential for impacting Mason Well 1 because of its distance from the site (more than 1,500 feet) and the proximity of the proposed well to Eightmile Creek and the Chewuch River (recharge boundaries that would reduce drawdown interference at distances of greater than 300 feet from the proposed well). Assuming a conservative transmissivity of 40,000 gpd/ft, the drawdown at Mason Well 1 would be unmeasurable if it were in use, which it currently is not. There are no known groundwater rights in the vicinity of the Mason site.

The proposed activities at the Mason site would not affect surface water rights because of the water-balance neutrality of the proposed withdrawal.

Twisp Weir (Primary Site)

The proposed groundwater source at the Twisp Weir site would be one new 8-inch diameter well. The well would be adjacent to the Twisp River in order to use a shallow aquifer in hydraulic continuity with the Twisp River.

The acclimation site is located within an east-west trending basin occupied by the Twisp River and underlain by Quaternary alluvium or alpine glacial drift. The underlying bedrock is volcanic and sedimentary rocks. The groundwater source at the Twisp Weir site is the unconsolidated alluvium or glacial deposits overlying the bedrock. The lateral extent of the aquifer is generally restricted to the valley floor adjacent to the Twisp River.

Groundwater Levels. Groundwater withdrawals could affect groundwater levels locally. Based on available information on the source aquifer, the drawdown cone, defined by drawdown
greater than 1 foot, would reach approximately 300 to 1,000 feet, depending on the degree of confinement of the source aquifer. There is an existing domestic supply well adjacent to the existing residence.

Surface Water Flows. Groundwater withdrawals could locally affect stream flows due to the potential that the source aquifer is in hydraulic continuity with the Twisp River. This change in groundwater levels would minimally reduce stream flow (by perhaps hundreds of gallons per day), depending on aquifer characteristics and the degree of hydraulic continuity between aquifer and surface water. This minor reduction in stream flow (the Twisp River has a daily flow on the order of tens of millions of gallons per day) would be completely offset and balanced by return flows from the facility, with no regional impacts to stream flow in the Twisp River or the Methow River basin.

Water Rights. At least two known wells, including the on-site well, near or within the groundwater source area of the Twisp Weir site could be affected by the proposed well development. Although well logs are incomplete or unrecorded, the expected drawdown at the existing wells is not expected to be great enough to impair them, or even measurably impact their production capacity.

The proposed activities at the Twisp Weir site would not impact surface water rights because of the water-balance neutrality of the proposed withdrawal.

Lower Twisp (Primary Site)

The proposed groundwater source at the Lower Twisp site is an existing 12-inch-diameter well drilled to a depth of 51 feet. It is adjacent to the existing side-channel ponds and approximately 300 feet south of the main channel of the Twisp River. On August 25, 2010, the well was tested at rates up to 600 gpm; results indicate that it is capable of producing the desired flow of 1 cfs.

The geology of the site is the same as that for the Twisp Weir site.

Effects. Effects on groundwater levels, surface water flows, and water rights would be the same as for the Twisp Weir site.

MSRF Chewuch (Backup Site)

The surface geology of the MSRF site is recent Chewuch River alluvium and older Quaternary alluvium deposits underlain by sedimentary rocks. A north-south trending fault occurs along the Chewuch River at the site; the fault is concealed under the alluvial deposits.

No groundwater quality information is available for the MSRF site. However, water quality information for two nearby water systems indicates high water quality, with no violations of state drinking water quality standards.

A number of well logs for wells in the vicinity of the site were examined. Some wells were completed in unconsolidated alluvium and some in bedrock. The logs indicate that water levels in the wells that were completed in the unconsolidated alluvium aquifer range from 8 to 39 feet below the top of the well casings. This alluvial aquifer is likely in hydraulic continuity with the Chewuch River.

The bedrock aquifer is not likely to be a potential source for groundwater for this project due to low production capacity and presumed lower water quality. It is possible that multiple wells would be needed to meet the proposed demand of 850 gpm (1.9 cfs).

3-46
Groundwater Levels. There is potential for localized impacts to groundwater levels due to groundwater withdrawals at the MSRF site. Based on existing information on the source aquifer, the drawdown cone, defined by drawdown greater than 1 foot, would reach approximately 500 to 1,500 feet depending on aquifer characteristics, the degree of confinement of the source aquifer and the degree of hydraulic continuity with the Chewuch River. It is unlikely that the production capacity of the existing wells could be impacted by drawdown interference.

Surface Water Flows. Groundwater withdrawals could affect stream flows locally due to the potential that the source aquifer is in hydraulic continuity with the Chewuch River. A preliminary analysis of the theoretical drawdown within the aquifer at 300 feet from the pumping well indicates that the drawdown would be between 1 and 5 feet, depending on the amount of confinement of the aquifer. This change in groundwater levels would minimally reduce stream flow (by perhaps hundreds of gallons per day); the magnitude depends on the degree of hydraulic continuity between aquifer and surface water. This minor reduction in stream flow given the daily flows in the Chewuch would be completely offset and balanced by return flows from the facility.

Because of the water-balance neutrality of the proposed withdrawal of groundwater from an aquifer in hydraulic continuity with the stream and discharge of the groundwater back into the stream, there would be no regional impacts to stream flow within the Methow River basin.

Water Rights. The proposed activities at the MSRF site are not likely to impact groundwater rights. The nearby wells are not close enough to be impaired by a new well near the proposed MSRF acclimation pond. Groundwater drawdown from pumping would largely be mitigated by proximity to the Chewuch River (a recharge boundary that would reduce drawdown interference at distances of greater than 100 feet from the proposed wells). Drawdown interference at the other wells would be on the order of less than 0.1 foot (effectively unmeasurable) assuming a distance of 1,000 feet and a conservative transmissivity of 40,000 gpd/ft.

The proposed activities at the MSRF site would not impact surface water rights. Because of the water-balance neutrality of the proposed withdrawal of groundwater from an aquifer in hydraulic continuity with the stream and discharge of the groundwater back into the stream, there would be no regional impacts to stream flow upstream or downstream of the MSRF site.

3.6.3.3 Hatchery Sites

Dryden (Primary Site)

A water supply of up to 2,775 gpm (7.4 cfs) is proposed for the Dryden Hatchery facility from a combination of surface water and groundwater sources. Groundwater sources originally considered were either an infiltration gallery adjacent to Peshastin Creek or production well(s). A preliminary investigation indicated that the shallow soils would not support an infiltration gallery along the Wenatchee River in the area explored. Two test pits showed low permeability and a relatively deep groundwater table (GeoEngineers 2010). Therefore, only wells are proposed as the groundwater source for this site.

The Dryden site is located at the confluence of Peshastin Creek and the Wenatchee River and is underlain by Quaternary alluvium and terrace deposits. The underlying bedrock is a sandstone that is exposed on the valley wall immediately opposite of the Dryden site and in the hills to the east and west. The groundwater source at the Dryden site is the unconsolidated alluvium or terrace deposits overlying the bedrock. The lateral extent of the aquifer is generally restricted to
the valley floor adjacent to the Wenatchee River and Peshastin Creek. A preliminary depth-to-bedrock analysis indicates that the unconsolidated deposits are 45 to 130 feet thick based on information from logs of wells located on the terraces to the west of the Dryden site. Only a few wells in the immediate vicinity were drilled to bedrock. Wells in the area penetrate the alluvium and terrace deposits, described by drillers as sand, sand and gravel, “rocks,” and cemented sand and gravel with cobbles. The bedrock is described in the logs as sandstone. In addition to the alluvial deposits of the Wenatchee River, Peshastin Creek deltaic deposits of coarse gravel, cobbles and boulders occur along the banks of Peshastin Creek and along the west bank of the Wenatchee River downstream of the mouth of the creek.

Water levels in the wells near the Dryden site are at elevations that generally correspond to the stage heights of the nearby Wenatchee River. This implies that the shallow unconsolidated aquifer is in hydraulic continuity with the Wenatchee River and/or Peshastin Creek. Groundwater levels are expected to fluctuate with the same timing as the changes in stage heights of the Wenatchee River and Peshastin Creek. Groundwater levels are expected to occur at 5 to 15 feet below ground surface (bgs) beneath the Dryden site, depending on the adjacent surface water levels.

Groundwater Levels. Groundwater withdrawals at the Dryden site could cause local impacts to groundwater levels. Well logs from 27 nearby wells with depths ranging from 50 to 150 feet indicate there are several water bearing zones within the alluvial deposits. The bottoms of three of the 27 wells in the vicinity are completed within the sandstone bedrock. Only one well has limited pumping test data available. This well was pumped at 60 gpm with 1.7 feet of drawdown after 4 hours. Other wells in the area produce from 7 to 12 gpm from the bedrock wells and 15 to 60 gpm from wells completed in the unconsolidated deposits based on the well logs. Specific capacities (pumping rate divided by drawdown) of the wells completed in unconsolidated deposits range from 6 to 35 gpm/foot of drawdown. Specific capacities of bedrock wells range from 0.2 to 0.6 gpm/foot of drawdown.

The bedrock is not a potential source for groundwater for this project because of its low yield and presumed relatively lower quality water.

The impacts to groundwater levels in the vicinity of the site would depend on the amount of production.

Surface Water Flows. Groundwater withdrawals could affect stream flows near the site due to the likelihood that the alluvial source aquifer is in hydraulic continuity with surface water (Wenatchee River and Peshastin Creek). Depending on the percentage of the proposed 7.4 cfs demand that is derived from groundwater sources, drawdown within the source aquifer might be significant. This change in groundwater levels would result in a local reduction in stream flow, the amount of which depends on the degree of hydraulic continuity between aquifer and surface water. This very localized reduction in stream flow would be completely offset and balanced by return flows from the facility; thus, there would be no regional impacts to stream flow within the Wenatchee River basin.

Water Rights. The proposed activities at the Dryden site could affect groundwater water rights. Active irrigation wells are known to exist in the area. If high-capacity production wells are constructed, the expected drawdown from pumping at the Dryden site could impair production at existing wells near the property boundaries.
The proposed activities at the Dryden site would not impact surface water rights. Because of the water-balance neutrality of the proposed withdrawal of groundwater from an aquifer in hydraulic continuity with the stream and discharge of the groundwater back into the stream, there would be no regional impacts to stream flow upstream or downstream of the Dryden site.

George (Backup Site)

The George site is located within the east-west trending basin occupied by the Wenatchee River and underlain by Quaternary alluvium, terrace deposits or alpine glacial drift. The underlying bedrock is sedimentary rocks of the Chumstick Formation of Eocene age. The proposed groundwater source at the George site, located adjacent to the Wenatchee River, is the shallow unconsolidated alluvium overlying the bedrock. The lateral extent of the aquifer is generally restricted to the valley floor adjacent to the Wenatchee River.

There are no existing wells or structures at the George site. A new well or wells are proposed for the groundwater source; it is likely that multiple wells would be needed to meet the proposed demand of 1,500 gpm (3.3 cfs). The wells would be completed in the shallow unconsolidated alluvium in hydraulic continuity with the river. Several water-bearing layers of sand and gravel appear to have the potential to be moderately productive based on nearby well log descriptions. Although the thickness, lateral extent and other characteristics of the shallow aquifer at the site are not known, the aquifer is likely to be in hydraulic continuity with Nason Creek.

Groundwater Levels. Groundwater withdrawals could cause local impacts to groundwater levels. Based on existing information on the source aquifer, the drawdown cone, defined by drawdown greater than 1 foot, would reach approximately 500 to 1,500 feet depending on aquifer characteristics and the degree of confinement of the source aquifer. There are no known wells within 1,500 feet of the likely well sites.

Surface Water Flows. Groundwater withdrawals could affect stream flows locally due to the potential that the source aquifer is in hydraulic continuity with surface water (Wenatchee River). A change in groundwater levels would reduce stream flow; the magnitude depends on the degree of hydraulic continuity between aquifer and surface water. Reduction in stream flow is likely to be minor and would be completely offset and balanced by return flows from the hatchery.

Because of the water-balance neutrality of the proposed withdrawal of groundwater from an aquifer in hydraulic continuity with the stream and discharge of the groundwater back into the stream, there would be no regional impacts to stream flow within the Wenatchee River basin.

Water Rights. Groundwater development at the George site would not affect groundwater rights. No wells are known to be within the radius of influence (1,500 feet) of the likely points of withdrawal for the facility. There are no known groundwater rights within 1,500 feet of the likely withdrawal source area.

Groundwater development at the George site would not affect surface water rights because of the water-balance neutrality of the proposed withdrawal.

3.6.3.4 Combined Impacts

A combined total increase of 1,710 gpm in groundwater production is proposed for two sites (Dryden Hatchery and Butcher) in the Wenatchee River basin; and a combined total increase of 1,475 gpm in groundwater production proposed for four acclimation pond sites (MSWA, Mason, Twisp Weir, and Lower Twisp) in the Methow River basin. The backup sites of Squadroni,
George, and McComas in the Wenatchee and the backup site at MSRF Chewuch in the Methow also would increase groundwater withdrawals if the sites are used, but they are not included in this evaluation of combined impacts. If one or more of the backup sites replaces one or more primary sites, the combined effects could be locally different but would not noticeably change the basin-wide effects.

Surface water use for the acclimation ponds is balanced by return flows except for short reaches between the intakes and outfalls, and groundwater use for the proposed acclimation ponds would be water-budget neutral for the Wenatchee and Methow basins.

The discharge of groundwater into the surface waters of the Wenatchee and Methow river basins may increase or decrease the water temperature on a local basis depending on the season. The groundwater temperature would be relatively constant and stable compared to the surface water temperature, which fluctuates on a daily and seasonal basis. The amount of temperature impact would depend upon the stream-flow rate at the point of discharge and relative temperature difference; the larger the stream-flow rate and the smaller the temperature difference, the smaller the impact.

Surface water quality may be impacted by a discharge of groundwater into the stream. The shallow groundwater is expected to be of similar quality to the nearby surface water because the aquifer is in hydraulic continuity. Deeper groundwater typically contains higher levels of dissolved solids and lower dissolved oxygen levels than shallow groundwater. However, groundwater quality is expected to be more stable in parameters such as temperature, turbidity and total suspended solids as compared to surface water.

Impacts to other users of the unconsolidated aquifers are not likely to occur at distances more than 2,000 feet from new points of groundwater withdrawal.

Due to the continuity of the shallow aquifers with local surface streams and relatively high transmissivity of the subsurface alluvial aquifers, withdrawal impacts to the aquifers are limited to areas near the proposed sites. Impacts are not expected to extend between sites; therefore, the combined impact of all the withdrawals is equal to the sum of the individual impacts.

3.6.4 Impacts of the No Action Alternative

Because the No Action Alternative includes operation of fewer sites than the current program and no development of new groundwater supplies, the alternative would not directly or indirectly have adverse effects on groundwater, surface water, or water rights in the basins.

3.6.5 Mitigation for the Proposed Action

The following actions have been incorporated into the project design where feasible.

- For sites with enough room or access, the groundwater source would be placed downstream of the discharge into the acclimation pond to offset local impacts to surface water caused by groundwater level changes in aquifers in hydraulic continuity with surface water.
- Groundwater withdrawals would be located as close as possible to the surface water body and as far away from existing senior groundwater users as feasible to reduce the size and magnitude of the drawdown cone at distance from the site.
- As little as possible of the stream or side channel bottom would be disturbed to reduce the potential impacts to the hydraulic continuity between the surface water and shallow groundwater.
3.7 Fish

This section discusses impacts to fish species in the basin, focusing on effects to fish listed under the Endangered Species Act (ESA) and Washington Department of Fish and Wildlife’s (WDFW’s) Priority Habitats and Species (PHS) Program.

The Endangered Species Act of 1973 and its amendments (16 USC 1531 et seq.) require federal agencies to ensure that their actions do not jeopardize endangered or threatened species or adversely modify or destroy designated critical habitat. NOAA Fisheries identifies marine wildlife, including anadromous fish, determined to be at risk; U.S. Fish and Wildlife Service (USFWS) is responsible for the listing status of non-marine fish and wildlife and of plants.

Under the PHS Program, WDFW catalogs habitats and species as priorities for conservation, preservation, and management. Priority species require protective measures for their survival due to their population status, sensitivity to habitat alteration, and/or recreational, commercial, or tribal importance.

3.7.1 Affected Environment

Table 3-13 lists all species of fish found in waters of the Wenatchee and Methow basins, including those on ESA and PHS lists.

ESA-listed fish that are likely to be present at some hatchery and acclimation sites in both basins include spring Chinook (Oncorhynchus tshawytscha) (Endangered), summer steelhead (O. mykiss) (Threatened), and bull trout (Salvelinus confluentus) (Threatened).

Under ESA, an Endangered Species is any species which is in danger of extinction throughout all or a significant portion of its range; a Threatened Species is any species which is likely to become an endangered species in the foreseeable future throughout all or a significant portion of its range.

- National Marine Fisheries Service [NMFS]) (now called NOAA Fisheries) listed the Upper Columbia River spring-run Chinook salmon Evolutionary Significant Unit (ESU) as endangered on March 24, 1999 (64 FR 14308), and its status was reaffirmed on June 28, 2005 (70 FR 37160). The ESU includes all naturally spawned populations of spring-run Chinook salmon (spring Chinook) in Columbia River tributaries upstream of the Rock Island Dam as well as six artificial propagation programs.

- NMFS originally listed the Upper Columbia River steelhead distinct population segment (DPS) as endangered on August 18, 1997 (62 FR 43937) and subsequently upgraded it to “threatened” status in 2009 (74 FR 42605). The DPS includes all naturally spawned anadromous O. mykiss (steelhead) populations below natural and man-made impassable barriers in streams in the Columbia River Basin upstream from the Yakima River, Washington, to the U.S.-Canada border, as well six artificial propagation programs.

- USFWS listed Columbia River bull trout as threatened on June 10, 1998 (63 FR 31647).

- Critical Habitat was designated in the Wenatchee and Methow basins for both Chinook and steelhead in 2005 (70 FR 52630). The Wenatchee, Entiat, and Methow Rivers have been identified as core bull trout habitats for the Upper Columbia Recovery Unit, and designated as Critical Habitat October 18, 2010 (75 FR 63898).
Table 3-13. Fish species documented in the Wenatchee and Methow basins

<table>
<thead>
<tr>
<th>Family & Species</th>
<th>Scientific Name</th>
<th>Wenatchee</th>
<th>Methow</th>
<th>Habitat</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamprey Family</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacific Lamprey</td>
<td>Entosphenus tridentatus</td>
<td>X</td>
<td>X</td>
<td>Larvae found in backwater silt</td>
<td>Native</td>
</tr>
<tr>
<td>Salmon Family</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mountain Whitefish</td>
<td>Prosopium williamsoni</td>
<td>X</td>
<td>X</td>
<td>Riffles in summer, pools in winter</td>
<td>Native</td>
</tr>
<tr>
<td>Pumy Whitefish</td>
<td>Prosopium coulter</td>
<td>X</td>
<td>X</td>
<td>Deep water, primarily lakes</td>
<td>Native</td>
</tr>
<tr>
<td>Brown Trout</td>
<td>Salmo trutta</td>
<td>X</td>
<td></td>
<td>Streams up to 75 degrees F.</td>
<td>Introduced</td>
</tr>
<tr>
<td>Cutthroat Trout</td>
<td>Oncorhynchus clarki</td>
<td>X</td>
<td>X</td>
<td>Cold water lakes and streams</td>
<td>Native</td>
</tr>
<tr>
<td>Rainbow/Steelhead</td>
<td>O. mykiss</td>
<td>X</td>
<td>X</td>
<td>Cold water lakes and streams</td>
<td>Native</td>
</tr>
<tr>
<td>Chinook Salmon</td>
<td>O. tshawytscha</td>
<td>X</td>
<td>X</td>
<td>Larger rivers and streams</td>
<td>Native</td>
</tr>
<tr>
<td>Minnow Family</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European Carp</td>
<td>Cyprinus carpio</td>
<td>X</td>
<td>X</td>
<td>Shallow quiet water with dense vegetation</td>
<td>Introduced</td>
</tr>
<tr>
<td>Peamouth</td>
<td>Mylocheilus cauinus</td>
<td>X</td>
<td></td>
<td>Lakes and slow stretches of rivers</td>
<td>Native</td>
</tr>
<tr>
<td>Chiselmouth</td>
<td>Acrocheilus alataeceus</td>
<td>X</td>
<td></td>
<td>Faster, warmer streams and rivers, and lakes</td>
<td>Native</td>
</tr>
<tr>
<td>Longnose Dace</td>
<td>Rhinichthys cataractae</td>
<td>X</td>
<td>X</td>
<td>Among stones at the bottom of swift streams</td>
<td>Native</td>
</tr>
<tr>
<td>Speckled Dace</td>
<td>R. osculus</td>
<td>X</td>
<td></td>
<td>Small clear well oxygenated streams</td>
<td>Native</td>
</tr>
<tr>
<td>Northern Pikeminnow</td>
<td>Ptychocheilus oregonensis</td>
<td>X</td>
<td>X</td>
<td>Lakes and slow streams</td>
<td>Native</td>
</tr>
<tr>
<td>Redside Shiner</td>
<td>Richardsonius balteatus</td>
<td>X</td>
<td>X</td>
<td>Warmer ponds, lakes, streams</td>
<td>Native</td>
</tr>
<tr>
<td>Sucker Family</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridgelip Sucker</td>
<td>Catostomus columbiaius</td>
<td>X</td>
<td>X</td>
<td>Bottom feeder in river backwaters and pools</td>
<td>Native</td>
</tr>
<tr>
<td>Largescale Sucker</td>
<td>C. macrocheilus</td>
<td>X</td>
<td>X</td>
<td>Bottom feeder in lakes, and pools in rivers</td>
<td>Native</td>
</tr>
<tr>
<td>Mountain Sucker</td>
<td>C. platyrhynchos</td>
<td>X</td>
<td></td>
<td>Bottom feeder in cool mountain streams</td>
<td>Native</td>
</tr>
<tr>
<td>Longnose Sucker</td>
<td>C. catostomus</td>
<td>X</td>
<td></td>
<td>Bottom feeder in lakes and streams</td>
<td>Native</td>
</tr>
<tr>
<td>Sunfish Family</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smallmouth Bass</td>
<td>Micropterus dolomieu</td>
<td>X</td>
<td></td>
<td>Warm streams and lakes</td>
<td>Introduced</td>
</tr>
<tr>
<td>Largemouth Bass</td>
<td>M. salmoides</td>
<td>X</td>
<td></td>
<td>Shallow, warm weedy lakes and backwaters</td>
<td>Introduced</td>
</tr>
<tr>
<td>White Crappie</td>
<td>Pomoxis annularis</td>
<td>X</td>
<td>X</td>
<td>Lakes and streams with dense vegetation</td>
<td>Introduced</td>
</tr>
<tr>
<td>Catfish Family</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown Bullhead</td>
<td>Catlaus nebulosus</td>
<td>X</td>
<td></td>
<td>Warm-water ponds, lakes, sloughs</td>
<td>Introduced</td>
</tr>
<tr>
<td>Sculpin Family</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mottled Sculpin</td>
<td>Cottus bairdi</td>
<td>X</td>
<td>X</td>
<td>Cold rivers</td>
<td>Native</td>
</tr>
<tr>
<td>Shorthead Sculpin</td>
<td>C. confusus</td>
<td>X</td>
<td>X</td>
<td>Cold rivers</td>
<td>Native</td>
</tr>
<tr>
<td>Torrent Sculpin</td>
<td>C. rhotheus</td>
<td>X</td>
<td>X</td>
<td>Cold rivers and lakes</td>
<td>Native</td>
</tr>
<tr>
<td>Perch Family</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stickleback</td>
<td>Gasterosteus aculeatus</td>
<td>X</td>
<td></td>
<td>Lakes, sloughs, and slow moving streams</td>
<td>Native</td>
</tr>
<tr>
<td>Walleye</td>
<td>Stizostedion vitreum</td>
<td>X</td>
<td></td>
<td>Large lakes and streams</td>
<td>Introduced</td>
</tr>
<tr>
<td>Yellow Perch</td>
<td>Perca flavescens</td>
<td>X</td>
<td></td>
<td>Warm to cool clear lakes; slow weedy streams</td>
<td>Introduced</td>
</tr>
</tbody>
</table>

a Source: Wenatchee Subbasin Plan (NPCC 2004a) except where noted otherwise.
b Source: Methow Subbasin Plan (NPCC 2004b).
c Source: ISEMP database.
Table 3-14 shows fish species listed under PHS that might be found in the project area. Their status is defined under the following criteria:

Criterion 1. State-Listed and Candidate Species:

State-listed species are native fish and wildlife species legally designated as Endangered, Threatened, or Sensitive. State Candidate species are fish and wildlife species that will be reviewed by WDFW for possible listing as Endangered, Threatened, or Sensitive.

Criterion 2. Vulnerable Aggregations:

Vulnerable aggregations include species or groups of animals susceptible to significant population declines, within a specific area or statewide, by virtue of their inclination to aggregate. Examples include heron rookeries, seabird concentrations, marine mammal haulouts, shellfish beds, and fish spawning and rearing areas.

Criterion 3. Species of Recreational, Commercial, and/or Tribal Importance:

Native and non-native fish and wildlife species of recreational or commercial importance, and recognized species used for tribal ceremonial and subsistence purposes, whose biological or ecological characteristics make them vulnerable to decline in Washington or that are dependent on habitats that are highly vulnerable or are in limited availability.

<table>
<thead>
<tr>
<th>Species</th>
<th>State Status</th>
<th>Wenatchee Basin</th>
<th>Methow Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific Lamprey Lampetra tridentata</td>
<td>PHS 3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mountain Sucker Catostomus platyrhynchus</td>
<td>PHS 1 Candidate</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pygmy Whitefish Prosopium couleri</td>
<td>PHS 1 and 2 Sensitive</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sockeye salmon Oncorhynchus nerka</td>
<td>PHS 1, 2, and 3 Candidate</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Westslope Cutthroat Oncorhynchus clarki lewisi</td>
<td>PHS 3</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
3.7.2 Types of Impact
Potential impacts to fish from construction and operation of hatchery and acclimation facilities fall into two categories: effects from construction or use of project facilities and effects of increased coho numbers in the basins.

Facility effects:

- **Sedimentation from construction.** Construction activities can increase sediment in waterways, causing fish to avoid the area or temporarily stop feeding, or causing mortality of eggs and alevins in spawning gravel.
- **Reduced access to habitat.** Barrier nets or seines used to enclose juvenile coho during rearing and acclimation could temporarily exclude fish from existing habitat or could prevent some adults from migrating upstream. Weirs placed across streams at two sites proposed for planting adult coho could prevent larger adults of other species from migrating upstream during October and November.
- **Surface water withdrawals.** Withdrawing water during low flow periods could slow or prevent fish migration and could reduce the availability and quantity of habitat. Withdrawing water during high flow periods can improve habitat by reducing depth and velocities that are greater than optimal for fish.
- **Fish entrainment in water intake facilities.** If allowed to pass through the intake screens, juvenile fish of a small enough size could be subject to predation by coho in the acclimation ponds, and all entrained fish could have free migration delayed by the pond discharge fish screens. NOAA Fisheries guidelines (NMFS 2008b) would be used for all intakes; therefore, entrainment of listed and other species is not expected and will not be discussed further.
- **Trapping of fish in juvenile and adult traps.** Traps to collect adult coho for broodstock or to monitor numbers and condition of migrating juveniles can also trap individuals of other species.

Effects of increased numbers of coho:

- **Predation.** Coho juveniles could prey on smaller fish during rearing and acclimation in the ponds or during their downstream migration.
- **Competition.** Naturally produced coho smolts could compete with other fish species for habitat and food.
- **Redd disturbance.** Coho could disturb or destroy other species’ redds when spawning in the natural environment.
- **Ecological balance.** Reintroducing coho in these basins could help restore the ecological balance of the system: carcasses from spawned coho could add ocean-derived nutrients to the system at a critical period—the onset of winter. Carcasses could provide an important winter food resource, and coho in freshwater residence could be prey for several wildlife species.
3.7.3 Impacts of the Proposed Action

The analysis is divided into two major subsections: the effects of the development and use of facilities (Section 3.7.3.1) and the effects of increased numbers of coho in the basins (Section 3.7.3.2).

The impact analysis focuses on effects to ESA-listed fish; they are considered the most vulnerable due to their low numbers. The analysis assumes that project effects on ESA-listed fish represent the worst-case potential for effects on all fish species. Therefore, effects on other fish species are addressed only if impacts have come into question in the past as being different from those to ESA-listed fish. Effects to PHS-listed fish are summarized in Section 3.7.3.3.

3.7.3.1 Impacts of Facilities

Increased sedimentation from construction

Various construction or excavation activities are planned for 9 of the 24 primary juvenile acclimation sites in both basins and 6 of the 12 backup sites. Both the primary and backup hatchery sites would require construction. See details in Chapter 2.

Construction required for primary acclimation sites:
- New ponds at 3 sites (Minnow, Chikamin, Twisp Weir)
- Expansion of existing ponds at 2 sites (Scheibler, Gold)
- New wells at 3 sites (Butcher, MSWA Eightmile, Twisp Weir)
- New water delivery systems at 5 sites (Butcher, Tall Timber, Chikamin, MSWA Eightmile, Twisp Weir)
- New buried power lines at 2 sites (Butcher, MSWA Eightmile)
- New road at 2 sites (Minnow, Twisp Weir)

Construction required for backup acclimation sites:
- New ponds at 5 sites (Dryden, Squadroni, Chewuch AF, MSRF Chewuch, Newby)
- New water delivery systems at 6 sites (Dryden, Squadroni, Chewuch AF, MSRF Chewuch, Newby, Utley)
- New wells at 4 sites (Dryden, Squadroni, Chewuch AF, MSRF Chewuch)
- New buried power lines at 4 sites (Dryden, Squadroni, Chewuch AF, MSRF Chewuch)

Construction required for hatchery sites:

Proposed Dryden Hatchery: New facility occupying 1.5 acres: hatchery building, 4 raceways, 2 rearing ponds, water pipelines, wells, waste treatment tank and wetland; 4 acres total construction disturbance.

Backup George Hatchery: New facility occupying 1.5 acres: similar facilities to proposed Dryden Hatchery except no waste treatment wetland; 2.5 acres total construction disturbance.

Acclimation and hatchery facilities would be constructed during the summer months of one year, probably 2012. Excavation and construction of acclimation ponds, water supply and discharge lines or channels, and electrical lines would have the most potential to increase sedimentation, with somewhat less potential from road reconstruction and maintenance, where physical impacts would be limited to road crossings or where fish bearing streams are close to the road.

Construction at each acclimation site would take from one to 60 days (Tall Timber would take the longest, at 2 months). Hatchery construction would take approximately 5 months.
Table 3-15 lists life stages of ESA-listed fish that could be present during construction activities.

Table 3-15. ESA-listed fish by life stage present during construction of project facilities

<table>
<thead>
<tr>
<th>Wenatchee Basin</th>
<th>Spr Chinook</th>
<th>Steelhead</th>
<th>Bull trout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Acc. Sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butcher</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chikamin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minnow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheibler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tall Timber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backup Acc. Sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
invertebrates). The area affected by these activities would be very small (10 linear feet per site), and the number of individual fish adversely affected would be few, if any.

As listed in Section 3.7.5, best management practices for erosion and sedimentation control would be followed during construction to prevent discharging suspended sediments into the stream. For these reasons, construction impacts to any fish, including ESA-listed fish, are expected to be minimal.

Reduced access to habitat

An impact to fish that would result from project facilities is related to access to habitat during rearing and acclimation periods. Acclimation facilities in the natural environment would use nets to enclose coho for a 2- to 6-month period in the winter and/or spring. Some of this existing natural habitat might currently be used by other fish, which could be temporarily excluded from that habitat during coho acclimation. The amount of area that would be unavailable during rearing/acclimation would be limited to the area enclosed by seine or barrier nets at each acclimation site. The relative impact on other species from being excluded from this habitat would depend to some extent on the local availability of similar habitat. Section 3.7.5 lists measures that would be used to minimize impacts of reduced access to habitat.

The analysis of impacts focuses on juveniles of listed species. Adults spawn in the channels, streams, and rivers near acclimation sites but generally not in the ponds used for acclimation; however, adult access would not be affected because even the proposed in-channel ponds would retain passage.

In the Combined Effects section, numbers of ESA-listed juveniles potentially displaced from each site is calculated. Site-specific habitat access effects are discussed in Appendix 9 and summarized in Tables 3-16 to 3-21.

The analysis assumes that impacts to ESA-listed fish represent the worst-case scenario for effects on all fish due to the low numbers and vulnerability of listed species.

Wenatchee Basin Primary Sites

Table 3-16 lists life stages and size ranges of ESA-listed fish that could be present at proposed overwinter rearing sites (November through early May) and at spring-only acclimation sites (mid-March through early May). Leavenworth NFH is not included in the list because effects of its construction and use have been evaluated in other processes and would not change as a result of the Mid-Columbia Coho Restoration Program.

Table 3-17 lists proposed overwinter sites in the Wenatchee basin where access to existing habitat could be blocked for 5 - 6 months of each year (November-May), and Table 3-18 shows the same information for spring-only acclimation sites (mid-March through early May). Both tables show the species potentially affected and the amount of area currently accessible that could be blocked. The tables present the worst-case scenario for potentially affected species. In some cases, data on presence of ESA-listed fish were limited to one or two records, with the possibility that some species were misidentified (e.g., rainbow trout juveniles could have been mistaken for steelhead, or summer Chinook for spring Chinook). However, consultants assumed presence of listed fish even if only one record was found or if they were found elsewhere in the watershed, unless other factors obviously excluded them.
Table 3-16. ESA-listed fish by life stage presenta during overwinter rearing and spring acclimation in the Wenatchee basin

<table>
<thead>
<tr>
<th>Site name</th>
<th>Affected stream</th>
<th>Spring Chinook</th>
<th>Steelhead</th>
<th>Bull trout</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>eggs/alevin</td>
<td>fry</td>
<td>parr</td>
</tr>
<tr>
<td>Primary Sites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beaver</td>
<td>Beaver Creek</td>
<td>U</td>
<td>U</td>
<td>P</td>
</tr>
<tr>
<td>Brender</td>
<td>Brender Creek</td>
<td>U</td>
<td>U</td>
<td>P</td>
</tr>
<tr>
<td>Butcher</td>
<td>Butcher Creek</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Chikamin</td>
<td>Chikamin Creek</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Clear</td>
<td>Clear Creek</td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Coulter</td>
<td>Coulter Creek</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>White River</td>
<td>Coulter/ Roaring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Springs</td>
<td>Minnow Creek</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Rohlfing</td>
<td>named</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Scheibler</td>
<td>Chumstick</td>
<td></td>
<td></td>
<td>U</td>
</tr>
<tr>
<td>Tall Timber</td>
<td>Napeequa</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Two Rivers</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backup Sites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allen</td>
<td>Allen Creek</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coulter/ Roaring</td>
<td>Coulter/ Roaring</td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Drydenb</td>
<td>Peshastin/ Wenatchee</td>
<td>A</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>McComas</td>
<td>White River</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Squadroni</td>
<td>named</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Presence denoted by “P” indicates presence well documented, “A” presence is assumed, “U” presence possible but unlikely, and blanks indicate presence not expected.

b Dryden is both a primary site for a small hatchery facility, and a backup overwinter rearing site.

Table 3-17. ESA-listed juveniles potentially displaced from existing Wenatchee basin habitat November - May

<table>
<thead>
<tr>
<th>Site name</th>
<th>Accessible area excluded (acres)</th>
<th>Chinook</th>
<th>Steelhead</th>
<th>Bull trout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butcher</td>
<td>0.56</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Clear</td>
<td>0.24</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>White River</td>
<td>0.07</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Springs</td>
<td>0.17</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Total</td>
<td>1.04</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Butcher would alternate annually as an overwinter site or a spring-only site.
Table 3-18. ESA-listed juveniles potentially displaced from existing Wenatchee basin habitat March - May

<table>
<thead>
<tr>
<th>Site name</th>
<th>Accessible area excluded (acres)</th>
<th>Juveniles potentially displaced</th>
<th>Chinook</th>
<th>Steelhead</th>
<th>Bull trout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaver</td>
<td>0.24</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Brender</td>
<td>0.08</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Chikamin</td>
<td></td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Coulter’</td>
<td>0.37</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Minnow</td>
<td></td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Scheibler</td>
<td>0.03</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Tall Timber</td>
<td></td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Total</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Coulter would alternate annually as an overwinter site or a spring-only site; habitat excluded for this site represents the worst case, as steelhead presence is uncertain.

Methow Basin Primary Sites

Table 3-19 lists life stages of ESA-listed fish that could be present at proposed overwinter rearing sites and at spring-only acclimation sites. Tables 3-20 and 3-21 show the amount of habitat excluded from use by listed species for overwinter and for spring-only acclimation sites. Winthrop NFH is not included in the list because effects of its construction and use have been evaluated in other processes and would not change as a result of the Proposed Action.
Table 3.19. ESA-listed fish by life stage present during overwinter rearing and spring acclimation activities in the Methow basin

<table>
<thead>
<tr>
<th>Site name</th>
<th>Affected stream</th>
<th>Spring Chinook</th>
<th>Steelhead</th>
<th>Bull trout</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>eggs/alevin</td>
<td>fry</td>
<td>parr</td>
</tr>
<tr>
<td>Primary Sites</td>
<td></td>
<td>adults</td>
<td>eggs/alevin</td>
<td>parr</td>
</tr>
<tr>
<td>Goat Wall</td>
<td>unnamed</td>
<td>U</td>
<td>U</td>
<td>P</td>
</tr>
<tr>
<td>Gold</td>
<td>S Fork Gold</td>
<td>P</td>
<td>A</td>
<td>P</td>
</tr>
<tr>
<td>Heath</td>
<td>Heath ponds (spring)</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Lincoln</td>
<td>Twisp River</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Lower Twisp</td>
<td>Twisp River</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Mason</td>
<td>Eightmile</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>MSWA Eightmile</td>
<td>Chewuch side chan.</td>
<td>A</td>
<td>A</td>
<td>P</td>
</tr>
<tr>
<td>Parmley</td>
<td>Beaver Creek</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Pete Cr. Pond</td>
<td>Chewuch River</td>
<td>A</td>
<td>A</td>
<td>P</td>
</tr>
<tr>
<td>Twisp Weir</td>
<td>Twisp River</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Backup Sites</td>
<td></td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Balky Hill</td>
<td>unnamed</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Biddle</td>
<td>Wolf Creek</td>
<td>A</td>
<td>A</td>
<td>P</td>
</tr>
<tr>
<td>Chewuch AF</td>
<td>Chewuch River</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>MSRF Chewuch</td>
<td>Chewuch River</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Newby</td>
<td>Newby Creek</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Poorman</td>
<td>unnamed</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Utley</td>
<td>unnamed</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

Presence denoted by “P” indicates presence well documented, “A” presence is assumed, “U” presence possible but unlikely, and blanks indicate presence not expected.

Table 3.20. ESA-listed juveniles potentially displaced from existing habitat at primary Methow basin sites November - May

<table>
<thead>
<tr>
<th>Site name</th>
<th>Accessible area excluded (acres)</th>
<th>Chinook</th>
<th>steelhead</th>
<th>bull trout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heath</td>
<td>0.32</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Lincoln</td>
<td>0.20</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Lower Twisp</td>
<td>0.14</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Mason</td>
<td>0.00</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Twisp Weir</td>
<td>0.00</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Total</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.21. ESA-listed juveniles potentially displaced from existing habitat at proposed primary Methow basin sites March - May

<table>
<thead>
<tr>
<th>Site name</th>
<th>Accessible area excluded (acres)</th>
<th>Chinook</th>
<th>steelhead</th>
<th>bull trout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goat Wall</td>
<td>0.08</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Gold</td>
<td>0.08</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>MSWA Eightmile</td>
<td>0.14</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Parmley</td>
<td>0.08</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Pete Cr. Pond</td>
<td>0.20</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Total</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Backup Acclimation Sites

In the Wenatchee basin, only one backup acclimation site is likely to exclude other fish from existing habitat. **Coulter/Roaring** could exclude steelhead from 0.17 acre of an existing 5.8-acre pond for six weeks in the spring. Likewise, in the Methow basin, only one backup acclimation site, **Biddle**, is likely to exclude other fish from existing habitat. Based on available data, Chinook fry, parr, and smolts; steelhead parr and smolts; and bull trout sub-adult and adult migrants may be present in the ponds during the acclimation period. If this site is used, these fish would be excluded from the enclosed area (0.08 acre of the 0.17-acre existing pond) for six weeks during the spring.

Adult Plant Sites

Two streams, one in each basin, are proposed as sites to plant adult coho. The **Dirty Face** site (Figure 10k) is on an unnamed stream in the Wenatchee basin and the **Hancock** site (Figure 10t) is on Hancock Creek in the Methow basin. Temporary weirs would be installed in these streams from early October through November. Adult coho salmon would be planted upstream of the weir to allow them to spawn in available habitat. Larger adults of other species would be blocked from migrating in and out of these streams when the weirs are in place; smaller fish would be able to pass the weirs. Adults of listed species would not be affected, however, because fall spawning species such as Chinook and bull trout are not known to spawn in these tributaries. Steelhead are known to spawn in Hancock Creek, and 23 spawning redds were counted in the lower 0.7 miles of Hancock in 2007 (Snow et al. 2008). However, adult steelhead are not expected to be present when the weir is in use and any steelhead fry will have emerged from the gravel well before coho spawn.

Combined Effects of Excluding Listed Fish from Incubation/Rearing and Acclimation Sites

Reduced access to existing habitat is a likely impact to ESA-listed fish that would result from coho rearing and acclimation activities. Habitat affected would be limited to the amount of area enclosed by seine or barrier nets at each coho acclimation site to which listed fish currently have access. Impacts would be balanced to some degree by newly constructed habitat. Table 3-22 shows the number of acres of existing pond or side channel habitat at primary sites that is currently accessible to ESA-listed fish or proposed to be added for new sites, compared to the amount that they would be prevented from using during coho overwinter rearing and spring acclimation periods. Listed fish and other species would be blocked during part of the year from 1.22 of the 1.69 acres of habitat currently accessible to them at primary coho acclimation sites in the Wenatchee basin, and from 1.24 of the 2.88 acres of habitat at primary coho acclimation sites in the Methow basin. About 0.26 acres of new habitat in the Wenatchee basin would be available to listed and other fish for at least a portion of the year (Table 3-22).
Table 3-22. Currently accessible habitat, habitat added by proposed new sites, and habitat excluded during coho overwinter rearing and spring acclimation

<table>
<thead>
<tr>
<th></th>
<th>Habitat (acres)</th>
<th>Habitat excluded (acres)</th>
<th>Accessible off-season</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Overwinter</td>
<td>Spring</td>
</tr>
<tr>
<td>Wenatchee basin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing habitat</td>
<td>2.23</td>
<td>0.48</td>
<td>1.28</td>
</tr>
<tr>
<td>Currently accessible</td>
<td>1.69</td>
<td>0.31</td>
<td>0.91</td>
</tr>
<tr>
<td>Area added</td>
<td>1.03</td>
<td>0.00</td>
<td>0.60</td>
</tr>
<tr>
<td>Methow basin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing habitat</td>
<td>2.88</td>
<td>0.66</td>
<td>0.58</td>
</tr>
<tr>
<td>Currently accessible</td>
<td>2.88</td>
<td>0.66</td>
<td>0.58</td>
</tr>
<tr>
<td>Area added</td>
<td></td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

a Rohlfing is dry during summer and early fall so is not considered accessible to fish during most of the off-season.
b Accessible to ESA-listed fish.
c Number would vary in alternate years depending on whether Coulter or Butcher is used for overwintering coho.

The relative impact on listed species from being excluded from this habitat depends to some extent on the availability of similar habitats within each basin. Because a comprehensive habitat database was not available for these basins, an alternate method was needed to evaluate the relative magnitude of these impacts to ESA-listed populations.

Cramer and Ackerman (2009) demonstrated that the carrying capacity of habitat for various salmonids can be predicted based on channel units (e.g., pool, riffle, glide) and maximum fish densities based on a species’ life-stage and habitat preference. The proposed rearing and acclimation sites are similar to beaver pond and backwater habitats. In the natural environment, coho prefer these slower velocity habitats above other habitats with stronger current (Solazzi et al. 1998). While other salmonid parr use these habitats, many prefer pools in streams or other channel habitats with more velocity (Cramer and Ackerman 2009). For this analysis, average fish (parr) densities for each species were based on literature values for similar habitats, or average values observed in the Chiwawa watershed (Hillman et al. 2008). The assumptions are made with the knowledge that fish densities vary seasonally and annually depending on environmental conditions and population numbers. Further, excluding ESA-listed fish from these habitats would presumably affect the populations only if the available habitat is fully seeded. If habitats are not at carrying capacity, displaced fish could occupy other underutilized habitat. However, this analysis provides a context to assess the relative magnitude of impacts due to acclimation and rearing.

The analysis suggests that the number of juvenile ESA-listed fish excluded during acclimation and rearing would be relatively small compared to overall basin populations.

Estimates indicate that a total of 350 juveniles of two species, spring Chinook and steelhead, might be excluded annually from sites in the Wenatchee basin, with the majority being steelhead (237) (Table 3-23). Between the years 2002 and 2007, the range of wild production was estimated to be 55,619 – 311,669 Chinook smolts and 17,499 – 85,443 steelhead smolts annually in the entire Wenatchee basin (Hillman et al. 2008). Using an average smolt-to-adult survival rate of 0.00465 for hatchery spring Chinook and 0.0105 for summer steelhead from the Wenatchee basin (Hillman et al. 2009), the number of juveniles excluded would represent 0.5 Chinook and 2.5 steelhead adult equivalents.
Table 3-23. Juvenile Chinook, steelhead, and bull trout potentially displaced from currently accessible habitat at proposed primary rearing and acclimation sites in the Wenatchee basin

<table>
<thead>
<tr>
<th>Site name</th>
<th>Overwinter</th>
<th>Accessible area excluded (acres)</th>
<th>Potential juveniles displaced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chinook</td>
</tr>
<tr>
<td>Beaver</td>
<td></td>
<td>0.24</td>
<td>70</td>
</tr>
<tr>
<td>Brenden</td>
<td></td>
<td>0.08</td>
<td>23</td>
</tr>
<tr>
<td>Butcher</td>
<td></td>
<td>0.56</td>
<td>0</td>
</tr>
<tr>
<td>Chikamin</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Clear</td>
<td>Y</td>
<td>0.24</td>
<td>0</td>
</tr>
<tr>
<td>Coulter</td>
<td></td>
<td>0.37</td>
<td>0</td>
</tr>
<tr>
<td>White River Springs</td>
<td>Y</td>
<td>0.07</td>
<td>20</td>
</tr>
<tr>
<td>Minnow</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Rohlfing</td>
<td>Y</td>
<td>0.17</td>
<td>0</td>
</tr>
<tr>
<td>Scheibler</td>
<td></td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>Tall Timber</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Two Rivers</td>
<td>Y</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Total displaced</td>
<td></td>
<td></td>
<td>113</td>
</tr>
</tbody>
</table>

Wenatchee annual smolt production range (2002-2007)

<table>
<thead>
<tr>
<th>Site name</th>
<th>Accessible area excluded (acres)</th>
<th>Potential juveniles displaced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Chinook</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goat Wall</td>
<td>0.08</td>
<td>23</td>
</tr>
<tr>
<td>Gold</td>
<td>0.08</td>
<td>0</td>
</tr>
<tr>
<td>Heath</td>
<td>Y</td>
<td>0.32</td>
</tr>
<tr>
<td>Lincoln</td>
<td>Y</td>
<td>0.20</td>
</tr>
<tr>
<td>Lower Twisp</td>
<td>Y</td>
<td>0.14</td>
</tr>
<tr>
<td>Mason</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>MSWA Eightmile</td>
<td>0.14</td>
<td>41</td>
</tr>
<tr>
<td>Parmley</td>
<td>0.08</td>
<td>0</td>
</tr>
<tr>
<td>Pete Cr. Pond</td>
<td>0.20</td>
<td>58</td>
</tr>
<tr>
<td>Total displaced</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Methow annual smolt production range (2004-2008)

<table>
<thead>
<tr>
<th>Site name</th>
<th>Accessible area excluded (acres)</th>
<th>Potential juveniles displaced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Chinook</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15,306</td>
</tr>
</tbody>
</table>

Based on assumed fish densities.

Data source: Hillman et al. (2008).

In the Methow basin, approximately 515 juveniles of the two species are projected to be excluded annually from acclimation and rearing sites, with the majority being spring Chinook (314) (Table 3-24). Between the years 2000 and 2008, the range of wild production was estimated at 15,306 – 33,710 Chinook smolts and 8,809 – 15,003 steelhead smolts annually in the entire Methow basin (data provided by Alex Repp, WDFW, personal communication). Using the same smolt-to-adult survival rates used above, the number of juveniles potentially excluded from acclimation sites in the Methow basin would represent 1.5 spring Chinook and 2.1 summer steelhead adult equivalents.

Table 3-24. Juvenile Chinook, steelhead, and bull trout potentially displaced from currently accessible habitat at proposed primary rearing and acclimation sites in the Methow basin

<table>
<thead>
<tr>
<th>Site name</th>
<th>Overwinter</th>
<th>Accessible area excluded (acres)</th>
<th>Potential juveniles displaced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chinook</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goat Wall</td>
<td>0.08</td>
<td>23</td>
<td>13</td>
</tr>
<tr>
<td>Gold</td>
<td>0.08</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Heath</td>
<td>Y</td>
<td>0.32</td>
<td>93</td>
</tr>
<tr>
<td>Lincoln</td>
<td>Y</td>
<td>0.20</td>
<td>58</td>
</tr>
<tr>
<td>Lower Twisp</td>
<td>Y</td>
<td>0.14</td>
<td>41</td>
</tr>
<tr>
<td>Mason</td>
<td>Y</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>MSWA Eightmile</td>
<td>0.14</td>
<td>41</td>
<td>23</td>
</tr>
<tr>
<td>Parmley</td>
<td>0.08</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Pete Cr. Pond</td>
<td>0.20</td>
<td>58</td>
<td>32</td>
</tr>
<tr>
<td>Total displaced</td>
<td></td>
<td></td>
<td>314</td>
</tr>
</tbody>
</table>

Methow annual smolt production range (2004-2008)

<table>
<thead>
<tr>
<th>Site name</th>
<th>Accessible area excluded (acres)</th>
<th>Potential juveniles displaced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Chinook</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15,306</td>
</tr>
</tbody>
</table>

Based on assumed fish densities.

Data source: Alex Repp, WDFW, personal communication.
No estimates of juvenile bull trout abundance are available, but the number of juveniles projected to be excluded from sites in each basin was very small (3 in the Wenatchee and 10 in the Methow).

Excluding juveniles from rearing and acclimation sites does not necessarily mean these fish would not survive. As previously noted, most acclimation and rearing sites are not ideal habitat for listed species. Juveniles excluded from these habitats would seek out other suitable habitat in the area. Assuming that other habitats are not fully occupied by other fish, these excluded juveniles likely would continue to rear in the other habitat.

Surface water withdrawals

Acclimation Sites

Three primary sites in the Wenatchee basin (Dryden, Chikamin, and Tall Timber) and one in the Methow basin (Twisp Weir) would require new surface water withdrawals; two backup sites (George hatchery site in the Wenatchee and Newby acclimation site in the Methow) would also require new surface water withdrawals. These withdrawals would have local impacts to surface water from the point of withdrawal to the point of discharge—a distance of 1,500 feet or less. The impacts to listed fish would be limited to the affected portion of the stream and would vary depending on stream flow, species and life-stage. In-stream flows established by WDOE would be maintained.

Two different models were used to predict impacts to listed fish. The models and methods used are described in Appendix 10.

The maximum amount of water proposed for withdrawal at the Chikamin site would result in a very small reduction in habitat for all species. The reduction due to the withdrawal would be less than one square foot of habitat for all species and life-stages.

The effect of the proposed withdrawal at the Tall Timber site on ESA-listed fish varies with the flow and species. The maximum proposed withdrawal at this site generally results in small decreases in habitat for most species at extreme low flows, and slight increases in habitat at higher flows. However, the modeled withdrawal generally increases habitat for Chinook salmon rearing.

The proposed surface water withdrawal at the Twisp Weir site is projected to decrease habitat for most species during low flows by a small amount.

Newby Creek is a non-fish-bearing, high-gradient, small tributary to the Twisp River (Appendix 9). The Newby backup acclimation site, including the water intake and discharge sites, would be adjacent to Newby Creek above a series of cascades, which makes the site inaccessible to migratory fish. A habitat survey found natural fish passage barriers throughout the stream and that the substrate was comprised mostly of fines. Therefore, a diversion of flow from Newby Creek into an acclimation pond and return of water to the creek would have no adverse effects on ESA-listed spring Chinook salmon, steelhead or bull trout.

Hatchery Sites

Dryden: The proposed Dryden Hatchery would be on the Wenatchee River near Dryden Dam. A combination of surface and groundwater sources is being explored to supply up to 7.4 cfs (4.5 cfs surface water) to the site. The amount needed changes over the year. The impact of groundwater withdrawals on surface water is expected to be small as discussed in Section 3.6.
Surface water could be diverted either from the Wenatchee River or Peshastin Creek. An intake located on the Dryden fishway is currently the preferred source for surface water. Two options are being considered for the return flow. One is to discharge return water into Peshastin Creek upstream of the fishway, and another is in a pipeline on the river bottom in the vicinity of the fishway near the proposed intake. The Peshastin discharge could help adult salmon navigate the mouth during low flow and would increase flow from the discharge site to the intake site downstream. Discharge near the fishway could help flush rock away from the fishway but would essentially result in minimal change in flow because water would be discharged near the intake.

The Physical Habitat Simulation System (PHABSIM) analysis developed by EES Consulting (EES Consulting 2005) was used to assess the potential impacts of the Dryden hatchery water use on ESA-listed fish in Peshastin Creek and Wenatchee River (see Appendix 10 for a description of the model). The Peshastin discharge option was analyzed because it has the largest possible impact on stream flow, and therefore represents the greatest potential to affect fish and fish habitat. The affected environment would include Peshastin Creek from the point of discharge downstream to the proposed intake at the fishway in the Wenatchee River. This includes about 200 lineal feet of Peshastin Creek, and 650 feet of the Wenatchee River. The daily mean flow in Peshastin Creek ranges from a low of around 10 cfs in mid-August to over 500 cfs in May. The daily mean flow in the Wenatchee River ranges from a low of around 750 cfs in September to nearly 10,000 cfs by late May.

EES Consulting (2005) estimated that spawning habitat was maximized at Peshastin Creek flows of 80 cfs for non-ESA-listed summer Chinook salmon (spring Chinook do not spawn in the affected portions of the Wenatchee River and Peshastin Creek) and 120 cfs for ESA-listed summer steelhead. Estimated rearing habitat was maximized at flows of 55 cfs for Chinook, 130 cfs for steelhead, and 19 cfs for bull trout.

The increased flow had very little effect on the modeled percent of habitat in the Wenatchee River. Although there were both positive and negative effects on the percent of habitat, the difference was always less than 1%.

The increased flow typically resulted in a modeled increase in the percent of habitat in Peshastin Creek but varied with species and life stage. The increased flow had a greater effect on habitat at low flows than during high flow periods. Optimal flow for summer Chinook salmon spawning (80 cfs) is typically not reached during the spawning season, so any increase in flow had a positive effect on amount of habitat. The increased flow during the mean low flow increased the percent of summer Chinook spawning habitat from 15.9 to 34.8%. In a few scenarios, the increased flow resulted in slight reductions (less than 1%) in the percent of habitat.

The results of the analysis indicated that withdrawing water from the Dryden fishway and discharging it into Peshastin Creek would generally have a positive effect on ESA-listed fish in Peshastin Creek and little to no effect on those in the Wenatchee River. The effects would be limited to the impact reach, and the magnitude would depend on the amount of water involved.

Fish passage at the mouth of Peshastin Creek has been identified as being limited by low flow conditions in the late summer and early fall (Andonaegui 2001, NPCC 2004a). Discharge of hatchery water into the creek during these periods could improve hydraulic conditions for returning adults.
Depending on the final design of the proposed Dryden facility, water withdrawals could have no measureable impact, or could increase available habitat in a 200-foot section of Peshastin Creek during low flows.

George: An alternative to the proposed Dryden hatchery site is located on the Wenatchee River 1.25 miles downstream of Lake Wenatchee. Both surface and groundwater sources might be developed. Potential impacts of hatchery surface water withdrawals on microhabitat availability for ESA-listed fish were evaluated using the PHABSIM methodology. This approach was chosen to enable direct comparison to flow effects quantified for the Dryden hatchery site.

Wenatchee River mean discharge below Lake Wenatchee ranges between 200 cfs and 8,000 cfs annually. A total of 8 cfs of water would be supplied to the George hatchery via ground and surface water sources. Approximately 4.7 cfs of surface water would be withdrawn from the Wenatchee River and piped to the hatchery. Hatchery discharge would be returned to the river 3,800 feet downstream of the withdrawal via an historic side channel that maintains subsurface connectivity to the mainstem. Discharged hatchery water would travel 5,600 feet before reaching the mainstem, and some water would likely be lost to the ground depending on the river’s flow stage. For simplicity, analysts assumed that returned flows would be equivalent to the amount of surface flow withdrawn; thus, the study reach was defined by the upstream withdrawal and downstream discharge locations. Analysis showed that the relative change in weighted useable area (WUA, i.e., habitat) was extremely small (less than 1.5%) for all species and life-stages. Therefore, a 4.7 cfs flow change during low and extreme low flows in the Wenatchee River had negligible effects on habitat simulated for spring Chinook, steelhead, and bull trout (for details, see Appendix 10, Effects of Surface Water Withdrawals on Listed Fish).

A secondary discharge location just downstream of the withdrawal site is being considered for the George hatchery (see Appendix 1). The proximity of “Discharge 2” to the intake indicates that this discharge site would not measurably affect fish habitat in the Wenatchee River.

Trapping of Fish at Juvenile and Adult Traps

With one exception, all juvenile traps the project proposes to use are currently operating under existing permits. For the Natural Production Implementation Phase, the project proposes a new juvenile trap on the Little Wenatchee River to generate population estimates of spring Chinook and coho. It would operate from early March to late November. The specific location of the proposed new trap is unknown at this time, but given what is known about listed fish in this river, it probably would impact spring Chinook or bull trout (steelhead are not known to regularly spawn in the Little Wenatchee River) (K. Murdoch, YN, pers. comm., 2010). Before it could be installed or used, its location in relation to habitat for listed species and its potential to trap juveniles of those species would need to be assessed and reviewed by NOAA Fisheries and USFWS.

No new adult traps are proposed for this project, and only one facility, Chiwawa Weir, would need to extend its period of operation to allow coho trapping. Extending operations of Chiwawa Weir into the fall could affect bull trout. Steelhead are not expected to be present, but monitoring with PIT tags would be done to confirm their presence or absence. Consultation with USFWS would be required to determine effects on bull trout; consultation with NOAA Fisheries would be required if steelhead are shown to occupy the area during the coho trapping period. All other adult traps proposed for use by the project (see Chapter 2, Table 2-6) operate under existing permits.
3.7.3.2 Impacts of Increased Numbers of Coho in the Basins

The ecological risk associated with coho reintroduction efforts may be greatest for endangered species or those of critically low abundance. Many types of ecological interactions are theoretically possible between coho and other native fish species. Potential interactions could include predation, competition, or behavioral changes. Priorities can be assigned to different ecological interactions based on their effect on the productivity and viability of impacted populations. Although the impact of predation on an individual prey animal is unambiguous, the impact on a population of prey animals is not. Depending on the abundance and productivity of the prey population, the impact of predation on the persistence and productivity of the prey population may range from negligible to serious. The ecological interactions that influence the survival, growth, or broad-scale distribution of the impacted population would potentially be the most serious. Other potential interactions could include competition for space or food in the natal streams, or competition for spawning space and associated redd superimposition by returning adults. At the same time, there might be benefits to reintroducing coho to basins they historically occupied. The potential impacts, both beneficial and adverse, from increased numbers of coho in the two basins are discussed below.

Coho predation on other species

Coho juveniles have been shown to prey on sockeye salmon (Ricker 1941; Foerster and Ricker 1953; Ruggerone and Rogers 1992), and fall Chinook salmon fry (Thompson 1966; Pearsons and Fritts 1999). Assuming that coho consume prey a third of their body length (or a ninth of their weight), fish less than 1.8 inches would be vulnerable to predation using the target coho smolt size of 5.5 inches (YN 2010). Only spring Chinook and bull trout fry would be small enough to be potential prey for juvenile coho during rearing and acclimation. Because Chinook fry typically remain near spawning areas or disperse downstream after emergence, they would be expected to be present at, or within 0.6 miles downstream of, spawning areas. In contrast, juvenile bull trout tend to remain in their natal streams for one or more years (McPhail and Baxter 1996, USFWS 2002). Fry would be expected to be present only at sites near spawning locations, except in the White River where bull trout fry have been documented moving downstream. In the White River drainage, bull trout fry would be assumed to be present in the mainstem down to Lake Wenatchee.

Predation studies conducted during the feasibility phase of this project found that hatchery coho juveniles feed primarily on insects and rarely prey on fish. Less than 0.28% of the 2,159 hatchery coho salmon sampled in Nason Creek over two years were found to have preyed on spring Chinook fry or other fish (Murdoch and LaRue 2002, Murdoch et al. 2005). The estimated number of spring Chinook fry consumed was 1,009 or 0.14% of the total spring Chinook fry population in Nason Creek (Murdoch et al. 2005). The Yakama Nation conducted similar studies in the Yakima River basin on fall and spring Chinook salmon (Dunnigan 1999), and in the Wenatchee River on summer Chinook fry (Murdoch and Dunnigan 2002). All coho predation evaluations in the Wenatchee and Yakima River basins showed very low rates of predation by hatchery coho smolts on Chinook fry (less than 1% of the fry population) (Dunnigan 1999; Murdoch and Dunnigan 2002; Murdoch and LaRue 2002).

In Nason Creek, the incidence of predation (percentage of samples that had consumed fish) on spring Chinook fry by naturally reared coho was 2.7% (Murdoch et al. 2005). Studies also investigated predation on sockeye fry by hatchery coho smolts emigrating through Lake
Wenatchee and found no predation on sockeye fry. Sample sizes for both naturally reared coho in Nason Creek and hatchery coho migrating through Lake Wenatchee were small, potentially increasing error in the estimates (Murdoch et al. 2005). Therefore, because populations of naturally produced coho were too small to make reasonable estimates of predation rates, populations of sensitive fish species would be monitored to determine if naturally produced coho prey on listed species with adverse effects (see Section 3.7.5.3 and Appendix 5).

Competition between naturally produced coho and other fish species

During the feasibility phase of this project, the Yakama Nation investigated the competition for space and food between sub-yearling coho salmon, sub-yearling Chinook salmon and yearling steelhead in Nason Creek. The studies, undertaken in 2002 and 2003, found that juvenile coho, Chinook, and steelhead select different microhabitats; at densities tested, juvenile coho did not appear to displace juvenile Chinook from preferred microhabitats (Murdoch et al. 2005). However, because populations of naturally produced coho were too small to make reasonable estimates of the amount of competition between coho and listed fish, populations of sensitive fish species would be monitored to determine if naturally produced coho compete with listed species with adverse effects (see mitigation described in Section 3.7.5.3 and in Appendix 5).

Disturbance of other species’ redds by spawning adult coho

At the two sites where the project proposes to plant adult coho, spawning coho could disturb eggs deposited in spawning redds established earlier in the year. These impacts would be limited to species that spawn in late summer or early fall. Spring spawners such as steelhead and other trout would be able to access these areas and spawn well before the weirs are installed. Further, steelhead and trout fry emerge during the summer, so eggs and alevins would not be disturbed by coho spawning activities in October. Spring Chinook would spawn prior to weirs being installed, so they would not be prevented from accessing these sites, but spawning coho salmon could potentially disturb their eggs. However, fall spawning fish such as Chinook salmon and bull trout have not been documented spawning in either tributary proposed for adult plants.

Feasibility studies for this project examined the potential for coho to superimpose their redds on other species’ redds, specifically on spring Chinook redds. In 2001, three coho redds were counted in Nason Creek and none had superimposed on spring Chinook redds. Since 2001, to determine Chinook redd locations, YN researchers relied on Chelan County PUD or WDFW to flag Chinook redds with a location description on the flagging; YN then followed an established procedure to identify coho superimposition. No redd superimposition in Nason Creek was observed. While it is possible that superimposition could occur with increased spawner densities of both Chinook and coho, in general, coho appear to select smaller gravels and different habitat types for spawning (coho select edges, while spring Chinook select pool tail outs) (YN 2010).

Benefits of nutrient additions from coho carcasses and coho as prey

Coho historically occupied the Wenatchee and Methow basins in significant numbers (Mullan 1984). Reintroducing coho in these basins could help restore the ecological balance of the system that changed as a result of human activities (see Chapter 1, Section 1.3.1). Carcasses from spawned coho could add nutrients to the system at a critical period—the onset of winter. Coho salmon may be a particularly important link in nutrient cycling processes. Coho spawn high in the watershed in late fall, delivering nutrients to the uppermost reaches where all species downstream would benefit (Vannote et al. 1980). The addition of coho carcasses during this
period could provide an increased food base (Pearsons and Hopley 1999) and improve over-winter survival for all species, including those listed under the ESA. They could also provide a food source for wildlife such as bald eagles, bears, and other fish-eating species.

3.7.3.3 Summary of Effects on PHS Fish

Based on the types of habitat and the analysis to ESA-listed fish, Table 3-25 summarizes the potential effects on fish listed on WDFW’s Priority Habitat and Species (PHS) list.

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitat</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific Lamprey
 Lampetra tridentata</td>
<td>Wenatchee: Spawn in freshwater runs and riffles. Juveniles generally limited to soft-bottom slow water areas. Distribution in the Wenatchee basin is poorly understood.</td>
<td>Most project activities are unlikely to result in measurable impacts to Pacific lamprey. Construction would not occur in breeding habitat, although it is possible that deepening/expansion of existing ponds accessible to lamprey could result in some mortality. Increased naturally spawning coho could result in some redd superimposition. Population level effects are not expected. Small area disturbed and highly localized effects would impact only a few individuals at most.</td>
</tr>
<tr>
<td>Mountain Sucker
 Catostomus platyrhynchus</td>
<td>Wenatchee: Clear, cold creeks and small to medium rivers with clear rubble, gravel or sand substrate.</td>
<td>Most project activities are unlikely to result in measureable impacts to mountain sucker. Impacts would be similar to those described for ESA-listed fish, although displacement from rearing habitat is not expected. Population-level effects are not expected. Small area disturbed and highly localized effects would impact only a few individuals at most.</td>
</tr>
<tr>
<td>Pygmy Whitefish
 Prosopium coulteri</td>
<td>Wenatchee and Methow: Poorly sampled, believed associated with deep water habitat, primarily lakes.</td>
<td>No alteration of lake habitat is expected. If pygmy whitefish occur in the cold water streams near proposed construction sites, effects would be similar to those described for steelhead/rainbow trout. Population-level effects are not expected. Species probably are not present in areas of disturbance.</td>
</tr>
<tr>
<td>Sockeye salmon
 Oncorhynchus nerka</td>
<td>Wenatchee and Methow: Primarily lake rearing; spawn and rear in and above Lake Wenatchee (known in the White River up to the Napeequa confluence and Little Wenatchee below RM 5). No reported spawning in the Methow, although reported in the lower system.</td>
<td>Similar potential effects as described for Chinook, although most rearing is likely in Lake Wenatchee, so displacement effects are expected to be less. Predation by coho on sockeye juveniles in the lake is not expected, based on feasibility studies. Population-level effects are not expected due to limited interactions and habitat disruption.</td>
</tr>
<tr>
<td>Westslope Cutthroat
 Oncorhynchus clarki lewisi</td>
<td>Wenatchee and Methow: Generally cold, clear streams with overhead cover and gravel/cobble/boulder substrate. Streamnet does not indicate presence but PHS maps show westslope cutthroat in both watersheds.</td>
<td>Potential effects similar to those described for steelhead/rainbow trout. Population-level effects not expected due to small area impacted.</td>
</tr>
</tbody>
</table>

a. C. Kamphaus, YN Fisheries Biologist, Pers. comm. 2010
b. http://map.streamnet.org/website/bluesnetmapper/viewer.htm
3.7.4 Impacts of the No Action Alternative

Table 3-26 lists spring acclimation sites under the No Action Alternative where access to existing habitat could be blocked for 6 weeks of the year (mid-March through early May). Overwintering of coho is not expected under No Action due to lack of funding. A total of 2 acres of habitat could be excluded from use by listed fish; however, all but the Heath and Lincoln sites in the Methow are used for coho acclimation in the current program. Thus, under No Action, a total of half an acre of currently accessible habitat would be excluded from use by other fish species over what is inaccessible in the current program.

Table 3-26. ESA-listed juveniles potentially displaced from existing habitat in spring: No Action

<table>
<thead>
<tr>
<th>Wenatchee</th>
<th>Accessible area excluded (acres)</th>
<th>Potential juveniles displaced</th>
<th>Chinook</th>
<th>Steelhead</th>
<th>Bull trout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaver</td>
<td>0.24</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Butcher</td>
<td>0.56</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Coulter</td>
<td>0.37</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Leavenworth NFH</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Rohlfing</td>
<td>0.17</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Methow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heath</td>
<td>0.32</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Lincoln</td>
<td>0.20</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Lower Twisp</td>
<td>0.14</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Winthrop NFH</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Total</td>
<td>2 acres</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The No Action Alternative would operate fewer of the same sites described for the Proposed Action. Because fewer sites would be operated and no new construction is involved, the combined effects of operation would be less than those of the Proposed Action; consequently, the adverse impacts would be less than significant.

Under the No Action Alternative, the potential impacts and benefits of increasing numbers of coho are unlikely to be realized. The program’s broodstock currently is essentially a domesticated hatchery stock, not adapted to conditions in the wild. Without the deliberate selection for increased percentages of natural-origin fish in the broodstock, with increased numbers of those fish originating from high-quality habitat in upstream tributaries, the likelihood that viable natural populations of coho would be established throughout the basins is low. Experience with previous harvest augmentation programs suggests that naturally reproducing populations probably would not establish themselves in significant numbers, if at all (see Section 1.3.1).
3.7.5 Mitigation for the Proposed Action

The following measures would be undertaken to avoid or minimize impacts to fish.

3.7.5.1 Measures to avoid or mitigate impacts from construction activities

- Timing and methods of construction would be coordinated with resource agencies to minimize disturbance to listed species and life-stages.
- Discharge of sediment would be limited or prevented by implementing these measures:
 - A temporary barrier would be used to prevent backwater from entering the work area.
 - Prior to release of water flow to the project area, any sediment-laden water would be pumped out of the project area and through a filter medium.
 - When flow is returned to the active channel, the sediment plume would not be visible above background turbidity 150 feet downstream of the project.
 - New water channels would be lined with gravel and rock.
 - New ponds would be filled slowly to avoid suspending and mobilizing sediments.
 - Banks would be restored and replanted, trees would be avoided, and any habitat structures that must be moved (large rocks or large woody debris) would be re-installed immediately up- or downstream of the disturbance as feasible.

Permitting agencies such as WDOE or U.S. Army Corps of Engineers could require additional measures, which would be implemented.

3.7.5.2 Measures to avoid or mitigate habitat access impacts

- Barrier nets (see Chapter 2, Figure 2-11 for a description) would be used at acclimation sites where ESA-listed fish do not reside or use to migrate to existing habitat. This would minimize premature escape of coho salmon.
- Seine nets (see Chapter 2, Figure 2-12) would be used at acclimation sites to partition off a portion of a water body while allowing free upstream and downstream passage of ESA-listed fish to available habitat. In areas where emergent spring Chinook or bull trout fry could be present, predation would be minimized by using fine seine mesh to exclude fry from enclosed areas. Seines would be installed in a manner that excludes fry from the coho acclimation area by moving out from the bank to encapsulate the rearing area. The enclosed area would be snorkeled to verify no ESA-listed fish are present before hatchery coho are added.

3.7.5.3 Measures to avoid or mitigate predation and competition impacts

- Seine or barrier nets would be removed when coho reach a size that ensures most are ready to migrate. Feasibility studies showed that smolts migrate from the acclimation area quickly, reducing potential interactions with other species (Murdoch et al. 2005).
- Populations of listed fish would be monitored to establish baseline levels. As the coho project moves into the natural production phases, listed fish populations would continue to be monitored to determine if their numbers are decreasing. If so, evaluations would be made to determine if the decreasing numbers are due to predation or competition by naturally produced coho. For details of the monitoring plan, see Appendix 5.
3.8 Priority Habitat, Plants, and Wildlife

For this EIS, priority habitats, plants, and wildlife include habitats, plants, and terrestrial animals (amphibians, birds, insects, mammals, and reptiles) with federal or state protected status; and/or species and habitats identified under the WDFW Priority Habitats and Species (PHS) Program. This section discusses potential project impacts to the following categories of habitat, plants, and wildlife:

- Wildlife species (non-fish) federally listed under the ESA
- Plant species federally listed under the ESA and state-listed under the Washington Department of Natural Resources (WDNR) Natural Heritage Program’s (WNHP) Rare Plant list
- Wildlife (non-fish) and habitats state-listed under the WDFW PHS Program.

Section 3.7 discusses project impacts to ESA-listed fish and fish on the WDFW Priority Habitat and Species list. Section 3.9 discusses impacts to wetlands.

The WDFW oversees the state listing and recovery of fish and wildlife species in danger of extinction due to loss and/or fragmentation of critical habitat, disturbance, or introduction of non-native species. The WDFW Species of Concern list includes all state endangered, threatened, sensitive, and candidate fish and wildlife species, and also includes all federally listed endangered, threatened, and candidate species. All Species of Concern are automatically included as priority species in the PHS list.

The PHS list identifies habitats and species that are priorities for conservation, preservation, and management. Priority species include all federal and state listed species, as well as animal aggregations (e.g., heron colonies, bat colonies) that are sensitive to habitat alteration, and species of recreational, commercial, or tribal importance that are vulnerable. Criteria are defined in Section 3.7.1.

The WNHP manages site-specific and species/ecosystem-specific information on priority plant species and ecosystems that are rare or have very limited distribution. The WNHP identifies which species and ecosystems are priorities for conservation efforts, and designates the state status for each species (e.g., endangered, threatened, sensitive) on the Rare Plant list. All federally listed plant species are included in the WNHP Rare Plant list.

3.8.1 Affected Environment

In both basins, vegetation types vary due to elevation and precipitation, with precipitation decreasing in each basin from west to east, as elevations decrease from mountains to the Columbia River. With the exception of areas at the highest elevations where the landscape is characterized by permanent ice and snow or alpine meadows, the western portions of each basin are forested, while the non-agricultural eastern portions contain primarily shrub-steppe species. To a certain degree, wildlife varies with the habitat. (See Section 3.3 for a more detailed overview.)

Tables 3-27 through 3-29 show plants, wildlife, and habitat found in each basin that are on either federal or state lists.

16 http://wdfw.wa.gov/hab/phslist.htm
Table 3-27. Federal and state listed species: plants

<table>
<thead>
<tr>
<th>Species</th>
<th>State Status</th>
<th>Federal Status</th>
<th>Methow Basin</th>
<th>Wenatchee Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Showy Stickseed Hackelia venusta</td>
<td>Endangered</td>
<td>Endangered</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ute Ladies’-Tresses Spiranthes diluvialis</td>
<td>Endangered</td>
<td>Threatened</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Wenatchee Mountains Checkermallow Sidalcea oregano var. calva</td>
<td>Endangered</td>
<td>Endangered</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Whitel’s Milk-vetch Astragalus sinuatus</td>
<td>Endangered</td>
<td>Species of Concerna</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Triangular-lobed Moonwort Botrychium ascendens</td>
<td>Sensitive</td>
<td>Species of Concern</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Crenulate Moonwort Botrychium crenulatum</td>
<td>Sensitive</td>
<td>Species of Concern</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Two-spiked Moonwort Botrychium paradoxum</td>
<td>Threatened</td>
<td>Species of Concern</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Stalked Moonwort Botrichium pendunculosum</td>
<td>Sensitive</td>
<td>Species of Concern</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Clustered Lady’s Slipper Cypripedium fasciculatum</td>
<td>Sensitive</td>
<td>Species of Concern</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Wenatchee Larkspur Delphinium viridescens</td>
<td>Threatened</td>
<td>Species of Concern</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Chelan Rockmat Petrophyton cinerascens</td>
<td>Endangered</td>
<td>Species of Concern</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Whitebark Pine Pinus albicaulis</td>
<td>N/A</td>
<td>Species of Concern</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Seely’s Silene Silene seelyi</td>
<td>Sensitive</td>
<td>Species of Concern</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Thompson’s Clover Trifolium thompsonii</td>
<td>Threatened</td>
<td>Species of Concern</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

a. Species of Concern: “An informal term referring to a species that might be in need of conservation action. This may range from a need for periodic monitoring of populations and threats to the species and its habitat, to the necessity for listing as threatened or endangered. Such species receive no legal protection and use of the term does not necessarily imply that a species will eventually be proposed for listing.” (USFWS Endangered Species Glossary. http://www.fws.gov/nc-es/es/glossary.pdf)
Table 3-28. Federal and state listed species: wildlife

<table>
<thead>
<tr>
<th>Species</th>
<th>State Status</th>
<th>Federal Status</th>
<th>Methow Basin</th>
<th>Wenatchee Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada Lynx Lyca canadensis</td>
<td>Threatened</td>
<td>Threatened</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gray Wolf Canis lupus</td>
<td>Endangered</td>
<td>Endangered</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Grizzly Bear Ursus arctos horribilis</td>
<td>Endangered</td>
<td>Threatened</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Marbled Murrelet Brachyramphus marmoratus</td>
<td>Threatened</td>
<td>Threatened</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Northern Spotted Owl Strix occidentalis caurina</td>
<td>Endangered</td>
<td>Threatened</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fisher Martes pennanti</td>
<td>Endangered</td>
<td>Candidate</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Greater Sage Grouse Centrocercus urophasianus</td>
<td>Threatened</td>
<td>Candidate</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Yellow-Billed Cuckoo Coccyzus americanus</td>
<td>Candidate</td>
<td>Candidate</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bald Eagle Haliaeetus leucocephalus</td>
<td>Sensitive</td>
<td>Species of Concern*</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Black Swift Cypheloides niger</td>
<td>N/A</td>
<td>Species of Concern</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Burrowing Owl Athene cunicularia</td>
<td>Candidate</td>
<td>Species of Concern</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>California Floater Anodonta californiens</td>
<td>Candidate</td>
<td>Species of Concern</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>California Wolverine Gulo gulo luteus</td>
<td>Candidate</td>
<td>Species of Concern</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Columbian Sharp-tailed Grouse Tympanuchus phasianellus columbiaus</td>
<td>Threatened</td>
<td>Species of Concern</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ferruginous Hawk Buteo regalis</td>
<td>Threatened</td>
<td>Species of Concern</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Giant Columbia Spire Snail Fluminicola columbiana</td>
<td>Candidate</td>
<td>Species of Concern</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kincaid Meadow Vole Microtus pennsylvanicus kincaidi</td>
<td>N/A</td>
<td>Species of Concern</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Loggerhead Shrike Lanius ludovicianus</td>
<td>Candidate</td>
<td>Species of Concern</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Long-eared Myotis Myotis evotis</td>
<td>N/A</td>
<td>Species of Concern</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Northern Goshawk Accipiter gentilis</td>
<td>Candidate</td>
<td>Species of Concern</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Olive-sided Flycatcher Contopus cooperi</td>
<td>N/A</td>
<td>Species of Concern</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pallid Townsend’s Big-eared Bat Corynorhinus townsendi pallescens</td>
<td>Candidate</td>
<td>Species of Concern</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Peregrine Falcon Falco peregrines</td>
<td>Sensitive</td>
<td>Species of Concern</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sagebrush Lizard Scoloperorus graciosus</td>
<td>Candidate</td>
<td>Species of Concern</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sharp-tail Snake Contia tenuis</td>
<td>Candidate</td>
<td>Species of Concern</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Western Gray Squirrel Sciurus griseus griseus</td>
<td>Threatened</td>
<td>Species of Concern</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

a. See Section 3.7 for listed fish species.
Table 3-29. Critical Habitats

<table>
<thead>
<tr>
<th>Type</th>
<th>Methow Basin</th>
<th>Wenatchee Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Habitat for Canada Lynx</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Critical Habitat for Northern Spotted Owl</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Critical Habitat for Wenatchee Mountains Checker-mallow</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Source: USFWS 2010a,b

X = Species/habitat is identified by USFWS as occurring in either Okanogan County (Methow basin) or Chelan County (Wenatchee basin).

3.8.2 Types of Impact

Construction Impacts

Potential impacts to priority habitats or species from project construction activities include the following:

- Clearing and grading of vegetation and soil could result in removal, loss, and fragmentation of potential plant and wildlife habitat.
- Construction of new ponds could create open water habitat, riparian habitat and a food source, with the potential to attract wildlife. Consequences include potential alterations to species migration, feeding, and foraging behaviors and the potential for increased wildlife-human interactions.
- Noise from the use of construction equipment and the presence of workers could temporarily disrupt existing wildlife migration, feeding, and foraging behavior.

The effects described below are common to all the sites with proposed construction activity, although the extent and duration may vary between sites (from one to sixty days for acclimation sites and up to five months for the hatchery site).

Priority habitat and species could be affected by removal, loss, and fragmentation of habitat at new and modified sites. This impact would vary in severity depending on the type and quantity of vegetation that would be affected. With the exception of the hatchery construction at the Dryden site (or the backup George site), no buildings or paved surfaces are proposed. Project features such as new ponds and side channels would be designed to conform to the natural environment of the site as much as possible and would be in areas where forested habitat would not need to be cleared or removed. Vegetation cleared would be primarily shrubs or grass.

The physical impacts from construction are expected to be minimal for all species. The acclimation sites are generally altered from natural conditions and regularly subject to human activity. Vegetation communities at the sites are commonly found throughout the region, although each site’s location near streams, rivers, tributary channels, and ponds likely results in a more diverse assemblage of wildlife and plants than would be found elsewhere (Kauffman et al. 2001).

A minimal amount of vegetation at the sites would be removed or crushed. Small mammals and reptiles that are present at the sites during construction could be injured or killed due to construction activities. However, since the area impacted likely would be small, and animals probably would avoid or move out of the area in response to the disturbance, the numbers of individuals injured or killed would be few if any.
Habitat for ground and shrub-nesting birds would be affected, but the relative amount would be small; there are no special or unique vegetation communities in the areas proposed for construction that could provide habitat for such species. Few if any large trees would be removed, thus avoiding or minimizing direct effects to tree-nesting bat species or birds such as diurnal raptors, owls, woodpeckers, and passerines.\(^\text{17}\)

The most likely impact to wildlife that would result is construction-related disturbance (noise and visual). Potential construction noise would be limited to construction machinery such as backhoes and bulldozers for excavation. No blasting, pile driving, or paved road construction is proposed.

Potential wildlife disturbance from the proposed construction activities would depend on several factors, including sound levels, duration and surrounding topography and vegetation. The sound produced by conventional construction equipment typically ranges from about 75 to 90 decibels (dB): 78 dB for a dump truck, 80 dB for an excavator, 85 dB for a backhoe, and 87 dB for a bulldozer (LHSFNA 2009). Generally, disturbance activities would be limited to the immediate acclimation site, although noise from heavy machinery could extend approximately 600 to 1,000 feet outward from the site before diminishing to ambient levels. Adjacent hills and topographic changes in the landscape would reduce this distance by blocking or absorbing the sound. At all acclimation sites, construction would take place during summer months (May through September) for a period of from 1 to 60 days.

Noise and visual disturbance from pedestrians has been shown to elicit responses from nesting and foraging raptors at greater than 600 feet (Anthony et al. 1995, Richardson and Miller 1997), although these and other studies also suggest that noise without activity visible to the bird results in a much lower disturbance distance. There are no known bald eagle nests within two miles of any of the sites, but several regular concentrations are within one mile of several of the sites. No sites contain cliffs suitable for use by cliff-nesting raptors, but there is cliff habitat near the Rohlfing site and within a few thousand feet of the Tall Timber site. None of the sites contains trees of appropriate size for other raptor nests (e.g., red-tailed hawks), but some sites do have mature stands of trees in the vicinity that could provide nesting habitat. No raptors were observed during site visits; however, a comprehensive survey was not conducted, so existing nests might be unaccounted for.

Passerine birds and small mammals also would likely avoid the sites where construction is ongoing, but the area of effect would be small and the numbers affected would likely be very low compared to the numbers in the region.

Ungulates (deer and elk primarily) probably would avoid the sites while construction is actively occurring. Both species are known to avoid roads with vehicle traffic and pedestrian travel (Millspaugh et al. 2001, Wisdom et al. 2004). Construction is not likely to have a substantial effect on ungulates because: 1) human activity, including vehicle traffic to and from the sites, is already fairly common; 2) habitat is not known to be limiting; and 3) the amount of habitat excluded due to construction activities would be very small compared to what is available in surrounding areas.

\(^{17}\) Passerine birds are perching birds or songbirds.
Operations Impacts

Disturbance from site operations would include vehicle noise associated with accessing the sites and crew presence. Each of the sites would require regular, daily human presence during the acclimation period. Crews of two people would be responsible for several sites and would drive between them during the course of the day. These activities would be consistent with average ambient noise levels.

All sites could require non-lethal bird hazing. Feeding and hazing activities average 3 hours per day per site and occur during daylight hours. For spring-only acclimation this is 1.4 percent of the year and for winter acclimation, 4.8 percent of the year. Hazing involves discouraging wildlife such as mergansers, kingfishers, herons, and otters from preying on coho by having humans on the site and moving around the ponds at key times (mornings and evenings).

Noise from generators could disturb wildlife. Two acclimation sites, Two Rivers and MSWA Chewuch, would have generators running continuously for six weeks from mid-March through early April; impacts of the Two Rivers site, previously used by the coho program, were evaluated in previous NEPA documents. Six other primary sites and three backup sites would have generators used as needed during power outages. Enclosing pumps and generators in noise-muffling structures would effectively eliminate disturbance to wildlife.

3.8.3 Impacts of the Proposed Action

Table 3-30 lists project sites with documented occurrences of ESA-listed wildlife species and designated critical habitat. Table 3-31 lists sites with documented occurrences of state-listed priority species and habitats. Site-specific discussions follow the tables. Wetlands are an important habitat for many PHS species; impacts to wetlands are evaluated in Section 3.9. Because operations impacts are expected to be consistent with ambient noise levels, the site-specific discussions following the tables focus on sites with proposed construction.

Table 3-30. Project sites with documented occurrences of USFWS ESA-listed species and habitat

<table>
<thead>
<tr>
<th>ESA-listed wildlife species</th>
<th>Sites with ESA-listed wildlife species in the project area</th>
<th>Sites with ESA-designated Critical Habitat in the project area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern spotted owl</td>
<td>Wenatchee – primary w/ construction: Chikamin, Minnow, Tall Timber Wenatchee – primary no construction: Beaver, Clear Wenatchee – backup no construction: Allen Methow – primary no construction: Goat Wall</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wenatchee – primary w/ construction: Tall Timber</td>
</tr>
</tbody>
</table>
Table 3-31. Sites with documented occurrences of state-listed Priority Habitat and Species *

<table>
<thead>
<tr>
<th>State-listed wildlife species / habitats</th>
<th>Sites with documented occurrences in the project area</th>
<th>Sites where habitat exists in the project area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildlife</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bald eagle</td>
<td>Sites w/in regular concentration areas: Chewuch AF, Hancock, Heath, Lower Twisp, MSWA Eightmile, MSRF Chewuch, Poorman, Pete Cr. Pond, Winthrop NFH</td>
<td>All sites, except Dryden</td>
</tr>
<tr>
<td>Bat species</td>
<td>None</td>
<td>Tall Timber for breeding habitat, all sites for foraging habitat</td>
</tr>
<tr>
<td>Frog species</td>
<td>None</td>
<td>All sites, except Dryden</td>
</tr>
<tr>
<td>Great blue heron</td>
<td>None</td>
<td>All sites, except Dryden</td>
</tr>
<tr>
<td>Harlequin duck</td>
<td>Sites w/in regular concentration areas: Chewuch AF, Gold, Hancock, Heath, Lower Twisp, MSRF Chewuch, Poorman, Pete Cr. Pond, Winthrop NFH</td>
<td>Tall Timber</td>
</tr>
<tr>
<td>Mountain goat</td>
<td>Site w/in regular concentration area: Rohlfing Site w/in migration area: Tall Timber</td>
<td>Rohlfing, Tall Timber</td>
</tr>
<tr>
<td>Mule deer</td>
<td>Sites w/in breeding occurrence range: Beaver, Butcher, Clear, Coultier, Coultier/Roaring, Dirty Face, Gray, Rohlfing, Squadroni, Tall Timber Sites w/in parturition (birthing) area: Chikamin, Minnow Sites w/in regular concentration area: Balky Hill, Chewuch AF, Dryden, Goat Wall, Gold, Hancock, Heath, Lincoln, Mason, MSRF Chewuch, McComas, Parmley, Poorman, Pete Cr. Pond</td>
<td>All sites</td>
</tr>
<tr>
<td>Northwest white-tailed deer</td>
<td>Sites w/in parturition (birthing) area: Goat Wall, Pete Cr. Pond, Winthrop NFH Sites w/in regular concentration area: Pete Cr. Pond, Winthrop NFH</td>
<td>All sites</td>
</tr>
<tr>
<td>White-tailed deer</td>
<td>Site w/in regular concentration area: Heath</td>
<td>All sites</td>
</tr>
<tr>
<td>Waterfowl concentrations</td>
<td>None</td>
<td>All sites, except Dryden</td>
</tr>
<tr>
<td>Western gray squirrel</td>
<td>None</td>
<td>Tall Timber</td>
</tr>
<tr>
<td>Woodpecker species</td>
<td>None</td>
<td>Tall Timber</td>
</tr>
<tr>
<td>Habitat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meadows</td>
<td>Dirty Face, Squadroni, Tall Timber</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Aspen</td>
<td>George</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Riparian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baldy Hill, Beaver, Biddle, Chewuch AF, Dryden, Gold, Hancock, Heath, Leavenworth NFH, Lincoln, MSRF Chewuch, Lower Twisp, MSWA Eightmile, Parmley, Poorman, Scheibler, Pete Cr. Pond, Winthrop NFH</td>
<td>Not Applicable</td>
<td></td>
</tr>
</tbody>
</table>

* The WDFW PHS list also includes all federal ESA-listed species (Table 3-30).

3.8.3.1 Wenatchee Basin Acclimation Sites (Primary)

Butcher

A well is proposed for the Butcher site. The exact location has not yet been determined but it would be close to existing roads to minimize access disturbances. A 50-foot-long by 5-foot-wide rock-lined, open channel would deliver water from the well to Butcher Creek upstream of the pond. Approximately 250 square feet of disturbance would occur in riparian habitat that is dominated by a mixture of shrub habitat with some young trees and areas of grass and herbaceous plants. Construction would take place for a few days in late summer or early fall.
Priority species potentially disturbed by construction at the site include bald eagles, frogs, great blue heron, deer, and waterfowl. The loss of a small area of habitat and temporary disruption caused by construction noise would not significantly affect native wildlife species.

Chikamin

A new pond and river intake are proposed for the Chikamin site, which is adjacent to the Minnow site. The pond would be approximately 120 feet long by 80 feet wide for a total area of about 9,600 square feet (0.2 acre). The pond would be excavated in a field dominated by grass and herbaceous vegetation. The intake structure would be placed in the Chikamin stream bank. A 120-foot-long water supply pipeline from the intake to the pond would be buried; approximately 0.03 acre of field and riparian (alder and willow) habitat would be disturbed. A rock-lined, open channel, about 70 feet long and 5 feet wide, would be constructed from the pond to the creek in the riparian zone of Chikamin Creek dominated by willow and alder with young pine trees. Pine or other conifer trees in this area would be avoided if possible. Approximately 0.29 acre of surface area would be disturbed by all construction activities.

WDFW maps (WDFW 2009) identify the Chikamin site as within an established territory management circle for spotted owl. Timber harvesting has occurred at and near the site; existing trees are young and relatively young second-growth stands, so northern spotted owls are not expected to occupy the site. No other federally protected species are documented within 2 miles of the site.

WDFW priority species documented within 1,000 feet of the site include concentrations of marten, breeding mule deer, and a northern goshawk nest. Additional priority species that could be disturbed by construction are bald eagles, frogs, great blue heron, deer, and waterfowl. Added pond and riparian habitat would provide additional aquatic habitat that could benefit these and other native wildlife species. The temporary disruption (less than two months) caused by construction noise would not significantly impact native wildlife species.

Minnow

A new pond and 600 feet of new road is proposed for the Minnow site adjacent to an existing creek channel. The site is under the same ownership as the Chikamin site. The Minnow site would require excavation in the existing channel of Minnow Creek, a tributary to Chikamin Creek. The pond would be approximately the same size as the Chikamin pond and would be excavated in the riparian zone of Minnow Creek. The exact location of the temporary access road has not yet been determined; however, all of the potential locations between the proposed pond and the existing road are in an open area dominated by grass and herbaceous species. Habitat cleared during construction would include a combination of grass field and alder, willow, and young pine trees; however, pines and other conifers would be avoided to the greatest extent possible. Approximately 0.2 acre of surface area would be disturbed.

The pond banks would be replanted with native vegetation, with no net loss of riparian habitat. Approximately 0.2 acre of pond habitat would be created that would provide additional aquatic habitat for wildlife species in the Minnow Creek watershed.

Priority species and impacts are the same as for the Chikamin site. Maps of PHS (WDFW 2009) identify the Minnow site as within an established territory management circle for spotted owl and adjacent to a second management circle. As with the Chikamin site, timber harvesting has occurred on and near the project site and existing trees are young second-growth stands, so it is
unlikely that spotted owls use the area. No other federally protected species are documented within two miles of the Minnow site. WDFW priority species documented within 1,000 feet of the site that could be disturbed by construction include American marten, breeding mule deer, and a northern goshawk nest. Construction would occur from June to October, during the nesting season for waterfowl and songbirds.

Scheibler

An existing pond, about 100 feet long and 15 feet wide, would be expanded and deepened at this site. Approximately 350 cubic yards of material from the pond would be excavated to increase the pond capacity by 14,000 cubic feet. Construction would occur in late summer to early fall, within the nesting period for waterfowl and songbirds but avoiding the critical spring period.

Riparian priority habitat associated with Chumstick Creek adjacent to the site would not be disturbed. Priority species potentially disturbed are the same as for Chikamin and Minnow. The loss of a small area of agricultural and deciduous riparian habitat and temporary disruption caused by construction noise would not significantly impact native wildlife species.

Tall Timber

The Tall Timber site would require ground disturbance for an intake from the river and for a pipeline to deliver water to an existing, disconnected side channel. The intake structure would be in the riparian zone of the Napeequa River, where up to 400 square feet of forested and shrub habitat with cedar, pine, Douglas fir, willow, snowberry, and reed canarygrass would be disturbed. Conifer trees would be avoided, if possible. Rock and gravel would be placed around the intake to prevent erosion. An 800-foot-long water supply pipeline from the intake to the pond would be buried. Part of the pipeline would be dug through similar forest and shrub habitat. The disturbed areas would be replanted with native vegetation.

Impacts to the existing side channel (approximately 1,000 feet long and 60 feet wide) would be limited to filling the channel with water during the acclimation period.

The site is located within a spotted owl management circle (1.8 mile radius); vegetation within and adjacent to the area of proposed construction includes mature forest that could provide habitat for spotted owl. The nest associated with the management circle is located more than one mile from the site. The pipeline would be constructed near mature cedar, pine, and Douglas-fir trees, and it is possible that some trees may need to be removed. If so, a qualified biologist would confirm the presence or absence of nest activity in the trees. No significant impacts to spotted owls are anticipated because: 1) the absence of an owl nest would be confirmed prior to removing any trees; 2) the removal of a few trees within a densely forested area would not significantly modify habitat conditions; 3) the site includes a ranch and a church camp with regular, consistent human activity; 4) construction disturbances would be intermittent and temporary (normal weekday hours for up to four months); and 5) avoidance behavior by owls during construction would not likely result in a significant disturbance to the species.

Meadow priority habitat documented adjacent to the site appears to be outside the area of proposed construction.

Priority species potentially disturbed by construction at the site are bald eagles, bats, frogs, great blue heron, harlequin duck, mountain goat, deer, waterfowl, western gray squirrel, and woodpeckers. The presence of mountain goats near the project area would be associated with transient or migration behavior. The loss of mature trees would disturb potential breeding
habitat for bald eagles, bats, harlequin duck, western gray squirrel, and woodpeckers. Given the relatively small area and number of trees that would be removed relative to the surrounding available forested habitat, significant impacts to these species are not anticipated. Construction noise might cause these species to temporarily avoid the area, but such behavior is not likely to result in significant impacts to these or other native wildlife species.

3.8.3.2 Wenatchee Acclimation Sites (Backup)

Allen

The site, if used, would not require construction. WDFW PHS maps (WDFW 2009) identify the Allen site as within an established territory management circle for spotted owl; however, the site does not provide spotted owl habitat and mature forest associated with spotted owl habitat is not located nearby. No other federally protected species and no other state-designated priority habitat and species are documented within one mile of the Allen site.

Squadroni

A new well, pond, 50-foot-long rock-lined open channel, and 20-foot-long discharge channel are proposed for the Squadroni site. Disturbances would occur in grass fields. A generator would be required to provide backup power in the event of a power outage during the acclimation period.

The species potentially disturbed by construction at the site are bald eagles, frogs, great blue heron, deer, and waterfowl. The loss of a small area of grass field habitat and temporary disruption caused by construction noise would not significantly impact native wildlife species.

3.8.3.3 Hatchery Sites

Dryden (Primary)

The Dryden site is proposed as a primary site for hatchery construction. Chapter 2, Section 2.2.2.3 and Appendix 1 provide more detailed descriptions of hatchery design and construction requirements. The Dryden site is also identified as a backup site for acclimation.

The Proposed Action would require excavations for rearing ponds, raceways, a hatchery building, water and power supply, and an effluent treatment system. These excavations would be in an area that is a combination of disturbed bare ground and patches of grass and weedy species and occasional shrubs. No trees would be cleared. A surface water intake would be built in the fishway, which would involve no excavation. Construction would occur from May to October 2012; four acres would be disturbed. Excavated material would be disposed in locations that meet permit conditions and minimize environmental impacts.

WDFW PHS maps (WDFW 2009) do not document any occurrences of federally listed wildlife or plant species within at least one mile of the Dryden site. The boundary of an established territory management circle for spotted owl is located between 1 and 2 miles from the site, south of Highway 2. Other WDFW priority species found within 1,000 feet of the site include concentrations of mule deer. Riparian priority habitat associated with the Wenatchee River is documented adjacent to the site but would not be disturbed. The loss of a small area of habitat that is mostly disturbed would not significantly impact native wildlife species. Noise from construction and operation of the facilities is unlikely to affect wildlife any more than current activities at and near the site.
George (Backup)

If used, the George backup hatchery site would require construction similar to the Dryden site (see Chapter 2 and Appendix 1 for more details). A fence would be constructed around the facility and predator-control nets would be installed over rearing units.

A number of priority species may use habitat at the George site during part of their life cycle, including bald eagles, northern goshawks, harlequin ducks, great blue herons, pileated woodpeckers, olive-sided flycatcher, mule deer, long-eared myotis, sharp-tailed snakes, and western toads. Priority habitat on-site includes quaking aspen stands and riparian habitat.

Construction of the surface water intake structure at the Wenatchee River and installation of the intake pipeline could affect riparian shrub-scrub and forested habitat. A large tract of priority aspen habitat exists near the area of the proposed intake and discharge pipelines. These pipelines would be located along the eastern boundary of this priority habitat to minimize the potential for impacts. Construction of the hatchery facility and rearing ponds as currently planned would not impact any priority aspen habitat. Some upland forested habitat is likely to be removed to construct the hatchery facility and rearing ponds. Impacts to forested habitat would be minimized to the extent possible; shrub/scribb and emergent vegetation removed along the intake or discharge pipeline corridors would be restored with native plants when the project is completed. Removal of forested habitat would be mitigated by replanting native vegetation around the construction site and in disturbed and cleared areas (approximately 2.5 acres).

Construction of the hatchery facility, discharge/intake pipelines and water supply wells would not alter a substantial portion of riparian and forested habitat for wildlife species that have more extensive home ranges. Impacts to habitat and some individual amphibians that have comparatively limited home ranges (e.g., the western toad) could be possible at the local population level.

Noise generated during construction may cause priority species to avoid the site during construction; however, this impact would be temporary and noise would not be significantly elevated above existing ambient noise from surrounding highway traffic and landowner activities. The existing network of roads would be used to access the site and for moving construction equipment and crews. Existing cleared areas would also be used for staging of construction equipment and supplies. Based on these measures to avoid or minimize potential impacts during the construction of the hatchery, there would be no significant impacts to priority species or habitat at the George site.

3.8.3.4 Methow Acclimation Sites (Primary)

Goat Wall

The site would not require construction but could have operational impacts. Maps of PHS distribution (WDFW 2009) indicate spotted owls are present in parts of Okanogan County. However, the location of the proposed Goat Wall acclimation site does not provide spotted owl habitat, and mature forest associated with spotted owl habitat is not located near the site. The USFWS has designated the Okanogan Unit of spotted owl critical habitat, a portion of which is approximately five miles from the Goat Wall site. Operation of the Goat Wall site would have minimal or no impact on any individual spotted owls that may be found in the vicinity. No other federally protected species and no other WDFW priority species are documented near the Goat Wall site that could be affected by site operations.
Gold

Approximately 260 cubic feet of silt, sand, and gravel deposits from an existing pond would be excavated. Vegetation adjacent to the pond includes mowed lawn that would be disturbed to access the ponds for excavation.

The reach of the South Fork Gold Creek adjacent to the Gold site is identified as riparian priority habitat but would not be disturbed. Bald eagles, frogs, great blue heron, deer, and waterfowl could be temporarily disturbed by construction noise but the impact would not be significant. No habitat would be lost.

MSWA Eightmile

A well and water supply channel from the well to the existing side channel are proposed. A generator would be installed near the well to provide the primary power source, and would run continuously during the acclimation period. It would be installed in a structure that would significantly attenuate the generator noise and limit the noise effects to the area within a few feet of the enclosure. Construction would be in an agricultural field in September. The reach of the Chewuch River adjacent to the site identified as riparian priority habitat would not be disturbed. Priority species and impacts are the same as Gold.

Twisp Weir

Proposed construction at Twisp Weir includes the excavation of a new pond, construction of intake and discharge structures from the Twisp River to the new pond, burial of water lines, construction of one well, and construction of a temporary access road to the pond. The location for the proposed pond is upland open space consisting of mowed grass. The exact location of the temporary access road has not yet been determined; however, all the potential locations between the proposed pond and the existing gravel road are managed and maintained as mowed grass. The intake structure would be located at the existing diversion in the Twisp River, which is adjacent to the edge of a wetland identified by the National Wetland Inventory (NWI) (USFWS 2008) (see Section 3.9.3.3). The proposed intake pipeline would extend across an upland meadow to the proposed acclimation pond site. The proposed location for the discharge pipeline from the acclimation pond crosses maintained upland areas and then would pass under the existing irrigation canal into forested riparian habitat adjacent to the Twisp River. The proposed locations for the well and associated pipelines are also within this forested riparian habitat.

It is unlikely that priority species occupy the maintained portion of the Twisp Weir site because of the ongoing maintenance and operation of the site as a fish hatchery and the lack of native habitat observed. Priority species that may use the forested riparian and stream habitat at the site include western gray squirrel, western toad, northern goshawk, bald eagle, long-eared bat, olive-sided flycatcher, Columbia spotted frog, great blue heron, harlequin duck, and mule deer. Removal of forested riparian habitat for the discharge pipeline and water supply wells would not alter a substantial portion of the habitat for mammals and birds with more extensive home ranges; mature trees would be avoided to the extent possible. Impacts to riparian habitat and some individual amphibians with more limited home ranges, such as the spotted frog or western toad, are possible at the local population level.

Overall impacts at the site would be minimized by: 1) locating the acclimation pond in a fenced, mowed grass field; 2) placement of the intake structure at an existing diversion structure; and 3) selecting pipeline corridors and well locations that do not contain mature trees to the extent
possible. Impacts to shrub/scrub vegetation would be temporary and restored after completion. Construction noise would be temporary and not significantly higher than existing noise from adjacent highway traffic and landowner activities. Significant permanent impacts to priority species and habitat at the Twisp Weir site are not likely.

3.8.3.5 Methow Acclimation Sites (Backup)

Chewuch AF

If this site is used, a new pond would be constructed downstream of the existing facility. It would be approximately 150 feet long by 50 feet wide and 3.5 feet deep, occupying approximately 7,500 square feet (0.2 acre). The existing campground, with a combination of bare ground and patches of native trees and landscaping shrubs, would be disturbed.

The reach of the Chewuch River identified as riparian priority habitat adjacent to the site would not be disturbed. Construction activity could disturb bald eagles, frogs, great blue heron, deer, and waterfowl. The loss of a small area of an existing campground and temporary disruption caused by construction noise would not significantly impact native wildlife species.

MSRF Chewuch

A new pond would be constructed at this site, if used, occupying approximately 7,500 square feet (0.2 acres). Approximately 890 cubic yards of material would be excavated from tree, shrub, and grass habitat dominated by deciduous species such as black cottonwood, aspen, alder, and reed canarygrass. Large trees would be avoided. Rock-lined, open channels would be constructed from the well to the pond and from the pond to the Chewuch River.

The rock lined channel would be within a reach of the Chewuch River identified as riparian priority habitat. Priority species potentially disturbed by construction are the same as for the Chewuch AF site. The creation of additional pond and riparian habitat would benefit many of these and other native wildlife species. The temporary disruption caused by construction noise would not significantly impact native wildlife species.

Newby

Construction at the Newby site, if used, includes excavation of a new pond and construction of an intake structure at Newby Creek with intake and discharge pipelines. The pond would be in an upland meadow with vegetation consisting of upland grasses, mullein and goldenrod. The exact location of the temporary access road has not been determined; however, all the potential locations between the planned pond and the existing driveway are upland habitat with vegetation similar to the planned pond area. The locations for the intake structure and discharge are along a reach of Newby Creek that has a relatively high gradient (greater than 5 percent) and a defined steep-sided channel that lacks riverine wetlands.

Vegetation that would be disturbed to construct the pond and temporary access road includes upland grasses, mullein and goldenrod. Vegetation that would be disturbed to construct the intake and discharge structures and pipelines includes riparian forest habitat dominated by quaking aspen, Douglas-fir, red osier dogwood, snowberry, serviceberry, and Nootka rose. Disturbance of mature and large trees would be avoided if possible. Most impacts would be to habitat along the riparian edge of Newby Creek. Priority species that might use the forested riparian and stream habitat at the Newby site are the same as those at Lower Twisp, and impacts
would be similar. Impacts to individual amphibians that have a comparatively limited home range (e.g., spotted frog or western toad) are possible at the local population level.

Utley

If the site is used, construction would include installation of a discharge pipeline between the drainage channel from the pond and the Twisp River. Access to the pond would be from the existing driveway southwest of the pond, across an upland maintained lawn. Existing trails and roads would allow access to the discharge site without damaging native wetland vegetation with construction equipment.

A culvert that would provide an outlet from the acclimation pond would also be constructed. Priority habitats that would be disturbed include some upland meadow habitat with vegetation consisting of upland grasses (approximately 150 square feet of temporary impact); and some areas of forested riparian habitat with vegetation consisting of spruce (approximately 5 to 18 inch diameter at breast height [DBH]), aspen (approximately 2-3 inch DBH saplings), mountain alder, snowberry, and tall Oregon grape (approximately 950 square feet of temporary disturbance).

Priority species that might use the forested riparian and stream habitat at the Utley site are the same as for the Lower Twisp and Newby sites, and impacts are also similar and minor. Avoiding the removal of mature trees while placing the pipeline in an area with shrub/scrub or emergent vegetation would avoid or minimize impacts to the species and habitat at the site.

3.8.3.6 Combined Impacts

Clearing and grading of vegetation communities during construction would be limited to areas that are small relative to the total native habitat in the region. Impacts to forested habitat and wetlands would be avoided, disturbed areas would be replanted with native vegetation, and construction noise would be temporary. Construction would create new pond and/or side channel habitats.

Humans would be present at all sites. However, disturbances would be limited to vehicles accessing the site and crews of two people walking the site for a small part of the day for six weeks to six months each year. Impacts to wildlife would be limited to avoidance behavior associated with human presence. Operations disturbances are unlikely to significantly affect priority species or other native wildlife and would have no impact on priority habitats or plants.

Overall, based on existing natural resource information, the type and scale of proposed construction and operation activities, and the habitats and vegetation communities that would be disturbed at the project sites, no significant adverse impacts to federally listed species are likely. In addition, while potential habitat for many of the state-listed species exists at or near many of the sites, impacts likely would be minor or insignificant and would be avoided to the greatest extent possible. No significant adverse impacts to state-listed species or habitats or other native wildlife are anticipated.

3.8.4 Impacts of the No Action Alternative

Because no new sites would be constructed, either for incubation and rearing or for acclimation, there would be no construction impacts to federally listed or state priority habitats and species.

Two sites in the Methow basin not used in the current coho program might be used for coho acclimation if the No Action Alternative is implemented. As a result, impacts of operations under the No Action Alternative would be slightly greater than those already occurring under the
existing program at existing sites. Those impacts are the same as for the Proposed Action (primarily wildlife avoidance behavior associated with limited and intermittent human presence) and are considered negligible.

3.8.5 Mitigation for the Proposed Action

The following measures are proposed to avoid or minimize impacts to priority habitat, plants, and wildlife. Site-specific measures to mitigate impacts are described under the individual site analyses in Section 3.8.3.

- Project features such as new ponds and side channels would be designed to be as natural as possible and in most cases would be in areas where forested habitat would not be cleared or removed.
- Few if any large trees would be removed, thus avoiding or minimizing direct effects to tree-nesting bat species or birds such as diurnal raptors, owls, woodpeckers, and passerines.
- Enclosing pumps and generators in noise-muffling structures would effectively eliminate disturbance to wildlife.

3.9 Wetlands

3.9.1 Affected Environment

Wetlands are classified in this EIS according to the USFWS classification developed by Cowardin et al. (1979). In this system wetlands are classified based on their physical characteristics, such as the general type of vegetation in the wetland (trees, shrubs, grass, etc.) and how much, and where, water is present. The wetland types found in the project area are:

- **Palustrine forested (PFO)** – These wetlands have at least 30 percent cover of woody vegetation that is more than 20 feet high.
- **Palustrine scrub-shrub (PSS)** – These wetlands have at least 30 percent cover of woody vegetation that is less than 20 feet high.
- **Palustrine emergent (PEM)** – These wetlands have erect, rooted, herbaceous vegetation present for most of the growing season in most years.
- **Palustrine unconsolidated bottom (PUB)** – These wetlands are characterized by open water, such as ponds, with less than 30 percent vegetation cover and substrate of cobbles, gravel, sand, mud, or organic material.
- **Palustrine aquatic bed (PAB)** – Areas of open freshwater that have rooted plants such as water lilies or cattails that project above the surface.

Due to the nature of the project, all the sites include or are adjacent to rivers, streams, or ponds; wetland habitat is typically limited to narrow patches along the shoreline of existing ponds or side channels. Although wetland habitat was anticipated at project sites, only a few require construction activities in wetlands. They are:

Wenatchee basin

- Wetlands present and construction is proposed: Scheibler, Tall Timber, George (backup hatchery site)
Proposed construction but no wetlands present in construction area: Dryden, Butcher, Chikamin, Minnow, Squadroni (backup)

Methow basin
- Wetlands present and construction is proposed: Twisp Weir, MSRF Chewuch (backup), Utley (backup)
- Proposed construction but no wetlands present in construction area: Gold, MSWA Eightmile, Chewuch AF (backup), Newby (backup)

Maps of documented wetlands at all sites are included in Appendix 4.

3.9.2 Types of Impact

The primary potential impact to wetlands from project construction would be removal, loss, and fragmentation of wetland habitat. This impact would vary in severity depending on the type and quantity of vegetation that would be affected.

Disturbances associated with operation at the sites would include trucks accessing the sites and crews of two people walking the sites. Even if wetlands exist at a project site, these activities would not affect them.

3.9.3 Impacts of the Proposed Action

Table 3-32 summarizes wetland conditions identified near sites with proposed construction activity and sites with potential wetland impacts.

3.9.3.1 Wenatchee Acclimation Sites (Primary)

Butcher

A well is proposed for the Butcher site. The exact location has not yet been determined but it would be close to existing roads to minimize access disturbances. No wetland impacts are identified at this site. The riparian habitat in the construction area does not include wetlands. Potential wetland habitat along the pond shoreline is outside the area of proposed construction.

Chikamin

A new pond and river intake is proposed for the Chikamin site, which is adjacent to the Minnow site. Wetland habitat was not identified in the grass field or riparian habitat in the area of proposed construction. All disturbed areas would be replanted with native vegetation.

Minnow

A new pond is proposed for the Minnow site adjacent to an existing creek channel. Wetland habitat was not identified in the grass field or riparian habitat in the area of proposed construction. The pond banks would be replanted with native vegetation, with no net loss of riparian habitat.

Scheibler

Expanding and deepening an existing pond are proposed for the Scheibler site. Expanding the existing pond could disturb wetland habitat associated with the pond and Chumstick Creek. Following expansion of the pond, native vegetation would be planted along the pond shoreline to create and/or enhance wetland habitat to compensate for wetland impacts. Wetland delineations in spring of 2011 will quantify wetland impacts.
Tall Timber

The Tall Timber site would require ground disturbance for an intake from the river and for a pipeline to deliver water to an existing, disconnected side channel. No wetland impacts are identified within the proposed construction activity at this site. The buried pipeline would deliver water to an existing side channel that contains wetland habitat along the edges. Impacts to the existing side channel would be limited to filling the channel with water during acclimation. Wetland delineations in spring of 2011 will verify the presence and extent of impacts.

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Wetlands Observed During Site Visits</th>
<th>Wetlands Identified With Existing Information</th>
<th>Potential Wetland Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenatchee Primary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butcher</td>
<td>Potential patches of PSS and PEM wetland along pond shoreline</td>
<td>None within 1,000 feet of site</td>
<td>No wetland impacts identified in proposed construction area.</td>
</tr>
<tr>
<td>Chikamin</td>
<td>None observed</td>
<td>PFO, PSS, and PEM wetland habitat mapped along riparian habitat a few hundred feet from the site</td>
<td>No wetland impacts identified in proposed construction area.</td>
</tr>
<tr>
<td>Dryden</td>
<td>None observed</td>
<td>PSS wetland habitat mapped along riparian habitat a few hundred feet from the site</td>
<td>No wetland impacts identified in proposed construction area.</td>
</tr>
<tr>
<td>Minnow</td>
<td>None observed</td>
<td>PFO, PSS, and PEM wetland habitat mapped along riparian habitat a few hundred feet from the site</td>
<td>No wetland impacts identified in proposed construction area.</td>
</tr>
<tr>
<td>Scheibler</td>
<td>PFO, PSS, and PEM wetland habitat associated with riparian habitat</td>
<td>PSS and PEM wetland habitat mapped along riparian habitat at the site</td>
<td>Permanent: 3,049 sq ft.</td>
</tr>
<tr>
<td>Tall Timber</td>
<td>PSS and PEM wetland habitat associated with side channels</td>
<td>PSS and PEM wetland habitat mapped along riparian habitat more than 1,000 feet from site</td>
<td>No wetland impacts identified in proposed construction area.</td>
</tr>
<tr>
<td>Wenatchee Backup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squadroni</td>
<td>Site visit not performed</td>
<td>PSS and PEM wetland habitat mapped along riparian habitat of Nason Creek a few hundred feet from the site</td>
<td>No wetland impacts identified in proposed construction area.</td>
</tr>
<tr>
<td>George (backup hatchery site)</td>
<td>Wetlands observed associated with the side channel (high-quality PSS and PAB wetland) and the Wenatchee River (PFO and PSS wetlands).</td>
<td>NWI PFO, PSS, and PAB identified associated with the Wenatchee River and the side-channel at the site.</td>
<td>Temporary: 45,000 sq ft (1 acre) Permanent: 1,075 sq ft (0.03 acres)</td>
</tr>
</tbody>
</table>

NWI – National Wetlands Inventory
PAB – Palustrine aquatic bed (wetland)
PSS – Palustrine scrub-shrub (wetland)
PFO – Palustrine forested (wetland)
Table 3-32 (continued)

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Wetlands Observed During Site Visits</th>
<th>Wetlands Identified With Existing Information</th>
<th>Potential Wetland Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methow Primary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold</td>
<td>Potential small patches of PSS and PEM wetland along pond shoreline</td>
<td>None within 1,000 feet of site</td>
<td>No wetland impacts identified in proposed construction area.</td>
</tr>
<tr>
<td>MSWA Eightmile</td>
<td>PSS and PEM wetland habitat associated with riparian habitat</td>
<td>PSS and PEM wetland habitat mapped along riparian habitat at the site</td>
<td>No wetland impacts identified in proposed construction area.</td>
</tr>
<tr>
<td>Twisp Weir</td>
<td>None observed</td>
<td>NWI PFO and PEM wetland habitat identified along the Twisp River at the site.</td>
<td>Temporary: 1,350 sq ft (0.03 acres) Permanent: 130 sq ft (0.003 acres)</td>
</tr>
<tr>
<td>Methow Backup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chewuch AF</td>
<td>None observed</td>
<td>None within 1,000 feet of site</td>
<td>No wetland impacts identified in proposed construction area.</td>
</tr>
<tr>
<td>MSRF Chewuch</td>
<td>PFO, PSS, and PEM wetland habitat associated with riparian habitat</td>
<td>PFO, PSS, and PEM wetland habitat mapped along riparian habitat at the site</td>
<td>Proposed construction could impact wetlands along riparian habitat.</td>
</tr>
<tr>
<td>Newby</td>
<td>None observed</td>
<td>None identified</td>
<td>No wetland impacts identified in currently proposed construction area</td>
</tr>
<tr>
<td>Utley</td>
<td>Potential patches of riverine wetlands along the Twisp River east and northeast of existing pond. A large PSS NWI wetland north of the pond may be connected to the ditch that drains the pond.</td>
<td>PSS NWI wetland approximately 250 feet north of the existing pond. PFO NWI wetland approximately 400 feet southwest of the pond but outside of any proposed construction areas.</td>
<td>Temporary: 150 sq ft (0.003 acres)</td>
</tr>
</tbody>
</table>

NWI – National Wetlands Inventory
PAB – Palustrine aquatic bed (wetland)
PEM – Palustrine emergent (wetland)
PFO – Palustrine forested (wetland)
PSS – Palustrine scrub-shrub (wetland)

3.9.3.2 Wenatchee Acclimation Sites (Backup)

Squadroni

A new well, pond, surface water supply and discharge channels are proposed for the Squadroni site. All construction would be in grass fields, with no wetland habitat in the construction area; wetlands would not be affected, and no new wetland habitat would be created.

3.9.3.3 Methow Acclimation Sites (Primary)

Gold

Excavation of approximately 260 cubic feet of silt, sand, and gravel deposits from the existing ponds would be required. No additional construction activity is proposed. Vegetation adjacent to the ponds and the riparian habitat of the creek includes young trees of cedar, alder, and willow, shrubs such as red-osier dogwood, twinberry, vine maple, and snowberry, and mowed lawn. Potential PSS and PEM wetland habitat observed at the site was limited to some small
patches of grass along the shoreline of the pond. While small patches of shrub and emergent species along the pond shorelines might meet the criteria of wetland habitat, it is unlikely; therefore, excavation of the pond is not expected to affect wetlands. A wetland delineation conducted in spring of 2011 will determine if wetlands exist at this site.

MSWA Eightmile

No wetlands were identified in the area of proposed construction.

Twisp Weir

Twisp Weir development includes the excavation of a new pond; construction of an intake structure, a well, and a temporary access road; and burial of pipelines.

The proposed pond is located within a mowed meadow upland habitat. The exact location of the temporary access road has not yet been determined; however, all the potential locations between the proposed pond and the existing gravel road are upland habitat with vegetation consisting of upland grasses. Thus, wetlands would not be disturbed to construct the pond and temporary access road. The proposed location for the intake structure is at an irrigation channel at the edge of an NWI wetland habitat (PFO wetland area associated with the Twisp River) (USFWS 2008). The proposed location for the discharge pipeline traverses the NWI wetland habitat associated with the Twisp River (USFWS 2008). The proposed locations for the well is within the NWI wetland habitat associated with the Twisp River (USFWS 2008).

If the NWI wetland areas identified at the site are an accurate characterization of actual wetlands, then wetland impacts would be anticipated here. The portion of the NWI wetland on the site is approximately 2 acres or 84,500 square feet. Placement of the intake and discharge pipelines and groundwater well water lines crossing the NWI wetland would result in temporary wetland impacts (approximately 1,350 square feet). Construction of the intake structure and groundwater well would result in permanent wetland impacts (approximately 130 square feet). Wetland habitat that would be impacted would include the riverine wetlands associated with the Twisp River containing quaking aspen, black cottonwood, red osier dogwood and serviceberry. Impacts to mature and large trees could be avoided.

A wetland delineation performed in spring 2011 will determine if wetland habitats exist within proposed areas of construction.

3.9.3.4 Methow Acclimation Sites (Backup)

Chewuch AF

A new pond would be constructed at the Chewuch AF site, occupying approximately 7,500 square feet (0.2 acre). The pond would be dug in an existing recreational vehicle campground in an area of disturbed, bare ground and patches of native trees and shrubs used for landscaping the campground. Wetland habitat was not identified in the area of proposed construction, so no impacts to wetlands would occur.

MSRF Chewuch

A new pond would be constructed at this site. The majority of the proposed construction activity does not appear to be located within wetland habitat. The open channels could encroach into PFO, PSS, and PEM wetland habitat in the area near the Chewuch River. A wetland delineation performed in spring 2011 will quantify wetland impacts at this site.
Newby

Construction activities at the Newby site, if used, include excavation of a new pond and construction of an intake structure at Newby Creek with intake and discharge pipelines. No potential wetland impacts were identified at this site. If the locations of the intake and discharge structures change, a wetland delineation would be performed to confirm the presence or absence of wetland habitat in the construction area.

Utley

Construction at the Utley site, if used, would include installation of a culvert between the existing pond (or the ditch draining the pond) and the Twisp River. Access to the pond would be from the existing driveway southwest of the pond, across an upland grassy area.

Approximately 150 square feet of riverine wetland within the normal channel of the Twisp River would be temporarily disturbed by installation of the culvert. If the ditch that drains the pond is identified as a wetland, any filling or excavation in the ditch would be considered wetland impacts. If the site is used, a wetland survey would be conducted to confirm the presence of wetlands and identify mitigation.

3.9.3.5 Hatchery Sites

Dryden (Primary)

The proposed hatchery site is currently used for gravel storage by Washington Department of Transportation. The majority of the site is disturbed bare ground with small patches of grass and weedy species. No evidence of wetland conditions were observed at the site. The riparian habitat of Peshastin Creek and the Wenatchee River includes patches of alder and black cottonwood trees. The USFWS Wetlands Mapper for NWI Map Information identifies a PSS wetland system associated with the Wenatchee River several hundred feet upstream of the Dryden site (USFWS 2009b). WDFW PHS maps do not document wetland priority habitat within 1 mile of the Dryden site (WDFW 2009). WDNR does not document any state rare/high quality wetland communities within 3 miles of the site (WDNR 2009).

George (Backup)

The hatchery would be located at the center of the site, south of the large meander bend on the side channel. Access roads for the hatchery site already exist. The intake, discharge and groundwater well pipelines traverse portions of the NWI wetland habitat associated with the Wenatchee River (USFWS 2008). In addition, the pump station and one of the wells would be located within the PFO NWI wetland (USFWS 2008). The intake structure could impact wetland, riparian vegetation and/or part of the Wenatchee River channel. Impacts to mature trees in all situations would be avoided during construction, and impacts to shrub/scrub and emergent vegetation from the pipelines, pump station, well, and intake structure would be restored with native plants after project completion.

If the NWI wetland areas identified at the site are an accurate characterization of actual wetlands present, then wetland impacts would be anticipated. The portion of the NWI wetland on the site is approximately 89 acres. Placement of the intake, discharge and groundwater well pipelines within the NWI wetland would result in temporary wetland impacts (approximately 45,000 square feet [sq ft] [1.0 acres]). Construction of the pump station, well, and intake structure would result in permanent wetland impacts (approximately 1,075 sq ft [0.03 acres]). Wetland
habitat that would be impacted would include the riverine wetlands associated with the Wenatchee River containing quaking aspen, western redcedar, mountain alder, red osier dogwood, willows, Douglas spirea, and clover (Trifolium sp.).

Wetlands would be delineated to determine the exact extent of wetland habitat in construction areas.

3.9.3.6 Combined Impacts

Table 3-33 shows temporary and permanent impacts to wetlands at sites in the two basins.

<table>
<thead>
<tr>
<th></th>
<th>Temporary Impacts</th>
<th>Permanent Impacts</th>
<th>Construction of New Wetland Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenatchee sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary acclimation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheibler</td>
<td>3,049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary hatchery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryden</td>
<td></td>
<td></td>
<td>52,272</td>
</tr>
<tr>
<td>Backup hatchery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>George</td>
<td>45,000</td>
<td>1,075</td>
<td></td>
</tr>
<tr>
<td>Methow sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary acclimation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twisp Weir</td>
<td>1,350</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Backup acclimation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utley</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSRF Chewuch</td>
<td>undetermined</td>
<td>undetermined</td>
<td></td>
</tr>
<tr>
<td>Total wetland impacts primary sites</td>
<td>1,350</td>
<td>3,179</td>
<td>52,272</td>
</tr>
<tr>
<td>Total wetland impacts backup sites</td>
<td>45,150</td>
<td>1,075</td>
<td></td>
</tr>
</tbody>
</table>

The kinds of facilities that cause the impacts are summarized below.

Intakes. New surface water intakes are proposed at several sites. The intakes would be built into stream banks and have the potential to permanently impact wetlands. At most of the sites, consultants did not identify wetland plants at proposed intake locations. Twisp Weir (primary acclimation site) and George (backup hatchery site) are exceptions; at those sites, intakes could impact wetlands.

Water channels. Several sites include water channels that connect new wells to existing streams. Near the streams, riparian vegetation may be impacted during the construction of these channels. These impacts could be mitigated to a certain degree if appropriate native wetland and riparian vegetation can be established in disturbed areas after construction is completed.

Groundwater wells. New groundwater wells are proposed for several sites. Wells at Twisp Weir and a well and pump station at George could permanently remove wetland vegetation.

Ponds. An existing pond at Scheibler would be expanded into wetlands. The deeper pond water would not qualify as wetland habitat so there would be a net loss of wetland area. Non-native reed canarygrass that currently borders the pond and is the dominant species in the wetland would be removed and replaced with native wetland plants along the new pond margins.
A new pond would be constructed in Minnow Creek. Consultants did not identify wetland plants in the area where the pond would be built. Pond construction would include the planting of wetland plants along the new pond margins.

New wetlands. The discharge treatment system proposed for the Dryden hatchery includes creation of a new wetland of about 1.2 acres for the purpose of removing nutrients from hatchery effluent.

3.9.4 Impacts of the No Action Alternative

There would be no adverse construction impacts to wetlands under the No Action Alternative because no new facilities would be constructed. No new wetland habitat would be created. Impacts of facility operations would be the same as under the current program, or less, depending on whether all current acclimation facilities are be used or if the number is reduced.

3.9.5 Mitigation for the Proposed Action

This section identifies measures designed to avoid, minimize, and mitigate potential impacts on wetlands and wetland buffers as a result of project implementation. Mitigation measures would be the same for all project sites.

- No development features such as buildings or paved surfaces are proposed in wetlands.
- Clearing and grading would be designed to avoid wetland areas to the greatest extent possible.
- Disturbed areas would be re-vegetated with native vegetation.
- Staging areas for construction would be located outside wetland buffers and re-vegetated with native vegetation as necessary.
- Construction permits issued to the project would include detailed measures for protecting wetland habitats. The conditions included in the permits would be met during construction.
3.10 Floodplains

3.10.1 Affected Environment

The climate of the Wenatchee and Methow basins is characterized by warm, dry summers and relatively cold winters. The average annual precipitation in the lower elevations is slightly more than 11 inches, increasing with elevation to about 35 inches. The bulk of this precipitation falls as snow, which reaches 100 inches or more in the upper watersheds. The Wenatchee and Methow rivers and other perennial streams follow an annual cycle, with peak stream flow in April and May and low stream flow in August and September. Normally, stream flow in many of the smaller drainages is seasonally intermittent, while drainages in lower elevations are often dry (Chelan County Department of Emergency Management 2006, Okanogan County Department of Emergency Management 2009).

Two types of flooding common in the basin are stage and flash flooding. Stage flooding is usually seen during periods of heavy rains, especially upon existing snow packs during early winter and late spring. Stage flooding problem areas occur along the Wenatchee River near its confluence with Icicle Creek, the headwaters of the Wenatchee River, and the confluence area of the Wenatchee River (Chelan County Department of Emergency Management 2006). Stage flooding problem areas occur along the Methow River, especially where the Twisp River and Chewuch River join (Okanogan County Department of Emergency Management 2009).

Flash floods are more likely during the summer months, in thunderstorm season. The primary cause of flash flooding, which can occur in any drainage in the project area, is high-intensity rainfall. Although infrequent, and usually of short duration, high-intensity rainfall has been seen in all seasons in the past. Depending upon the characteristics of a particular watershed, peak flows may be reached from less than one hour to several hours after rain begins. The debris flows and mudslides accompanying rapid runoff conditions make narrow canyons and alluvial fans at the mouths of the canyons extremely hazardous areas (Chelan County Department of Emergency Management 2006, Okanogan County Department of Emergency Management 2009). Currently in the Methow basin, flash flooding problem areas include drainages in the Methow/Twisp area that have experienced forest fires in the recent past (Okanogan County Department of Emergency Management 2009).

3.10.2 Types of Impact

Potential impacts to floodplains from construction and operation activities include:

- Obstruction of flood flows and alteration of local drainage patterns.
- Disposal of spoil materials, filling the floodplain.
- Pond creation or expansion, adding floodplain storage.
- Potential increase in flows due to discharge of groundwater.

The primary goal of floodplain management is to restrict non-compatible development in the floodplain to avoid repetitive losses. The Federal Emergency Management Agency (FEMA) delegates the responsibility of project review to the local regulatory agency through the National Flood Insurance Program. Both Chelan and Okanogan Counties prohibit development within the floodway, but do allow development in the floodplain outside the floodway, as long the proposed development does not increase water surface elevation of the base flood by more than 1 foot. Therefore, a project that would encroach into the floodway and increase the base flood elevation (BFE) or that would encroach upon the floodplain and increase the BFE by more than 1 foot...
would be determined to have a significant impact on flooding. A project that reduced the BFE would have a beneficial effect on flooding.

3.10.3 Impacts of the Proposed Action

Implementation of the Proposed Action would probably have little or no effect on flood elevations. Where there is an effect, it is likely to be beneficial, as the new or expanded acclimation ponds would provide some small amount of additional floodplain storage (difference between the existing land surface elevation and the working water surface elevation). The spoil materials created by construction activities such as excavation of ponds and ditches, grading of roads to improve winter access, or installation of buried water supply pipes would be disposed of outside the 100-year floodplain in accordance with the local grading and floodplain management ordinances. Consequently, there are not likely to be changes in grades that could direct or divert flood flows affecting properties either upstream or downstream of the individual project sites.

Site-specific impacts are discussed only for the primary and backup sites with substantial construction activities. Sites that require only minor improvements to existing ponds, access roads, or conveyance facilities are not expected to alter the potential for flooding at those sites and are therefore not discussed further. New wells, although providing additional flow through the acclimation sites, would withdraw water from shallow aquifers that are typically hydraulically connected to the adjacent creek or river. Therefore, there is no real gain or loss of water (see Section 3.6). Additionally, the well discharge would be very minor compared to flood flows (Section 3.6). Consequently, sites that require only flow augmentation from wells are not discussed further.

3.10.3.1 Wenatchee Acclimation and Hatchery Sites

Table 3-34 lists all the Wenatchee basin hatchery and acclimation sites, the floodplain development activities associated with each project, and the likely need for a floodplain development permit. Where the floodplain development permit process is required, a professional civil engineer would need to perform substantially more detailed analyses of floodplain impacts. These detailed floodplain analyses are not part of this impact evaluation and are beyond the scope of the EIS.

Surface water intakes proposed at the Tall Timber, Chikamin, and Dryden sites would be below grade and would match the existing contours of the river banks. They would be designed so they do not decrease flood storage volume and would not impede flow. Pipelines delivering water from these intakes would be buried and would have no impact on flood elevations. Site-specific discussions of sites requiring construction follow the table.
Table 3-34. Wenatchee acclimation and hatchery sites with development activities in floodplains

<table>
<thead>
<tr>
<th>Wenatchee River Basin, in Chelan County, Washington</th>
<th>Floodplain Development Permit Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Site</td>
<td>Activities in Floodplain</td>
</tr>
<tr>
<td>Butcher</td>
<td>Excavation of an open channel</td>
</tr>
<tr>
<td>Tall Timber</td>
<td>Excavation of Napeequa River bank and pipeline corridor</td>
</tr>
<tr>
<td>Chikamin</td>
<td>Excavation of a pond, Chikamin Creek bank, open channel, and pipeline corridor</td>
</tr>
<tr>
<td>Minnow</td>
<td>Excavation of bed and banks of Minnow Creek</td>
</tr>
<tr>
<td>Scheibler</td>
<td>Excavation of bed and bank of Chumstick Creek</td>
</tr>
<tr>
<td>Coulter</td>
<td>None</td>
</tr>
<tr>
<td>Rohlfing</td>
<td>None</td>
</tr>
<tr>
<td>White River Springs</td>
<td>None</td>
</tr>
<tr>
<td>Dirty Face</td>
<td>None</td>
</tr>
<tr>
<td>Two Rivers</td>
<td>None</td>
</tr>
<tr>
<td>Clear</td>
<td>None</td>
</tr>
<tr>
<td>Beaver</td>
<td>None</td>
</tr>
<tr>
<td>Brender</td>
<td>None</td>
</tr>
<tr>
<td>Leavenworth NFH</td>
<td>None</td>
</tr>
<tr>
<td>Dryden Hatchery</td>
<td>Possible development of water quality treatment wetlands</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Backup Site</th>
<th>Activities in Floodplain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen</td>
<td>None</td>
</tr>
<tr>
<td>Coulter/Roaring</td>
<td>None</td>
</tr>
<tr>
<td>McComas</td>
<td>None</td>
</tr>
<tr>
<td>Squadroni</td>
<td>Excavation of pond and open channels</td>
</tr>
<tr>
<td>George Hatchery</td>
<td>Excavation and construction of fish hatchery facilities</td>
</tr>
</tbody>
</table>

Primary Acclimation Sites

Butcher

A new well and rock-lined channel are proposed for the site. Although the site is within the 100-year floodplain (Zone AH), it appears that the source of flooding is backwater from Nason Creek rather than Butcher Creek. Construction or operation of the well and associated facilities would have no effect on flooding.

Tall Timber

The Tall Timber site is located on the unmapped section of the Napeequa River near its confluence with the White River. Although FEMA has designated a special flood hazard area along the White River (Zone A), the project site is located outside the special flood hazard area. The Tall Timber acclimation site would require a river intake and pipeline delivering water to an existing disconnected side channel. An 800-foot-long water supply pipeline from the intake to the side channel would be buried. An existing culvert would convey water from the side channel back to the river. Because the pipeline would be buried, it is expected that there would be no effect on flooding. Floodwater elevations in the stream reach between the intake and the outlet of the acclimation diversion may be slightly reduced due to the withdrawal of water from the main channel.
Chikamin

Construction of an acclimation pond at the Chikamin site would require excavation of approximately 1,370 cubic yards of material. An intake would be constructed on the bank of Chikamin Creek and a 200-foot-long water supply pipeline from the intake to the pond would be buried. A rock-lined open channel, 100 feet long and 5 feet wide, would be constructed to convey water from the pond back to the creek. The Chikamin site is not located in a FEMA mapped flood hazard area, but is likely in the 100-year floodplain of Chikamin Creek. The construction of a pond would likely lower flood elevations a small amount due the removal of excavated soils from the floodplain. Overall, the project would have little effect on flooding.

Minnow

Construction of an acclimation pond at the Minnow site would require excavation of approximately 1,370 cubic yards of material from the bed and banks of Minnow Creek, essentially widening and deepening the channel. The Minnow site is not located in a FEMA mapped flood hazard area but is in the 100-year floodplain and floodway of Minnow Creek. During a flood, the flows would be essentially the same because there is not a substantial amount of active storage in the pond. Consequently, there may be very small reduction in flooding and no change to the floodway.

Scheibler

An impoundment was built in the Chumstick Creek channel forming a pond. Project construction would include excavating 350 cubic yards of material and enlarging the existing pond. Material excavated from the pond would be spread at approved areas, outside the floodplain. The site is located on Chumstick Creek floodplain in an area that has not been studied by FEMA. Furthermore, FEMA has not produced a flood hazard map of this reach. Because the construction is limited to excavation and the spoils would be disposed of outside the floodplain, the project may reduce flooding slightly along Chumstick Creek.

Backup Acclimation Sites

Squadroni

To construct the Squadroni acclimation pond, 1,200 cubic yards of material would be excavated. The seasonal flow from an existing ditch would contribute surface water, and a well would be constructed to supply additional water. Water from the well would be delivered through a 50-foot-long, rock-lined, open channel. A 20-foot-long discharge channel would return water from the pond to the ditch prior to discharge to Nason Creek. Spoil materials would be removed from the site for disposal outside the floodplain. Although the pond would provide some additional floodplain storage, the volume is very small compared to the flood flows. Consequently, the project may slightly reduce flooding on Nason Creek.

Hatchery Sites

Dryden

The Dryden hatchery would require excavations to create rearing ponds, raceways, a hatchery building, wells, and an effluent treatment system. These excavations would occur outside the flood hazard area. A flood study of the site was completed (Anchor QEA, 2009) and 100-year flood boundaries were mapped. They are shown in Figure 2-9 in Chapter 2. Some construction could occur in the floodplain if wetlands are built to treat hatchery discharges. Treatment...
systems have not yet been designed but if constructed wetlands are used, they would be built at existing grade and would not impact flood elevations.

Approximately 2,050 cubic yards of material is proposed to be removed from areas outside the floodplain. Material disposal areas have not yet been located but they would be in approved locations that meet grading permit conditions and minimize potential for floodplain fill. Consequently, there would be no effect on flooding.

George

The George hatchery would require grading to create rearing ponds, raceways, a hatchery building, parking areas, backup generator station, and an effluent treatment system. The hatchery facilities would require a permanent footprint of 1.5 acres. Including pipelines, water supply construction, and hatchery facilities, a total of 2.5 acres of land would be disturbed during construction.

Permanent hatchery facilities would be located outside the limits of the 100-year floodplain boundary. As this is a backup site, detailed engineering studies have not been completed. Because the project is near the edge of the floodplain, at an elevation similar to the BFE, it is not expected that the project would measurably obstruct flood flows or reduce floodplain storage. Development of the site would have not have a substantial adverse effect on flooding.

3.10.3.2 Methow Acclimation Sites

Table 3-35 lists all the Methow basin acclimation sites, the floodplain development activities associated with each site, and the likely need for a floodplain development permit. Where the permit process is required, a more detailed analysis of floodplain impacts would need to be performed by a professional civil engineer. These detailed floodplain analyses are not part of this impact evaluation and are beyond the scope of the EIS.

Primary Sites

MSWA Eightmile

The MSWA Eightmile site is located in an abandoned side channel of the Chewuch River, just upstream of the mouth of Eightmile Creek. Construction would include a well and a 100-foot long, 5-foot wide, rock-lined, open channel that would deliver water from the well to the side channel. FEMA has not mapped a special flood hazard zone near the site. There would be no effect on flooding.

Twisp Weir

Proposed construction at the Twisp Weir site would include a 140-foot long, 50-foot wide, 3.5-foot deep, constructed earthen pond occupying approximately 0.2 acres. Because the pond would be below existing grade and material would be removed and disposed of outside the floodplain, there would be no effect on flooding.

Gold

The Gold site consists of several existing ponds located adjacent to Gold Creek. Construction activities would involve removing some accumulated sediment from the ponds to restore water depths adequate for acclimation. Excavated materials would be disposed of outside the floodplain in accordance with grading permits. The project site is not within a FEMA-mapped
special flood hazard area. The proposed construction would not alter the diversions from Gold Creek. Consequently, there would be no effect on flooding.

Table 3-35. Methow acclimation sites with development activities in floodplains

<table>
<thead>
<tr>
<th>Primary Site</th>
<th>Activities in Floodplain</th>
<th>Floodplain Development Permit Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSWA Eightmile</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Mason</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Twisp Weir</td>
<td>Excavation of pond and pipeline corridor</td>
<td>Yes</td>
</tr>
<tr>
<td>Gold</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Goat Wall</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Pete Creek Pond</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Heath</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Parmley</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Lower Twisp</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Hancock</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Winthrop NFH</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Backup Site</th>
<th>Activities in Floodplain</th>
<th>Floodplain Development Permit Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSRF Chewuch</td>
<td>Excavation of a pond and open channels</td>
<td>Yes</td>
</tr>
<tr>
<td>Chewuch AF</td>
<td>Excavation of the Chewuch River bank, pond and pipeline corridors</td>
<td>Yes</td>
</tr>
<tr>
<td>Utley</td>
<td>Excavation of outlet channel to the Twisp River</td>
<td>Yes</td>
</tr>
<tr>
<td>Newby</td>
<td>Excavation of pond and pipeline corridors</td>
<td>Yes</td>
</tr>
<tr>
<td>Poorman</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Biddle</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Balky Hill</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>

Backup Sites

MSRF Chewuch

Acclimation pond construction would include the excavation of approximately 890 cubic yards of material. A well would also be constructed. Rock-lined, open channels, a total of 320 feet long and 5 feet wide, would be constructed from the well to the pond and from the pond to the Chewuch River. FEMA designated a special flood hazard area (Zone A5) along the Chewuch River in the vicinity of the project, but the project is outside the flood hazard area. There would be a minor increase in floodplain storage capacity and potentially a slight reduction in flood elevations due to pond construction.

Chewuch AF

Acclimation pond construction would include the excavation of approximately 975 cubic yards of material. Water would be diverted from the Chewuch River. Water delivery pipelines with fish screens would also be constructed. The Chewuch AF site is located in the FEMA mapped flood hazard area (A3). Excavated materials would be removed from the site and disposed of in an upland location outside of the floodplain in accordance with local floodplain management ordinance requirements. Consequently, there would a minor increase in floodplain storage capacity and potentially a slight reduction in flood elevations due to pond construction.
Utley

An 80-foot long, 3-foot wide channel from an existing pond to the Twisp River is proposed to allow acclimated smolts a route to the river. The pond and the proposed channel are within the special flood hazard area. Because excavated materials would be disposed of outside the floodplain, there would be no effect on flooding.

Newby

A 140-foot long, 50-foot wide, 3.5-foot deep earthen bottom pond and an intake on Newby Creek are proposed for the site. Buried water delivery pipelines from the intake to the pond and from the pond back to the Twisp River would also be constructed. The construction activities would be within the special flood hazard area along the Twisp River. Because excavated materials would be disposed of outside the floodplain there would be no effect on flooding.

3.10.3.3 Combined Impacts

The total amount of ground disturbed in floodplains during construction of all the primary sites is proposed to be less than 5 acres for new and expanded ponds, water delivery channels, and other facilities as described in Appendices 1, 2, and 3. The pond excavations would remove material from floodplains, slightly increasing floodplain storage capacity and potentially decreasing flood elevations.

Proposed clearing and grading during construction is limited to small areas relative to total floodplain areas. At each site, impacts to flooding would be avoided or compensatory floodplain storage would be created to offset facilities located above ground in the floodplain.

Overall, the combined effects to flooding due to proposed construction and operation of acclimation and hatchery sites are not considered to be a significant impact because the sites individually have negligible or no effect.

3.10.4 Impacts of the No Action Alternative

No Action would cause no impacts to floodplains because no new sites would be constructed.

3.10.5 Mitigation for the Proposed Action

Measures that would be implemented to minimize potential impacts to flooding include:

- Compensatory storage incorporated in the project design where aboveground facilities are located within the floodplain.
- Spoil materials removed and disposed in uplands or at offsite locations outside of the floodplain.
- Infrastructure buried below grade, not in elevated road prisms, preventing diversion or rerouting of floodwaters.
- Using as many existing ponds as possible for fish acclimation and release.
3.11 Visual Quality and Recreation

3.11.1 Visual Quality

The construction of a new small hatchery in the Wenatchee basin has the potential to alter the visual environment of the surrounding area. Both the primary and backup facility locations are included in this assessment. Proposed acclimation sites (including existing, expansion of existing, and construction of new) are small-scale ponds without significant structures such as buildings. Development or modification of these sites would not constitute a significant or noticeable change in the visual character of the area. Therefore, proposed acclimation sites would not have an impact on aesthetic quality and are not included in this analysis.

3.11.1.1 Affected Environment

The visual impact analysis included two areas in the Wenatchee basin. The Dryden site is the preferred (primary) location for a small, new incubation and rearing facility on the Wenatchee River (RM 18.6) at the mouth of Peshastin Creek. In the event construction at Dryden is infeasible, the George site is proposed as an alternative (backup) location on the Wenatchee River (RM 51.6) just downstream of Lake Wenatchee. Both sites are located in primarily rural areas in the Wenatchee watershed (see Chapter 2 and Appendix 1 for details).

3.11.1.2 Types of Impact

The level of impact to scenic or visual quality is determined by the number of viewer groups affected, the presence of scenic resources, the magnitude of change from the existing condition, and sensitivity of viewers to changes.

For purposes of this EIS, the intensity of impacts to visual resources is categorized as follows:

- **Minor**: Impacts to visual quality would attract attention, but would not dominate the view or detract from current user experience.

- **Moderate**: Impacts to visual quality would attract attention and be noticeable in the viewscape. User experience would be negatively affected locally and for a brief period.

- **Major**: Impacts would result in changes to the characteristic landscape that would dominate the viewscape. The majority of the user’s experience in the area would be negatively affected by the change in the viewscape.

3.11.1.3 Impacts of Proposed Action

Dryden Study Area (Primary)

The Dryden study area encompasses lands and waterways within view of a new small hatchery on the right (west) bank of the Wenatchee River, just upstream of the Dryden Dam (Figure 3-6). The 24-acre parcel currently is owned by the Washington State Department of Transportation (WSDOT) and was used as a gravel pit and stockpile site from 1961 to 2008 when it was declared surplus property. The parcel has no buildings or structures and has been significantly modified from its natural state by over 40 years of WSDOT activities. Most of the parcel that would be affected by construction of the facility is currently covered in varying amounts of gravel and sand, and there is little or no vegetation. The topography of the parcel is relatively flat and sits at an elevation of 984 feet.
The proposed new hatchery would modify up to four acres of the parcel. The facility would consist of a one-story building of about 3,000 square feet, parking for up to ten vehicles, four concrete raceways, two ponds, a two-acre constructed wetland for water treatment, and water supply pipelines (both above-ground and buried). Viewer groups that might be affected by the change to the site include boaters, fishers and other visitors who use these reaches of the Wenatchee River and Peshastin Creek; surrounding landowners and orchard workers; gun club visitors; and train riders.

View 1 – East of Dryden:

The parcel is bordered to the east by the Wenatchee River and steep terrain that quickly ascends from the river banks to an elevation of 1,400 feet. Boaters and recreationists on the Wenatchee River would potentially have a view of the proposed facility. Existing evergreen trees and other vegetation along the shoreline would block or significantly limit most lines of sight between the river and the facility, particularly during the busy summer season when deciduous vegetation is fully leafed. Along the east bank of the Wenatchee River, railroad tracks run along the base of the ridge and are used by a variety of railway companies, including Amtrak’s Empire Builder route that currently passes the parcel twice a day—one between 5:00 a.m. and 6:00 a.m., and again between 8:00 p.m. and 9:00 p.m. Views of the facility from the trains would be partially limited by shoreline vegetation, daylight, and train speed, but brief unobstructed glimpses of the facility during the summer months would be possible. East of the railroad tracks, land that would be within view of the facility is largely undeveloped, with some orchards near the top of the ridge and to the southeast. There is one house in an orchard to the southeast at an elevation of approximately 1,100 feet that would have a year-round view of the facility. There are no public roads or trails on this side of the river that are within view of the study area.
View 2 – South of Dryden:

Areas in the southern portion of the Dryden study area include an unimproved pull-out site for rafters and kayakers for portaging around Dryden Dam, a gravel access road to the pull-out, and orchards. The boater pull-out is located adjacent to the southeast boundary of the parcel; users would have a partial view of the facility. Existing evergreen trees and other vegetation along the shoreline would block or significantly limit most lines of sight between the pull-out and the facility, particularly during the busy summer season when deciduous vegetation is fully leafed. Users of the gravel access road would travel along the southern perimeter of the parcel and would have unobstructed views of the entire facility. To the immediate south of the access road, elevation gradually increases to a bluff (approximately 1,050 feet) that is lined with evergreen trees and other vegetation. Beyond the vegetation is an orchard, portions of which would have a view of the Dryden facility. Views from these vantage points within the orchard would be limited or blocked by vegetation during much of the year.

View 3 – West of Dryden:

Areas in the western portion of the Dryden study area include orchards, houses and outbuildings, the Dryden Gun Club, and a section of Peshastin Creek. Views of the facility from the southwest would potentially be possible from parts of an orchard near the bluff edge and from the far edge of the gun club target range. These vantage points are privately owned and are not expected to be visited frequently, and views would be blocked or limited by vegetation much of the year. The house and outbuilding in the orchard, as well as the Dryden Gun Club clubhouse, parking lot, and shooting area, would not have a view of the facility at any time. Boaters and recreationists in and along the section of Peshastin Creek to the west of the parcel may have partial views of the one-story building. However, the vast majority of people who visit Peshastin Creek do so in the summer months when the potential for views of the facility would be blocked or significantly limited due to seasonal vegetation. Views of the facility from the northwest would be possible from one house and outbuilding in an orchard, primarily during the winter months when the trees are not leafed out.

View 4 – North of Dryden:

The study area to the north of the Dryden facility included the lower section and mouth of Peshastin Creek where it flows into the Wenatchee River and orchards on the opposite side of the creek. Boaters and other visitors to this section of Peshastin Creek may have views of the facility, though many lines of sight would be blocked or limited by vegetation. Some areas along the shoreline, particularly near the mouth of the creek, may have year-round views of parts of the facility. The orchards on the opposite side of the creek would have partial views of the facility from a few vantage points, primarily during the winter months when the trees are not leafed out.

Construction Impacts

Construction-related activities, including heavy equipment operation, clearing and grading, material stockpiles, and worker presence, would be visible from all identified viewpoints at Dryden throughout construction of the facility. Construction at Dryden would attract attention of sensitive viewers and alter the existing viewscape from those viewpoints. Sensitive viewers would experience a negative effect locally from construction activities; however, this effect would occur for a relatively brief period of 5 months until construction is completed.
Many of the viewpoints of the Dryden facility are blocked or limited by existing vegetation surrounding the site (see descriptions above). This vegetation would not be removed and would restrict the view of the site during construction. Therefore, construction of a new hatchery at the Dryden location would constitute a short-term moderate adverse impact to visual quality.

Operations Impacts

The Dryden facility would replace an existing gravel pit and stockpile site, and would be visible from the viewpoints identified above. The facility would be operated year-round. The new one-story building would be the most prominent feature of the facility and would be designed to reduce the contrast with the surrounding landscape (natural materials, neutral colors, etc.). The raceways, ponds and water supply system would be relatively low-profile and would have much less potential to be seen from the viewpoints, particularly during months when vegetation and trees are fully leafed. The constructed two-acre wetland would be designed to closely resemble a natural wetland environment and would likely be viewed as a significant improvement over existing conditions. Furthermore, the established wetland would eventually support vegetation that would contribute to the screening of the building and facilities from most viewpoints.

Considering that the existing condition of the Dryden site is significantly modified from its natural state, it is reasonably likely that construction of the new facility would reduce the contrast of the site with the surrounding area and add to the aesthetic appeal for viewers. Therefore, changes to the viewscape due to operation of the Dryden facility would represent a long-term minor beneficial impact to visual quality.

George Study Area (Backup)

The George study area encompasses lands and waterways within view of a new incubation and rearing facility that would be constructed if the primary location at Dryden is infeasible. The 150-acre parcel is approximately two miles downstream from Lake Wenatchee (the source of the Wenatchee River) and is at an elevation of 1,870 feet. The parcel was logged in the past and is currently privately owned and undeveloped. A few primitive, unimproved old logging roads provide limited access to the site. There are no public roads, trails, or sites near the area, and there are no homes within view of the proposed construction site.

The new incubation and rearing facility would modify up to 2.5 acres of the parcel. The facility would consist of a one-story building, parking for up to ten vehicles, four concrete raceways, two ponds, and water supply pipelines (both above-ground and buried). The facility would be constructed in the forest approximately ¼ mile from the river and out of view of anyone on or along the river. A concrete water intake structure installed in the river would be visible below the water surface. The water delivery pipeline would be buried and not visible between the intake and the hatchery. A small pump station would be located in the forest approximately 50 feet from the intake and may be visible through the trees from the river or the shoreline.

The only viewers who might be affected by the change to the site are boaters who use this reach of the Wenatchee River. Much of the upper Wenatchee River corridor is part of the Wenatchee National Forest; there are launch sites for rafts, kayaks and canoes approximately two miles upstream of the George site. The next access point for boaters is an unimproved site approximately ten miles downstream of the site. Considering the long stretch of river between launch and pull-out points, and that the reach adjacent to the proposed facility is inaccessible by
any other means, there would be few potential viewers and they would be in the area for only a brief time as they move downstream.

Construction and Operation Impacts

The duration of construction within view of river users would be extremely short (days) and would require little to no disturbance to the surrounding areas. Due to the very low magnitude of change in visibility of the site and the infrequent and very low number of viewers, it is reasonably certain that construction and operation of the George facility would have an insignificant effect on the aesthetic quality of the area.

3.11.1.4 Impacts of the No Action Alternative

The No Action Alternative would require no new facilities, ground-disturbing activities, or alteration of the Dryden or George sites. The sites would remain in their current state, and views at each site would be unaffected by this alternative. No direct or indirect effects to aesthetic quality would result from the No Action Alternative.

3.11.1.5 Mitigation for the Proposed Action

To avoid, minimize, or mitigate potential impacts to visual quality, areas of disturbance would be minimized to the greatest extent possible. Upon completion of facility construction, all disturbed areas would be seeded with native grasses or planted with native vegetation, where appropriate.

3.11.2 Recreation

Recreational resources in the Wenatchee and Methow basins could potentially be impacted by project construction and operation activities. Proposed project sites where construction would occur and/or where there would be a change in operations from the current conditions were evaluated for proximity to recreational areas (e.g., campgrounds, trails, rivers, resorts). Sites were not included in the analysis if there were no nearby recreational resources that could be affected by project activities or if there was no potential for impact (i.e., no construction and no change from existing operating conditions).

3.11.2.1 Affected Environment

Of the 39 primary and backup sites proposed as part of the project, a total of 11 would be located in areas that are near or adjacent to existing recreational resources. Two of those sites would have no potential for impact (no construction and no change in operations from the current conditions) and are not included in the analysis. Therefore, the recreational impact analysis focuses on the construction and operation of one proposed new incubation and rearing facility at Dryden and eight new or expanded acclimation sites.

The Dryden study area is the same as described in the visual impacts analysis. Recreation in the Dryden study area largely centers on the Wenatchee River and Peshastin Creek. The Dryden Gun Club to the south of the facility is also included in the analysis.

The study areas for the eight acclimation sites included three sites in the Wenatchee basin and five in the Methow basin. Three of the sites would not require construction, and potential impacts would solely be the result of a change in operations activities from current conditions.

Figures 2-7 and 2-8 in Chapter 2 show the locations of project sites in each basin. Large-scale maps of each proposed and backup site can be found in Appendix 4.
3.11.2.2 Types of Impact

The impacts to recreation are determined by the presence of recreational resources, the number of affected recreational groups, the magnitude of change from the existing condition, and the sensitivity of area recreationists. Each level of impact is defined as follows:

Minor: Impact would be detectable and/or would only affect some recreational users. Changes in access would be slight but detectable; however, use would not be affected.

Moderate: Impact would be readily apparent and would affect many recreational users. Users would be aware of the effects associated with proposed changes and access and user experience would noticeably change.

Major: Impact would affect a majority of recreational users. Users would be highly aware of the effects associated with proposed changes. Recreational user experience would noticeably change.

3.11.2.3 Impacts of the Proposed Action

Dryden (Primary Hatchery Site)

A variety of users visit the Dryden study area year-round for boating, fishing, and other river related types of recreation. The 17-mile reach of the Wenatchee River from Leavenworth to Cashmere (river mile 27 to 10) has an overall gradient of 0.4% with multiple class-2 and class-3 rapids, making it ideal for commercial and recreational rafting and kayaking. As a result, this reach has the most access points on the river, including improved pull-out and launch sites at Leavenworth and Cashmere and several unimproved sites throughout the reach. There are also several parking and walk-in easements for sport fishing access.

All boaters traveling downstream must pull out above Dryden Dam (adjacent to the southern boundary of the new facility location) and re-launch just downstream of the dam. The pull-out area is also accessible by a gravel road that leads west to Highway 2 (via Saunders Road). A section of the gravel access road would be within the boundaries of the southern portion of the facility property.

The Dryden Gun Club is located on Saunders Road off of Highway 2 and provides a recreational shooting range and target practice area for hunters, marksmen and other gun enthusiasts. The clubhouse and lot are also often used for a variety of public and private functions, including weddings, picnics, family reunions and conventions.

Construction

Recreational resources near the Dryden site could be temporarily affected during construction of the facility. Construction would have no direct impacts to users of the boaters’ pull-out or other recreationists in the area; neither the pull-out nor the access road would be modified as part of the proposed project, and full access to the sites would be maintained for all users. Boaters, fishers, gun club visitors, and other recreationists who use Saunders Road and the gravel access road could be temporarily affected by the intermittent presence of construction vehicles and equipment. This temporary increase in traffic congestion may on occasion briefly delay travel along the roads due to slow-moving construction vehicles and equipment, and might also increase noise and dust in the immediate areas along the roads. Intermittent noise associated with the construction of the facility might also be heard by visitors to the area, but would be
limited primarily to the immediate area surrounding the facility (e.g., the gravel access road) and would not be expected to significantly affect the experience of recreationists.

All traffic, noise and other construction-related impacts to recreationists in the area would be temporary in duration (up to five months), intermittent, low in magnitude and limited to normal workday hours (8:00 a.m. to 5:00 p.m., Monday through Friday). Though daily use of the area by recreationists could occur, it is expected that recreational activity peaks on the weekends when there would be no construction at the facility and no potential for impact. Therefore, it is reasonably certain that construction of the Dryden facility would have a short-term, minor adverse effect on recreational resources.

Operation

Operation of the Dryden facility would minimally affect recreational users in the area, if at all. Facility operations would have no direct impacts to users of the boat pull-out or other river recreationists in the area. Gun club members’ use of the shooting range would not be affected by the presence of the hatchery facility and staff. The proposed new facility is accessible only from Saunders Road, so visitors to the area might notice occasional traffic of project vehicles. Hatchery vehicles would primarily be standard-sized pick-ups and, infrequently, larger fish-transport trucks. Traffic would occur daily, year-round, and would be noticeable but would not affect other users of local roads or the experience of visitors to the area.

Noise associated with facility operations would be maintained within state-approved environmental noise regulations (WAC Chapter 173-60 of the Noise Control Act of 1974) by installing all pumps and generators in sound-enclosures. It is reasonably certain that noise due to operations activities would not be detectable beyond the facility property and would not impact recreational visitors.

Potential impacts due to operations activities would likely be low in magnitude and would not affect access to recreation or the experience of recreational visitors; therefore, operations activities at the Dryden facility would have, at most, a minor adverse effect on area recreation.

Acclimation Sites

Table 3-36 lists the eight acclimation sites (four primary and four backup) where proposed construction and/or new use of the site as an acclimation facility could affect nearby recreational resources. All eight sites would have operations activities that are different from current conditions. A few existing, currently operating acclimation sites are on recreational property, but because no new construction is required, the proposed project would not affect them differently. In addition to the 8 sites, several others are on property with homes used for vacation homes.

Construction

Construction at five acclimation sites with nearby recreational resources could temporarily affect residents and visitors. The level of construction would vary between sites, and could include the construction of a new pond, the expansion of an existing pond, the installation of a new well, and/or the installation of a new or expanded water delivery system. The duration of construction activity would be from 1 to 60 days at each site, and would be limited to normal weekday work hours of 8:00 a.m. to 5:00 p.m., Monday through Friday. Recreational visitors to the area during the construction periods could notice intermittent increases in noise due to construction activity, but the magnitude of impact is likely to be low, temporary and brief, and is not expected to affect
users’ experience of the area. Therefore, it is reasonably certain that construction activities at the acclimation sites would have a short-term, minor adverse effect on recreation.

<table>
<thead>
<tr>
<th>Basin</th>
<th>Primary or Backup</th>
<th>Site Name</th>
<th>Nearby Recreational Resources</th>
<th>Construction / Operation</th>
<th>Generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wen</td>
<td>P</td>
<td>Tall Timber</td>
<td>Tall Timber Ranch church camp</td>
<td>new H₂O delivery system / new acclimation</td>
<td>None</td>
</tr>
<tr>
<td>Wen</td>
<td>B</td>
<td>Allen</td>
<td>Valley Hi community recreation pond</td>
<td>no construction / new acclimation</td>
<td>None</td>
</tr>
<tr>
<td>Wen</td>
<td>B</td>
<td>Coulter / Roaring</td>
<td>habitat preservation; adjacent recreation property</td>
<td>no construction / new acclimation</td>
<td>None</td>
</tr>
<tr>
<td>Met</td>
<td>P</td>
<td>Gold</td>
<td>walking trails and benches</td>
<td>expand existing pond / new acclimation</td>
<td>None</td>
</tr>
<tr>
<td>Met</td>
<td>P</td>
<td>MSWA Eightmile</td>
<td>wildlife conservation and public recreation</td>
<td>new well and H₂O delivery system / new acclimation</td>
<td>Primary power March-April</td>
</tr>
<tr>
<td>Met</td>
<td>P</td>
<td>Pete Creek Pond</td>
<td>adjacent 9-hole golf course</td>
<td>no construction / new acclimation</td>
<td>None</td>
</tr>
<tr>
<td>Met</td>
<td>B</td>
<td>Chewuch AF</td>
<td>RV campground</td>
<td>new pond, well and H₂O delivery system / additional acclimation</td>
<td>None</td>
</tr>
<tr>
<td>Met</td>
<td>B</td>
<td>Newby</td>
<td>recreation property</td>
<td>new pond and H₂O delivery system / new acclimation</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 3-36. Recreational resources near proposed acclimation sites

Operation

Ongoing project activities during operation of eight acclimation sites could infrequently affect nearby recreational properties. Project staff would access the sites daily during the spring acclimation period of March through April; none of the sites with recreational facilities nearby is an overwinter site. Traffic associated with site operations would typically consist of one or two standard-size pick-ups. A large fish transport truck would visit each site once per year to transfer juvenile coho from the hatchery to the acclimation ponds. A generator is proposed to provide primary power at one site (MSWA Eightmile) during the entire six-week acclimation period, and would be contained within a sound-enclosure to minimize noise; all sound levels would be maintained within state guidelines for environmental noise and would not be detectable beyond the immediate area surrounding the enclosure.

Operations activities at eight acclimation sites could be detectable by recreationists in the area, but would likely be very low in magnitude and are not expected to affect access to recreation or the experience of recreational visitors. Therefore, operations activities at the sites would have a minor or negligible adverse effect on recreational resources in the area.

3.11.2.4 Impacts of the No Action Alternative

The No Action Alternative would require no new facilities, no ground-disturbing activities, and no modifications at any of the proposed sites. Recreational resources and users would be unaffected by this alternative.

3.11.2.5 Mitigation for the Proposed Action

To avoid or minimize impacts to recreational resources and users, all construction activity would be limited to normal workday hours of 8:00 a.m. to 5:00 p.m., Monday through Friday. Noise
associated with facility operations would be maintained within state-approved environmental noise regulations by installing all pumps and generators in sound-enclosures.

3.12 Socioeconomics

3.12.1 Affected Environment

The general area for socioeconomic effects includes Chelan and Okanogan counties. The acclimation sites in both basins are primarily rural and widely distributed in the upper portions of the Wenatchee and Methow watersheds. Cashmere, Peshastin and Leavenworth are the nearest towns to the Wenatchee acclimation sites. Twisp and Winthrop are the nearest towns to the acclimation sites in the Methow basin. Wenatchee is largest municipality in the area.

The per capita income of the area is low compared to Washington in general (Table 3-37). Although county unemployment rates are stable and comparable to the statewide average, they may be higher within the small communities (Washington State Data Book 2008) primarily due to changes in the viability of the tree fruit industry and agriculture in the area (B. Brammer, Crane & Crane, and E. Parisel, Brewster Heights Packing, personal communications, October 2005 as reported in Chief Joseph Hatchery Program EIS, BPA 2010). Employment opportunities are better in Wenatchee and East Wenatchee, which have more diversified economies.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Chelan Co.</th>
<th>Okanogan Co.</th>
<th>Washington</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Capita Income (2006)</td>
<td>$29,657</td>
<td>$25,850</td>
<td>$38,067</td>
</tr>
<tr>
<td>Employment (2008)</td>
<td>36,230</td>
<td>16,930</td>
<td>3,200,000</td>
</tr>
<tr>
<td>Unemployment Rate (2010)</td>
<td>7.7%</td>
<td>9.1%</td>
<td>9.1%</td>
</tr>
</tbody>
</table>

3.12.2 Impacts of the Proposed Action

3.12.2.1 Construction Effects

Costs

Capital costs include land purchase, facility construction, and equipment that is considered an integral part of the program. The total future estimated project capital cost is $6,730,000. Of this total, $4.5 million is programmed for the construction of the proposed Dryden hatchery, and $2.2 million for construction at the acclimation sites. Included in these amounts are $1.2 million for land purchase. All the capital costs are expected to be incurred in 2012, one year before facilities for the Natural Production Implementation Phase need to be operational.

Existing hatcheries that have no associated capital cost would provide the bulk of pre-smolt production. The new incubation and rearing facility proposed at the Dryden site (or George, the backup site) would require land purchase, water supply development, and facility construction.

Like other aspects of the proposed program, acclimation also relies on existing sites with little capital cost. Land purchase is not expected at acclimation sites; they are on private land where lease agreements would be developed. Acclimation site capital costs include construction
activities for pond development, site facilities and water supply development at the proposed primary acclimation sites.

Population Size

Permanent human population changes are not expected from project construction. The local population may increase temporarily by a small number if a few construction workers from outside the area seek temporary accommodations rather than returning to their own homes.

Employment

Construction would provide short-term employment opportunities for local and non-local labor, based on the location of the prime and sub-contractors and the need for skilled and general laborers. Expenditures for labor, materials, and services would likely occur within the local area and throughout the State of Washington primarily at the contractor’s discretion, with corresponding employment and income impacts. The number of local residents who may be employed during construction is not predictable, but the construction work force would likely range from about 3 to up to 15 full- and part-time positions at one time depending on the construction phase.

Infrastructure

The Proposed Action would place minimal demands on local utility and municipal services for transportation, power, and telephone/computer connections. Population impacts resulting from project construction and operation would not require an investment in new local services beyond those already planned for general development. The project would require no new services. Temporary increase in local demand for retail goods and services (e.g., fuel, groceries, personal supplies, and restaurants) is likely during construction but would not exceed current capacity.

3.12.2.2 Operations Effects

Costs

Operating costs for the Proposed Action (all program components), including labor, supplies, leases, travel, hardware, etc., would taper from about $4.2 million during the first year of operation to about $2.2 million in 2027 at the end of the program. Project costs are a tiny fraction of BPA’s total budget and would not directly or indirectly increase electricity rates.

Employment and Income

Operation of the proposed rearing and incubation facility and the acclimation ponds would require a workforce of about 10 to 12 full-time and part-time positions. Most of these positions would be filled by Yakama Nation staff already involved in the current program. Approximately 6 new hires (3 full-time and 3 part-time) would be required. Even assuming each employee has additional family members, the effect of the increase in local population on area infrastructure is expected to be negligible. Potential population growth related to any improved salmon-related recreational opportunities is also expected to be negligible.

The Proposed Action, although not a commercial operation, could help establish tribal commercial fisheries and non-tribal commercial and recreational fisheries that would have economic value. There would be in-basin tribal and non-tribal recreational fisheries; tribal commercial fisheries in the mainstem Columbia River Zone 6 (Bonneville Dam to McNary Dam); non-tribal commercial and recreational fisheries below Bonneville Dam in the mainstem.
Columbia; and non-tribal commercial and recreational ocean fisheries. Although the amount is not known and harvest seasons/quotas would be determined in federally recognized harvest forums, the fisheries would generate recreational expenditures and income throughout the region.

Cultural Benefits

Restoration of coho has been a long standing goal of the Columbia River Tribes, as expressed in *Wy-Kan-Ush-Mi Wa-Kish-Wit* (CRITFC 1995). This plan was developed by the four Columbia River Treaty Tribes (Nez Perce, Umatilla, Warm Springs, and Yakama). It is a comprehensive plan put forward by the Tribes to restore anadromous fishes to rivers and streams that support the historical cultural and economic practices of the tribes. The Proposed Action has the potential to enhance the culturally significant tribal ceremonial and subsistence fishery for coho salmon in the Wenatchee and Methow rivers and in the Columbia River below McNary Dam.

3.12.3 Impacts of the No Action Alternative

Under the No Action Alternative, no construction would occur, and the program would decrease from its current size. If the program were to be converted to a segregated hatchery program, its sole purpose would be for harvest, so that benefit could occur under this alternative. However, no other social or economic benefits would accrue; and Yakama Nation employment likely would be reduced by at least 11 full-time positions and up to 10 seasonal positions (3 months each spring and fall), half of which are filled by tribal members.

3.12.4 Mitigation for the Proposed Action

Because the impacts of the Proposed Action have primarily beneficial socioeconomic impacts, no mitigation measures are proposed.

3.13 Cultural Resources

3.13.1 Affected Environment

Cultural resources include prehistoric and historic archaeological sites, historic structures, and traditional cultural properties (places that may or may not have human alterations, but are important to the cultural identity of a community or Indian tribe). Laws and regulations protecting cultural resources are described in Chapter 4, Section 4.4).

Staff from BPA’s cultural resources consultant, Historical Research Associates (HRA), reviewed the Washington Department of Archaeology and Historic Preservation's (DAHP) online database for archaeological site records, cultural resource survey reports, cemetery records, Historic Property Inventory (HPI) forms, and nominations to the National Register of Historic Places (NRHP) and Washington Heritage Register (WHR). DAHP's statewide predictive model was analyzed for probability estimates for prehistoric cultural resources, and to aid in developing the field strategy. Relevant environmental, archaeological, ethno-historic, and historical reports at the Spokane Public Library's Northwest Room were also reviewed. In addition, HRA research staff examined General Land Office (GLO) plats available online through the U.S. Department of the Interior's Bureau of Land Management website to locate nearby historical features that might have left archaeological remains.
3.13.1.1 Pre-contact Overview

The Columbia Plateau region, with its large, north-south trending river systems, has seen prehistoric settlement and subsistence throughout the Holocene. The culture of the Plateau peoples focused on the mass harvesting and long-term preservation and storage of three key resource groups: fish (particularly salmon), roots, and large ungulates. Settlement patterns focused on lower elevations in the winter, with forays into higher elevations and places with key fish runs along rivers during warmer weather (Walker 1998).

Although it is uncertain when people first arrived in the area, it is thought that it was somewhere between 12,000 and 11,000 B.P. It is likely that the structure of settlement consisted of small, highly mobile bands of hunter-gatherers.

By the beginning of the Windust Phase (11,000-8,000 Before Present [B.P.]), small, highly mobile bands sparsely populated the developing grasslands and gallery forests. Sites adjacent to rapids, particularly along the Columbia and Snake Rivers, contain an abundance of fish remains and associated artifacts, such as grooved net sinkers and gorges (Ames et al. 1998; Cressman et al. 1960), which indicates increasing use of anadromous fish populations in the Columbia and its tributaries. In drier, upland sites there is often a predominance of milling stones, suggesting that seed gathering was also an important aspect of subsistence.

During the Vantage Phase (8,000-4,500 B.P.), inhabitants of the region restricted their range to river and some upland mountain environments. Inhabitants were probably organized as highly mobile, opportunistic foragers (Chatters 1989; Galm et al. 1985).

At the beginning of the Frenchman Springs Phase (4,500-2,500 B.P.) increased precipitation significantly altered the nature and distribution of land use. Non-riverine environments gradually became more productive. In addition to open sites and rock shelters, pit houses are found in riverine and some non-riverine environments.

Toward the end of the period, at least on the mid- and upper Columbia River, it is believed that habitations became more functionally distinct (Chatters 1986), and included hunting camps, shellfish processing camps, fishing camps, and plant-processing camps (Chatters 1989). It was toward the end of the Frenchman Springs Phase that local inhabitants intensively exploited seasonally available resources, such as salmon, bulbs and roots, and they increased their food storage activity (Ames et al. 1998).

The beginning of the Cayuse Phase (2,500-250 B.P.) is marked by a return to drier conditions. Resources became concentrated into fewer productive patches as resource productivity and diversity decreased. Along the Columbia River, a decrease in the number of sites was associated with an increase in the density of pit houses and longhouses after 1,500 B.P. Large villages were situated on islands or on the downstream portion of sandbars. Later, the more-portable mat house became important at upland camps, and it appears that upland hunting, plant gathering, and quarrying of rock or stone increased during this phase (Ames et al. 1998).

3.13.1.2 Ethnographic Overview

This period is generally regarded as the transition from late prehistory to the time when Native Americans were moved to reservations. The groups traditionally inhabiting the project area were part of a regional grouping known as the Middle Columbia River Salishans, and included the

18 The Holocene is a geological epoch which began approximately 11,700 years ago and continues to the present.
Wenatchee, Entiat, Chelan, Methow, and Sinkaiuse, also called the Columbia, Moses Columbia, and Middle Columbia (Bruce et al. 2001; Miller 1998; Ray 1974; Relander 1956; Spier 1936; Teit 1928).

Estimates of populations for the Columbia group, prior to the outbreak of epidemics, range from 10,000 to as low as 2,200 (Creighton 2001; Teit 1928; Mooney 1928). Population counts of Ethnographic Period groups are estimates at best. Early epidemics, such as the 1801 smallpox epidemic, may have eradicated entire groups of people, and are estimated to have generally cut population counts in half (Boyd 1985; Walker, Jr. and Sprague 1998).

During ethnographic times, Columbia Plateau groups continued the traditional seasonal round that developed in the previous millennia. The yearly cycle centered on the Columbia River, though upland locations were also well-used. A staple of subsistence, and some would argue society along the Columbia River, was the salmon. The major fishing season for anadromous and freshwater fish lasted from early spring until late fall. One of the prime fishing areas for the Wenatchee was at the junction of the Wenatchee River and Icicle Creek (Miller 1998).

Fall was the prime season for deer and elk. In addition to hunting and fishing, the Columbia Plateau groups relied on gathering roots and vegetables to eat, as well as medicinal plants for a variety of ailments. Root digging was undertaken in the spring in the uplands, away from the permanent river villages.

3.13.1.3 Historic Overview

With the onset of the fur trade industry and such expeditions as that of Lewis and Clark in 1805-1806, the increase in Euro-American settlers expanded in the nineteenth century. In 1811, representatives of the North West Company explored down the Columbia River and established depots among the Colville and Lakes groups, while the Astor Company established Fort Okanogan (Kennedy and Bouchard 1998; Miller 1998). Fort Colville was established in 1825 after a verbal agreement between the Hudson's Bay Company and the Kettle Falls chief (Kennedy and Bouchard 1998). Religious missionaries soon followed, expanding from missions built in the Plains. A mission was built near Cashmere in 1872 to serve the Wenatchee, and by 1898 a Jesuit boarding school was established at St. Mary's Mission in Omak (Raufer 1966).

Pressure from the United States government was exerted in the mid-1850s, when Territorial Governor Isaac Stevens was ordered to conduct treaty negotiations with Native American tribes and to place these groups onto reservations, in order to free up land for settlers heading west. In May of 1855, the Walla Walla Council was held. Native Americans from several areas on the Interior Plateau convened. Three reservations were established as a result, including the Yakama Reservation.

Tensions ran high between the indigenous populations and the Euro-American settlers (Kennedy and Bouchard 1998). War between the Native populations and Euro-Americans erupted in the late 1850s. Miners and other settlers actively opposed the vast Colville reservation, and in 1886 it was reduced to its present-day size.

By the end of the nineteenth century, hostilities had died down and gold was found on the Colville Reservation, and in other areas like Peshastin Creek and the Methow Valley. The Homestead Act of 1862 encouraged Euro-American settlement in the region. Soon after, logging and mining became large scale industries. By the late 1860s, there was an estimated 300-400 Chinese immigrants mining along the Columbia River and its tributaries (Ficken and LeWarn
Mines previously abandoned by Euro-Americans on the bars of the Columbia, Okanogan, and lower Similkameen Rivers were taken over by Chinese immigrants in the 1870s (Schlegel and Mauser 2008). Placer operations could be found along the Columbia and Methow River, and gold strikes occurred in the Methow Valley in the 1880s. Farming pursuits increased in the 1880s; farmers and stockmen began to settle in the Methow and Okanogan valleys as soon as 1886 (Roe 1980). The agricultural industry grew in the mid to late twentieth centuries (McKenney and Stevens 2005). By 1893, the Great Northern Railroad built a line across Stevens Pass and the area increased in population and industry as a result.

3.13.2 Impacts of the Proposed Action

Section 106 of the National Historic Preservation Act of 1966 (U.S.C. 470 et seq., as amended) requires federal agencies to consider the effect of any proposed undertakings on properties listed in, or eligible for listing in, the NRHP. BPA’s cultural resources consultant, HRA, determined the Proposed Action to have a moderate probability of affecting archaeological resources that may be eligible for listing in the NRHP. This assessment is primarily due to the project's proximity to several water sources, such as the Twisp River, Methow River, and Wenatchee River, as well as to smaller tributaries. Anticipated cultural resources that could be identified in the project area of potential effect could consist of materials associated with prehistoric, ethnographic, or historic-period Native American groups. Historic period-Euro-American resources could include remnants of homesteads, railroad grades, wagon roads, and refuse dumps. Sites, features, and artifacts such as springboard notches, skid roads, and metal implements or machinery associated with logging may also be in the area.

The following proposed or backup acclimation and hatchery sites that require some form of ground disturbance or alteration of the site have previously recorded cultural resources within a half mile:

- Wenatchee basin: Butcher, Chickamin/Minnow, Tall Timber, and Dryden (primary sites); Squadroni (backup site)
- Methow basin: Gold and Twisp Weir (primary sites); Newby, Chewuch AF, and MSRF Chewuch (backup sites).

Features include cabins, a homestead and school site; wagon roads and trails; irrigation, mining, transportation and communication features; a prehistoric campsite and burial; a pithouse depression; and lithic scatters.

In spring of 2011, an on-site survey by HRA would be completed at each primary and backup acclimation and hatchery site where ground disturbance is proposed in order to determine the existence of cultural resources that could be affected and their potential eligibility for listing on the National Register of Historic Places. Several of the proposed project areas do not have any proposed ground disturbance. Therefore, implementation of the project in these areas would have very little chance of affecting any previously unrecorded cultural resources. BPA would consult on the results of these findings following the requirements of the regulations implementing section 106 of the National Historic Preservation Act (36 CFR 800). If cultural resources are identified by these studies, BPA would comply with the requirements of the National Historic Preservation Act in determining their eligibility, modifying the proposed action to minimize effects, and mitigating for any unavoidable adverse effects if necessary. Additional
laws, regulations, and executive orders could affect how any potential cultural resources are addressed. (See Chapter 4, Section 4.4).

3.13.3 Impacts of the No Action Alternative

If the No Action Alternative is selected, no new facilities would be constructed, nor would existing facilities be modified; therefore, there would be no potential to affect cultural resources.

3.13.4 Mitigation for the Proposed Action

The following measures are proposed to mitigate potential impacts of the Proposed Action to cultural resources:

- Areas where ground would be disturbed during construction would be inventoried for cultural resources prior to publication of the Final EIS.
- To the greatest degree possible, facilities would be designed to avoid impacting any cultural resources identified in project areas.
- In consultation with the Washington Department of Archaeology and Historic Preservation, the Yakama Nation, and the Confederated Tribes of the Colville Reservation, a mitigation plan would be developed for any significant cultural resources identified in any of the project areas where impacts cannot be avoided. The mitigation plan would be developed before facilities are constructed.
- BPA would prepare a plan of action to be taken in the event of an unanticipated discovery of cultural resources during construction.

3.14 Public Health and Safety

3.14.1 Noise

3.14.1.1 Affected Environment

Washington State Administrative Code defines categories of properties based on their sensitivity to noise. "EDNA" means the environmental designation for noise abatement: an area or zone (environment) within which maximum permissible noise levels are established. The project area contains many sites that could fall into Class A or Class B EDNAs. Classes of property potentially affected by the Proposed Action are defined below (not all examples from the code are listed) (WAC 173-60-040).

Class A EDNAs are lands where human beings reside and sleep. Typically, Class A properties include single- and multiple-family residences, and recreational and entertainment properties where people sleep, such as camps, parks, camping facilities, and resorts. Many of the proposed acclimation sites would fall into this category.

Class B EDNAs have uses requiring protection against noise interference with speech—generally commercial establishments such as office buildings, restaurants, and entertainment facilities not designed for human habitation, such as fairgrounds and amusement parks.

Class C EDNAs are lands involving economic activities for which higher noise levels than experienced in other areas would normally to be expected, including warehouses and distribution centers, agricultural lands raising crops or livestock, and manufacturing facilities. A few sites could fall into this category, e.g., the Two Rivers acclimation site.
Table 3-38. Maximum permissible noise levels (dBA) at three classes of property\(^{19}\)

<table>
<thead>
<tr>
<th>EDNA of Noise Source</th>
<th>EDNA of Receiving Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>Class B</td>
</tr>
<tr>
<td>Class A</td>
<td>55 dBA</td>
</tr>
<tr>
<td>Class B</td>
<td>57 dBA</td>
</tr>
<tr>
<td>Class C</td>
<td>60 dBA</td>
</tr>
</tbody>
</table>

These noise limits have a few modifications or exceptions that are relevant to this project:

- In general, between the hours of 10:00 p.m. and 7:00 a.m. the noise limitations shown in the table must be reduced by 10 dBA for receiving properties within Class A EDNAs.
- Noise limits may be exceeded at any time during the day or night for brief periods of from 1.5 to 15 minutes, depending on the decibel level.
- Construction noise from temporary construction sites may exceed noise limits except between the hours of 10 p.m. and 7 a.m. at Class A EDNAs.

3.14.1.2 Impacts of the Proposed Action

The decibel (dB) is a measure of sound intensity; that is, the magnitude of the fluctuations in air pressure caused by sound waves. The decibel scale is logarithmic, not arithmetic. This means that a doubling of sound intensity is not represented as a doubling of the decibel level. Rather, an increase of 3 dB means twice as much sound, and an increase of 10 dB means ten times as much sound.

A sound pressure level of 0 dB represents the threshold of hearing for a young, healthy ear, while painful sensations in the ear occur at about 120 to 130 dB. The perception of loudness by the human ear is not directly proportional to the decibel level. For example, a sound 10 dB greater than another is not perceived as being ten times as loud but only about three times as loud.

Construction Impacts

The sound produced by conventional construction equipment typically ranges from about 75 to 90 decibels (dB), 78 dB for a dump truck, 80 dB for an excavator, 85 dB for a backhoe, and 87 dB for a bulldozer (LHSFNA 2009).

The intensity of sound attenuates, or diminishes, by about 7.5 dB as distance doubles, where vegetation is present to absorb noise. Atmospheric conditions and topography also strongly influence attenuation. The zone of effect is considered to extend from the source of the noise to the point at which the noise attenuates to ambient levels. Ambient noise levels at the project sites are unknown; however, rural areas typically have an ambient noise level of 35 to 40 dB (WSDOT 2007). A variety of site conditions would contribute to noisier than typical background noise for rural areas, such as the presence of roads or highways and streams and rivers located near or adjacent to all of the sites. In addition, adjacent land use activities such as farming, ranching, and recreational activity (e.g., snowmobiling) would include machinery that would influence ambient noise levels.

19 "dBA" means the sound pressure level in decibels measured using the "A" weighting network on a sound level meter. Decibels are usually measured with a filter that emphasizes sounds in certain frequencies. The "A" filter (dBA) is the one most frequently used. The "C" filter (dBC) puts more weight on low-frequency sounds such as the bass in amplified music.
Based on the WSDOT spreading noise model for attenuation over distance, assuming an ambient noise level of 40 dB, a bulldozer operating at a site (87 dB) could be heard above ambient noise ranging from about 600 to 1,000 feet away. However, the actual extent of disturbance around the sites would likely be much smaller, because most of the sites have hillsides or topographic changes near the sites that would contain noise.

Construction would take place for a few days to 5 months, depending on the site, from May through September in 2012. At all sites, construction activity would be limited to the hours between 8 a.m. and 5 p.m., Monday through Friday. Therefore, while some sites with residences or campgrounds might experience noise above ambient levels during the day for the construction period, noise levels during evenings, nights, and early mornings would return to normal.

Operations Impacts

Disturbance associated with operation at the sites would include vehicle noise associated with accessing the sites and crews walking the sites. Each of the sites would require regular, daily human presence during the acclimation period (6 weeks to 6 months, depending on the site). Crews of two people would be responsible for several sites and would drive between them during the course of the day. These types of operation activities would likely be consistent with average ambient noise levels.

Operational noise also would include generators at 3 primary Wenatchee sites and 4 primary Methow sites; and at 2 backup sites in the Wenatchee and one backup site in the Methow. The size of the generators depends on the size of well pumps which depends on depth to water which would not be known until test wells have been drilled. The generators would either operate continuously during acclimation or only during power outages, depending on the capacity and presence of existing line power. Noise muffling enclosures would be used to ensure that generator noise does not exceed decibel limits at noise-sensitive properties.

3.14.1.3 Impacts of the No Action Alternative

Because no new facilities would be constructed, there would be no construction noise. In the Wenatchee basin, operational noise would continue or be reduced from current conditions, depending on how many currently used sites would be operated. In the Methow basin, the potential use of two sites not now used by the current program could minimally increase operational noise; or operational noise levels would remain the same or be reduced, depending on the number of sites used.

3.14.1.4 Mitigation for the Proposed Action

To avoid or minimize impacts, all construction activity would be limited to normal workday hours of 8:00 a.m. to 5:00 p.m., Monday through Friday. Noise associated with facility operations would be within state-approved environmental noise regulations (WAC Chapter 173-60 of the Noise Control Act of 1974) by installing all pumps and generators in sound-enclosures.

3.14.2 Air Quality

3.14.2.1 Affected Environment

The Environmental Protection Agency (EPA) and the Washington Department of Ecology (WDOE) both have responsibility for air quality in the State of Washington. The EPA has
established National Ambient Air Quality Standards (NAAQS) to protect the public from air pollution. The NAAQS focus on “criteria pollutants,” which are pollutants of particular concern for human health. The NAAQS are shown in Table 3-39. In addition to the NAAQS, the WDOE has established State Ambient Air Quality Standards (SAAQS) that are at least as stringent as the NAAQS. These are also listed in Table 3-39.

The project areas under evaluation in this EIS are all in areas that are in attainment with the NAAQS (EPA 2010c). This means that the concentrations of criteria pollutants in the area are historically below (in attainment with) the thresholds described in the NAAQS. Attainment status is a federal designation determined by the EPA based on the NAAQS. Washington does not determine or define attainment for areas based on the SAAQS. Sources of criteria pollutants in the vicinity of the project sites include vehicles on state and local highways, residential home heating (particularly wood burning), agricultural practices (particularly outdoor burning and re-suspension of dust and fine particles), and re-suspension of road dust from traffic on unmaintained roadways.

Table 3-39. National and state ambient air quality standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Measurement Period</th>
<th>Maximum Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NAAQS</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>8 hour average a</td>
<td>9 ppm</td>
</tr>
<tr>
<td></td>
<td>1 hour average a</td>
<td>35 ppm</td>
</tr>
<tr>
<td>Lead</td>
<td>Calendar quarter</td>
<td>1.5 μg/m^3</td>
</tr>
<tr>
<td>Ozone</td>
<td>1 hour average</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>8 hour average b</td>
<td>0.075 ppm</td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td>Annual arithmetic mean</td>
<td>0.053 ppm</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>Annual arithmetic mean</td>
<td>0.03 ppm</td>
</tr>
<tr>
<td></td>
<td>24 hour average</td>
<td>0.14 ppm</td>
</tr>
<tr>
<td></td>
<td>3 hour average</td>
<td>0.5 ppm</td>
</tr>
<tr>
<td>Particulate Matter (PM$_{10}$)</td>
<td>Annual arithmetic mean</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>24 hour average</td>
<td>150 μg/m3</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Annual arithmetic mean c</td>
<td>15 μg/m3</td>
</tr>
<tr>
<td></td>
<td>24 hour average d</td>
<td>35 μg/m3</td>
</tr>
</tbody>
</table>

Sources: EPA Office of Air Quality Planning and Standards (OAQPS) (EPA, 2010a) and the Washington Administrative Code (WAC 173, Sections 470, 474, 475)

Note: ppm = parts per million; μg/m3 = micrograms per cubic meter; PM$_{10}$ = particulates with an aerodynamic diameter of less than or equal to 10 micrometers; PM$_{2.5}$ = particulate with an aerodynamic diameter of less than or equal to 2.5 micrometers.

a To attain this standard, the 3 year average of the weighted annual mean PM$_{2.5}$ concentrations from single or multiple community-oriented monitors must not exceed 15.0 μg/m3.

b To attain this standard, the 3 year average of the fourth-highest daily maximum 8-hour average ozone concentrations measured at each monitor within an area over each year must not exceed 0.075 ppm (effective May 27, 2008) to meet the federal standard.

c To attain this standard, the 3 year average of the weighted annual mean PM$_{2.5}$ concentrations from single or multiple community-oriented monitors must not exceed 15.0 μg/m3.

d To attain this standard, the 3 year average of the 98th percentile of 24 hour concentrations at each population-oriented monitor within an area must not exceed 35 μg/m3. This standard replaces the 24 hour PM$_{2.5}$ standard of 65 μg/m3 as of December 17, 2006.

3.14.2.2 Types of Impact

Construction projects are established as sources of air pollution and are subject to the provisions of WAC 173-400-040, General Regulations for Air Pollution Sources. Typical air pollutants from construction sites include fugitive dust, vehicle emissions, and particulate emissions from activities
such as burning of cleared vegetation. In significant amounts, these pollutants can be a public health hazard, especially for people with respiratory ailments; and can reduce visibility on roads, highways, and in scenic areas, to the detriment of public safety or enjoyment.

In addition, vehicle emissions and combustion of fossil fuels during project operations as well as during construction can contribute to climate change. Potential climate change impacts are discussed separately in Section 3.14.3.

3.14.2.3 Impacts of the Proposed Action

Construction

Other than vehicle emissions (see Section 3.14.3), the primary potential air quality impact from construction of project facilities would be fugitive dust. Cleared vegetation would not be burned; it would be disposed at approved landfills, so smoke and particulate pollution would not be created by the proposed project. Impacts of fugitive dust would be limited to those sites requiring substantial excavation—a total of 8 primary acclimation sites, 6 backup sites, and the proposed and backup hatchery sites.

Construction activity at the proposed hatchery at Dryden is the most likely to create noticeable amounts of fugitive dust, because it is located in a drier part of the Wenatchee basin than other sites requiring construction, and because it also requires the most significant amount of construction (a total disturbance of approximately 4 acres) during the driest part of the year. At Dryden, dust could affect visibility on Highway 2 or Highway 97 or other nearby roads, depending on the amount of dust and wind direction and speed. It could also be a nuisance to nearby residences and the gun club.

Pond excavation at other sites in both basins could also cause fugitive dust problems, most noticeably those with nearby recreation or vacation property or that are otherwise currently in use, such as Tall Timber, Gold, and Twisp Weir.

Use of the proposed mitigation measures would keep impacts of dust from construction activities to a minimum.

Operations

A number of existing and new sites are accessed via unpaved roads. Project vehicles would travel to and from each site once a day during the acclimation period, which could be for periods of 6 weeks in March through early May or 6 months from November through early May. Roads at some sites could be snow-covered during some of this period, so dust would not be an issue. Later in the spring, after roads dry out, dust from vehicle travel could be noticeable to nearby residences but, with only one round-trip a day at each site, is not expected to impact air quality or be a nuisance to neighbors.

3.14.2.4 Impacts of the No Action Alternative

No new facilities would be constructed, so the No Action Alternative would not affect air quality with additional dust beyond what is created by current activities, primarily vehicles travelling on unpaved roads.

3.14.2.5 Mitigation for the Proposed Action

- Burning of cleared vegetation or other debris would not be done. All such material would be transported to an approved landfill.
• Water supplies and dust suppression equipment would be employed at the Dryden hatchery site and at all acclimation sites requiring excavation or road improvement to ensure that dust does not create visibility problems on nearby roads and highways and does not become a nuisance to neighbors.

3.14.3 Climate Change

3.14.3.1 Affected Environment

Greenhouse gases (GHG) are chemical compounds in the earth’s atmosphere that absorb and trap infrared radiation (heat) that is reflected or emitted from the surface of the earth. The trapping and subsequent build-up of heat in the atmosphere creates a greenhouse-like effect that maintains a global temperature warm enough to sustain life (EIA 2009). Some forms of GHG can be produced either by natural processes or as a result of human activities. However, the current scientific consensus is that anthropogenic (human-made) sources are increasing atmospheric GHG concentrations to levels that could raise the earth’s average temperature by up to 7.2 degrees Fahrenheit within the 21st century (EPA 2010a).

The United States Global Climate Research Program (USGCRP) has found that since the 1970s, average U.S. temperatures and sea levels have risen and precipitation patterns have changed (USGCRP 2009). These conclusions are further supported by the Intergovernmental Panel on Climate Change (IPCC) that found similar patterns on a global climate scale (IPCC 2007). Climate models indicate that atmospheric concentrations of all GHG would continue to increase over the next century, but the extent and rates of change are difficult to predict, particularly on a global scale.

Human activities result in the emission of four main forms of GHG that are implicated in climate change (EPA 2010b):

• **Carbon dioxide (CO2)** constitutes 81% of all anthropogenic GHG emissions in the U.S., primarily due to the combustion of fossil fuels (coal, oil, gasoline, natural gas, and other fuels) and wood products (EPA 2010a, 2010b; Houghton 2010). Changes in land use and management can also increase CO2 emissions into the atmosphere (e.g., conversion of forests into croplands, application of synthetic fertilizers, and development of grasslands into residential settlements). Some industrial activities (e.g., cement manufacturing) have also been identified as contributing significantly to U.S. CO2 emissions.

• **Methane (CH4)** is emitted during the production and transport of fossil fuels, through intensive animal farming, and by the decay of organic waste in landfills.

• **Nitrous oxide (N2O)** is emitted during agricultural and industrial activities, and during the combustion of fossil fuels and solid waste.

• **Fluorinated gases**, such as hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6), are synthetic compounds emitted from industrial processes. These gases are created and emitted solely through human activities (not naturally produced). Although emission levels of these compounds are relatively small, these gases have a much higher capacity for trapping heat than other GHG and are considered to have a high potential for contributing to climate change. Activities that emit fluorinated gases are not proposed as any part of this project, and thus are not included in the analysis of impacts.
To assess the potential impacts of the Mid-Columbia Coho Restoration Program on climate change, BPA considered the potential GHG emissions associated with construction and operation activities at all proposed project locations in the Wenatchee and Methow basins. Many sites proposed for use by the project already exist and/or are already operating. Sites that would not change due to project implementation would not be expected to have any impact on GHG emissions or climate change, and are not included in the analysis.

In the event any of the primary sites are determined infeasible, a backup site would be used; however, the total number of project sites would remain constant and activities at backup sites would be similar in scope and duration. Therefore, it is reasonably certain that GHG emissions from project activities would be relatively similar regardless of which (if any) backup sites would need to be used.

3.14.3.2 Types of Impact

In a general sense, all combustion of fossil fuels contributes to CO2 concentrations in the atmosphere that may contribute to significant long-term effects on the climate. In response, the EPA established the Mandatory Reporting of Greenhouse Gases Rule in 2008 (74 FR 5620), which requires reporting of GHG emissions data for sources that emit 25,000 metric tons or more per year, roughly equivalent to the CO2 emitted by 4,545 passenger vehicles per year (EPA 2005). The rule requires federal reporting of GHG emissions, but does not require any other action (40 CFR Parts 86, 87, 89 et al.).

Although the proposed project is reasonably certain to fall well below the federal reporting threshold, BPA evaluated the most significant sources of GHG emissions that would result from project implementation. Direct GHG emissions from hatchery projects are primarily due to vehicle and equipment activity (both during construction and operation activities). The proposed project would involve the operation of vehicles and generators at many locations, which would emit CO2 from the combustion of fossil fuels and contribute to atmospheric GHG levels.

GHG emissions were calculated based on methodology provided by the EPA, IPCC and the Energy Information Administration (EIA) using estimates of multiple variables including, but not limited to, the number of project vehicles, number of trips per day, distance traveled, other sources of fossil fuel combustion (e.g., generators), and duration of activities.

Changes in land cover (e.g., tree removal) due to the construction of facilities may also increase GHG emissions; however, the effects of land use change are not well understood and there are currently no accepted methodologies for quantifying impacts of land use changes on GHG emissions. Furthermore, the total acreage of land that would be impacted by project construction would be less than 5 acres, and the majority of impact would either result in an insignificant change in land cover (e.g., installation of wells, expansion of acclimation ponds) or potentially an improvement to existing conditions (e.g., conversion of an existing gravel pit to a 2.5 acre wetland). Therefore, due to the inability to quantify the impacts of land use changes, and the likely insignificant level of project-related land use changes that may elicit such impacts, this variable was not included in the analysis.

Soil disturbance may also result in GHG emissions, but research has shown that effects are temporary and return to background levels within several hours (Kessavalou et al. 1998, IPCC 2006). Therefore, soil disturbance was not included in the analysis.
In an effort to compensate for any potential GHG emissions due to soil disturbance, land use changes, or other unidentified mechanisms not included in the analysis, BPA conservatively estimated vehicle and equipment emissions. The calculated GHG estimate is therefore likely higher than actual vehicle and equipment emissions, and therefore may capture residual emissions from other sources.

The thresholds used to describe the intensity of climate change impacts are as follows:

- **Minor**: Impacts would result in the release of GHG well below the annual level required for reporting. Contributions to regional GHG amounts may be extremely difficult to determine. The contribution to national GHG emissions would be impossible to quantify.
- **Moderate**: Impacts would result in the emission of 25,000 metric tons or more per year of GHG and require annual reporting to the EPA. Contributions to regional GHG amounts would be quantifiable. Contributions to the national GHG emissions would be substantial.
- **Major**: Impacts would require annual reporting and be of an amount and nature that they would be a key component of national GHG emissions.

3.14.3.3 Impact of the Proposed Action

According to BPA’s calculations (Table 3-40), the project could emit up to 502 metric tons of GHG as a result of five months of construction activities (roughly equivalent to the annual emissions from 89 passenger vehicles), and up to 1,050 metric tons of GHG per year as a result of operations activities (roughly equivalent to the annual emissions from 187 passenger vehicles).

Table 3-40. Estimated annual greenhouse gas emissions from the Mid-Columbia Coho Restoration Program

<table>
<thead>
<tr>
<th>Activity</th>
<th>CO₂ Emissions (metric tons)</th>
<th>CH₄ Emissions (CO₂-e metric tons)</th>
<th>N₂O Emissions (CO₂-e metric tons)</th>
<th>Total CO₂-e Emissions in Metric Tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction (total for 5-month period)</td>
<td>241.0</td>
<td>37.3</td>
<td>223.2</td>
<td>502</td>
</tr>
<tr>
<td>Operations and maintenance (annual emissions)</td>
<td>920</td>
<td>7.5</td>
<td>123.1</td>
<td>1,050</td>
</tr>
</tbody>
</table>

CH₄ and N₂O emissions have been converted into units of CO₂ (CO₂-equivalent = CO₂-e) using the IPCC global warming potential factors of 21 for CH₄ and 310 for N₂O.

Construction Impacts

Proposed construction activities associated with one new incubation and rearing facility and nine new or expanded acclimation ponds would result in direct GHG emissions from the operation of project vehicles and construction equipment (e.g., bulldozers, augers, backhoes). Emissions from construction vehicles and equipment would impact atmospheric GHG concentrations incrementally because construction equipment and vehicles would be fueled by gasoline and diesel combustion motors.

Considering the low level of GHG emissions (502 metric tons of CO2-e) and the brief duration of the impact (5 months), project-related construction activities would have a minor short-term adverse impact on atmospheric GHG concentrations and an unquantifiable, likely insignificant, impact on climate change.
Operations Impacts

The proposed project would involve the year-round operation of the hatchery, and seasonal operation of the acclimation sites and traps. Many of the acclimation sites and all but one each of the adult and juvenile traps are already in operation and would not change due to project implementation. The primary sources of GHG emissions would be from the operation of project vehicles between sites (46% of all operations-related GHG emissions) and the use of diesel generators as primary power at two acclimation sites for six weeks of the year (35% of all operations-related GHG emissions). It is likely that diesel generators would be switched to propane in the near future, potentially reducing annual GHG emissions by approximately 380 metric tons per year.

The calculated estimate of operations-related annual GHG emissions is relatively low (1,050 metric tons of CO2-e), and is likely very conservative considering the calculations were based on estimates of the maximum number of vehicles, miles, trips, etc., that would be involved in operational activities. Therefore, the operation of facilities and sites would constitute a minor adverse impact on atmospheric GHG concentrations and an unquantifiable impact on climate change.

Location of a small hatchery in the Wenatchee basin might reduce the number of trips necessary to transport fish to and from the Bonneville Dam area beginning in 2013; it is unclear if that reduction would be offset by more trips to in-basin acclimation sites.

3.14.3.4 Impacts of the No Action Alternative

The No Action Alternative would require no new construction or operation activities that would involve combustion of fossil fuels, and therefore no GHG would be emitted. The sites would remain in their current state, and the current hatchery programs would continue unchanged. With no new in-basin hatchery, any potential reduction in emissions resulting from reducing the number of long trips to lower Columbia hatcheries would not be achieved, because they would continue as they are under the current program. No direct or indirect effects to atmospheric GHG concentrations or climate change would result from the No Action Alternative.

3.14.3.5 Mitigation for the Proposed Action

The following measures could be implemented to reduce or eliminate project-related GHG emissions and potential impacts on climate change:

- Use gravity-flow water supplies and existing ponds wherever possible.
- Use measures that minimize vehicle and equipment emissions (e.g., reduce vehicle and equipment idling, use driving techniques that increase fuel economy, perform regular maintenance and upkeep of vehicles and equipment, use the most efficient vehicle or equipment available, etc.).
- Encourage carpooling and the use of shuttle vans among construction workers and operations staff to minimize vehicle trips and associated emissions.
- Locate construction staging areas in previously-disturbed or graveled areas to minimize soil and vegetation disturbance where practicable.
- Use propane generators at all sites as soon as feasible.
- Submit a plan for approval to recycle or salvage non-hazardous construction and demolition debris.
- Use locally sourced supplies as much as possible.
3.15 Cumulative Effects

Cumulative impacts are the environmental effects that result from the incremental impact of the proposed action when added to other past, present, and reasonably foreseeable future actions regardless of which agency (federal or non-federal) or person undertakes such other actions.

3.15.1 Surface Water Quality

Proposed Action

The timing of acclimation nutrient discharges, in relation to annual flow patterns, is important to the evaluation of cumulative project impacts on water quality. The Wenatchee and Methow rivers have peak average flows in early June. Acclimation ends in early May just as spring runoff begins. Data collected from the basins (see Appendix 6, Water Quality Data) demonstrate that river phosphorous concentrations and loads peak along with river flows, as accumulated nutrients and attached algae that have been suspended are flushed from the basins. The majority of the phosphorous introduced by acclimation is included in this mechanical removal process, thereby limiting the impact of project nutrients on water quality in the critical late summer through winter period.

For the Wenatchee basin, the model simulations suggest that potential impacts of the proposed project, as defined by the criteria for DO and pH, would be negligible under foreseeable future conditions. When viewed in light of the conservative assumptions employed in establishing the translation of loads and flow conditions within the model framework, the actual impacts under average flow conditions would be much smaller than what was determined by the QUAL-2K modeling exercise. The fact that the model results indicated that much of the project load is likely to be assimilated upstream of Leavenworth suggests that existing public treatment works are not likely to be further burdened by requirements to buffer activity from the proposed project in the upper reaches.

For the Methow basin, the contribution of the project related loads relative to the cumulative basin load (Methow River at Pateros in Table 3-9) was estimated to be about 0.8%. The equivalent calculation for the Wenatchee sites resulted in a relative project contribution of 1.1% of the basin TP loading (Table 15 in Appendix 7). As described previously, modeling indicated that acclimation-related loads in the Wenatchee basin caused a negligible change in DO and pH even in the presence of sources such as public water treatment works. Given the lower estimate of nutrient loading from acclimation activity in the Methow basin and the similarity in the basin characteristics, the TP loads from acclimation activity are unlikely to cause a measurable change in DO and pH in the Methow River; thus cumulative effects of the project would be negligible.

No Action Alternative

As with the Proposed Action, the impacts of discharges from the sites in the No Action Alternative were assessed for the case when public treatment works discharge at their design capacity, contributing a phosphorus load as allocated in the WDOE TMDL (corresponding to 90 \(\mu g/L \)). The spatial trends in water quality parameters were similar to those predicted for the Proposed Action. As expected, the changes in minimum DO and pH range over the background conditions were predicted to be milder than for the Proposed Action, and thus cumulative effects of the project would be negligible.
3.15.2 Groundwater and Water Rights

Proposed Action

Other proposed groundwater withdrawals or surface water diversions, if not non-consumptive or water-balance neutral, could impact the stream flows in the two basins. New water supplies for residential, commercial and industrial uses and allocations for groundwater rights by WDOE are likely during the time period of the proposed project.

The proposed groundwater uses for the project would have impacts only within the drawdown cone created by groundwater withdrawals because the groundwater uses are water budget neutral. In addition, the aquifers likely to be used at the proposed sites are in hydraulic continuity with the streams, which would reduce the size of the drawdown cones. Thus, the impacts would be localized. Other future groundwater uses would also create drawdown cones and, unless these future drawdown cones intersect the drawdown cones created by the project, the project would not impact these uses. Other future surface water uses may be positively impacted immediately downstream and not impacted further downstream by the proposed discharge of groundwater into the streams.

The Proposed Action includes facilities with very minor groundwater withdrawal rates compared to the total groundwater storage capacity in the shallow aquifers in the Wenatchee River and Methow River basins. The proposed groundwater withdrawals are also small when compared to the flows in the two rivers. Operation of the proposed projects individually or collectively is not expected to have measurable impacts to stream flows or water quality in areas outside the immediate facility locations.

No Action Alternative

If existing project facilities cease using currently used groundwater, cumulative impacts to groundwater could be reduced.

3.15.3 Fish

Past and present activities that may have affected fish habitat in the Wenatchee and Methow basins include diversions and dams, agricultural activities, stream channelization and diking, roads and railways, timber harvest, and urban and rural development (Mullan et al. 1992; Chapman et al. 1994, 1995; NPCC 2004a & b). A hydropower dam constructed on the lower Methow River near Pateros in 1915 blocked upstream anadromous fish passage until it was removed in 1929 (Mullan et al. 1992; Peven 1992; Andonaegui 2000). Humans have altered habitat primarily in the lower gradient, lower reaches of the basins (Andonaegui 2000, 2001); these alterations have blocked access to habitat and reduced habitat complexity, off-channel habitats, and large, deep pools. Extensive use of rip rap to stabilize stream banks has decreased the channel sinuosity and recruitment of large woody debris (LWD). Chronic sedimentation from land and water management activities has degraded habitat in some areas. In contrast, upper reaches of these basins are in relatively good condition (Andonaegui 2000, 2001; NMFS et al. 1998).

Habitat conditions have improved in recent years and further improvements are expected in the future. Some of the factors that have affected habitat of ESA-listed fish have been partially addressed through changes in land use practices (UCSRB 2007). These include improving fish passage at dams, installing irrigation diversion screens, culvert replacement, riparian buffer strips, and improved livestock management. Two major habitat restoration efforts are being
been funded by BPA in the Wenatchee and Methow basins. The Yakama Nation will be receiving 6-7 million dollars annually over ten years for habitat restoration in these basins. In addition, the Upper Columbia Salmon Recovery Board will be receiving about 3.5 million dollars for habitat restoration projects beginning in 2011. These efforts should result in substantial habitat improvements over the next decade.

Proposed Action

The Proposed Action could add to the cumulative benefits that all these actions are providing to the ecological balance in the two basins; and with the improvements and increases in habitat, any potential adverse interactions between coho and other species are not likely to measurably add to the other stressors on ESA-listed fish.

The Proposed Action would result in reduced seasonal access to a very small amount of existing off-channel habitats used for acclimation and rearing of hatchery coho salmon, and potential short-term acute delivery of additional sediment from bank disturbance and pond construction. Because these off-channel habitats are not preferred by spring Chinook, steelhead and bull trout, the impacts from the proposed seasonal use of small areas for acclimation and rearing purposes would not be additive to cumulative effects of past, present, and anticipated future human-caused impacts to habitat. The amount of habitat excluded during acclimation and rearing activities or added through additional sites under the proposed alternative is not likely to have a measureable impact compared to past and current impacts and those likely to occur.

Permit conditions would require that sediment be strictly controlled during construction; and in the small areas affected, any unforeseen increased sediment delivery is likely to be minimal and highly localized. Construction is not expected to result in conditions that cause chronic increases in sediment loads. Therefore, although the project could add to the cumulative effects of basin-wide sources of sediment in streams, the contribution would be small, localized, and would not persist more than 1-2 weeks past construction.

No Action Alternative

The cumulative impacts of the No Action Alternative on fish would be mixed. Fish would not be excluded from habitat they currently use because no new facilities would be constructed, and there would be no temporary small increase in sediment in streams due to construction; thus the alternative would not add to such impacts that are otherwise occurring in the basins. On the other hand, given that a naturally reproducing population of coho would not be established, any additional benefit to ongoing and future ecological improvements from such populations in the basins would not occur.

3.15.4 Priority Habitat, Plants, and Wildlife

Proposed Action

Residential development is anticipated in the Wenatchee and Methow basins over the next several years, and would likely contribute to cumulative impacts to native vegetation communities, which could disturb priority habitats and species. Clearing and construction at the project sites contributes in very minor ways to cumulative regional fragmentation and net loss of native vegetation and habitats. Impacts from continued growth in the region will occur regardless of whether the proposed project is implemented, and is likely to contribute to loss of habitat in significant ways, unlike the proposed project. However, some project activities would
create additional aquatic habitat for native species in the region, adding a small area (about 1 acre) to other habitat protection and enhancement being undertaken in the basins.

Operation of the project would result in an increase in human activity at the sites. While the sites are primarily located in rural areas, most of the sites are associated with residential property and with associated existing human activity and vehicle traffic. Also, the program is proposed to end in 2027. The human disturbance impacts associated with the Proposed Action would also then end. No significant cumulative impacts associated with operation of the project are anticipated.

No Action Alternative
The cumulative effects of No Action on priority habitat, plants, and wildlife, when added to other development effects undertaken in the two basins, would be undetectable.

3.15.5 Wetlands

Proposed Action
Development projects are anticipated to occur in the Wenatchee and Methow basins in the vicinity of the project sites over the next several years, and would likely contribute to cumulative impacts to wetland habitats. Clearing and construction at the project sites contributes to cumulative regional fragmentation and net loss of wetland habitat. However, construction activities associated with the project are anticipated to result in low permanent impacts to wetland habitats (approximately 3200 square feet of permanent impact), with the potential to add about 52,000 square feet of new wetland. Due to the relatively small area of potential wetland impacts relative to the amount of wetland area present in the Wenatchee and Methow basins associated with the multiple project sites, project impacts to wetlands would not significantly contribute to cumulative impacts to wetlands.

No Action Alternative
With no construction of new acclimation sites or a hatchery, the project would add nothing to the cumulative loss of wetlands in the basins.

3.15.6 Floodplains

Proposed Action
Activities in the two basins other than this project that could exacerbate flooding include diking, road development, and residential/urban development.

Because construction activities associated with the project are anticipated to result in very minor conversion of forested lands compared to the watershed as a whole, because the some acclimation sites would provide additional floodplain storage, and because new construction would be in accordance with floodplain development codes, the cumulative effects of these actions are not considered a significant impact. Additionally, many proposed county and state-funded road improvement projects include culvert replacements on existing roads having the potential to mitigate or reduce the effects of existing flooding. The known road improvement projects are identified in the following sections.

Habitat improvement projects are also proposed throughout the project area. These projects are funded by federal and state dollars under multiple programs and implemented by local stakeholder groups, counties, and conservation districts. Habitat improvement projects that re-establish floodplain access to undeveloped floodplain habitat have the potential to further
mitigate or reduce the effects of existing flooding. Habitat improvement projects funded and proposed for implementation in the Wenatchee and Methow basins using Washington State Salmon Recovery Funding Board (SRFB) grants can be tracked at the Upper Columbia Salmon Recovery Board’s salmon habitat implementation website (http://uc.ekosystem.us//). Habitat improvement projects funded in the Wenatchee and Methow basins using Chelan County PUD and Douglas County PUD Habitat Conservation Plan (HCP) Tributary Fund dollars can be found at the Chelan County PUD HCP website (http://www.midcolumbiahcp.org/). Other projects could be implemented by other public agencies or private parties that are not known at this time.

Wenatchee Basin Road Projects

Planned projects in the basin include road improvement projects throughout the watershed that could have localized effects on nearby creeks. These projects are Chelan County projects: CRP636-North Road and CRP612-Eagle Creek Road that could impact Chumstick Creek, CRP597-Old Blewett Highway that could impact Peshastin Creek; and Washington State Department of Transportation (WSDOT) projects: US 2 bridge over Chiwaukum Creek, US 2 Wenatchee River bridge at Tumwater, and road improvements along US 97 that could impact Peshastin Creek. It is anticipated that Chelan County and WSDOT would implement mitigation measures and best management practices (BMPs) according to the Highway Runoff Manual (WSDOT 2008) to minimize floodplain impacts from any of these projects. Consequently, the cumulative effects of the Proposed Action and other known projects in the Wenatchee basin are not considered to be a significant cumulative impact.

Methow Basin Road Projects

In the Methow basin, other known planned projects include road improvement projects throughout the watershed that could have localized effects on nearby creeks. These projects are Okanogan County and WSDOT road improvement projects such as Twisp River Road (affecting Twisp River), and Twin Lakes Road (affecting Methow River). It is anticipated that Okanogan County and WSDOT would implement mitigation measures and BMPs according to the Highway Runoff Manual (WSDOT 2008) to minimize floodplain impacts from any of these projects. Consequently, the effects of the Proposed Action combined with the effects of other known projects in the Methow basin are not considered to create a significant cumulative impact.

No Action Alternative

Because no new development would take place in floodplains as part of this alternative, there would be no impacts to floodplains and thus no cumulative effects with other floodplain development projects in the basins.

3.15.7 Visual Quality and Recreation

Proposed Action

The Proposed Action would not noticeably change visual quality or affect recreational uses, so would not contribute to other visual quality and recreational impacts occurring in the basins.

No Action Alternative

There would be no change to current conditions, so there would be no cumulative effects.
3.15.8 Socioeconomics

Proposed Action

The Proposed Action would add relatively few permanent jobs to the region, so the incremental effects on area population and income, and the need to change infrastructure and services, would be negligible. Expenditures and income associated with the terminal fishery are minor and not expected to measurably affect local or regional economies. The numerous federal, state, local, and tribal efforts to improve fish populations, river flow, and aquatic habitat in the region, of which this program is a small part, should result in salmon population increases which, together, should provide economic and cultural benefits.

No Action Alternative

The No Action Alternative would not add noticeably to adverse economic and social effects in a regional sense. Any loss of employment due to lack of funding of the project would be significant to individuals but would be an incrementally minor impact on current unemployment levels in the region. The incremental lost opportunity impacts on the economic, social, and cultural benefits of future coho harvests could be noticeable, although unquantifiable, if other regional efforts to improve fish populations and habitat are similarly curtailed and if the current Mid-Columbia coho program is not converted to a harvest augmentation program.

3.15.9 Cultural Resources

Proposed Action

The cumulative effect of the Proposed Action on cultural resources is unknown until site-specific surveys are done; it is expected to be minor, however, when considered in the context of past, current, and future development that has taken place and continues to occur in the basins.

No Action Alternative

Because no new site development would take place, there would be no potential for the project to add to the past, current, or future development impacts on cultural resources in the basins.

3.15.10 Public Health and Safety

Proposed Action

The largely minor and short-term and increases in fugitive dust and construction noise would not add to the cumulative long-term impacts to air quality and noise from increased development and population levels in the two basins. Contributions of the project to climate change, while adding theoretically measurable amounts to greenhouse gas concentrations in the basins, would be unquantifiable.

No Action Alternative

The No Action Alternative would have no cumulative effects on noise, air quality, or climate change.
3.16 Unavoidable Adverse Effects and Irreversible and Irretrievable Commitment of Resources

- Short-term minor increases in sediment in water bodies near some acclimation sites, due to the need to develop water supply and discharge channels and lines.
- Short-term avoidance by wildlife of some project sites due to construction activity.
- Short-term disturbance during construction at residential and recreational sites.
- Potential loss of small numbers of listed fish to predation or competition with coho, or to trapping for juvenile or adult coho.
- Annual temporary exclusion of listed fish from a small amount of habitat.
- Potential permanent removal of less than an acre of wetland.
- Irreversible uses of fuel, office supplies, petroleum products, chemicals, and other operational supplies. Some building materials and equipment might be re-usable, but much of it would not.

3.17 Short-Term Use of the Environment and Effects on Long-Term Productivity

The proposed Mid-Columbia Coho Restoration Program is expected to greatly enhance productivity of the aquatic environment through salmon population increases, from which other aquatic and terrestrial species including humans may derive benefits. The lands developed for a small hatchery complex and for acclimation ponds would be permanently taken out of vegetative productivity. Construction activities would temporarily affect more land than would be permanently developed, but long-term productivity would not likely be adversely affected because of the measures that would be taken to restore disturbed, undeveloped areas to pre-existing condition or better (replanting with native species, weed control, standard construction BMPs, etc.). The stream reaches between the intakes and outlets of the ponds would have slightly lower total flow when water is diverted for fish acclimation, but these distances are generally 1,500 feet or less. Groundwater production in wells near some acclimation sites might be reduced. Some incremental amount of greenhouse gases would be emitted during construction and hatchery operation, which would add to global climate change, but energy efficiency considerations in project design would make this contribution insignificant at local and global scales.

The No Action Alternative would not change the aquatic environment, either positively or negatively, or alter any terrestrial sites.
Chapter 4. Consultation and Coordination

Numerous federal, state, and local environmental laws and administrative requirements must be satisfied prior to initiation of the proposed program. This chapter reviews the program’s compliance with these regulatory requirements.

4.1 Environmental Policy

4.1.1 National Environmental Policy Act

The National Environmental Policy Act of 1969 as amended (42 USC 4321 et seq.) requires federal agencies to assess and disclose the effects of proposed actions on the environment before making a decision to proceed. This EIS has been compiled to meet NEPA requirements.

BPA and Yakama Nation conducted scoping meetings and informal outreach efforts with interested and potentially affected parties, who identified issues to be considered in the environmental analysis. This draft EIS is being sent to regulatory agencies and other interested organizations and individuals for review and comment (Chapter 8). After a formal public comment period on the draft EIS, BPA will consider all comments and make additions, corrections, or clarifications to the analysis for the final EIS. The final EIS will be used by BPA to determine if the agency will proceed with approval and funding of the Mid-Columbia Coho Restoration Program. BPA will document its final decision in a record of decision after the Final EIS has been issued.

4.1.2 State Environmental Policy Act

The State Environmental Policy Act (SEPA), Washington State’s most fundamental environmental decision-making law, was enacted in 1971 as chapter 43.21C Revised Code of Washington. Much like the federal National Environmental Policy Act, SEPA is designed to provide decision-makers and the public with impartial information about a project and analyze alternatives to the proposal, including ways to avoid or minimize adverse impacts or to enhance environmental quality. The purpose of SEPA is to encourage harmony between the citizenry and the environment, to promote efforts that will prevent or eliminate damage to the environment, to stimulate human health and welfare, and to enrich understanding of the ecological systems and natural resources that are important to Washington State. Information provided during the SEPA review process helps decision makers understand how a proposal would affect the environment and identify measures to reduce likely effects, or deny a proposal when adverse effects are identified. This EIS may be adopted by Okanogan County as the lead state agency to fulfill the SEPA requirement.

4.2 Northwest Power Act

Provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (6 USC 839 et seq.) are intended to protect, mitigate, and enhance fish and wildlife of the Columbia River and its tributaries. This project is proposed in part to meet BPA’s need to return naturally spawning, locally adapted populations of coho salmon to the Wenatchee and Methow basins as a way to help fulfill its obligations under the Act (16 U.S.C. § 839 et seq., Section 4(h)(10)(A)).

In April 1996, the project was one of the 15 high-priority supplementation projects recommended for funding by the Northwest Power Planning Council (NPPC) [now Northwest
Power and Conservation Council] and was incorporated into the Fish and Wildlife Program (program measures 7.1H, 7.4A, 7.4F, and 7.4O).

In the FY 1998 Annual Implementation Work Plan, the Council recommended funding for completion of the environmental review of the first phase (feasibility studies). Because this phase of the project was initiated prior to the Council’s Three-Step Review Process and was experimental in nature, no step review was necessary (M. Fritsch, NPPC, memorandum to Council, July 12, 2000).

The Yakama Nation submitted a Master Plan for the proposed program in fulfillment of Step 1 of the Northwest Power and Conservation Council’s 3-step process to review projects proposed under its Columbia River Basin Fish and Wildlife program (see Chapter 1, Section 1.4). The Master Plan (YN 2010), developed with review and assistance by a number of scientists (including the ISRP) and fish and wildlife agencies, detailed the approach and biological rationale to realize the YN’s long term vision for coho in the region. The Council and its Independent Science Review Panel reviewed drafts of the Master Plan, and on March 9, 2010, the Council recommended that BPA implement the program as described in the plan. The program described in the Master Plan provided the basis for the Proposed Action evaluated in this EIS (see Chapter 2). The EIS would provide the basis for the Council’s review under Step 2 of the process. Should the project proceed, final designs would be developed that would be reviewed by the Council under Step 3 of the process.

4.3 Wildlife and Habitat

4.3.1 Endangered Species Act

The Endangered Species Act of 1973 and its amendments (ESA, 16 USC 1531 et seq.) require federal agencies to ensure that their actions do not jeopardize endangered or threatened species or their critical habitats. The effects on species listed under ESA are discussed at length in Chapter 3 of this EIS: Section 3.7 (Fish) and Section 3.8 (Priority Habitat, Plants, and Wildlife). Based on the information in these sections, a Biological Assessment is being prepared and will be submitted to USFWS and NOAA Fisheries for formal consultation under Section 7 of the ESA.

4.3.2 Fish and Wildlife Conservation

The Fish and Wildlife Conservation Act of 1980 (16 USC 2901 et seq.), encourages federal agencies to conserve and promote conservation of game and non-game species and their habitats. This project is designed to promote the restoration of coho salmon in areas from which it was extirpated, and to contribute to the ecological balance of the Methow and Wenatchee basins by providing a source of nutrients to other species at the onset of the critical winter period. See Chapter 3, Section 3.7.

The Fish and Wildlife Coordination Act of 1934 (16 USC 661 et seq.) also requires federal agencies to consult with the USFWS and state fish and wildlife agencies when “waters of any stream or other body of water are proposed or authorized, permitted or licensed to be impounded, diverted…or otherwise controlled or modified” by permit or license. The USFWS and WDFW will be sent copies of this EIS, and their comments will be addressed in the final EIS.

The proposed action would divert waters of rivers and streams in the Wenatchee and Methow basins to rear and acclimate coho salmon. This use would not consume the water, but would use
it briefly and then discharge it back into the river. This use would enhance the potential to restore naturally reproducing populations of coho, increasing their abundance, productivity, distribution, and diversity.

4.3.3 Migratory Bird Treaty Act

The Migratory Bird Treaty Act (16 USC 703-711) prohibits the taking, killing, or possession of migratory birds except as allowed by the Secretary of the Interior. The list of migratory birds is found in 50 CFR 10, and permit regulations are found in 50 CFR 21. This project would not take, kill, or possess migratory birds. See Chapter 3, Section 3.8.

4.3.4 Bald Eagle Protection Act

The federal Bald Eagle Protection Act (16 CFR 668-668c) prohibits the taking, possession, purchase, sale, barter, transport, export, or import of any bald or golden eagle or any part, nest, or egg of a bald or golden eagle, except for certain scientific, exhibition, and religious purposes. Eagle permit regulations are found in 50 CFR 22.

Washington state wildlife law is contained in Title 77, Revised Code of Washington (RCW). This title contains several sections generally applicable to the EIS process. Bald eagles and protection of their habitat are addressed in RCW 77.12.650 and 77.12.655. Taking protected wildlife and destroying eggs, including removal of raptor nest trees, are prohibited under RCW 77.16.120.

Bald eagles would not be taken or otherwise harmed by this project. The most likely effect would be beneficial, by increasing a source of food—coho salmon. See Chapter 3, Section 3.8.

4.3.5 Magnuson-Stevens Fishery Conservation and Management Act of 1976

NOAA Fisheries is responsible for ensuring compliance with the Magnuson-Stevens Fishery Conservation and Management Act of 1976. Public Law 104-297, the Sustainable Fisheries Act of 1996, amended the Magnuson-Stevens Act to establish new requirements for evaluating and consulting on adverse effects to essential fish habitat (EFH).

The facilities associated with the Mid-Columbia Coho Restoration Program are located within EFH Habitat for Pacific salmonids (coho and Chinook salmon). As discussed in Section 3.7, changes to Chinook salmon habitat would be unlikely, and juvenile Chinook would be excluded from at most approximately 3 acres of habitat they might currently use for a period of 6 weeks to 6 months each year. The Biological Assessment would detail conservation measures intended to avoid and minimize impacts to essential fish habitat of federally managed fish species.

4.4 Heritage Conservation and Cultural Resources Protection

The National Historic Preservation Act of 1966 as amended (16 USC 470) requires federal agencies to take into account the potential effects of their undertakings on properties that are listed or eligible for listing on the National Register of Historic Places (NRHP). Consultation must occur with the State Historic Preservation Office, Indian tribes that attach religious and cultural significance to historic properties that may be affected by an undertaking, and additional consulting parties regarding the inventory and evaluation of properties potentially eligible for National Register nomination; and to determine whether the project would adversely affect them.

Cultural resource surveys will be conducted at each proposed project site where ground disturbance may occur (Chapter 3, Section 3.13). Findings would be consulted upon with the
Washington State Historic Preservation Office, the Yakama Nation, and the Confederated Tribes of the Colville Indian Reservation. If surveys identify the potential for adverse effects, additional consultation to determine how to avoid or mitigate the effects would take place if the Proposed Action is implemented.

Facilities proposed on federal or Tribal land would follow the requirements of the Archaeological Resource Protection Act (16 USC 470 et seq.). Currently, the Proposed Action includes no alterations to sites on federal properties. Only one site is on Tribal land; it is currently being used by the Mid-Columbia Coho Restoration Program, and no new construction is proposed under the Proposed Action.

The Archaeological and Historic Preservation Act (16 USC 469 et seq.) directs federal agencies to notify the Secretary of the Interior if they find that a federal action might cause the destruction of significant scientific, prehistoric or archaeological data. Chapter 3, Section 3.13.2, discusses the likelihood of encountering cultural materials at the proposed construction sites.

Executive Order 13175, Consultation and Coordination with Indian Tribes, states that the U. S. government will continue to work with Indian Tribes on a government-to-government basis to address issues concerning tribal self-government, trust resources, and Indian tribal treaty and other rights. The Mid-Columbia Coho Restoration Program (sponsored by the Yakama Nation) would contribute to the spirit of intergovernmental cooperation, and if implemented, has the potential to enhance the culturally significant tribal ceremonial and subsistence fishery for coho salmon in the Wenatchee and Methow rivers and in the Columbia River below Wells Dam.

4.5 Floodplain/Wetlands Assessment

Executive Orders 11988, Floodplain Management and Executive Order 11990, Protection of Wetlands, require the protection of these areas. If either would be affected or altered by project facilities, the effects must be disclosed. Sections 3.9 and 3.10 of this EIS describe the effects of the proposed program on wetlands and FEMA-mapped floodplains. Section 4.5 is the Floodplain and Wetland Assessment required under the Executive Orders.

4.5.1 Project Description and Impacts

Floodplains

Most, if not all, of the 26 proposed sites are in or near a floodplain. Appendix 8 provides details of the FEMA flood insurance rate maps (FIRMs) that apply to each site. However, not all sites require construction that would potentially affect the floodplains. Table 4-1 identifies all the proposed acclimation and hatchery sites, both primary and backup, and the kind of construction activity that would take place in floodplains. The total amount of ground disturbed during construction of all the primary sites is proposed to be less than 5 acres and would include four new water intake structures, seven new wells, and 650 feet of unpaved road. New ponds are proposed for the Dryden hatchery, three primary acclimation sites, and three backup sites. The construction details for each site are described in Appendices 1, 2, and 3. The new ponds would remove material from floodplains, slightly increasing floodplain storage capacity and potentially decreasing flood elevations.

Proposed clearing and grading during construction is limited to small areas relative to total floodplain areas. At each site, impacts to flooding would be avoided or compensatory floodplain storage would be created to offset facilities located above ground in the floodplain.
Table 4-1. Acclimation and hatchery sites with development activities in floodplains

Wenatchee River Basin, in Chelan County, Washington

<table>
<thead>
<tr>
<th>Primary Site</th>
<th>Activities in Floodplain</th>
<th>Floodplain Development Permit Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butcher</td>
<td>Excavation of an open channel</td>
<td>Yes</td>
</tr>
<tr>
<td>Tall Timber</td>
<td>Excavation of Nappequa River bank intake and pipeline corridor</td>
<td>Yes</td>
</tr>
<tr>
<td>Chikamin</td>
<td>Excavation of a pond, Chikamin Creek bank intake, open channel, and pipeline corridor</td>
<td>Yes</td>
</tr>
<tr>
<td>Minnow</td>
<td>Excavation of bed and banks of Minnow Creek</td>
<td>Yes</td>
</tr>
<tr>
<td>Scheibler</td>
<td>Excavation of bed and bank of Chumstick Creek</td>
<td>Yes</td>
</tr>
<tr>
<td>Coulter</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Rohlfing</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>White River Springs</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Dirty Face</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Two Rivers</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Clear</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Beaver</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Brender</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Leavenworth NFH</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Dryden Hatchery</td>
<td>Possible development of water quality treatment wetlands</td>
<td>Maybe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Backup Site</th>
<th>Activities in Floodplain</th>
<th>Floodplain Development Permit Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Coulter/Roaring</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>McComas</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Squadroni</td>
<td>Excavation of pond and open channels</td>
<td>Yes</td>
</tr>
<tr>
<td>George Hatchery</td>
<td>Excavation and construction of a fish hatchery and associated facilities</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Methow River Basin, in Okanogan County, Washington

<table>
<thead>
<tr>
<th>Primary Site</th>
<th>Activities in Floodplain</th>
<th>Floodplain Development Permit Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSWA Eightmile</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Mason</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Twisp Weir</td>
<td>Excavation of pond and pipeline corridor, new water intake</td>
<td>Yes</td>
</tr>
<tr>
<td>Gold</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Goat Wall</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Heath</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Parmley</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Pete Creek Pond</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Lower Twisp</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Hancock</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Winthrop NFH</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Backup Site</th>
<th>Activities in Floodplain</th>
<th>Floodplain Development Permit Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSRFA Chewuch</td>
<td>Excavation of a pond and open channels</td>
<td>Yes</td>
</tr>
<tr>
<td>Chewuch AF</td>
<td>Excavation of the Chewuch River bank, pond and pipeline corridors</td>
<td>Yes</td>
</tr>
<tr>
<td>Utley</td>
<td>Excavation of outlet channel to the Twisp River</td>
<td>Yes</td>
</tr>
<tr>
<td>Newby</td>
<td>Excavation of pond and pipeline corridors</td>
<td>Yes</td>
</tr>
<tr>
<td>Poorman</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Biddle</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Balky Hill</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>
Implementation of the Proposed Action would probably have little or no effect on flood elevations. Where there is an effect, it is likely to be beneficial, as the acclimation ponds would provide some small amount of additional floodplain storage (difference between the existing land surface elevation and the working water surface elevation). The spoil materials from construction activities such as excavation of ponds and ditches, grading of roads to improve winter access, or installation of buried water supply pipes would be disposed of outside the 100-year floodplain in accordance with the local grading and floodplain management ordinances. Consequently, there are not likely to be changes in grades that could direct or divert flood flows affecting properties either upstream or downstream of the individual project sites.

New wells, although providing additional flow through the acclimation sites, would withdraw water from shallow aquifers that are typically hydraulically connected to the adjacent creek or river. Therefore, there is no real gain or loss of water (see Section 3.6). Additionally, the well discharge would be very minor compared to flood flows (Section 3.6), so there would be no impact on floodplains from construction or operation of wells. Site-specific discussions can be found in Chapter 3, Section 3.10.3.

There would be little to no effect on lives or property from the proposed actions that are located in floodplains. As discussed above, the overall effects on flooding may be slightly beneficial due to the excavation of ponds and ditches.

Wetlands

Wetlands were identified primarily from existing information and some site visits for a number of project acclimation sites and for the backup hatchery site. The site-specific maps in Appendix 4 show the types of wetlands identified at each project site. However, not all sites requiring construction would affect wetlands, and at the Dryden site, the project would create new wetlands where none now exist. Table 4-2 summarizes the types of wetlands identified at primary and backup sites in the two basins where construction is proposed, and the amount of disturbance, removal, or newly created wetland currently estimated. Wetland delineations would be done in spring 2011 to determine more precisely the amount of wetland affected.
Table 4-2. Estimated wetlands effects at project sites: temporary, permanent, and new created

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Wetlands Observed During Site Visits</th>
<th>Wetlands Identified With Existing Information</th>
<th>Potential Wetland Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenatchee Primary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryden</td>
<td>None observed</td>
<td>PSS wetland habitat mapped along riparian habitat a few hundred feet from the site</td>
<td>- No wetland impacts identified in proposed construction area. - New wetland potentially created: 52,272 sq ft</td>
</tr>
<tr>
<td>Minnow</td>
<td>None observed</td>
<td>PFO, PSS, and PEM wetland habitat mapped along riparian habitat a few hundred feet from the site</td>
<td>No wetland impacts identified in proposed construction area.</td>
</tr>
<tr>
<td>Scheibler</td>
<td>PFO, PSS, and PEM wetland habitat associated with riparian habitat</td>
<td>PSS and PEM wetland habitat mapped along riparian habitat at the site</td>
<td>Permanent: 3,049 sq ft.</td>
</tr>
<tr>
<td>Tall Timber</td>
<td>PSS and PEM wetland habitat associated with side channels</td>
<td>PSS and PEM wetland habitat mapped along riparian habitat more than 1,000 feet from site</td>
<td>Potential impact from filling of side channel with water seasonally during acclimation</td>
</tr>
<tr>
<td>Wenatchee Backup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>George (backup hatchery site)</td>
<td>Wetlands observed associated with the side channel (high-quality PSS and PAB wetland) and the Wenatchee River (PFO and PSS wetlands).</td>
<td>NWI PFO, PSS, and PAB identified associated with the Wenatchee River and the side-channel at the site.</td>
<td>- Temporary: 11,500 sq ft (0.26 acres) - Permanent: 1,075 sq ft (0.03 acres)</td>
</tr>
<tr>
<td>Methow Primary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twisp Weir</td>
<td>None observed</td>
<td>NWI PFO and PEM wetland habitat identified along the Twisp River at the site.</td>
<td>- Temporary: 1,350 sq ft (0.03 acres) - Permanent: 130 sq ft (0.003 acres)</td>
</tr>
<tr>
<td>Methow Backup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSRF Chewuch</td>
<td>PFO, PSS, and PEM wetland habitat associated with riparian habitat</td>
<td>PFO, PSS, and PEM wetland habitat mapped along riparian habitat at the site</td>
<td>New open channels could encroach into PFO, PSS, and PEM wetland habitat near the Chewuch River; amount to be determined.</td>
</tr>
<tr>
<td>Utley</td>
<td>- Potential patches of riverine wetlands along the Twisp River east and northeast of existing pond. - A large PSS NWI wetland north of the pond may be connected to the ditch that drains the pond.</td>
<td>- PSS NWI wetland approx. 250 ft north of the existing pond. - PFO NWI wetland approx. 400 ft southwest of the pond but outside of construction areas.</td>
<td>Temporary: 150 sq ft (0.003 acres)</td>
</tr>
</tbody>
</table>

NWI – National Wetlands Inventory
PAB – Palustrine aquatic bed (wetland)
PEM – Palustrine emergent (wetland)
PFO – Palustrine forested (wetland)
PSS – Palustrine scrub-shrub (wetland)
Table 4-3 summarizes the amount of wetland area affected in both basins.

<table>
<thead>
<tr>
<th>Table 4-3. Total estimated square feet of temporary and permanent wetland impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Wenatchee sites</td>
</tr>
<tr>
<td>Primary acclimation</td>
</tr>
<tr>
<td>Scheibler</td>
</tr>
<tr>
<td>Tall Timber</td>
</tr>
<tr>
<td>Primary hatchery</td>
</tr>
<tr>
<td>Dryden</td>
</tr>
<tr>
<td>Backup hatchery</td>
</tr>
<tr>
<td>George</td>
</tr>
<tr>
<td>Methow sites</td>
</tr>
<tr>
<td>Primary acclimation</td>
</tr>
<tr>
<td>Twisp Weir</td>
</tr>
<tr>
<td>Backup acclimation</td>
</tr>
<tr>
<td>Utley</td>
</tr>
<tr>
<td>MSRF Chewuch</td>
</tr>
<tr>
<td>Total wetland impacts primary sites</td>
</tr>
<tr>
<td>Total wetland impacts backup sites</td>
</tr>
</tbody>
</table>

4.5.2 Alternatives and Mitigation

Proposals for construction in floodplains have been limited by using existing natural and human-made ponds for acclimation as much as possible; of the 25 primary sites proposed in both basins (including the proposed hatchery site), only 7 require construction in floodplains. Water supply intakes and hatchery/acclimation pond outlets are water dependent uses, and it is not feasible to locate these facilities outside of the floodplain and riparian areas. It is essential that the ponds be located to use the river waters for imprinting and acclimation of juvenile salmon and to allow smolts to eventually volitionally release into the rivers for out-migration.

In the Wenatchee basin, 6 of the 15 proposed primary sites, including the proposed Dryden Hatchery, require some work in floodplains. Up to 3 sites might require excavation of ponds in floodplains, and the Dryden work would be to create a water treatment wetland. The other two sites would be water discharge channels or intakes and pipelines only. In the Methow basin, only one of eleven primary sites requires work in floodplains—Twisp Weir would construct a new pond and pipeline corridor in a floodplain.

The project includes alternative or backup sites for acclimation and the hatchery, in the event that one or more primary sites are infeasible. In the Methow, 4 of the 7 backup sites require construction in floodplains. In the Wenatchee, only one of the four backup acclimation sites requires construction in floodplains. At the George backup hatchery site, permanent hatchery facilities would be near the edge of the floodplain but outside the 100-year floodplain boundary. As this is a backup site, detailed engineering studies have not been completed. Because the project is near the edge of the floodplain, at an elevation similar to the BFE, it is not expected that the project would measurably obstruct flood flows or reduce floodplain storage. Development of the site would have not have a substantial adverse effect on flooding.
Measures that would be implemented to minimize potential impacts to flooding include:

- Compensatory storage is incorporated in the project design where aboveground facilities are located within the floodplain.
- Spoil materials would be removed and disposed of in uplands or at offsite locations outside of the floodplain.
- Infrastructure buried below grade would not be placed in elevated road prisms, preventing diversion or rerouting of floodwaters.

Wetlands

Where new construction is proposed, facilities would be sited to avoid wetlands, if possible. Specific locations would be defined once wetlands are delineated. At this point, only 3 of the proposed 24 primary acclimation sites would require construction in wetlands; the proposed hatchery site at Dryden would not affect wetlands, but its water treatment proposal could create over 52,000 square feet of new wetland. While only two of the backup sites require construction in wetlands, the backup hatchery site would require significant work in wetlands. Wetland delineations to be conducted before the Final EIS is prepared would help ensure facilities are sited to avoid wetlands as much as possible.

Measures that would be implemented to avoid, minimize, and mitigate potential impacts to wetlands and wetland buffers include:

- No development features such as buildings or paved surfaces are proposed in wetlands.
- Clearing and grading would be designed to avoid wetland areas to the greatest extent possible.
- Disturbed areas would be re-vegetated with native vegetation.
- Staging areas for construction would be located outside wetland buffers and re-vegetated with native vegetation as necessary.
- Construction permits issued to the project would include detailed measures for protecting wetland habitats. The conditions included in the permits would be met during construction.

4.6 State, Area-wide, and Local Plans and Permits

4.6.1 Wenatchee and Methow Subbasin Plans

The proposed Mid-Columbia Coho Restoration Program is consistent with and supports the vision and goals of both the Wenatchee and Methow subbasin plans. The vision for the Wenatchee subbasin includes restoring extirpated fish and wildlife and natural habitats that perpetuate native wildlife and fish populations into the foreseeable future. The vision for the Methow subbasin is to support self-sustaining, harvestable, and diverse populations of fish and wildlife.

Restoring extirpated fish and wildlife is a specific goal and priority to advance the vision of the Wenatchee Subbasin Plan, and is also a specific goal of the Methow Subbasin Plan: “The goal for coho salmon includes re-establishment of run sizes that provide for species recovery, mitigation of hydro-system losses, and harvestable surpluses.” (NPCC 2004b)

In both the Wenatchee and Methow subbasin plans, coho salmon are listed as a focal species. Many of the prioritized habitat restoration actions in the subbasin plans are aimed at supporting...
continued restoration of coho populations. Coho salmon prefer and occupy different habitat types than the other focal species, selecting slower velocities and greater depths. Habitat complexity and off-channel habitats such as backwater pools, beaver ponds, and side channels are important for juvenile rearing, making coho salmon a good biological indicator for habitat recovery prioritized in the subbasin plans.

The following excerpts from the two subbasin plans are a sample of how coho have been incorporated into the plans. Emphasis within the quotations was added to highlight issues.

Methow Subbasin Plan excerpts:

Page xxi, Section 1 Fisheries Management: This section provides the Methow Subbasin Plan goals for focal species. “The goal for coho salmon includes re-establishment of run sizes that provide for species recovery, mitigation of hydro-system losses, and harvestable surpluses.”

Page 33, Section 3.3.1 Fish Focal Species: Population Characterization and Status: “A focal species has special ecological, cultural, or legal status and represents a management priority in the Methow subbasins and, by extension, in the Columbia Cascade Eco-province. Focal species are used to evaluate the health of the ecosystem and effectiveness of management actions.” The inclusion of coho salmon as a “focal species” in the Methow Subbasin Plan indicates that continued coho restoration is consistent with the Plan, and that coho can be used as an indicator species for select habitat types.

Page 79 Section 3.4.6 Fish Focal Species, Rationale for Selection – Coho: “Historically the Methow River produced more coho than Chinook or steelhead (Craig and Suomela 1941). Mullan (1984) estimated that 23,000-31,000 coho annually returned to the Methow River. Upstream of the Yakima River, the Methow River and Spokane River historically produced the most coho, with lesser runs into the Wenatchee and Entiat (Mullan 1984)…”

“Coho salmon prefer and occupy different habitat types, selecting slower velocities and greater depths than other focal species: Habitat complexity and off-channel habitats such as backwater pools, beaver ponds, and side channels are important for juvenile rearing making coho good biological indicators of these areas.”

Page 79 Section 3.4.6 Fish Focal Species, Coho – Representative Habitat: “Currently, coho salmon returning to the Methow Basin are spawning in the mainstem Methow River and small tributaries such as Gold Creek. As the recovery program continues, reintroduction of coho to tributaries within the Methow Basin will aid in species dispersal.” This statement indicates that continued coho reintroduction is expected in the Methow Subbasin Plan to ensure adequate species dispersal within the Methow subbasin.

Page 81 Section 3.4.6 Fish Focal Species, Coho – Population Management Regimes and Activities: “The ideal result would be to restore coho populations in these basins [Methow and Wenatchee] to their historic levels. Because of varying degrees of habitat degradation in each of these basins, historical numbers are unlikely ever to be achieved but remain a goal towards which to strive.”

Pages 301-353 Section 5.5 Assessment Unit Summaries: In section 5.5, coho salmon are specifically listed as a focal species for the following Assessment Units: Lower Methow, Middle Methow, Upper-Middle Methow, Upper Methow/Early Winters/Lost River, Black Canyon/Squaw Creek, Gold/Libby Creeks, Beaver/Bear Creeks, Lower Twisp River, Upper
Twisp River, Upper Chewuch River, Lower Chewuch River, Goat/Little Boulder Creeks. The proposed geographic distribution of coho under the Proposed Action is consistent with the identification of coho as a focal species for specific Assessment Units in the Subbasin Plan.

Wenatchee Subbasin Plan excerpts:

Page xxi, Section 2.5.2 Key Findings: Aquatic: “Limiting factors are defined as a habitat element that limits the biological productivity and/or life history diversity of a focal species. The focal species selected for this assessment include spring chinook salmon, late-run chinook salmon, sockeye salmon, **coho salmon**, steelhead trout, bull trout, westslope cutthroat trout, and pacific lamprey.” As defined in the plan, “focal species will be used to evaluate the health of the ecosystem and the effectiveness of management actions.”

Page 27, Section 3.3 Guiding Principle 10: “Restoration of individual populations may not be possible without restoration of other fish and wildlife populations with which they co-evolved.” This statement from the 10th guiding principle directly applies to the reintroduction of coho salmon (extirpated species) which co-evolved with all the other focal species in the basin. The plan acknowledges that restoration of ESA species may not be possible unless the ecosystem and co-evolved fish assemblage is restored.

Page 29, Section 4.1 Focal Species – Aquatic/Fish: “Fish focal species were defined that a) have special cultural significance, b) fulfill a critical ecological function, c) serve as an indicator of environmental health, d) are locally significant or rare as determined by applicable state or federal resource management agencies and/or are federally listed. Eight anadromous and resident fish species were chosen as focal species. Each of these species is considered to be culturally important, three of the species are listed under ESA and each species uniquely represent different and important habitat characteristics.” Coho salmon are a focal species in the Wenatchee Subbasin Plan.

Page 29 Section 4.1 Focal Species – Table 12: In Table 12, coho are shown as a focal species with a representative habitat of “lower mid-elevation mainstem and tributaries, side channel and backwater environments.” Lower and mid-elevation mainstem includes the Wenatchee River from the mouth to the Lake. Tributaries include Nason Creek, Chiwawa River, White River, and Little Wenatchee.

Page 70 - Figure 11: The figure on page 70 shows the current distribution of coho in the Wenatchee subbasin. At the bottom of the figure the following note is found – “Note: Coho presence and spawning information is dynamic and is expected to change significantly each year as reintroduction efforts continue.” The Wenatchee Subbasin Plan expects coho reintroduction to continue.

Page 305 Section 7.8.16 Summary of Near-term Opportunities by Focal Species – Coho Salmon: “Continued development of a locally adapted broodstock is essential to ensure future populations of naturally spawning coho salmon in the Wenatchee River.”
4.6.2 County Comprehensive Plans

Both counties have comprehensive plans in place. Sites in the Wenatchee basin are for the most part in areas designated as Rural in the Chelan County Comprehensive Plan, although a few might not be. In these areas, the rural character is to be preserved. Rural character is defined as follows:

1. In which open space, the natural landscape, and vegetation predominate over the built environment;
2. That foster traditional rural lifestyles, rural-based economies, and opportunities to both live and work in rural areas;
3. That provide visual landscapes that are traditionally found in rural areas and communities;
4. That reduce the inappropriate conversion of undeveloped land into sprawling, low-density development;
5. That generally do not require the extension of urban governmental services; and
6. That are consistent with the protection of natural surface water flows and ground water and surface water recharge and discharge areas.

Proposed project sites appear to be consistent with this definition, as well as with goals and policies in the plan. The EIS will be submitted to Chelan County for its review.

The Okanogan County Comprehensive Plan is currently being amended, with adoption of amendments by the Okanogan County Planning Commission pending. Most (if not all) of the proposed project sites are in lands designated Rural. While fish acclimation sites are not a specifically permitted activity in either High or Low Density Rural Lands, they are not a prohibited use. The project would not affect the county’s transportation network by overburdening it with traffic or by requiring new infrastructure. The project is consistent with plan policies on private property rights and water rights.

Most of the project sites in the Methow basin are in the Upper Methow Valley subarea of the Okanogan County Comprehensive Plan. The subarea developed its own subset of visions and policies, which are incorporated as Appendix B in the Comprehensive Plan (Upper Methow Valley Comprehensive Plan, an update of the Community Master Plan, Methow Valley Planning Area Sub Unit A. Adopted on March 6, 2000, by the Okanogan County Board of Commissioners).

This EIS will be submitted to Okanogan County for review, consistent with the comprehensive plan’s Policy #4, which recognizes that federal agencies must coordinate their proposed actions with local governments, and in the county’s role as the lead agency for review under SEPA.

4.6.3 Permitting Issues

Various federal, state, tribal, and local permits and approvals would be required to implement the Mid-Columbia Coho Restoration Program.

Action on property owned by the Yakama Nation would require approval by the tribal government. Currently, only one backup site, Coulter/Roaring, is on Yakama Nation property (see Chapter 3, Section 3.3.1.2.); it would require no construction.
The hatchery and acclimation ponds are water-dependent uses, so water rights and in-water work permits are required. Elements would be incorporated into project design to assure consistency with the appropriate authorizations once they are known.

In-stream construction requires a Hydraulic Project Approval from Washington State, which would specify when in-water work can occur and what measures would be needed to protect channels, riparian zones and water quality. In addition, a Shoreline Substantial Development Permit may be required from Okanogan County and Chelan County (under authority delegated by WDOE) for working within 200 feet of a waterway. These permits would stipulate conditions for near-water construction activities. Both counties may also require an approval to allow construction within a designated floodplain to assure that appropriate design measures are included. On state-owned aquatic lands, Washington Department of Natural Resources (WDNR) has review and approval authority for any new structures.

4.7 Clean Water Act

The Clean Water Act of 1977 (33 U.S.C. 1251 et seq.) is the principal federal law governing water pollution control. It regulates discharges into waters of the United States. Two of the primary instruments for implementing this act are the National Pollutant Discharge Elimination System (NPDES) and the state water quality certification program, both of which are delegated by the federal government to WDOE to administer.

The NPDES would be required to operate hatchery facilities while the water quality certification program would define specific construction-related mitigation measures that contractors must follow. Applications would be made to WDOE for both permits when final facility design is developed, including firm construction schedules and quantities and quality of hatchery discharges. Effects of proposed facilities on surface water quality are discussed in Chapter 3, Section 3.5; and on groundwater quality in Chapter 3, Section 3.6. In addition, a Section 404 permit would be sought from the U.S. Army Corps of Engineers for work in wetlands.

The Washington Department of Ecology (WDOE) is charged both with administering state water rights laws and the federal Clean Water Act. Chapters 90.54 and 90.22 RCW require WDOE to maintain in-stream flows sufficient to protect and preserve fish and wildlife habitat, scenic and aesthetic values, navigation and other environmental values (WDFW and WDOE 2004). The Washington Department of Fish and Wildlife (WDFW) recommends in-stream flows to be conditions of water rights or Clean Water Act Section 401 certification (issued by WDOE). When a major water project is planned, WDFW and WDEC request that the project proponent conduct an in-stream flow study to provide adequate information on which to base an in-stream flow recommendation or requirement. WDFW defines a major water project as a project that:

a) diverts at least 1.0 cubic feet per second (cfs), and

b) changes flow by at least 10% of the monthly 90% exceedance flow (the flow that is equaled or exceeded 90 percent of the time) at any point along the stream channel.

The proposed surface water withdrawals for this project are greater than 1.0 cfs, but less than 10% of the monthly 90% exceedance flows, and are therefore not considered major water projects.
4.8 Farmland Protection Policy Act

The Farmland Protection Policy Act (7 U.S.C. 4201 et seq.) directs federal agencies to identify and quantify adverse effects of federal programs on farmlands. The purpose of the act is to minimize the number of programs that unnecessarily contribute to the conversion of agricultural land to non-agricultural purposes.

All sites proposed for construction were evaluated for the presence of designated Farmland; results are listed in Table 4-4. The location and ratings of Prime Farmlands were obtained from the Natural Resources Conservation Service (NRCS) Web Soil Survey website application (NRCS 2011). Farmlands of statewide or unique importance were obtained from the Washington State Department of Ecology (WSDOE) farm soil maps for Chelan and Okanogan counties (WSDOE 2011). Farmland status was identified for a total of two primary sites and two backup sites in the Wenatchee basin (maximum of up to 4.2 acres), and two primary sites and two backup sites in the Methow basin (maximum of up to 0.4 acres).

Table 4-4. Construction sites (primary and backup) designated as farmland a

<table>
<thead>
<tr>
<th>Basin</th>
<th>Site Type – Primary or Backup</th>
<th>Site Name</th>
<th>Soil Classification (NRCS)</th>
<th>Farmland Designation (NRCS, WSDOE)</th>
<th>Affected area (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEN</td>
<td>Hatchery – Primary</td>
<td>Dryden</td>
<td>Beverly gravelly fine sandy loam</td>
<td>Prime Farmland if irrigated</td>
<td>Up to 4</td>
</tr>
<tr>
<td>WEN</td>
<td>Hatchery – Backup</td>
<td>George</td>
<td>Alluvial land</td>
<td>Prime Farmland if irrigated</td>
<td>Up to 2.5</td>
</tr>
<tr>
<td>WEN</td>
<td>Acclimate – Primary</td>
<td>Scheibler</td>
<td>Leavenworth fine sandy loam</td>
<td>Prime Farmland if irrigated</td>
<td>Negligible (expand existing pond)</td>
</tr>
<tr>
<td>WEN</td>
<td>Acclimate – Backup</td>
<td>Squadroni</td>
<td>Aeric Fluvaquents</td>
<td>Not Prime Farmland; Farmland of statewide/unique importance (WSDOE)</td>
<td>0.2</td>
</tr>
<tr>
<td>MET</td>
<td>Acclimate – Primary</td>
<td>MSWA Eightmile</td>
<td>Boesel fine sandy loam</td>
<td>Prime Farmland</td>
<td>Negligible (well only)</td>
</tr>
<tr>
<td>MET</td>
<td>Acclimate – Primary</td>
<td>Twisp Weir</td>
<td>Boesel fine sandy loam</td>
<td>Prime Farmland if irrigated; Farmland of statewide/unique importance (WSDOE)</td>
<td>0.2</td>
</tr>
<tr>
<td>MET</td>
<td>Acclimate – Backup</td>
<td>Newby</td>
<td>Boesel fine sandy loam</td>
<td>Prime Farmland if irrigated</td>
<td>0.2</td>
</tr>
<tr>
<td>MET</td>
<td>Acclimate – Backup</td>
<td>Utley</td>
<td>Boesel fine sandy loam</td>
<td>Prime Farmland if irrigated; Farmland of statewide/unique importance (WSDOE)</td>
<td>Negligible (expand existing pond)</td>
</tr>
</tbody>
</table>

a Gray rows are backup sites that would be constructed only if a primary site is infeasible.

Only one site where construction is proposed is designated as Prime Farmland. The MSWA Eightmile primary acclimation site on the Chewuch River in the Methow basin would require the installation of one new well and a water delivery system. The site is managed for wildlife conservation and public recreation, and the proposed well would be located in a privately-owned field just east of the existing side channel. The installation of the well and water delivery system would impact a very small area and would not convert any land to non-agricultural purposes; therefore, no Prime Farmland would be adversely affected.

The primary and backup hatchery sites (Dryden and George, respectively) are both designated as Prime Farmland if irrigated; however, neither site has been irrigated, nor have they been developed for agricultural purposes. The Dryden site has been used in the past by the WSDOT as a gravel pit and storage site, and is currently used for access to Dryden Dam and for
recreational access to the Wenatchee River. The George site has been logged in the past and is currently undeveloped. Therefore, since neither site has been irrigated or developed for agriculture, construction of a new hatchery facility at either location would not convert agricultural land to non-agricultural purposes, and no Prime Farmland would be adversely impacted.

The remaining sites with some level of designated farmland status are not irrigated and are not developed for agriculture in the areas that would be impacted by construction. Further, these sites would require only minimal construction that would impact an insignificant amount of land. Therefore, it is reasonably certain that program activities would not convert land from agricultural to non-agricultural purposes and thus would not adversely affect any protected farmlands.

4.9 Noise Control Act

The Noise Control Act of 1972 (42 U.S.C. 490 et seq.) promotes an environment free from noise that jeopardizes human health and welfare. Federal and state regulations establish guidelines that implement the intent of the act. No local noise standards exist for areas that would be affected by the proposed action, although county comprehensive plans have policies related to noise. No noise in excess of state or federal standards is expected from this project (Section 3.14.1). Temporary construction noise during daylight hours is exempt from state and federal standards.

4.10 Clean Air Act

Emissions produced by construction and operation of the proposed project facilities must meet standards of the Clean Air Act and the amendments of 1970 (42 USC 741 et seq.). In Washington, the authority for ensuring compliance with this act is delegated to WDOE. The Proposed Action would not violate current clean air standards, as described in Section 3.14.2.

4.11 Resource Conservation and Recovery Act (RCRA), Toxic Substances Control Act (TSCA) and Federal Insecticide, Fungicide and Rodenticide Act (FIFRA)

The federal Resource Conservation and Recovery Act (42 USC 692 et seq.) regulates the disposal of hazardous wastes. The Toxic Substances Control Act (15 USC 2601) gives authority to the EPA to regulate substances that present unreasonable risks to public health and the environment. The federal Insecticide, Fungicide and Rodenticide Act (7 USC 136 et seq.) authorizes the EPA to prescribe conditions for use of pesticides.

Construction, operation, and maintenance of the proposed facilities would meet the guidelines for use, handling, storage, and disposal of hazardous substances. Necessary permits would be obtained if regulated pesticide products are used.

Chemicals used at the proposed new hatchery may include chlorine, formalin, iodaphor, and sodium thiosulphate. Staff would be trained in their proper use, transport, handling and storage to minimize dangers of over-exposure or accidental release to the environment. Appropriate safety equipment would be provided, and chemicals would be stored in areas designed to contain the chemical in the event of a spill according to the Washington Industrial Safety and Health Administration regulations, the Uniform Fire Code, and other applicable regulations. Any used absorbent materials containing controlled chemicals would be disposed consistent with the Material Safety Data Sheet and applicable federal, state, and local regulations.
The types and amounts of chemicals used at a hatchery or rearing facility depend upon site-specific conditions, fish culture practices, species of fish, and types of parasites or disease organisms being treated. The types and amounts of chemicals that would be used at the proposed hatchery facility and acclimation ponds is not currently known. However, all chemical handling, application, and disposal would adhere to U.S. Department of Agriculture (USDA), state, and other federal regulations to protect human and environmental health.

4.12 Environmental Justice

Executive Order 12898 directs federal agencies to consider the effects of their programs, policies and activities on minority and low-income populations. Federal agencies are required to assess environmental justice concerns in the NEPA analysis. The potential for the Mid-Columbia Coho Restoration Program to affect low-income communities and minority populations is discussed below.

- Population: no change to minority or low income populations is expected.
- Income/employment: some additional jobs and income may be available to local minorities and low income families during project construction and operations, but no substantial long-term change to employment or income is expected. Most full or part-time positions for project operations likely would be filled by Yakama Nation staff already involved with the program.
- Housing: no changes to housing availability, costs, or quality in the local communities would occur as a result of Mid-Columbia Coho project.
- Local services: during construction (less than one year), an increase in demand for local services is likely, but demand would be temporary and would not exceed current capacity.
- Power rates: BPA wholesale power rates would not change due to the proposed action, and it is expected that local PUD rates would similarly be unaffected.
- Ceremonial and subsistence and recreational fisheries: the value (non-monetary) of an improved tribal ceremonial and subsistence fishery could increase the quality of life of tribal members in general. An improved recreational fishery for the general public could also benefit other local minorities and low income families.

The Yakama Nation has enacted a Tribal Employment Rights Ordinance (TERO) requiring all employers subject to the Tribe’s jurisdiction to give preference in employment, training, and subcontracting to Indians. Yakama TERO Contacts provide contact lists for Indian-owned construction and construction-related companies, facilitating the employment of these companies for project work. Jobs created by construction of the project could benefit individual Native Americans, but the effect would be short-term and minor.

4.13 Energy Conservation at Federal Facilities

Executive Order 13514 states that federal agencies should “identify and analyze impacts from energy usage and alternative energy sources in all Environmental Impact Statements and Environmental Assessments for proposals for new or expanded Federal facilities under the National Environmental Policy Act of 1969, as amended (42 U.S.C. 4321 et seq.).” BPA is proposing to fund the construction, operation, and maintenance of one new small hatchery and a number of acclimation sites. The final designs have not been completed for these facilities;
however we have made the following general assessment of energy usage and the potential for using alternative energy sources.

Ground and surface water pumps would use the majority of the energy required for this project. Energy requirements have been minimized in the conceptual design of the project through the use of gravity flow water supplies at as many of the sites as possible. Where pumps would be needed, the primary power source would be nearby power lines, with generators to be used for emergency backup. Energy sources other than electrical power are not likely to be feasible due to the size of the requirement and the constant demand cycle. The use of propane rather than diesel fuel for the generators is being considered, as propane would emit fewer greenhouse gases that would contribute to climate change. Energy efficiency would also be considered in the sizing of the pumps and pipelines. BPA would encourage the Yakama Nation to use and promote energy-efficient designs and operations in the new hatchery buildings; to use incentives for energy conservation from local Public Utility Districts wherever feasible; and where practical, to supply their power needs from existing renewable sources or install on-site renewable power generation such as solar panels.

The Yakama Nation would own and operate the facilities, so the Tribe would ultimately make final decisions for the facility designs and operations. However, BPA would use contractual mechanisms through the funding agreement to encourage design and operation practices in the manner described in EO 13514.
Chapter 5. References

Bruce, Robin, Jeff Creighton, Stephen Emerson, and Vera Morgan. 2001. A Cultural Resources Overview for the Priest Rapids Hydroelectric Generation Project (FERC Project No. 2114), Grant, Chelan, Douglas, Kittitas, and Yakima Counties, Washington. Public Utility District No. 2 of Grant County, Ephrata, WA.

062, Water Quality Program, Central Regional Office, Washington Department of Ecology. Yakima, WA.

Chelan County Department of Emergency Management. 2006. Chelan County Hazard Inventory and Vulnerability Assessment. Wenatchee, WA.

Chelan PUD (Chelan County Public Utility District). 2009. Unpublished data - upon request this data was received by e-mail from Waikele Hampton on behalf of Chelan County PUD by Carmen Andonaegui of Anchor QEA on Dec 9, 2009.

GeoEngineers. 2010. Results of Preliminary Test Pit Exploration at the Dryden Site, memorandum prepared for Sea Springs Company.

Koski, K.V. 1966. The survival of coho salmon from egg deposition to emergence in three Oregon coastal streams. Master’s Thesis. Oregon State University, Corvallis.

NMFS. 2008b. Anadromous Salmonid Passage Facility Design. NMFS, Northwest Region, Portland, OR.

Okanogan County Department of Emergency Management. 2009. All Hazards Mitigation Plan. Okanogan, WA.

Relander, Click. 1956. Drummers and Dreamers: The Story of Smowhala the Prophet and His Nephew Puck Hyah Toot, the Last Prophet of the Nearly Extinct River People, the Last Wanapams. The Caxton Printers, Ltd: Caldwell, ID.

Chapter 6. Definitions and Acronyms

6.1 Definitions

Alevin: The third stage of the salmonid life cycle, between eyed eggs and fry. Alevin are larval salmonids, typically about one inch long, that have hatched from the egg but have not yet fully absorbed their yolk sac, and generally have not emerged from the spawning gravel (redd). Alevins remain in the redd for approximately one month until their yolk sac is completely digested, and then emerge from the gravel as fry to hunt for food on their own.

Confined aquifer: A confined aquifer has limited continuity with other aquifers and surface waters.

Domestication selection: In a hatchery, fish are selected for genetic traits (growth, behavior, physiology and survival) that increase their survival in the hatchery (domestic) environment.

Drawdown cone: Area beyond a groundwater well that, when in use, could cause other wells in the vicinity to have more than one foot of reduction in water level; the area of influence of a groundwater well.

Escapement: The proportion of an anadromous fish population that escapes the commercial and recreational fisheries and reaches the freshwater spawning grounds.

Eutrophic/Eutrophication: Refers to water that has a high level of nutrients (e.g., nitrogen, phosphorous) that stimulate the excessive growth of plant life with a high demand for oxygen (e.g., algae), resulting in the depletion of dissolved oxygen content in the water and potentially lethal conditions for fish and other aquatic organisms.

Excursion: The word used to indicate that a water quality limit has been exceeded.

Extirpation: The loss of a local or regional population of a species (local extinction).

Eyed eggs: The second stage of the salmonid life cycle, between embryos and alevin. Eyed eggs develop approximately one month after eggs have been fertilized when the embryo inside the egg develops an eye. This stage typically lasts for one month until the eyed eggs hatch and alevin emerge.

Fry: The fourth stage of a salmonid life cycle, between alevin and parr. Fry move in schools and actively feed in the river on zooplankton until they grow large enough to eat aquatic insects and other larger food. Some species begin their downstream migration to the ocean as fry, while other species stay in the freshwater for up to three years.

Green eggs: Eggs that have been harvested from an adult female salmon or steelhead in a hatchery but have not yet been fertilized.

Hydraulic continuity: A scientific term that describes how easily water flows between groundwater and surface water (streams, rivers, lakes, and wetlands).

Integrated Hatchery Program: A hatchery program that manages wild and hatchery fish as one gene pool (natural-origin fish are included in the broodstock and hatchery-origin fish are allowed to spawn in the wild). Integrated hatchery methods are most appropriate for
programs with conservation goals or when the risks of naturally spawning hatchery-origin fish need to be minimized.

Local adaptation: The process of naturalization that addresses the loss of fitness that occurs with hatchery stocks by emphasizing selection in the natural environment; the population becomes adapted to habitats within each basin.

Mitchell Act: Enacted in 1938 and amended in 1946 (16 USC 755-757; 52 Stat. 345). Authorizes the Secretary of the Interior to implement activities for the conservation of fishery resources in the Columbia River Basin, and specifically directs the establishment of salmon hatcheries, ongoing engineering and biological surveys and experiments, and installation of fish protective devices. It also authorizes agreements with State fishery agencies (Oregon, Washington, and Idaho) and the construction of facilities on State-owned lands. Federal activities in the Columbia River Basin are carried out by the Department of Commerce (NOAA).

Montane: A category of biogeographic zones for regions located in the highlands below the sub-alpine zone. Montane regions are typically forested and have cooler temperatures and higher rainfall than the adjacent lowland regions, and support distinct communities of plants and animals.

Parr: The fifth stage of the salmonid life cycle, between fry and smolt. Parr have distinct markings (parr marks) to camouflage them from predators as they feed on aquatic insects and other larger prey in a stream environment.

Passerine birds: Perching birds or songbirds.

pH: The level of acidity/alkalinity of a solution, on a scale from 0 (most acidic) to 14 (most alkaline or basic), with 7 being neutral. Each point on the scale equals a 10-fold change in the magnitude of acidity or alkalinity. Source: http://en.wiktionary.org

Redd: The nest dug in the gravel substrate of streams for egg deposition during spawning by salmonids.

Recharge boundary: Where the drawdown cone (area of influence of a groundwater well) intersects a stream. The drawdown cone cannot spread beyond the recharge boundary.

Recruits: Fish that have survived long enough to become part of (i.e., recruited into) a population at a defined age (e.g., a natural-origin fish that survives to spawn in the wild is a natural-origin recruit). The number of recruits per spawner is a method of analyzing population productivity.

Riparian: Adjacent to or living on river banks.

Salmonid: A fish belonging to the family Salmonidae, which includes salmon, trout and chars. Some species of salmonids are anadromous (e.g., coho salmon, Chinook salmon, steelhead trout), and some species remain in freshwater throughout their life cycle (e.g., rainbow trout, bull trout).

Scale analysis: The process of counting annual growth bands on scales collected from fish in order to estimate the age of the fish.
Segregated Hatchery Program: A hatchery program that manages hatchery-origin fish as a reproductively distinct population. Only hatchery-origin adults are used for broodstock and are not allowed to spawn in the wild.

Smolt: The sixth stage of the salmonid life cycle, between parr and ocean-stage adult. Smolts undergo physiological and behavioral transformations as they migrate downstream that prepare them for the transition to the saltwater environment.

Supplementation: The generally accepted definition of supplementation was developed by the Regional Assessment of Supplementation Project (RASP): “Supplementation is the use of artificial propagation in the attempt to maintain or increase natural production while maintaining the long-term fitness of the target population, and keeping the ecological and genetic impacts on non-target populations within specified biological limits” (RASP 1992).

Transmissivity: A measure of the ability of groundwater to flow in a horizontal direction.

U.S. v. Oregon: A 1969 federal court decision that legally upheld the reserved fishing rights of the Columbia River treaty tribes (Nez Perce, Umatilla, Warm Springs and Yakama tribes) and ruled that the tribes had reserved rights to fish at “all usual and accustomed” places whether on or off reservation. In 1975, the ruling was amended to quantify the “fair and equitable share” of the resource as 50% of all harvestable fish destined for the tribes’ traditional fishing places.

6.2 Acronyms and Abbreviations

7Q10: lowest or highest stream flow for 7 consecutive days that occurs on average once every 10 years

AHA: All H Analyzer (analyzes impacts of hatcheries, habitat, harvest and hydroelectric systems on salmon and steelhead populations)

BPA: Bonneville Power Administration (under the Department of Energy)

CCPUD: Chelan County Public Utility District - funds WDFW to operate the Rock Island Hatchery Complex among other facilities

cfs: cubic feet per second (a measure of water flow)

CRFMP: Columbia River Fish Management Plan

CWT: Coded Wire Tag

DAHP: Department of Archaeology and Historic Preservation (Washington State)

DCPUD: Douglas County Public Utility District - funds WDFW to operate the Wells and Methow hatcheries, and the Methow, Twisp and Chewuch acclimation ponds (among other hatchery facilities)

DO: Dissolved Oxygen (the amount of gaseous O2 in an aqueous solution)

EDT: Ecosystem Diagnosis and Treatment (system for rating the quality, quantity and diversity of habitat along a stream relative to the needs of a specific species)
EIS: Environmental Impact Statement (an analysis of the environmental effects of major federal actions as required under the National Environmental Policy Act of 1969)

ESA: Endangered Species Act of 1973

FH: Fish Hatchery (non-federal program)

GCPUD: Grant County Public Utility District - funds WDFW to operate the Wells and Methow hatcheries, and the Nason and White acclimation ponds (among other hatchery facilities)

gpd/ft: gallons per day per foot (a measure of the ability of groundwater to flow in a horizontal direction [transmissivity]).

gpm: gallons per minute (generally a measure of the rate at which groundwater can be pumped, but also relates to water flow)

HCP: Habitat Conservation Plan

HSRG: Hatchery Scientific Review Group

ISEMP: Integrated Status & Effectiveness Monitoring Program (BPA project #2003-017-00)

ISRP: Independent Science Review Panel

m³/s: cubic meters per second

µg/m: micrograms/meter

mg: milligrams

mg/L: milligrams per liter

M&E: Monitoring and Evaluation

MSRF: Methow Salmon Recovery Foundation

MSWA: Methow State Wildlife Area

NFH: National Fish Hatchery (federal hatchery program). The 12 NFHs in the Columbia River Basin are Eagle Creek, Carson, Little White Salmon, Willard, Spring Creek, Warm Springs, Leavenworth, Entiat, Winthrop, Dworshak, Kooskia, and Hagerman NFHs.

NHPA: National Historic Preservation Act of 1966

NOAA: National Oceanic and Atmospheric Administration (in the Department of Commerce)

NOAA Fisheries/NMFS: NOAA’s National Marine Fisheries Service

NPDES: National Pollutant Discharge Elimination System

NEPA: National Environmental Policy Act of 1969

NOR: Natural-Origin Recruits

NPCC: Northwest Power and Conservation Council; formerly known as Northwest Power Planning Council (NPPC)

NRHP: National Register of Historic Places

NTTOC: Non-Target Taxa of Concern

ODFW: Oregon Department of Fish and Wildlife
pHOS: Proportion of Hatchery-Origin fish on Spawning grounds
PIT tag: Passive Integrated Transponder tag
PNI: Proportion of Natural-origin Influence in the population
pNOB: Proportion of Natural-Origin fish in Broodstock
POTW: Publicly-Owned Treatment Works (i.e., municipal water and sewage treatment plants)
PUD: Public Utility District
SHPO: State Historic Preservation Office; State Historic Preservation Officer
TMDL: Total Maximum Daily Load
TP: Total Phosphorus
TWG: Technical Work Group
USFWS: United States Fish and Wildlife Service (under the Department of the Interior)
USGS: United States Geological Survey (under the Department of the Interior)
WAC: Washington Administrative Code
WDFW: Washington Department of Fish and Wildlife
WDOE: Washington State Department of Ecology
YN: Yakama Nation
Chapter 7. List of Preparers and Reviewers

<table>
<thead>
<tr>
<th>Name</th>
<th>EIS Section or Appendix</th>
<th>Experience and Education</th>
</tr>
</thead>
</table>
| Carmen Andonaegui, Anchor QEA | Floodplains, wetlands, priority species and habitat, water quality | 15 years in fish passage and habitat restoration
B.S. Wildlife Biology |
| Ian Courter, Cramer Fish Sciences | Water discharge effects on steelhead, bull trout, and Chinook salmon | 5 years in quantifying flow and temperature effects on salmonids
B.S. Environmental Science, M.S. Fisheries Science |
| Calvin Douglas, Anchor QEA | Wetlands, endangered species, aquatic habitat | 11 years in natural resources analysis
B.S. Wildlife Biology |
| Randolph Ericksen, Cramer Fish Sciences | Project impacts on ESA-listed fish | 30 years in salmonid research and management, technical reporting, evaluating impacts of land use activities on fish and fish habitat
B.A. Biology, M.S. Fisheries Science |
| Greg Ferguson, Sea Springs Company | Project engineer Facilties location, analysis, design | 38 years in engineering and design of fish production facilities
M.S. Engineering |
| Bruce Hollen, BPA | Project manager PHS species, socio-economic effects | 19 years of Natural Resource Management and Analysis.
B.S. Biology |
| Marcelle Lynde, GeoEngineers | Wetlands, priority species & habitats | 25 years’ experience in natural resource management
B.S., Fisheries, M.M.A. Marine Resource Management |
| Fiona McNair, GeoEngineers | Wetlands, priority species & habitats | 14 years’ experience in environmental analysis
M.S. Resource and Environmental Management |
| James A. Miller, GeoEngineers | Geologic and hydrogeologic review, groundwater impact evaluation | 35 years’ experience in geotechnical and environmental projects
B.S. Geological Engineering; M.S. Environmental Geology |
| Pradeep Mugunthan, Anchor QEA | Water quality impacts of discharges | 10 years’ experience in water quality and contaminant fate and transport modeling and analysis; TMDL and nutrient issues
Ph.D. Civil and Environmental Engineering |
| Simon Page, Anchor QEA | Floodplain analysis | 23 years environmental analysis and NEPA document preparation
B.S. Soil and Water Science |
| James Rhea, Anchor QEA | Water quality | 20 years water quality analysis
Ph.D., Civil & Environmental Engineering |
| John Small, ASLA, Anchor QEA | Wetlands, priority habitats | 10 years ecological restoration, wetlands science
MLA Landscape Architecture |
| Judith Woodward, Crossing Borders Communications | Writing, editing, critical review | 33 years environmental writing and analysis
B.A. Geography and Arts & Letters |
| Lisa Wright, Contract Environmental Protection Specialist, BPA | Project coordination Visual quality, recreation, climate change, farmlands | 10 years as Fishery Biologist for USGS, NOAA Fisheries, Corps of Engineers
B.S. Biology |
Reviewers

Bonneville Power Administration
Kevin Cannell – Archaeologist
Philip Key – Attorney
Kathy Pierce – NEPA Compliance Officer
Donald Rose – Supervisory Environmental Protection Specialist
Anne Senters – Attorney
Nancy Weintraub – Senior Environmental Protection Specialist
Lisa Wright – Contract Environmental Protection Specialist, CIBER, Inc.
Ben Zelinsky – Fish Biologist, Mid-Columbia Coho Project Manager (BPA)

Yakama Nation
Greg Ferguson – Contract Project Engineer, Sea Springs Co.
Cory Kamphaus – Fisheries Biologist, Mid-Columbia Coho Program
Keely Murdoch – Fisheries Biologist, Mid-Columbia Coho Program
Tom Scribner – Manager, Mid-Columbia Coho Program
Chapter 8. List of Agencies, Organization and Persons Contacted

Tribes or Tribal Groups
- Columbia River Inter-Tribal Fish Commission
- Confederated Tribes and Bands of the Yakama Nation
- Confederated Tribes of the Colville Reservation

Federal Agencies
- Advisory Council on Historic Preservation
- Environmental Protection Agency
- US Department of Agriculture - Forest Service
- US Department of Commerce – National Oceanic and Atmospheric Administration
 Fisheries Service
- US Department of Defense – Army Corps of Engineers
- US Department of the Interior - Fish and Wildlife Service; Bureau of Indian Affairs;
 Bureau of Land Management; National Park Service

Washington Public Officials
- Office of Governor Gregoire
- State Senator Cantwell
- State Senator Murray
- Washington State Representatives of Districts 12 and 14

Washington State Agencies
- Department of Ecology
- Department of Fish & Wildlife
- Department of Natural Resources

Local Governments
- Chelan County PUD No. 1
- County of Chelan
- County of Okanogan
- Douglas County PUD
- Grant County PUD
- Cities of Cashmere, Chelan, Leavenworth, Okanogan, Wenatchee and Yakima

Libraries
- Cashmere Public Library
- Chelan Public Library
- Colville Tribe Library
- County of Okanogan Public Library
- Entiat Community Library
- Leavenworth Public Library
• North Central Regional Library, Wenatchee
• Okanogan Community Library
• Peshastin Community Library
• Wenatchee Public Library
• Wenatchee Valley College Library
• Winthrop Community Library
• Yakama Nation Library

Business, Special Interests and Organizations
• AAA Auto Club of Washington
• Alpine Lakes Protection Society
• American Fisheries Society
• American Forestry Association
• Apple Company Snowmobile Club
• Apple Valley Kiwanis Club
• Audubon Society
• Back Country Bicycle Trail Club
• Backcountry Horsemen Association
• Backcountry Horsemen of Washington
• Burlington Northern & Santa Fe Railroad Company
• Cascade Orchards Irrigation
• Cashmere Valley Bank
• Chelan County Conservation District
• Ellensburg Cross Country Ski
• Environmental Law Support Association
• Ephrata Sportsmen’s Association
• Grays Electric Inc.
• Kahler Glen Golf & Ski Resort
• KOHO Radio
• Methow Valley Sports Trail Association
• Nature Conservancy
• NCW Audubon
• Northwest Power & Conservation Council
• Pine River Ranch #2
• Round Mountain Corporation
• Strutzel's Sportsman LLC
• Trout Unlimited
• Washington Trout
• Wenatchee Outdoors
• Wenatchee World
• White River Lodging
• WICO